--- license: apache-2.0 language: - tr metrics: - accuracy - recall - f1 tags: - deprem-clf-v1 library_name: transformers pipeline_tag: text-classification model-index: - name: deprem_v12 results: - task: type: text-classification dataset: type: deprem_private_dataset_v1_2 name: deprem_private_dataset_v1_2 metrics: - type: recall value: 0.82 verified: false - type: f1 value: 0.76 verified: false widget: - text: >- acil acil acil antakyadan istanbula gitmek için antakya expoya ulaşmaya çalışan 19 kişilik bir aile için şehir içi ulaşım desteği istiyoruz. dışardalar üşüyorlar.iletebileceğiniz numaraları bekliyorum example_title: Örnek --- ## Eval Results ``` precision recall f1-score support Alakasiz 0.87 0.91 0.89 734 Barinma 0.79 0.89 0.84 207 Elektronik 0.69 0.83 0.75 130 Giysi 0.71 0.81 0.76 94 Kurtarma 0.82 0.85 0.83 362 Lojistik 0.57 0.67 0.62 112 Saglik 0.68 0.85 0.75 108 Su 0.56 0.76 0.64 78 Yagma 0.60 0.77 0.68 31 Yemek 0.71 0.89 0.79 117 micro avg 0.77 0.86 0.81 1973 macro avg 0.70 0.82 0.76 1973 weighted avg 0.78 0.86 0.82 1973 samples avg 0.83 0.88 0.84 1973 ``` ## Training Params: ```python {'per_device_train_batch_size': 32, 'per_device_eval_batch_size': 32, 'learning_rate': 5.8679699888213376e-05, 'weight_decay': 0.03530961718117487, 'num_train_epochs': 4, 'lr_scheduler_type': 'cosine', 'warmup_steps': 40, 'seed': 42, 'fp16': True, 'load_best_model_at_end': True, 'metric_for_best_model': 'macro f1', 'greater_is_better': True } ``` ## Threshold: - **Best Threshold:** 0.40 ## Class Loss Weights - Same as Anıl's approach.