# https://huggingface.co/docs/transformers/custom_models from transformers import PreTrainedModel, GPTNeoXForCausalLM, AutoModelForCausalLM, AutoTokenizer, LlamaConfig from transformers.modeling_outputs import CausalLMOutputWithPast from torch.nn.functional import log_softmax from torch.nn.modules.container import ModuleList class CustomModel4(PreTrainedModel): config_class = LlamaConfig def __init__(self, config): super().__init__(config) def forward(self, *args, labels=None, **kwargs): loss = None logits = None for model, coeff in zip(self.models, self.coeffs): logp = log_softmax(model.forward(*args, **kwargs).logits, dim=-1) logits = coeff * logp if logits is None else logits + coeff * logp # The rest copied from modeling_llama.py: if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) return CausalLMOutputWithPast(loss=loss, logits=logits) @classmethod def combine_models(cls, *args, coeffs = [], **kwargs): models = [] for model in args: models.append(AutoModelForCausalLM.from_pretrained(model, **kwargs).eval()) if coeffs == []: coeffs = [1/len(args)] * len(args) m = cls(models[0].config) m.models = ModuleList(models) m.coeffs = coeffs return m CustomModel4.register_for_auto_class('AutoModelForCausalLM')