---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
widget:
structuredData:
attribute_0:
- material_7
- material_7
- material_7
attribute_1:
- material_8
- material_8
- material_5
attribute_2:
- 9
- 9
- 6
attribute_3:
- 5
- 5
- 6
loading:
- 150.15
- 106.3
- 117.52
measurement_0:
- 6
- 11
- 4
measurement_1:
- 7
- 4
- 9
measurement_10:
- 15.888
- 15.56
- 18.49
measurement_11:
- 21.623
- 17.233
- 20.193
measurement_12:
- 12.83
- 12.926
- 14.127
measurement_13:
- 14.738
- 14.367
- 15.185
measurement_14:
- 18.506
- 16.302
- 16.657
measurement_15:
- 14.16
- 15.018
- 13.326
measurement_16:
- 15.266
- 18.297
- 17.467
measurement_17:
- 674.165
- 604.836
- 648.023
measurement_2:
- 11
- 4
- 9
measurement_3:
- 19.637
- 18.217
- 19.325
measurement_4:
- 12.55
- 10.627
- 10.092
measurement_5:
- 17.119
- 17.74
- 17.218
measurement_6:
- NaN
- 17.295
- 17.962
measurement_7:
- 10.958
- 11.732
- 9.274
measurement_8:
- 17.93
- 17.591
- 18.653
measurement_9:
- NaN
- 12.689
- 13.149
product_code:
- A
- A
- D
---
# Model description
This is a DecisionTreeClassifier model built for Kaggle Tabular Playground Series August 2022, trained on supersoaker production failures dataset.
## Intended uses & limitations
This model is not ready to be used in production.
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
Click to expand
| Hyperparameter | Value |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| memory | |
| steps | [('transformation', ColumnTransformer(transformers=[('loading_missing_value_imputer',
SimpleImputer(), ['loading']),
('numerical_missing_value_imputer',
SimpleImputer(),
['loading', 'measurement_3', 'measurement_4',
'measurement_5', 'measurement_6',
'measurement_7', 'measurement_8',
'measurement_9', 'measurement_10',
'measurement_11', 'measurement_12',
'measurement_13', 'measurement_14',
'measurement_15', 'measurement_16',
'measurement_17']),
('attribute_0_encoder', OneHotEncoder(),
['attribute_0']),
('attribute_1_encoder', OneHotEncoder(),
['attribute_1']),
('product_code_encoder', OneHotEncoder(),
['product_code'])])), ('model', DecisionTreeClassifier(max_depth=4))] |
| verbose | False |
| transformation | ColumnTransformer(transformers=[('loading_missing_value_imputer',
SimpleImputer(), ['loading']),
('numerical_missing_value_imputer',
SimpleImputer(),
['loading', 'measurement_3', 'measurement_4',
'measurement_5', 'measurement_6',
'measurement_7', 'measurement_8',
'measurement_9', 'measurement_10',
'measurement_11', 'measurement_12',
'measurement_13', 'measurement_14',
'measurement_15', 'measurement_16',
'measurement_17']),
('attribute_0_encoder', OneHotEncoder(),
['attribute_0']),
('attribute_1_encoder', OneHotEncoder(),
['attribute_1']),
('product_code_encoder', OneHotEncoder(),
['product_code'])]) |
| model | DecisionTreeClassifier(max_depth=4) |
| transformation__n_jobs | |
| transformation__remainder | drop |
| transformation__sparse_threshold | 0.3 |
| transformation__transformer_weights | |
| transformation__transformers | [('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])] |
| transformation__verbose | False |
| transformation__verbose_feature_names_out | True |
| transformation__loading_missing_value_imputer | SimpleImputer() |
| transformation__numerical_missing_value_imputer | SimpleImputer() |
| transformation__attribute_0_encoder | OneHotEncoder() |
| transformation__attribute_1_encoder | OneHotEncoder() |
| transformation__product_code_encoder | OneHotEncoder() |
| transformation__loading_missing_value_imputer__add_indicator | False |
| transformation__loading_missing_value_imputer__copy | True |
| transformation__loading_missing_value_imputer__fill_value | |
| transformation__loading_missing_value_imputer__missing_values | nan |
| transformation__loading_missing_value_imputer__strategy | mean |
| transformation__loading_missing_value_imputer__verbose | 0 |
| transformation__numerical_missing_value_imputer__add_indicator | False |
| transformation__numerical_missing_value_imputer__copy | True |
| transformation__numerical_missing_value_imputer__fill_value | |
| transformation__numerical_missing_value_imputer__missing_values | nan |
| transformation__numerical_missing_value_imputer__strategy | mean |
| transformation__numerical_missing_value_imputer__verbose | 0 |
| transformation__attribute_0_encoder__categories | auto |
| transformation__attribute_0_encoder__drop | |
| transformation__attribute_0_encoder__dtype |
Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])Please rerun this cell to show the HTML repr or trust the notebook.
Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])
ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(), ['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),['attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])])
['loading']
SimpleImputer()
['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']
SimpleImputer()
['attribute_0']
OneHotEncoder()
['attribute_1']
OneHotEncoder()
['product_code']
OneHotEncoder()
DecisionTreeClassifier(max_depth=4)