# automatically generated by the FlatBuffers compiler, do not modify # namespace: libtextclassifier3 import flatbuffers from flatbuffers.compat import import_numpy np = import_numpy() class PodNerModel(object): __slots__ = ['_tab'] @classmethod def GetRootAsPodNerModel(cls, buf, offset): n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset) x = PodNerModel() x.Init(buf, n + offset) return x @classmethod def PodNerModelBufferHasIdentifier(cls, buf, offset, size_prefixed=False): return flatbuffers.util.BufferHasIdentifier(buf, offset, b"\x54\x43\x32\x20", size_prefixed=size_prefixed) # PodNerModel def Init(self, buf, pos): self._tab = flatbuffers.table.Table(buf, pos) # PodNerModel def TfliteModel(self, j): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) if o != 0: a = self._tab.Vector(o) return self._tab.Get(flatbuffers.number_types.Uint8Flags, a + flatbuffers.number_types.UOffsetTFlags.py_type(j * 1)) return 0 # PodNerModel def TfliteModelAsNumpy(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) if o != 0: return self._tab.GetVectorAsNumpy(flatbuffers.number_types.Uint8Flags, o) return 0 # PodNerModel def TfliteModelLength(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) if o != 0: return self._tab.VectorLen(o) return 0 # PodNerModel def TfliteModelIsNone(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) return o == 0 # PodNerModel def WordPieceVocab(self, j): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) if o != 0: a = self._tab.Vector(o) return self._tab.Get(flatbuffers.number_types.Uint8Flags, a + flatbuffers.number_types.UOffsetTFlags.py_type(j * 1)) return 0 # PodNerModel def WordPieceVocabAsNumpy(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) if o != 0: return self._tab.GetVectorAsNumpy(flatbuffers.number_types.Uint8Flags, o) return 0 # PodNerModel def WordPieceVocabLength(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) if o != 0: return self._tab.VectorLen(o) return 0 # PodNerModel def WordPieceVocabIsNone(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) return o == 0 # PodNerModel def LowercaseInput(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(8)) if o != 0: return bool(self._tab.Get(flatbuffers.number_types.BoolFlags, o + self._tab.Pos)) return True # PodNerModel def LogitsIndexInOutputTensor(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(10)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos) return 0 # PodNerModel def AppendFinalPeriod(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(12)) if o != 0: return bool(self._tab.Get(flatbuffers.number_types.BoolFlags, o + self._tab.Pos)) return False # PodNerModel def PriorityScore(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(14)) if o != 0: return self._tab.Get(flatbuffers.number_types.Float32Flags, o + self._tab.Pos) return 0.0 # PodNerModel def MaxNumWordpieces(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(16)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos) return 128 # PodNerModel def SlidingWindowNumWordpiecesOverlap(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(18)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos) return 20 # PodNerModel def Labels(self, j): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(22)) if o != 0: x = self._tab.Vector(o) x += flatbuffers.number_types.UOffsetTFlags.py_type(j) * 4 x = self._tab.Indirect(x) from libtextclassifier3.PodNerModel_.Label import Label obj = Label() obj.Init(self._tab.Bytes, x) return obj return None # PodNerModel def LabelsLength(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(22)) if o != 0: return self._tab.VectorLen(o) return 0 # PodNerModel def LabelsIsNone(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(22)) return o == 0 # PodNerModel def MaxRatioUnknownWordpieces(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(24)) if o != 0: return self._tab.Get(flatbuffers.number_types.Float32Flags, o + self._tab.Pos) return 0.1 # PodNerModel def Collections(self, j): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(26)) if o != 0: x = self._tab.Vector(o) x += flatbuffers.number_types.UOffsetTFlags.py_type(j) * 4 x = self._tab.Indirect(x) from libtextclassifier3.PodNerModel_.Collection import Collection obj = Collection() obj.Init(self._tab.Bytes, x) return obj return None # PodNerModel def CollectionsLength(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(26)) if o != 0: return self._tab.VectorLen(o) return 0 # PodNerModel def CollectionsIsNone(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(26)) return o == 0 # PodNerModel def MinNumberOfTokens(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(28)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos) return 1 # PodNerModel def MinNumberOfWordpieces(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(30)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos) return 1 def PodNerModelStart(builder): builder.StartObject(14) def PodNerModelAddTfliteModel(builder, tfliteModel): builder.PrependUOffsetTRelativeSlot(0, flatbuffers.number_types.UOffsetTFlags.py_type(tfliteModel), 0) def PodNerModelStartTfliteModelVector(builder, numElems): return builder.StartVector(1, numElems, 1) def PodNerModelAddWordPieceVocab(builder, wordPieceVocab): builder.PrependUOffsetTRelativeSlot(1, flatbuffers.number_types.UOffsetTFlags.py_type(wordPieceVocab), 0) def PodNerModelStartWordPieceVocabVector(builder, numElems): return builder.StartVector(1, numElems, 1) def PodNerModelAddLowercaseInput(builder, lowercaseInput): builder.PrependBoolSlot(2, lowercaseInput, 1) def PodNerModelAddLogitsIndexInOutputTensor(builder, logitsIndexInOutputTensor): builder.PrependInt32Slot(3, logitsIndexInOutputTensor, 0) def PodNerModelAddAppendFinalPeriod(builder, appendFinalPeriod): builder.PrependBoolSlot(4, appendFinalPeriod, 0) def PodNerModelAddPriorityScore(builder, priorityScore): builder.PrependFloat32Slot(5, priorityScore, 0.0) def PodNerModelAddMaxNumWordpieces(builder, maxNumWordpieces): builder.PrependInt32Slot(6, maxNumWordpieces, 128) def PodNerModelAddSlidingWindowNumWordpiecesOverlap(builder, slidingWindowNumWordpiecesOverlap): builder.PrependInt32Slot(7, slidingWindowNumWordpiecesOverlap, 20) def PodNerModelAddLabels(builder, labels): builder.PrependUOffsetTRelativeSlot(9, flatbuffers.number_types.UOffsetTFlags.py_type(labels), 0) def PodNerModelStartLabelsVector(builder, numElems): return builder.StartVector(4, numElems, 4) def PodNerModelAddMaxRatioUnknownWordpieces(builder, maxRatioUnknownWordpieces): builder.PrependFloat32Slot(10, maxRatioUnknownWordpieces, 0.1) def PodNerModelAddCollections(builder, collections): builder.PrependUOffsetTRelativeSlot(11, flatbuffers.number_types.UOffsetTFlags.py_type(collections), 0) def PodNerModelStartCollectionsVector(builder, numElems): return builder.StartVector(4, numElems, 4) def PodNerModelAddMinNumberOfTokens(builder, minNumberOfTokens): builder.PrependInt32Slot(12, minNumberOfTokens, 1) def PodNerModelAddMinNumberOfWordpieces(builder, minNumberOfWordpieces): builder.PrependInt32Slot(13, minNumberOfWordpieces, 1) def PodNerModelEnd(builder): return builder.EndObject()