import streamlit as st import tensorflow as tf import sentencepiece as spm import numpy as np from scipy.spatial.distance import cosine import pandas as pd from openTSNE import TSNE import plotly.express as px import plotly.graph_objects as go # Set Streamlit layout to wide mode and remove padding st.set_page_config(layout="wide") # Remove default padding st.markdown(""" """, unsafe_allow_html=True) # Load the TFLite model and SentencePiece model tflite_model_path = "model.tflite" spm_model_path = "sentencepiece.model" sp = spm.SentencePieceProcessor() sp.load(spm_model_path) interpreter = tf.lite.Interpreter(model_path=tflite_model_path) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() required_input_length = 64 # Fixed length of 64 tokens # Function to preprocess text input def preprocess_text(text, sp, required_length): input_ids = sp.encode(text, out_type=int) input_ids = input_ids[:required_length] + [0] * (required_length - len(input_ids)) return np.array(input_ids, dtype=np.int32).reshape(1, -1) # Function to generate embeddings def generate_embeddings(text): input_data = preprocess_text(text, sp, required_input_length) interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() embedding = interpreter.get_tensor(output_details[0]['index']) return embedding.flatten() # Function to calculate similarity scores between sentences def calculate_similarity(embedding1, embedding2): return 1 - cosine(embedding1, embedding2) # Predefined sentence sets preset_sentences_a = [ "Dan Petrovic predicted conversational search in 2013.", "Understanding user intent is key to effective SEO.", "Dejan SEO has been a leader in data-driven SEO.", "Machine learning is transforming search engines.", "The future of search is AI-driven and personalized.", "Search algorithms are evolving to better match user intent.", "AI technologies enhance digital marketing strategies." ] preset_sentences_b = [ "Advances in machine learning reshape how search engines operate.", "Personalized content is becoming more prevalent with AI.", "Customer behavior insights are crucial for marketing strategies.", "Dan Petrovic anticipated the rise of chat-based search interactions.", "Dejan SEO is recognized for innovative SEO research and analysis.", "Quantum computing is advancing rapidly in the tech world.", "Studying user behavior can improve the effectiveness of online ads." ] # Initialize session state for input fields if not already set if "input_text_a" not in st.session_state: st.session_state["input_text_a"] = "\n".join(preset_sentences_a) if "input_text_b" not in st.session_state: st.session_state["input_text_b"] = "\n".join(preset_sentences_b) # Clear button to reset text areas if st.button("Clear Fields"): st.session_state["input_text_a"] = "" st.session_state["input_text_b"] = "" # Side-by-side layout for Set A and Set B inputs col1, col2 = st.columns(2) with col1: st.subheader("Set A Sentences") input_text_a = st.text_area("Set A", value=st.session_state["input_text_a"], height=200) with col2: st.subheader("Set B Sentences") input_text_b = st.text_area("Set B", value=st.session_state["input_text_b"], height=200) # Slider to control t-SNE iteration steps iterations = st.slider("Number of t-SNE Iterations (Higher values = more refined clusters)", 250, 1000, step=250) # Similarity threshold slider similarity_threshold = st.slider("Similarity Threshold", 0.0, 1.0, 0.5, 0.05) # Submit button if st.button("Calculate Similarity"): sentences_a = [line.strip() for line in input_text_a.split("\n") if line.strip()] sentences_b = [line.strip() for line in input_text_b.split("\n") if line.strip()] if len(sentences_a) > 0 and len(sentences_b) > 0: # Generate embeddings for both sets embeddings_a = [generate_embeddings(sentence) for sentence in sentences_a] embeddings_b = [generate_embeddings(sentence) for sentence in sentences_b] # Combine sentences and embeddings for both sets all_sentences = sentences_a + sentences_b all_embeddings = np.array(embeddings_a + embeddings_b) labels = ["Set A"] * len(sentences_a) + ["Set B"] * len(sentences_b) # Calculate similarity matrix similarity_matrix = np.zeros((len(sentences_a), len(sentences_b))) for i, emb_a in enumerate(embeddings_a): for j, emb_b in enumerate(embeddings_b): similarity_matrix[i, j] = calculate_similarity(emb_a, emb_b) # Greedy approach to find best matches above the threshold used_a = set() used_b = set() matches = [] pairs = [] for i in range(len(sentences_a)): for j in range(len(sentences_b)): pairs.append((i, j, similarity_matrix[i, j])) # Sort pairs by highest similarity first pairs.sort(key=lambda x: x[2], reverse=True) for i, j, sim in pairs: if i not in used_a and j not in used_b and sim >= similarity_threshold: matches.append((i, j, sim)) used_a.add(i) used_b.add(j) # -------------------------------------- # 1) SHOW MATCH TABLE AT THE TOP USING st.dataframe (FILLING THE SCREEN) # -------------------------------------- if len(matches) == 0: st.warning("No sentence pairs exceeded the similarity threshold.") else: # Create a DataFrame for the matched pairs with original order information df_matches = pd.DataFrame( [ (i+1, sentences_a[i], j+1, sentences_b[j], round(sim, 3)) for (i, j, sim) in matches ], columns=["Set A Order", "Set A Sentence", "Set B Order", "Set B Sentence", "Similarity"] ) st.subheader("Matched Sentences (Above Threshold)") st.dataframe(df_matches, use_container_width=True) # -------------------------------------- # 2) THEN PERFORM T-SNE AND SHOW 3D PLOT # -------------------------------------- perplexity_value = min(5, len(all_sentences) - 1) tsne = TSNE( n_components=3, perplexity=perplexity_value, n_iter=iterations, initialization="pca", random_state=42 ) tsne_results = tsne.fit(all_embeddings) # Prepare DataFrame for Plotly df_tsne = pd.DataFrame({ "Sentence": all_sentences, "Set": labels, "X": tsne_results[:, 0], "Y": tsne_results[:, 1], "Z": tsne_results[:, 2] }) # Create 3D scatter plot with connections fig = go.Figure() # Add scatter points for Set A fig.add_trace(go.Scatter3d( x=df_tsne[df_tsne["Set"] == "Set A"]["X"], y=df_tsne[df_tsne["Set"] == "Set A"]["Y"], z=df_tsne[df_tsne["Set"] == "Set A"]["Z"], text=df_tsne[df_tsne["Set"] == "Set A"]["Sentence"], mode='markers', name='Set A', marker=dict(size=5, color='blue') )) # Add scatter points for Set B fig.add_trace(go.Scatter3d( x=df_tsne[df_tsne["Set"] == "Set B"]["X"], y=df_tsne[df_tsne["Set"] == "Set B"]["Y"], z=df_tsne[df_tsne["Set"] == "Set B"]["Z"], text=df_tsne[df_tsne["Set"] == "Set B"]["Sentence"], mode='markers', name='Set B', marker=dict(size=5, color='red') )) # Optionally, add lines for sentence pairs above threshold for i, emb_a in enumerate(embeddings_a): pos_a = tsne_results[i] for j, emb_b in enumerate(embeddings_b): sim = similarity_matrix[i, j] if sim >= similarity_threshold: pos_b = tsne_results[j + len(sentences_a)] fig.add_trace(go.Scatter3d( x=[pos_a[0], pos_b[0]], y=[pos_a[1], pos_b[1]], z=[pos_a[2], pos_b[2]], mode='lines', line=dict(color=f'rgba(150,150,150,{sim})', width=2), name=f'Similarity: {sim:.2f}', showlegend=False )) fig.update_layout( title="3D Visualization of Sentence Similarity with Connections", width=1200, height=800, scene=dict( xaxis_title="t-SNE Dimension 1", yaxis_title="t-SNE Dimension 2", zaxis_title="t-SNE Dimension 3" ) ) st.plotly_chart(fig) # -------------------------------------- # 3) SIMILARITY HEATMAP # -------------------------------------- fig_heatmap = go.Figure(data=go.Heatmap( z=similarity_matrix, x=[f"B{i+1}" for i in range(len(sentences_b))], y=[f"A{i+1}" for i in range(len(sentences_a))], colorscale="Viridis", text=np.round(similarity_matrix, 2), texttemplate="%{text}", textfont={"size": 10}, hoverongaps=False )) fig_heatmap.update_layout( title="Similarity Heatmap between Set A and Set B", width=None, # Full width height=400, margin=dict(l=20, r=20, t=40, b=20), xaxis_title="Set B Sentences", yaxis_title="Set A Sentences" ) st.plotly_chart(fig_heatmap) else: st.warning("Please enter sentences in both Set A and Set B.")