--- license: mit tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy - f1 model-index: - name: tweet_eval-sentiment-finetuned results: - task: name: Text Classification type: text-classification dataset: name: sentiment type: sentiment args: default metrics: - name: Accuracy type: accuracy value: 0.70 - name: f1 type: f1 value: 0.70 --- # tweet_eval-sentiment-finetuned This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8369 - Accuracy: 0.7305 - F1: 0.7297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7269 | 1.0 | 357 | 0.6057 | 0.733 | 0.7323 | | 0.522 | 2.0 | 714 | 0.6115 | 0.7415 | 0.7416 | | 0.359 | 3.0 | 1071 | 0.6970 | 0.744 | 0.7445 | | 0.2386 | 4.0 | 1428 | 0.8369 | 0.7305 | 0.7297 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.1 - Datasets 2.1.0 - Tokenizers 0.12.1