--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: tweet_eval-sentiment-finetuned results: [] --- # tweet_eval-sentiment-finetuned This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6532 - Accuracy: 0.744 - F1: 0.7437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7491 | 1.0 | 357 | 0.6089 | 0.7345 | 0.7314 | | 0.5516 | 2.0 | 714 | 0.5958 | 0.751 | 0.7516 | | 0.4618 | 3.0 | 1071 | 0.6131 | 0.748 | 0.7487 | | 0.4066 | 4.0 | 1428 | 0.6532 | 0.744 | 0.7437 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.1 - Datasets 2.1.0 - Tokenizers 0.12.1