--- license: mit tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: roberta-large-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9741935483870968 --- # roberta-large-finetuned-clinc This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.1594 - Accuracy: 0.9742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: sagemaker_data_parallel - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 5.0651 | 1.0 | 120 | 5.0213 | 0.0065 | | 4.2482 | 2.0 | 240 | 2.5682 | 0.7997 | | 1.694 | 3.0 | 360 | 0.6019 | 0.9445 | | 0.4594 | 4.0 | 480 | 0.2330 | 0.9655 | | 0.1599 | 5.0 | 600 | 0.1594 | 0.9742 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6