|
program(1.0) |
|
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.0.0"}, {"coremltools-version", "7.0b2"}})] |
|
{ |
|
func main<ios16>(tensor<fp16, [1, 4, 64, 64]> z) { |
|
tensor<int32, []> var_7 = const()[name = tensor<string, []>("op_7"), val = tensor<int32, []>(1)]; |
|
tensor<int32, [2]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_12 = const()[name = tensor<string, []>("op_12"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_1_pad_type_0 = const()[name = tensor<string, []>("input_1_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_1_pad_0 = const()[name = tensor<string, []>("input_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<fp16, [4, 4, 1, 1]> post_quant_conv_weight_to_fp16 = const()[name = tensor<string, []>("post_quant_conv_weight_to_fp16"), val = tensor<fp16, [4, 4, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))]; |
|
tensor<fp16, [4]> post_quant_conv_bias_to_fp16 = const()[name = tensor<string, []>("post_quant_conv_bias_to_fp16"), val = tensor<fp16, [4]>([0x1.0cp-5, -0x1.5ap-4, -0x1.fp-3, 0x1.0ep-3])]; |
|
tensor<fp16, [1, 4, 64, 64]> input_1_cast = conv(bias = post_quant_conv_bias_to_fp16, dilations = var_12, groups = var_7, pad = input_1_pad_0, pad_type = input_1_pad_type_0, strides = var_10, weight = post_quant_conv_weight_to_fp16, x = z)[name = tensor<string, []>("input_1_cast")]; |
|
tensor<int32, []> var_26 = const()[name = tensor<string, []>("op_26"), val = tensor<int32, []>(1)]; |
|
tensor<int32, [2]> var_44 = const()[name = tensor<string, []>("op_44"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_46 = const()[name = tensor<string, []>("op_46"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_3_pad_type_0 = const()[name = tensor<string, []>("input_3_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 4, 3, 3]> decoder_conv_in_weight_to_fp16 = const()[name = tensor<string, []>("decoder_conv_in_weight_to_fp16"), val = tensor<fp16, [512, 4, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(192)))]; |
|
tensor<fp16, [512]> decoder_conv_in_bias_to_fp16 = const()[name = tensor<string, []>("decoder_conv_in_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(37120)))]; |
|
tensor<fp16, [1, 512, 64, 64]> input_3_cast = conv(bias = decoder_conv_in_bias_to_fp16, dilations = var_46, groups = var_26, pad = input_3_pad_0, pad_type = input_3_pad_type_0, strides = var_44, weight = decoder_conv_in_weight_to_fp16, x = input_1_cast)[name = tensor<string, []>("input_3_cast")]; |
|
tensor<int32, [5]> reshape_0_shape_0 = const()[name = tensor<string, []>("reshape_0_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> reshape_0_cast = reshape(shape = reshape_0_shape_0, x = input_3_cast)[name = tensor<string, []>("reshape_0_cast")]; |
|
tensor<int32, [3]> reduce_mean_0_axes_0 = const()[name = tensor<string, []>("reduce_mean_0_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_0_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_0_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_0_cast = reduce_mean(axes = reduce_mean_0_axes_0, keep_dims = reduce_mean_0_keep_dims_0, x = reshape_0_cast)[name = tensor<string, []>("reduce_mean_0_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> sub_0_cast = sub(x = reshape_0_cast, y = reduce_mean_0_cast)[name = tensor<string, []>("sub_0_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> square_0_cast = square(x = sub_0_cast)[name = tensor<string, []>("square_0_cast")]; |
|
tensor<int32, [3]> reduce_mean_2_axes_0 = const()[name = tensor<string, []>("reduce_mean_2_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_2_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_2_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_2_cast = reduce_mean(axes = reduce_mean_2_axes_0, keep_dims = reduce_mean_2_keep_dims_0, x = square_0_cast)[name = tensor<string, []>("reduce_mean_2_cast")]; |
|
tensor<fp16, []> add_0_y_0_to_fp16 = const()[name = tensor<string, []>("add_0_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_0_cast = add(x = reduce_mean_2_cast, y = add_0_y_0_to_fp16)[name = tensor<string, []>("add_0_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_0_cast = sqrt(x = add_0_cast)[name = tensor<string, []>("sqrt_0_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> real_div_0_cast = real_div(x = sub_0_cast, y = sqrt_0_cast)[name = tensor<string, []>("real_div_0_cast")]; |
|
tensor<int32, [4]> reshape_1_shape_0 = const()[name = tensor<string, []>("reshape_1_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])]; |
|
tensor<fp16, [1, 512, 64, 64]> reshape_1_cast = reshape(shape = reshape_1_shape_0, x = real_div_0_cast)[name = tensor<string, []>("reshape_1_cast")]; |
|
tensor<fp16, [512]> add_1_mean_0_to_fp16 = const()[name = tensor<string, []>("add_1_mean_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(38208)))]; |
|
tensor<fp16, [512]> add_1_variance_0_to_fp16 = const()[name = tensor<string, []>("add_1_variance_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(39296)))]; |
|
tensor<fp16, [512]> add_1_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_1_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40384)))]; |
|
tensor<fp16, [512]> add_1_beta_0_to_fp16 = const()[name = tensor<string, []>("add_1_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41472)))]; |
|
tensor<fp16, []> add_1_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_1_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 512, 64, 64]> add_1_cast = batch_norm(beta = add_1_beta_0_to_fp16, epsilon = add_1_epsilon_0_to_fp16, gamma = add_1_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_1_cast)[name = tensor<string, []>("add_1_cast")]; |
|
tensor<fp16, [1, 512, 64, 64]> hidden_states_1_cast = silu(x = add_1_cast)[name = tensor<string, []>("hidden_states_1_cast")]; |
|
tensor<int32, [2]> var_65 = const()[name = tensor<string, []>("op_65"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_67 = const()[name = tensor<string, []>("op_67"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_7_pad_type_0 = const()[name = tensor<string, []>("input_7_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_7_pad_0 = const()[name = tensor<string, []>("input_7_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 512, 3, 3]> decoder_mid_block_resnets_0_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_resnets_0_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42560)))]; |
|
tensor<fp16, [512]> decoder_mid_block_resnets_0_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_resnets_0_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4761216)))]; |
|
tensor<fp16, [1, 512, 64, 64]> input_7_cast = conv(bias = decoder_mid_block_resnets_0_conv1_bias_to_fp16, dilations = var_67, groups = var_26, pad = input_7_pad_0, pad_type = input_7_pad_type_0, strides = var_65, weight = decoder_mid_block_resnets_0_conv1_weight_to_fp16, x = hidden_states_1_cast)[name = tensor<string, []>("input_7_cast")]; |
|
tensor<int32, [5]> reshape_4_shape_0 = const()[name = tensor<string, []>("reshape_4_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> reshape_4_cast = reshape(shape = reshape_4_shape_0, x = input_7_cast)[name = tensor<string, []>("reshape_4_cast")]; |
|
tensor<int32, [3]> reduce_mean_3_axes_0 = const()[name = tensor<string, []>("reduce_mean_3_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_3_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_3_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_3_cast = reduce_mean(axes = reduce_mean_3_axes_0, keep_dims = reduce_mean_3_keep_dims_0, x = reshape_4_cast)[name = tensor<string, []>("reduce_mean_3_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> sub_2_cast = sub(x = reshape_4_cast, y = reduce_mean_3_cast)[name = tensor<string, []>("sub_2_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> square_1_cast = square(x = sub_2_cast)[name = tensor<string, []>("square_1_cast")]; |
|
tensor<int32, [3]> reduce_mean_5_axes_0 = const()[name = tensor<string, []>("reduce_mean_5_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_5_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_5_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_5_cast = reduce_mean(axes = reduce_mean_5_axes_0, keep_dims = reduce_mean_5_keep_dims_0, x = square_1_cast)[name = tensor<string, []>("reduce_mean_5_cast")]; |
|
tensor<fp16, []> add_2_y_0_to_fp16 = const()[name = tensor<string, []>("add_2_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_2_cast = add(x = reduce_mean_5_cast, y = add_2_y_0_to_fp16)[name = tensor<string, []>("add_2_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_1_cast = sqrt(x = add_2_cast)[name = tensor<string, []>("sqrt_1_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> real_div_1_cast = real_div(x = sub_2_cast, y = sqrt_1_cast)[name = tensor<string, []>("real_div_1_cast")]; |
|
tensor<int32, [4]> reshape_5_shape_0 = const()[name = tensor<string, []>("reshape_5_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])]; |
|
tensor<fp16, [1, 512, 64, 64]> reshape_5_cast = reshape(shape = reshape_5_shape_0, x = real_div_1_cast)[name = tensor<string, []>("reshape_5_cast")]; |
|
tensor<fp16, [512]> add_3_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_3_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4762304)))]; |
|
tensor<fp16, [512]> add_3_beta_0_to_fp16 = const()[name = tensor<string, []>("add_3_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4763392)))]; |
|
tensor<fp16, []> add_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 512, 64, 64]> add_3_cast = batch_norm(beta = add_3_beta_0_to_fp16, epsilon = add_3_epsilon_0_to_fp16, gamma = add_3_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_5_cast)[name = tensor<string, []>("add_3_cast")]; |
|
tensor<fp16, [1, 512, 64, 64]> input_11_cast = silu(x = add_3_cast)[name = tensor<string, []>("input_11_cast")]; |
|
tensor<int32, [2]> var_77 = const()[name = tensor<string, []>("op_77"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_79 = const()[name = tensor<string, []>("op_79"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> hidden_states_5_pad_type_0 = const()[name = tensor<string, []>("hidden_states_5_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> hidden_states_5_pad_0 = const()[name = tensor<string, []>("hidden_states_5_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 512, 3, 3]> decoder_mid_block_resnets_0_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_resnets_0_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4764480)))]; |
|
tensor<fp16, [512]> decoder_mid_block_resnets_0_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_resnets_0_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9483136)))]; |
|
tensor<fp16, [1, 512, 64, 64]> hidden_states_5_cast = conv(bias = decoder_mid_block_resnets_0_conv2_bias_to_fp16, dilations = var_79, groups = var_26, pad = hidden_states_5_pad_0, pad_type = hidden_states_5_pad_type_0, strides = var_77, weight = decoder_mid_block_resnets_0_conv2_weight_to_fp16, x = input_11_cast)[name = tensor<string, []>("hidden_states_5_cast")]; |
|
tensor<fp16, [1, 512, 64, 64]> var_82_cast = add(x = input_3_cast, y = hidden_states_5_cast)[name = tensor<string, []>("op_82_cast")]; |
|
tensor<int32, [4]> reshape_8_shape_0 = const()[name = tensor<string, []>("reshape_8_shape_0"), val = tensor<int32, [4]>([1, 32, 16, 4096])]; |
|
tensor<fp16, [1, 32, 16, 4096]> reshape_8_cast = reshape(shape = reshape_8_shape_0, x = var_82_cast)[name = tensor<string, []>("reshape_8_cast")]; |
|
tensor<int32, [2]> reduce_mean_6_axes_0 = const()[name = tensor<string, []>("reduce_mean_6_axes_0"), val = tensor<int32, [2]>([2, 3])]; |
|
tensor<bool, []> reduce_mean_6_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_6_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1]> reduce_mean_6_cast = reduce_mean(axes = reduce_mean_6_axes_0, keep_dims = reduce_mean_6_keep_dims_0, x = reshape_8_cast)[name = tensor<string, []>("reduce_mean_6_cast")]; |
|
tensor<fp16, [1, 32, 16, 4096]> sub_4_cast = sub(x = reshape_8_cast, y = reduce_mean_6_cast)[name = tensor<string, []>("sub_4_cast")]; |
|
tensor<fp16, [1, 32, 16, 4096]> square_2_cast = square(x = sub_4_cast)[name = tensor<string, []>("square_2_cast")]; |
|
tensor<int32, [2]> reduce_mean_8_axes_0 = const()[name = tensor<string, []>("reduce_mean_8_axes_0"), val = tensor<int32, [2]>([2, 3])]; |
|
tensor<bool, []> reduce_mean_8_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_8_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1]> reduce_mean_8_cast = reduce_mean(axes = reduce_mean_8_axes_0, keep_dims = reduce_mean_8_keep_dims_0, x = square_2_cast)[name = tensor<string, []>("reduce_mean_8_cast")]; |
|
tensor<fp16, []> add_4_y_0_to_fp16 = const()[name = tensor<string, []>("add_4_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1]> add_4_cast = add(x = reduce_mean_8_cast, y = add_4_y_0_to_fp16)[name = tensor<string, []>("add_4_cast")]; |
|
tensor<fp16, [1, 32, 1, 1]> sqrt_2_cast = sqrt(x = add_4_cast)[name = tensor<string, []>("sqrt_2_cast")]; |
|
tensor<fp16, [1, 32, 16, 4096]> real_div_2_cast = real_div(x = sub_4_cast, y = sqrt_2_cast)[name = tensor<string, []>("real_div_2_cast")]; |
|
tensor<int32, [3]> reshape_9_shape_0 = const()[name = tensor<string, []>("reshape_9_shape_0"), val = tensor<int32, [3]>([1, 512, 4096])]; |
|
tensor<fp16, [1, 512, 4096]> reshape_9_cast = reshape(shape = reshape_9_shape_0, x = real_div_2_cast)[name = tensor<string, []>("reshape_9_cast")]; |
|
tensor<fp16, [1, 512, 1]> reshape_10_to_fp16 = const()[name = tensor<string, []>("reshape_10_to_fp16"), val = tensor<fp16, [1, 512, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9484224)))]; |
|
tensor<fp16, [1, 512, 4096]> mul_2_cast = mul(x = reshape_9_cast, y = reshape_10_to_fp16)[name = tensor<string, []>("mul_2_cast")]; |
|
tensor<fp16, [1, 512, 1]> reshape_11_to_fp16 = const()[name = tensor<string, []>("reshape_11_to_fp16"), val = tensor<fp16, [1, 512, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9485312)))]; |
|
tensor<fp16, [1, 512, 4096]> add_5_cast = add(x = mul_2_cast, y = reshape_11_to_fp16)[name = tensor<string, []>("add_5_cast")]; |
|
tensor<int32, [3]> input_15_perm_0 = const()[name = tensor<string, []>("input_15_perm_0"), val = tensor<int32, [3]>([0, 2, 1])]; |
|
tensor<fp16, [512, 512]> decoder_mid_block_attentions_0_to_q_weight_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_attentions_0_to_q_weight_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9486400)))]; |
|
tensor<fp16, [512]> decoder_mid_block_attentions_0_to_q_bias_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_attentions_0_to_q_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10010752)))]; |
|
tensor<fp16, [1, 4096, 512]> transpose_9 = transpose(perm = input_15_perm_0, x = add_5_cast)[name = tensor<string, []>("transpose_9")]; |
|
tensor<fp16, [1, 4096, 512]> query_1_cast = linear(bias = decoder_mid_block_attentions_0_to_q_bias_to_fp16, weight = decoder_mid_block_attentions_0_to_q_weight_to_fp16, x = transpose_9)[name = tensor<string, []>("query_1_cast")]; |
|
tensor<fp16, [512, 512]> decoder_mid_block_attentions_0_to_k_weight_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_attentions_0_to_k_weight_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10011840)))]; |
|
tensor<fp16, [512]> decoder_mid_block_attentions_0_to_k_bias_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_attentions_0_to_k_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10536192)))]; |
|
tensor<fp16, [1, 4096, 512]> key_1_cast = linear(bias = decoder_mid_block_attentions_0_to_k_bias_to_fp16, weight = decoder_mid_block_attentions_0_to_k_weight_to_fp16, x = transpose_9)[name = tensor<string, []>("key_1_cast")]; |
|
tensor<fp16, [512, 512]> decoder_mid_block_attentions_0_to_v_weight_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_attentions_0_to_v_weight_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10537280)))]; |
|
tensor<fp16, [512]> decoder_mid_block_attentions_0_to_v_bias_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_attentions_0_to_v_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11061632)))]; |
|
tensor<fp16, [1, 4096, 512]> value_1_cast = linear(bias = decoder_mid_block_attentions_0_to_v_bias_to_fp16, weight = decoder_mid_block_attentions_0_to_v_weight_to_fp16, x = transpose_9)[name = tensor<string, []>("value_1_cast")]; |
|
tensor<int32, [4]> var_123 = const()[name = tensor<string, []>("op_123"), val = tensor<int32, [4]>([1, -1, 1, 512])]; |
|
tensor<fp16, [1, 4096, 1, 512]> var_124_cast = reshape(shape = var_123, x = query_1_cast)[name = tensor<string, []>("op_124_cast")]; |
|
tensor<int32, [4]> var_126 = const()[name = tensor<string, []>("op_126"), val = tensor<int32, [4]>([1, -1, 1, 512])]; |
|
tensor<fp16, [1, 4096, 1, 512]> var_127_cast = reshape(shape = var_126, x = key_1_cast)[name = tensor<string, []>("op_127_cast")]; |
|
tensor<int32, [4]> var_129 = const()[name = tensor<string, []>("op_129"), val = tensor<int32, [4]>([1, -1, 1, 512])]; |
|
tensor<fp16, [1, 4096, 1, 512]> var_130_cast = reshape(shape = var_129, x = value_1_cast)[name = tensor<string, []>("op_130_cast")]; |
|
tensor<int32, [4]> value_perm_0 = const()[name = tensor<string, []>("value_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])]; |
|
tensor<fp16, []> mul_3_y_0_to_fp16 = const()[name = tensor<string, []>("mul_3_y_0_to_fp16"), val = tensor<fp16, []>(0x1.6ap-5)]; |
|
tensor<fp16, [1, 4096, 1, 512]> mul_3_cast = mul(x = var_124_cast, y = mul_3_y_0_to_fp16)[name = tensor<string, []>("mul_3_cast")]; |
|
tensor<bool, []> matmul_0_transpose_y_0 = const()[name = tensor<string, []>("matmul_0_transpose_y_0"), val = tensor<bool, []>(true)]; |
|
tensor<bool, []> matmul_0_transpose_x_0 = const()[name = tensor<string, []>("matmul_0_transpose_x_0"), val = tensor<bool, []>(false)]; |
|
tensor<int32, [4]> transpose_2_perm_0 = const()[name = tensor<string, []>("transpose_2_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])]; |
|
tensor<int32, [4]> transpose_3_perm_0 = const()[name = tensor<string, []>("transpose_3_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])]; |
|
tensor<fp16, [1, 1, 4096, 512]> transpose_6 = transpose(perm = transpose_3_perm_0, x = var_127_cast)[name = tensor<string, []>("transpose_6")]; |
|
tensor<fp16, [1, 1, 4096, 512]> transpose_7 = transpose(perm = transpose_2_perm_0, x = mul_3_cast)[name = tensor<string, []>("transpose_7")]; |
|
tensor<fp16, [1, 1, 4096, 4096]> matmul_0_cast = matmul(transpose_x = matmul_0_transpose_x_0, transpose_y = matmul_0_transpose_y_0, x = transpose_7, y = transpose_6)[name = tensor<string, []>("matmul_0_cast")]; |
|
tensor<int32, []> softmax_0_axis_0 = const()[name = tensor<string, []>("softmax_0_axis_0"), val = tensor<int32, []>(-1)]; |
|
tensor<fp16, [1, 1, 4096, 4096]> softmax_0_cast = softmax(axis = softmax_0_axis_0, x = matmul_0_cast)[name = tensor<string, []>("softmax_0_cast")]; |
|
tensor<bool, []> hidden_states_11_transpose_x_0 = const()[name = tensor<string, []>("hidden_states_11_transpose_x_0"), val = tensor<bool, []>(false)]; |
|
tensor<bool, []> hidden_states_11_transpose_y_0 = const()[name = tensor<string, []>("hidden_states_11_transpose_y_0"), val = tensor<bool, []>(false)]; |
|
tensor<fp16, [1, 1, 4096, 512]> transpose_8 = transpose(perm = value_perm_0, x = var_130_cast)[name = tensor<string, []>("transpose_8")]; |
|
tensor<fp16, [1, 1, 4096, 512]> hidden_states_11_cast = matmul(transpose_x = hidden_states_11_transpose_x_0, transpose_y = hidden_states_11_transpose_y_0, x = softmax_0_cast, y = transpose_8)[name = tensor<string, []>("hidden_states_11_cast")]; |
|
tensor<int32, [4]> var_133_perm_0 = const()[name = tensor<string, []>("op_133_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])]; |
|
tensor<int32, [3]> var_137 = const()[name = tensor<string, []>("op_137"), val = tensor<int32, [3]>([1, -1, 512])]; |
|
tensor<fp16, [1, 4096, 1, 512]> transpose_5 = transpose(perm = var_133_perm_0, x = hidden_states_11_cast)[name = tensor<string, []>("transpose_5")]; |
|
tensor<fp16, [1, 4096, 512]> hidden_states_13_cast = reshape(shape = var_137, x = transpose_5)[name = tensor<string, []>("hidden_states_13_cast")]; |
|
tensor<fp16, [512, 512]> decoder_mid_block_attentions_0_to_out_0_weight_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_attentions_0_to_out_0_weight_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11062720)))]; |
|
tensor<fp16, [512]> decoder_mid_block_attentions_0_to_out_0_bias_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_attentions_0_to_out_0_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11587072)))]; |
|
tensor<fp16, [1, 4096, 512]> input_19_cast = linear(bias = decoder_mid_block_attentions_0_to_out_0_bias_to_fp16, weight = decoder_mid_block_attentions_0_to_out_0_weight_to_fp16, x = hidden_states_13_cast)[name = tensor<string, []>("input_19_cast")]; |
|
tensor<int32, [3]> var_144_perm_0 = const()[name = tensor<string, []>("op_144_perm_0"), val = tensor<int32, [3]>([0, -1, -2])]; |
|
tensor<int32, [4]> var_145 = const()[name = tensor<string, []>("op_145"), val = tensor<int32, [4]>([1, 512, 64, 64])]; |
|
tensor<fp16, [1, 512, 4096]> transpose_4 = transpose(perm = var_144_perm_0, x = input_19_cast)[name = tensor<string, []>("transpose_4")]; |
|
tensor<fp16, [1, 512, 64, 64]> hidden_states_17_cast = reshape(shape = var_145, x = transpose_4)[name = tensor<string, []>("hidden_states_17_cast")]; |
|
tensor<fp16, [1, 512, 64, 64]> hidden_states_19_cast = add(x = hidden_states_17_cast, y = var_82_cast)[name = tensor<string, []>("hidden_states_19_cast")]; |
|
tensor<int32, [5]> reshape_12_shape_0 = const()[name = tensor<string, []>("reshape_12_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> reshape_12_cast = reshape(shape = reshape_12_shape_0, x = hidden_states_19_cast)[name = tensor<string, []>("reshape_12_cast")]; |
|
tensor<int32, [3]> reduce_mean_9_axes_0 = const()[name = tensor<string, []>("reduce_mean_9_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_9_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_9_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_9_cast = reduce_mean(axes = reduce_mean_9_axes_0, keep_dims = reduce_mean_9_keep_dims_0, x = reshape_12_cast)[name = tensor<string, []>("reduce_mean_9_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> sub_6_cast = sub(x = reshape_12_cast, y = reduce_mean_9_cast)[name = tensor<string, []>("sub_6_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> square_3_cast = square(x = sub_6_cast)[name = tensor<string, []>("square_3_cast")]; |
|
tensor<int32, [3]> reduce_mean_11_axes_0 = const()[name = tensor<string, []>("reduce_mean_11_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_11_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_11_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_11_cast = reduce_mean(axes = reduce_mean_11_axes_0, keep_dims = reduce_mean_11_keep_dims_0, x = square_3_cast)[name = tensor<string, []>("reduce_mean_11_cast")]; |
|
tensor<fp16, []> add_6_y_0_to_fp16 = const()[name = tensor<string, []>("add_6_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_6_cast = add(x = reduce_mean_11_cast, y = add_6_y_0_to_fp16)[name = tensor<string, []>("add_6_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_3_cast = sqrt(x = add_6_cast)[name = tensor<string, []>("sqrt_3_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> real_div_3_cast = real_div(x = sub_6_cast, y = sqrt_3_cast)[name = tensor<string, []>("real_div_3_cast")]; |
|
tensor<int32, [4]> reshape_13_shape_0 = const()[name = tensor<string, []>("reshape_13_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])]; |
|
tensor<fp16, [1, 512, 64, 64]> reshape_13_cast = reshape(shape = reshape_13_shape_0, x = real_div_3_cast)[name = tensor<string, []>("reshape_13_cast")]; |
|
tensor<fp16, [512]> add_7_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_7_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11588160)))]; |
|
tensor<fp16, [512]> add_7_beta_0_to_fp16 = const()[name = tensor<string, []>("add_7_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11589248)))]; |
|
tensor<fp16, []> add_7_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_7_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 512, 64, 64]> add_7_cast = batch_norm(beta = add_7_beta_0_to_fp16, epsilon = add_7_epsilon_0_to_fp16, gamma = add_7_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_13_cast)[name = tensor<string, []>("add_7_cast")]; |
|
tensor<fp16, [1, 512, 64, 64]> hidden_states_21_cast = silu(x = add_7_cast)[name = tensor<string, []>("hidden_states_21_cast")]; |
|
tensor<int32, [2]> var_160 = const()[name = tensor<string, []>("op_160"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_162 = const()[name = tensor<string, []>("op_162"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_25_pad_type_0 = const()[name = tensor<string, []>("input_25_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_25_pad_0 = const()[name = tensor<string, []>("input_25_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 512, 3, 3]> decoder_mid_block_resnets_1_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_resnets_1_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11590336)))]; |
|
tensor<fp16, [512]> decoder_mid_block_resnets_1_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_resnets_1_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16308992)))]; |
|
tensor<fp16, [1, 512, 64, 64]> input_25_cast = conv(bias = decoder_mid_block_resnets_1_conv1_bias_to_fp16, dilations = var_162, groups = var_26, pad = input_25_pad_0, pad_type = input_25_pad_type_0, strides = var_160, weight = decoder_mid_block_resnets_1_conv1_weight_to_fp16, x = hidden_states_21_cast)[name = tensor<string, []>("input_25_cast")]; |
|
tensor<int32, [5]> reshape_16_shape_0 = const()[name = tensor<string, []>("reshape_16_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> reshape_16_cast = reshape(shape = reshape_16_shape_0, x = input_25_cast)[name = tensor<string, []>("reshape_16_cast")]; |
|
tensor<int32, [3]> reduce_mean_12_axes_0 = const()[name = tensor<string, []>("reduce_mean_12_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_12_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_12_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_12_cast = reduce_mean(axes = reduce_mean_12_axes_0, keep_dims = reduce_mean_12_keep_dims_0, x = reshape_16_cast)[name = tensor<string, []>("reduce_mean_12_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> sub_8_cast = sub(x = reshape_16_cast, y = reduce_mean_12_cast)[name = tensor<string, []>("sub_8_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> square_4_cast = square(x = sub_8_cast)[name = tensor<string, []>("square_4_cast")]; |
|
tensor<int32, [3]> reduce_mean_14_axes_0 = const()[name = tensor<string, []>("reduce_mean_14_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_14_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_14_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_14_cast = reduce_mean(axes = reduce_mean_14_axes_0, keep_dims = reduce_mean_14_keep_dims_0, x = square_4_cast)[name = tensor<string, []>("reduce_mean_14_cast")]; |
|
tensor<fp16, []> add_8_y_0_to_fp16 = const()[name = tensor<string, []>("add_8_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_8_cast = add(x = reduce_mean_14_cast, y = add_8_y_0_to_fp16)[name = tensor<string, []>("add_8_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_4_cast = sqrt(x = add_8_cast)[name = tensor<string, []>("sqrt_4_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> real_div_4_cast = real_div(x = sub_8_cast, y = sqrt_4_cast)[name = tensor<string, []>("real_div_4_cast")]; |
|
tensor<int32, [4]> reshape_17_shape_0 = const()[name = tensor<string, []>("reshape_17_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])]; |
|
tensor<fp16, [1, 512, 64, 64]> reshape_17_cast = reshape(shape = reshape_17_shape_0, x = real_div_4_cast)[name = tensor<string, []>("reshape_17_cast")]; |
|
tensor<fp16, [512]> add_9_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_9_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16310080)))]; |
|
tensor<fp16, [512]> add_9_beta_0_to_fp16 = const()[name = tensor<string, []>("add_9_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16311168)))]; |
|
tensor<fp16, []> add_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 512, 64, 64]> add_9_cast = batch_norm(beta = add_9_beta_0_to_fp16, epsilon = add_9_epsilon_0_to_fp16, gamma = add_9_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_17_cast)[name = tensor<string, []>("add_9_cast")]; |
|
tensor<fp16, [1, 512, 64, 64]> input_29_cast = silu(x = add_9_cast)[name = tensor<string, []>("input_29_cast")]; |
|
tensor<int32, [2]> var_172 = const()[name = tensor<string, []>("op_172"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_174 = const()[name = tensor<string, []>("op_174"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> hidden_states_25_pad_type_0 = const()[name = tensor<string, []>("hidden_states_25_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> hidden_states_25_pad_0 = const()[name = tensor<string, []>("hidden_states_25_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 512, 3, 3]> decoder_mid_block_resnets_1_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_resnets_1_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16312256)))]; |
|
tensor<fp16, [512]> decoder_mid_block_resnets_1_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_mid_block_resnets_1_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(21030912)))]; |
|
tensor<fp16, [1, 512, 64, 64]> hidden_states_25_cast = conv(bias = decoder_mid_block_resnets_1_conv2_bias_to_fp16, dilations = var_174, groups = var_26, pad = hidden_states_25_pad_0, pad_type = hidden_states_25_pad_type_0, strides = var_172, weight = decoder_mid_block_resnets_1_conv2_weight_to_fp16, x = input_29_cast)[name = tensor<string, []>("hidden_states_25_cast")]; |
|
tensor<fp16, [1, 512, 64, 64]> var_177_cast = add(x = hidden_states_19_cast, y = hidden_states_25_cast)[name = tensor<string, []>("op_177_cast")]; |
|
tensor<int32, [5]> reshape_20_shape_0 = const()[name = tensor<string, []>("reshape_20_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> reshape_20_cast = reshape(shape = reshape_20_shape_0, x = var_177_cast)[name = tensor<string, []>("reshape_20_cast")]; |
|
tensor<int32, [3]> reduce_mean_15_axes_0 = const()[name = tensor<string, []>("reduce_mean_15_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_15_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_15_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_15_cast = reduce_mean(axes = reduce_mean_15_axes_0, keep_dims = reduce_mean_15_keep_dims_0, x = reshape_20_cast)[name = tensor<string, []>("reduce_mean_15_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> sub_10_cast = sub(x = reshape_20_cast, y = reduce_mean_15_cast)[name = tensor<string, []>("sub_10_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> square_5_cast = square(x = sub_10_cast)[name = tensor<string, []>("square_5_cast")]; |
|
tensor<int32, [3]> reduce_mean_17_axes_0 = const()[name = tensor<string, []>("reduce_mean_17_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_17_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_17_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_17_cast = reduce_mean(axes = reduce_mean_17_axes_0, keep_dims = reduce_mean_17_keep_dims_0, x = square_5_cast)[name = tensor<string, []>("reduce_mean_17_cast")]; |
|
tensor<fp16, []> add_10_y_0_to_fp16 = const()[name = tensor<string, []>("add_10_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_10_cast = add(x = reduce_mean_17_cast, y = add_10_y_0_to_fp16)[name = tensor<string, []>("add_10_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_5_cast = sqrt(x = add_10_cast)[name = tensor<string, []>("sqrt_5_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> real_div_5_cast = real_div(x = sub_10_cast, y = sqrt_5_cast)[name = tensor<string, []>("real_div_5_cast")]; |
|
tensor<int32, [4]> reshape_21_shape_0 = const()[name = tensor<string, []>("reshape_21_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])]; |
|
tensor<fp16, [1, 512, 64, 64]> reshape_21_cast = reshape(shape = reshape_21_shape_0, x = real_div_5_cast)[name = tensor<string, []>("reshape_21_cast")]; |
|
tensor<fp16, [512]> add_11_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_11_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(21032000)))]; |
|
tensor<fp16, [512]> add_11_beta_0_to_fp16 = const()[name = tensor<string, []>("add_11_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(21033088)))]; |
|
tensor<fp16, []> add_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 512, 64, 64]> add_11_cast = batch_norm(beta = add_11_beta_0_to_fp16, epsilon = add_11_epsilon_0_to_fp16, gamma = add_11_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_21_cast)[name = tensor<string, []>("add_11_cast")]; |
|
tensor<fp16, [1, 512, 64, 64]> hidden_states_27_cast = silu(x = add_11_cast)[name = tensor<string, []>("hidden_states_27_cast")]; |
|
tensor<int32, [2]> var_199 = const()[name = tensor<string, []>("op_199"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_201 = const()[name = tensor<string, []>("op_201"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_35_pad_type_0 = const()[name = tensor<string, []>("input_35_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_35_pad_0 = const()[name = tensor<string, []>("input_35_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_0_resnets_0_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_0_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(21034176)))]; |
|
tensor<fp16, [512]> decoder_up_blocks_0_resnets_0_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_0_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(25752832)))]; |
|
tensor<fp16, [1, 512, 64, 64]> input_35_cast = conv(bias = decoder_up_blocks_0_resnets_0_conv1_bias_to_fp16, dilations = var_201, groups = var_26, pad = input_35_pad_0, pad_type = input_35_pad_type_0, strides = var_199, weight = decoder_up_blocks_0_resnets_0_conv1_weight_to_fp16, x = hidden_states_27_cast)[name = tensor<string, []>("input_35_cast")]; |
|
tensor<int32, [5]> reshape_24_shape_0 = const()[name = tensor<string, []>("reshape_24_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> reshape_24_cast = reshape(shape = reshape_24_shape_0, x = input_35_cast)[name = tensor<string, []>("reshape_24_cast")]; |
|
tensor<int32, [3]> reduce_mean_18_axes_0 = const()[name = tensor<string, []>("reduce_mean_18_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_18_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_18_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_18_cast = reduce_mean(axes = reduce_mean_18_axes_0, keep_dims = reduce_mean_18_keep_dims_0, x = reshape_24_cast)[name = tensor<string, []>("reduce_mean_18_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> sub_12_cast = sub(x = reshape_24_cast, y = reduce_mean_18_cast)[name = tensor<string, []>("sub_12_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> square_6_cast = square(x = sub_12_cast)[name = tensor<string, []>("square_6_cast")]; |
|
tensor<int32, [3]> reduce_mean_20_axes_0 = const()[name = tensor<string, []>("reduce_mean_20_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_20_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_20_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_20_cast = reduce_mean(axes = reduce_mean_20_axes_0, keep_dims = reduce_mean_20_keep_dims_0, x = square_6_cast)[name = tensor<string, []>("reduce_mean_20_cast")]; |
|
tensor<fp16, []> add_12_y_0_to_fp16 = const()[name = tensor<string, []>("add_12_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_12_cast = add(x = reduce_mean_20_cast, y = add_12_y_0_to_fp16)[name = tensor<string, []>("add_12_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_6_cast = sqrt(x = add_12_cast)[name = tensor<string, []>("sqrt_6_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> real_div_6_cast = real_div(x = sub_12_cast, y = sqrt_6_cast)[name = tensor<string, []>("real_div_6_cast")]; |
|
tensor<int32, [4]> reshape_25_shape_0 = const()[name = tensor<string, []>("reshape_25_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])]; |
|
tensor<fp16, [1, 512, 64, 64]> reshape_25_cast = reshape(shape = reshape_25_shape_0, x = real_div_6_cast)[name = tensor<string, []>("reshape_25_cast")]; |
|
tensor<fp16, [512]> add_13_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_13_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(25753920)))]; |
|
tensor<fp16, [512]> add_13_beta_0_to_fp16 = const()[name = tensor<string, []>("add_13_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(25755008)))]; |
|
tensor<fp16, []> add_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 512, 64, 64]> add_13_cast = batch_norm(beta = add_13_beta_0_to_fp16, epsilon = add_13_epsilon_0_to_fp16, gamma = add_13_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_25_cast)[name = tensor<string, []>("add_13_cast")]; |
|
tensor<fp16, [1, 512, 64, 64]> input_39_cast = silu(x = add_13_cast)[name = tensor<string, []>("input_39_cast")]; |
|
tensor<int32, [2]> var_211 = const()[name = tensor<string, []>("op_211"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_213 = const()[name = tensor<string, []>("op_213"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> hidden_states_31_pad_type_0 = const()[name = tensor<string, []>("hidden_states_31_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> hidden_states_31_pad_0 = const()[name = tensor<string, []>("hidden_states_31_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_0_resnets_0_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_0_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(25756096)))]; |
|
tensor<fp16, [512]> decoder_up_blocks_0_resnets_0_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_0_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30474752)))]; |
|
tensor<fp16, [1, 512, 64, 64]> hidden_states_31_cast = conv(bias = decoder_up_blocks_0_resnets_0_conv2_bias_to_fp16, dilations = var_213, groups = var_26, pad = hidden_states_31_pad_0, pad_type = hidden_states_31_pad_type_0, strides = var_211, weight = decoder_up_blocks_0_resnets_0_conv2_weight_to_fp16, x = input_39_cast)[name = tensor<string, []>("hidden_states_31_cast")]; |
|
tensor<fp16, [1, 512, 64, 64]> var_216_cast = add(x = var_177_cast, y = hidden_states_31_cast)[name = tensor<string, []>("op_216_cast")]; |
|
tensor<int32, [5]> reshape_28_shape_0 = const()[name = tensor<string, []>("reshape_28_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> reshape_28_cast = reshape(shape = reshape_28_shape_0, x = var_216_cast)[name = tensor<string, []>("reshape_28_cast")]; |
|
tensor<int32, [3]> reduce_mean_21_axes_0 = const()[name = tensor<string, []>("reduce_mean_21_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_21_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_21_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_21_cast = reduce_mean(axes = reduce_mean_21_axes_0, keep_dims = reduce_mean_21_keep_dims_0, x = reshape_28_cast)[name = tensor<string, []>("reduce_mean_21_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> sub_14_cast = sub(x = reshape_28_cast, y = reduce_mean_21_cast)[name = tensor<string, []>("sub_14_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> square_7_cast = square(x = sub_14_cast)[name = tensor<string, []>("square_7_cast")]; |
|
tensor<int32, [3]> reduce_mean_23_axes_0 = const()[name = tensor<string, []>("reduce_mean_23_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_23_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_23_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_23_cast = reduce_mean(axes = reduce_mean_23_axes_0, keep_dims = reduce_mean_23_keep_dims_0, x = square_7_cast)[name = tensor<string, []>("reduce_mean_23_cast")]; |
|
tensor<fp16, []> add_14_y_0_to_fp16 = const()[name = tensor<string, []>("add_14_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_14_cast = add(x = reduce_mean_23_cast, y = add_14_y_0_to_fp16)[name = tensor<string, []>("add_14_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_7_cast = sqrt(x = add_14_cast)[name = tensor<string, []>("sqrt_7_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> real_div_7_cast = real_div(x = sub_14_cast, y = sqrt_7_cast)[name = tensor<string, []>("real_div_7_cast")]; |
|
tensor<int32, [4]> reshape_29_shape_0 = const()[name = tensor<string, []>("reshape_29_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])]; |
|
tensor<fp16, [1, 512, 64, 64]> reshape_29_cast = reshape(shape = reshape_29_shape_0, x = real_div_7_cast)[name = tensor<string, []>("reshape_29_cast")]; |
|
tensor<fp16, [512]> add_15_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_15_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30475840)))]; |
|
tensor<fp16, [512]> add_15_beta_0_to_fp16 = const()[name = tensor<string, []>("add_15_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30476928)))]; |
|
tensor<fp16, []> add_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 512, 64, 64]> add_15_cast = batch_norm(beta = add_15_beta_0_to_fp16, epsilon = add_15_epsilon_0_to_fp16, gamma = add_15_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_29_cast)[name = tensor<string, []>("add_15_cast")]; |
|
tensor<fp16, [1, 512, 64, 64]> hidden_states_33_cast = silu(x = add_15_cast)[name = tensor<string, []>("hidden_states_33_cast")]; |
|
tensor<int32, [2]> var_229 = const()[name = tensor<string, []>("op_229"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_231 = const()[name = tensor<string, []>("op_231"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_45_pad_type_0 = const()[name = tensor<string, []>("input_45_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_45_pad_0 = const()[name = tensor<string, []>("input_45_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_0_resnets_1_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_1_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30478016)))]; |
|
tensor<fp16, [512]> decoder_up_blocks_0_resnets_1_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_1_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(35196672)))]; |
|
tensor<fp16, [1, 512, 64, 64]> input_45_cast = conv(bias = decoder_up_blocks_0_resnets_1_conv1_bias_to_fp16, dilations = var_231, groups = var_26, pad = input_45_pad_0, pad_type = input_45_pad_type_0, strides = var_229, weight = decoder_up_blocks_0_resnets_1_conv1_weight_to_fp16, x = hidden_states_33_cast)[name = tensor<string, []>("input_45_cast")]; |
|
tensor<int32, [5]> reshape_32_shape_0 = const()[name = tensor<string, []>("reshape_32_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> reshape_32_cast = reshape(shape = reshape_32_shape_0, x = input_45_cast)[name = tensor<string, []>("reshape_32_cast")]; |
|
tensor<int32, [3]> reduce_mean_24_axes_0 = const()[name = tensor<string, []>("reduce_mean_24_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_24_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_24_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_24_cast = reduce_mean(axes = reduce_mean_24_axes_0, keep_dims = reduce_mean_24_keep_dims_0, x = reshape_32_cast)[name = tensor<string, []>("reduce_mean_24_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> sub_16_cast = sub(x = reshape_32_cast, y = reduce_mean_24_cast)[name = tensor<string, []>("sub_16_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> square_8_cast = square(x = sub_16_cast)[name = tensor<string, []>("square_8_cast")]; |
|
tensor<int32, [3]> reduce_mean_26_axes_0 = const()[name = tensor<string, []>("reduce_mean_26_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_26_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_26_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_26_cast = reduce_mean(axes = reduce_mean_26_axes_0, keep_dims = reduce_mean_26_keep_dims_0, x = square_8_cast)[name = tensor<string, []>("reduce_mean_26_cast")]; |
|
tensor<fp16, []> add_16_y_0_to_fp16 = const()[name = tensor<string, []>("add_16_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_16_cast = add(x = reduce_mean_26_cast, y = add_16_y_0_to_fp16)[name = tensor<string, []>("add_16_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_8_cast = sqrt(x = add_16_cast)[name = tensor<string, []>("sqrt_8_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> real_div_8_cast = real_div(x = sub_16_cast, y = sqrt_8_cast)[name = tensor<string, []>("real_div_8_cast")]; |
|
tensor<int32, [4]> reshape_33_shape_0 = const()[name = tensor<string, []>("reshape_33_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])]; |
|
tensor<fp16, [1, 512, 64, 64]> reshape_33_cast = reshape(shape = reshape_33_shape_0, x = real_div_8_cast)[name = tensor<string, []>("reshape_33_cast")]; |
|
tensor<fp16, [512]> add_17_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_17_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(35197760)))]; |
|
tensor<fp16, [512]> add_17_beta_0_to_fp16 = const()[name = tensor<string, []>("add_17_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(35198848)))]; |
|
tensor<fp16, []> add_17_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_17_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 512, 64, 64]> add_17_cast = batch_norm(beta = add_17_beta_0_to_fp16, epsilon = add_17_epsilon_0_to_fp16, gamma = add_17_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_33_cast)[name = tensor<string, []>("add_17_cast")]; |
|
tensor<fp16, [1, 512, 64, 64]> input_49_cast = silu(x = add_17_cast)[name = tensor<string, []>("input_49_cast")]; |
|
tensor<int32, [2]> var_241 = const()[name = tensor<string, []>("op_241"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_243 = const()[name = tensor<string, []>("op_243"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> hidden_states_37_pad_type_0 = const()[name = tensor<string, []>("hidden_states_37_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> hidden_states_37_pad_0 = const()[name = tensor<string, []>("hidden_states_37_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_0_resnets_1_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_1_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(35199936)))]; |
|
tensor<fp16, [512]> decoder_up_blocks_0_resnets_1_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_1_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(39918592)))]; |
|
tensor<fp16, [1, 512, 64, 64]> hidden_states_37_cast = conv(bias = decoder_up_blocks_0_resnets_1_conv2_bias_to_fp16, dilations = var_243, groups = var_26, pad = hidden_states_37_pad_0, pad_type = hidden_states_37_pad_type_0, strides = var_241, weight = decoder_up_blocks_0_resnets_1_conv2_weight_to_fp16, x = input_49_cast)[name = tensor<string, []>("hidden_states_37_cast")]; |
|
tensor<fp16, [1, 512, 64, 64]> var_246_cast = add(x = var_216_cast, y = hidden_states_37_cast)[name = tensor<string, []>("op_246_cast")]; |
|
tensor<int32, [5]> reshape_36_shape_0 = const()[name = tensor<string, []>("reshape_36_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> reshape_36_cast = reshape(shape = reshape_36_shape_0, x = var_246_cast)[name = tensor<string, []>("reshape_36_cast")]; |
|
tensor<int32, [3]> reduce_mean_27_axes_0 = const()[name = tensor<string, []>("reduce_mean_27_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_27_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_27_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_27_cast = reduce_mean(axes = reduce_mean_27_axes_0, keep_dims = reduce_mean_27_keep_dims_0, x = reshape_36_cast)[name = tensor<string, []>("reduce_mean_27_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> sub_18_cast = sub(x = reshape_36_cast, y = reduce_mean_27_cast)[name = tensor<string, []>("sub_18_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> square_9_cast = square(x = sub_18_cast)[name = tensor<string, []>("square_9_cast")]; |
|
tensor<int32, [3]> reduce_mean_29_axes_0 = const()[name = tensor<string, []>("reduce_mean_29_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_29_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_29_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_29_cast = reduce_mean(axes = reduce_mean_29_axes_0, keep_dims = reduce_mean_29_keep_dims_0, x = square_9_cast)[name = tensor<string, []>("reduce_mean_29_cast")]; |
|
tensor<fp16, []> add_18_y_0_to_fp16 = const()[name = tensor<string, []>("add_18_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_18_cast = add(x = reduce_mean_29_cast, y = add_18_y_0_to_fp16)[name = tensor<string, []>("add_18_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_9_cast = sqrt(x = add_18_cast)[name = tensor<string, []>("sqrt_9_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> real_div_9_cast = real_div(x = sub_18_cast, y = sqrt_9_cast)[name = tensor<string, []>("real_div_9_cast")]; |
|
tensor<int32, [4]> reshape_37_shape_0 = const()[name = tensor<string, []>("reshape_37_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])]; |
|
tensor<fp16, [1, 512, 64, 64]> reshape_37_cast = reshape(shape = reshape_37_shape_0, x = real_div_9_cast)[name = tensor<string, []>("reshape_37_cast")]; |
|
tensor<fp16, [512]> add_19_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_19_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(39919680)))]; |
|
tensor<fp16, [512]> add_19_beta_0_to_fp16 = const()[name = tensor<string, []>("add_19_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(39920768)))]; |
|
tensor<fp16, []> add_19_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_19_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 512, 64, 64]> add_19_cast = batch_norm(beta = add_19_beta_0_to_fp16, epsilon = add_19_epsilon_0_to_fp16, gamma = add_19_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_37_cast)[name = tensor<string, []>("add_19_cast")]; |
|
tensor<fp16, [1, 512, 64, 64]> hidden_states_39_cast = silu(x = add_19_cast)[name = tensor<string, []>("hidden_states_39_cast")]; |
|
tensor<int32, [2]> var_259 = const()[name = tensor<string, []>("op_259"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_261 = const()[name = tensor<string, []>("op_261"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_55_pad_type_0 = const()[name = tensor<string, []>("input_55_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_55_pad_0 = const()[name = tensor<string, []>("input_55_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_0_resnets_2_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_2_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(39921856)))]; |
|
tensor<fp16, [512]> decoder_up_blocks_0_resnets_2_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_2_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44640512)))]; |
|
tensor<fp16, [1, 512, 64, 64]> input_55_cast = conv(bias = decoder_up_blocks_0_resnets_2_conv1_bias_to_fp16, dilations = var_261, groups = var_26, pad = input_55_pad_0, pad_type = input_55_pad_type_0, strides = var_259, weight = decoder_up_blocks_0_resnets_2_conv1_weight_to_fp16, x = hidden_states_39_cast)[name = tensor<string, []>("input_55_cast")]; |
|
tensor<int32, [5]> reshape_40_shape_0 = const()[name = tensor<string, []>("reshape_40_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 64, 64])]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> reshape_40_cast = reshape(shape = reshape_40_shape_0, x = input_55_cast)[name = tensor<string, []>("reshape_40_cast")]; |
|
tensor<int32, [3]> reduce_mean_30_axes_0 = const()[name = tensor<string, []>("reduce_mean_30_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_30_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_30_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_30_cast = reduce_mean(axes = reduce_mean_30_axes_0, keep_dims = reduce_mean_30_keep_dims_0, x = reshape_40_cast)[name = tensor<string, []>("reduce_mean_30_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> sub_20_cast = sub(x = reshape_40_cast, y = reduce_mean_30_cast)[name = tensor<string, []>("sub_20_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> square_10_cast = square(x = sub_20_cast)[name = tensor<string, []>("square_10_cast")]; |
|
tensor<int32, [3]> reduce_mean_32_axes_0 = const()[name = tensor<string, []>("reduce_mean_32_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_32_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_32_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_32_cast = reduce_mean(axes = reduce_mean_32_axes_0, keep_dims = reduce_mean_32_keep_dims_0, x = square_10_cast)[name = tensor<string, []>("reduce_mean_32_cast")]; |
|
tensor<fp16, []> add_20_y_0_to_fp16 = const()[name = tensor<string, []>("add_20_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_20_cast = add(x = reduce_mean_32_cast, y = add_20_y_0_to_fp16)[name = tensor<string, []>("add_20_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_10_cast = sqrt(x = add_20_cast)[name = tensor<string, []>("sqrt_10_cast")]; |
|
tensor<fp16, [1, 32, 16, 64, 64]> real_div_10_cast = real_div(x = sub_20_cast, y = sqrt_10_cast)[name = tensor<string, []>("real_div_10_cast")]; |
|
tensor<int32, [4]> reshape_41_shape_0 = const()[name = tensor<string, []>("reshape_41_shape_0"), val = tensor<int32, [4]>([1, 512, 64, 64])]; |
|
tensor<fp16, [1, 512, 64, 64]> reshape_41_cast = reshape(shape = reshape_41_shape_0, x = real_div_10_cast)[name = tensor<string, []>("reshape_41_cast")]; |
|
tensor<fp16, [512]> add_21_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_21_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44641600)))]; |
|
tensor<fp16, [512]> add_21_beta_0_to_fp16 = const()[name = tensor<string, []>("add_21_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44642688)))]; |
|
tensor<fp16, []> add_21_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_21_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 512, 64, 64]> add_21_cast = batch_norm(beta = add_21_beta_0_to_fp16, epsilon = add_21_epsilon_0_to_fp16, gamma = add_21_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_41_cast)[name = tensor<string, []>("add_21_cast")]; |
|
tensor<fp16, [1, 512, 64, 64]> input_59_cast = silu(x = add_21_cast)[name = tensor<string, []>("input_59_cast")]; |
|
tensor<int32, [2]> var_271 = const()[name = tensor<string, []>("op_271"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_273 = const()[name = tensor<string, []>("op_273"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> hidden_states_43_pad_type_0 = const()[name = tensor<string, []>("hidden_states_43_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> hidden_states_43_pad_0 = const()[name = tensor<string, []>("hidden_states_43_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_0_resnets_2_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_2_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44643776)))]; |
|
tensor<fp16, [512]> decoder_up_blocks_0_resnets_2_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_resnets_2_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49362432)))]; |
|
tensor<fp16, [1, 512, 64, 64]> hidden_states_43_cast = conv(bias = decoder_up_blocks_0_resnets_2_conv2_bias_to_fp16, dilations = var_273, groups = var_26, pad = hidden_states_43_pad_0, pad_type = hidden_states_43_pad_type_0, strides = var_271, weight = decoder_up_blocks_0_resnets_2_conv2_weight_to_fp16, x = input_59_cast)[name = tensor<string, []>("hidden_states_43_cast")]; |
|
tensor<fp16, [1, 512, 64, 64]> var_276_cast = add(x = var_246_cast, y = hidden_states_43_cast)[name = tensor<string, []>("op_276_cast")]; |
|
tensor<fp32, []> hidden_states_47_scale_factor_height_0 = const()[name = tensor<string, []>("hidden_states_47_scale_factor_height_0"), val = tensor<fp32, []>(0x1p+1)]; |
|
tensor<fp32, []> hidden_states_47_scale_factor_width_0 = const()[name = tensor<string, []>("hidden_states_47_scale_factor_width_0"), val = tensor<fp32, []>(0x1p+1)]; |
|
tensor<fp16, [1, 512, 128, 128]> hidden_states_47_cast = upsample_nearest_neighbor(scale_factor_height = hidden_states_47_scale_factor_height_0, scale_factor_width = hidden_states_47_scale_factor_width_0, x = var_276_cast)[name = tensor<string, []>("hidden_states_47_cast")]; |
|
tensor<int32, [2]> var_284 = const()[name = tensor<string, []>("op_284"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_286 = const()[name = tensor<string, []>("op_286"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_61_pad_type_0 = const()[name = tensor<string, []>("input_61_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_61_pad_0 = const()[name = tensor<string, []>("input_61_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_0_upsamplers_0_conv_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_upsamplers_0_conv_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49363520)))]; |
|
tensor<fp16, [512]> decoder_up_blocks_0_upsamplers_0_conv_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_0_upsamplers_0_conv_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54082176)))]; |
|
tensor<fp16, [1, 512, 128, 128]> input_61_cast = conv(bias = decoder_up_blocks_0_upsamplers_0_conv_bias_to_fp16, dilations = var_286, groups = var_26, pad = input_61_pad_0, pad_type = input_61_pad_type_0, strides = var_284, weight = decoder_up_blocks_0_upsamplers_0_conv_weight_to_fp16, x = hidden_states_47_cast)[name = tensor<string, []>("input_61_cast")]; |
|
tensor<int32, [5]> reshape_44_shape_0 = const()[name = tensor<string, []>("reshape_44_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 128, 128])]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> reshape_44_cast = reshape(shape = reshape_44_shape_0, x = input_61_cast)[name = tensor<string, []>("reshape_44_cast")]; |
|
tensor<int32, [3]> reduce_mean_33_axes_0 = const()[name = tensor<string, []>("reduce_mean_33_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_33_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_33_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_33_cast = reduce_mean(axes = reduce_mean_33_axes_0, keep_dims = reduce_mean_33_keep_dims_0, x = reshape_44_cast)[name = tensor<string, []>("reduce_mean_33_cast")]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> sub_22_cast = sub(x = reshape_44_cast, y = reduce_mean_33_cast)[name = tensor<string, []>("sub_22_cast")]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> square_11_cast = square(x = sub_22_cast)[name = tensor<string, []>("square_11_cast")]; |
|
tensor<int32, [3]> reduce_mean_35_axes_0 = const()[name = tensor<string, []>("reduce_mean_35_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_35_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_35_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_35_cast = reduce_mean(axes = reduce_mean_35_axes_0, keep_dims = reduce_mean_35_keep_dims_0, x = square_11_cast)[name = tensor<string, []>("reduce_mean_35_cast")]; |
|
tensor<fp16, []> add_22_y_0_to_fp16 = const()[name = tensor<string, []>("add_22_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_22_cast = add(x = reduce_mean_35_cast, y = add_22_y_0_to_fp16)[name = tensor<string, []>("add_22_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_11_cast = sqrt(x = add_22_cast)[name = tensor<string, []>("sqrt_11_cast")]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> real_div_11_cast = real_div(x = sub_22_cast, y = sqrt_11_cast)[name = tensor<string, []>("real_div_11_cast")]; |
|
tensor<int32, [4]> reshape_45_shape_0 = const()[name = tensor<string, []>("reshape_45_shape_0"), val = tensor<int32, [4]>([1, 512, 128, 128])]; |
|
tensor<fp16, [1, 512, 128, 128]> reshape_45_cast = reshape(shape = reshape_45_shape_0, x = real_div_11_cast)[name = tensor<string, []>("reshape_45_cast")]; |
|
tensor<fp16, [512]> add_23_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_23_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54083264)))]; |
|
tensor<fp16, [512]> add_23_beta_0_to_fp16 = const()[name = tensor<string, []>("add_23_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54084352)))]; |
|
tensor<fp16, []> add_23_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_23_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 512, 128, 128]> add_23_cast = batch_norm(beta = add_23_beta_0_to_fp16, epsilon = add_23_epsilon_0_to_fp16, gamma = add_23_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_45_cast)[name = tensor<string, []>("add_23_cast")]; |
|
tensor<fp16, [1, 512, 128, 128]> hidden_states_49_cast = silu(x = add_23_cast)[name = tensor<string, []>("hidden_states_49_cast")]; |
|
tensor<int32, [2]> var_307 = const()[name = tensor<string, []>("op_307"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_309 = const()[name = tensor<string, []>("op_309"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_65_pad_type_0 = const()[name = tensor<string, []>("input_65_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_65_pad_0 = const()[name = tensor<string, []>("input_65_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_1_resnets_0_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_0_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54085440)))]; |
|
tensor<fp16, [512]> decoder_up_blocks_1_resnets_0_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_0_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(58804096)))]; |
|
tensor<fp16, [1, 512, 128, 128]> input_65_cast = conv(bias = decoder_up_blocks_1_resnets_0_conv1_bias_to_fp16, dilations = var_309, groups = var_26, pad = input_65_pad_0, pad_type = input_65_pad_type_0, strides = var_307, weight = decoder_up_blocks_1_resnets_0_conv1_weight_to_fp16, x = hidden_states_49_cast)[name = tensor<string, []>("input_65_cast")]; |
|
tensor<int32, [5]> reshape_48_shape_0 = const()[name = tensor<string, []>("reshape_48_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 128, 128])]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> reshape_48_cast = reshape(shape = reshape_48_shape_0, x = input_65_cast)[name = tensor<string, []>("reshape_48_cast")]; |
|
tensor<int32, [3]> reduce_mean_36_axes_0 = const()[name = tensor<string, []>("reduce_mean_36_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_36_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_36_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_36_cast = reduce_mean(axes = reduce_mean_36_axes_0, keep_dims = reduce_mean_36_keep_dims_0, x = reshape_48_cast)[name = tensor<string, []>("reduce_mean_36_cast")]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> sub_24_cast = sub(x = reshape_48_cast, y = reduce_mean_36_cast)[name = tensor<string, []>("sub_24_cast")]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> square_12_cast = square(x = sub_24_cast)[name = tensor<string, []>("square_12_cast")]; |
|
tensor<int32, [3]> reduce_mean_38_axes_0 = const()[name = tensor<string, []>("reduce_mean_38_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_38_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_38_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_38_cast = reduce_mean(axes = reduce_mean_38_axes_0, keep_dims = reduce_mean_38_keep_dims_0, x = square_12_cast)[name = tensor<string, []>("reduce_mean_38_cast")]; |
|
tensor<fp16, []> add_24_y_0_to_fp16 = const()[name = tensor<string, []>("add_24_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_24_cast = add(x = reduce_mean_38_cast, y = add_24_y_0_to_fp16)[name = tensor<string, []>("add_24_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_12_cast = sqrt(x = add_24_cast)[name = tensor<string, []>("sqrt_12_cast")]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> real_div_12_cast = real_div(x = sub_24_cast, y = sqrt_12_cast)[name = tensor<string, []>("real_div_12_cast")]; |
|
tensor<int32, [4]> reshape_49_shape_0 = const()[name = tensor<string, []>("reshape_49_shape_0"), val = tensor<int32, [4]>([1, 512, 128, 128])]; |
|
tensor<fp16, [1, 512, 128, 128]> reshape_49_cast = reshape(shape = reshape_49_shape_0, x = real_div_12_cast)[name = tensor<string, []>("reshape_49_cast")]; |
|
tensor<fp16, [512]> add_25_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_25_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(58805184)))]; |
|
tensor<fp16, [512]> add_25_beta_0_to_fp16 = const()[name = tensor<string, []>("add_25_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(58806272)))]; |
|
tensor<fp16, []> add_25_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_25_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 512, 128, 128]> add_25_cast = batch_norm(beta = add_25_beta_0_to_fp16, epsilon = add_25_epsilon_0_to_fp16, gamma = add_25_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_49_cast)[name = tensor<string, []>("add_25_cast")]; |
|
tensor<fp16, [1, 512, 128, 128]> input_69_cast = silu(x = add_25_cast)[name = tensor<string, []>("input_69_cast")]; |
|
tensor<int32, [2]> var_319 = const()[name = tensor<string, []>("op_319"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_321 = const()[name = tensor<string, []>("op_321"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> hidden_states_53_pad_type_0 = const()[name = tensor<string, []>("hidden_states_53_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> hidden_states_53_pad_0 = const()[name = tensor<string, []>("hidden_states_53_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_1_resnets_0_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_0_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(58807360)))]; |
|
tensor<fp16, [512]> decoder_up_blocks_1_resnets_0_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_0_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(63526016)))]; |
|
tensor<fp16, [1, 512, 128, 128]> hidden_states_53_cast = conv(bias = decoder_up_blocks_1_resnets_0_conv2_bias_to_fp16, dilations = var_321, groups = var_26, pad = hidden_states_53_pad_0, pad_type = hidden_states_53_pad_type_0, strides = var_319, weight = decoder_up_blocks_1_resnets_0_conv2_weight_to_fp16, x = input_69_cast)[name = tensor<string, []>("hidden_states_53_cast")]; |
|
tensor<fp16, [1, 512, 128, 128]> var_324_cast = add(x = input_61_cast, y = hidden_states_53_cast)[name = tensor<string, []>("op_324_cast")]; |
|
tensor<int32, [5]> reshape_52_shape_0 = const()[name = tensor<string, []>("reshape_52_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 128, 128])]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> reshape_52_cast = reshape(shape = reshape_52_shape_0, x = var_324_cast)[name = tensor<string, []>("reshape_52_cast")]; |
|
tensor<int32, [3]> reduce_mean_39_axes_0 = const()[name = tensor<string, []>("reduce_mean_39_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_39_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_39_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_39_cast = reduce_mean(axes = reduce_mean_39_axes_0, keep_dims = reduce_mean_39_keep_dims_0, x = reshape_52_cast)[name = tensor<string, []>("reduce_mean_39_cast")]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> sub_26_cast = sub(x = reshape_52_cast, y = reduce_mean_39_cast)[name = tensor<string, []>("sub_26_cast")]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> square_13_cast = square(x = sub_26_cast)[name = tensor<string, []>("square_13_cast")]; |
|
tensor<int32, [3]> reduce_mean_41_axes_0 = const()[name = tensor<string, []>("reduce_mean_41_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_41_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_41_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_41_cast = reduce_mean(axes = reduce_mean_41_axes_0, keep_dims = reduce_mean_41_keep_dims_0, x = square_13_cast)[name = tensor<string, []>("reduce_mean_41_cast")]; |
|
tensor<fp16, []> add_26_y_0_to_fp16 = const()[name = tensor<string, []>("add_26_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_26_cast = add(x = reduce_mean_41_cast, y = add_26_y_0_to_fp16)[name = tensor<string, []>("add_26_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_13_cast = sqrt(x = add_26_cast)[name = tensor<string, []>("sqrt_13_cast")]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> real_div_13_cast = real_div(x = sub_26_cast, y = sqrt_13_cast)[name = tensor<string, []>("real_div_13_cast")]; |
|
tensor<int32, [4]> reshape_53_shape_0 = const()[name = tensor<string, []>("reshape_53_shape_0"), val = tensor<int32, [4]>([1, 512, 128, 128])]; |
|
tensor<fp16, [1, 512, 128, 128]> reshape_53_cast = reshape(shape = reshape_53_shape_0, x = real_div_13_cast)[name = tensor<string, []>("reshape_53_cast")]; |
|
tensor<fp16, [512]> add_27_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_27_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(63527104)))]; |
|
tensor<fp16, [512]> add_27_beta_0_to_fp16 = const()[name = tensor<string, []>("add_27_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(63528192)))]; |
|
tensor<fp16, []> add_27_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_27_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 512, 128, 128]> add_27_cast = batch_norm(beta = add_27_beta_0_to_fp16, epsilon = add_27_epsilon_0_to_fp16, gamma = add_27_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_53_cast)[name = tensor<string, []>("add_27_cast")]; |
|
tensor<fp16, [1, 512, 128, 128]> hidden_states_55_cast = silu(x = add_27_cast)[name = tensor<string, []>("hidden_states_55_cast")]; |
|
tensor<int32, [2]> var_337 = const()[name = tensor<string, []>("op_337"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_339 = const()[name = tensor<string, []>("op_339"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_75_pad_type_0 = const()[name = tensor<string, []>("input_75_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_75_pad_0 = const()[name = tensor<string, []>("input_75_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_1_resnets_1_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_1_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(63529280)))]; |
|
tensor<fp16, [512]> decoder_up_blocks_1_resnets_1_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_1_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(68247936)))]; |
|
tensor<fp16, [1, 512, 128, 128]> input_75_cast = conv(bias = decoder_up_blocks_1_resnets_1_conv1_bias_to_fp16, dilations = var_339, groups = var_26, pad = input_75_pad_0, pad_type = input_75_pad_type_0, strides = var_337, weight = decoder_up_blocks_1_resnets_1_conv1_weight_to_fp16, x = hidden_states_55_cast)[name = tensor<string, []>("input_75_cast")]; |
|
tensor<int32, [5]> reshape_56_shape_0 = const()[name = tensor<string, []>("reshape_56_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 128, 128])]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> reshape_56_cast = reshape(shape = reshape_56_shape_0, x = input_75_cast)[name = tensor<string, []>("reshape_56_cast")]; |
|
tensor<int32, [3]> reduce_mean_42_axes_0 = const()[name = tensor<string, []>("reduce_mean_42_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_42_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_42_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_42_cast = reduce_mean(axes = reduce_mean_42_axes_0, keep_dims = reduce_mean_42_keep_dims_0, x = reshape_56_cast)[name = tensor<string, []>("reduce_mean_42_cast")]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> sub_28_cast = sub(x = reshape_56_cast, y = reduce_mean_42_cast)[name = tensor<string, []>("sub_28_cast")]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> square_14_cast = square(x = sub_28_cast)[name = tensor<string, []>("square_14_cast")]; |
|
tensor<int32, [3]> reduce_mean_44_axes_0 = const()[name = tensor<string, []>("reduce_mean_44_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_44_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_44_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_44_cast = reduce_mean(axes = reduce_mean_44_axes_0, keep_dims = reduce_mean_44_keep_dims_0, x = square_14_cast)[name = tensor<string, []>("reduce_mean_44_cast")]; |
|
tensor<fp16, []> add_28_y_0_to_fp16 = const()[name = tensor<string, []>("add_28_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_28_cast = add(x = reduce_mean_44_cast, y = add_28_y_0_to_fp16)[name = tensor<string, []>("add_28_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_14_cast = sqrt(x = add_28_cast)[name = tensor<string, []>("sqrt_14_cast")]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> real_div_14_cast = real_div(x = sub_28_cast, y = sqrt_14_cast)[name = tensor<string, []>("real_div_14_cast")]; |
|
tensor<int32, [4]> reshape_57_shape_0 = const()[name = tensor<string, []>("reshape_57_shape_0"), val = tensor<int32, [4]>([1, 512, 128, 128])]; |
|
tensor<fp16, [1, 512, 128, 128]> reshape_57_cast = reshape(shape = reshape_57_shape_0, x = real_div_14_cast)[name = tensor<string, []>("reshape_57_cast")]; |
|
tensor<fp16, [512]> add_29_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_29_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(68249024)))]; |
|
tensor<fp16, [512]> add_29_beta_0_to_fp16 = const()[name = tensor<string, []>("add_29_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(68250112)))]; |
|
tensor<fp16, []> add_29_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_29_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 512, 128, 128]> add_29_cast = batch_norm(beta = add_29_beta_0_to_fp16, epsilon = add_29_epsilon_0_to_fp16, gamma = add_29_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_57_cast)[name = tensor<string, []>("add_29_cast")]; |
|
tensor<fp16, [1, 512, 128, 128]> input_79_cast = silu(x = add_29_cast)[name = tensor<string, []>("input_79_cast")]; |
|
tensor<int32, [2]> var_349 = const()[name = tensor<string, []>("op_349"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_351 = const()[name = tensor<string, []>("op_351"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> hidden_states_59_pad_type_0 = const()[name = tensor<string, []>("hidden_states_59_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> hidden_states_59_pad_0 = const()[name = tensor<string, []>("hidden_states_59_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_1_resnets_1_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_1_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(68251200)))]; |
|
tensor<fp16, [512]> decoder_up_blocks_1_resnets_1_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_1_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(72969856)))]; |
|
tensor<fp16, [1, 512, 128, 128]> hidden_states_59_cast = conv(bias = decoder_up_blocks_1_resnets_1_conv2_bias_to_fp16, dilations = var_351, groups = var_26, pad = hidden_states_59_pad_0, pad_type = hidden_states_59_pad_type_0, strides = var_349, weight = decoder_up_blocks_1_resnets_1_conv2_weight_to_fp16, x = input_79_cast)[name = tensor<string, []>("hidden_states_59_cast")]; |
|
tensor<fp16, [1, 512, 128, 128]> var_354_cast = add(x = var_324_cast, y = hidden_states_59_cast)[name = tensor<string, []>("op_354_cast")]; |
|
tensor<int32, [5]> reshape_60_shape_0 = const()[name = tensor<string, []>("reshape_60_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 128, 128])]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> reshape_60_cast = reshape(shape = reshape_60_shape_0, x = var_354_cast)[name = tensor<string, []>("reshape_60_cast")]; |
|
tensor<int32, [3]> reduce_mean_45_axes_0 = const()[name = tensor<string, []>("reduce_mean_45_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_45_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_45_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_45_cast = reduce_mean(axes = reduce_mean_45_axes_0, keep_dims = reduce_mean_45_keep_dims_0, x = reshape_60_cast)[name = tensor<string, []>("reduce_mean_45_cast")]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> sub_30_cast = sub(x = reshape_60_cast, y = reduce_mean_45_cast)[name = tensor<string, []>("sub_30_cast")]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> square_15_cast = square(x = sub_30_cast)[name = tensor<string, []>("square_15_cast")]; |
|
tensor<int32, [3]> reduce_mean_47_axes_0 = const()[name = tensor<string, []>("reduce_mean_47_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_47_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_47_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_47_cast = reduce_mean(axes = reduce_mean_47_axes_0, keep_dims = reduce_mean_47_keep_dims_0, x = square_15_cast)[name = tensor<string, []>("reduce_mean_47_cast")]; |
|
tensor<fp16, []> add_30_y_0_to_fp16 = const()[name = tensor<string, []>("add_30_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_30_cast = add(x = reduce_mean_47_cast, y = add_30_y_0_to_fp16)[name = tensor<string, []>("add_30_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_15_cast = sqrt(x = add_30_cast)[name = tensor<string, []>("sqrt_15_cast")]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> real_div_15_cast = real_div(x = sub_30_cast, y = sqrt_15_cast)[name = tensor<string, []>("real_div_15_cast")]; |
|
tensor<int32, [4]> reshape_61_shape_0 = const()[name = tensor<string, []>("reshape_61_shape_0"), val = tensor<int32, [4]>([1, 512, 128, 128])]; |
|
tensor<fp16, [1, 512, 128, 128]> reshape_61_cast = reshape(shape = reshape_61_shape_0, x = real_div_15_cast)[name = tensor<string, []>("reshape_61_cast")]; |
|
tensor<fp16, [512]> add_31_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_31_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(72970944)))]; |
|
tensor<fp16, [512]> add_31_beta_0_to_fp16 = const()[name = tensor<string, []>("add_31_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(72972032)))]; |
|
tensor<fp16, []> add_31_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_31_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 512, 128, 128]> add_31_cast = batch_norm(beta = add_31_beta_0_to_fp16, epsilon = add_31_epsilon_0_to_fp16, gamma = add_31_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_61_cast)[name = tensor<string, []>("add_31_cast")]; |
|
tensor<fp16, [1, 512, 128, 128]> hidden_states_61_cast = silu(x = add_31_cast)[name = tensor<string, []>("hidden_states_61_cast")]; |
|
tensor<int32, [2]> var_367 = const()[name = tensor<string, []>("op_367"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_369 = const()[name = tensor<string, []>("op_369"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_85_pad_type_0 = const()[name = tensor<string, []>("input_85_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_85_pad_0 = const()[name = tensor<string, []>("input_85_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_1_resnets_2_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_2_conv1_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(72973120)))]; |
|
tensor<fp16, [512]> decoder_up_blocks_1_resnets_2_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_2_conv1_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(77691776)))]; |
|
tensor<fp16, [1, 512, 128, 128]> input_85_cast = conv(bias = decoder_up_blocks_1_resnets_2_conv1_bias_to_fp16, dilations = var_369, groups = var_26, pad = input_85_pad_0, pad_type = input_85_pad_type_0, strides = var_367, weight = decoder_up_blocks_1_resnets_2_conv1_weight_to_fp16, x = hidden_states_61_cast)[name = tensor<string, []>("input_85_cast")]; |
|
tensor<int32, [5]> reshape_64_shape_0 = const()[name = tensor<string, []>("reshape_64_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 128, 128])]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> reshape_64_cast = reshape(shape = reshape_64_shape_0, x = input_85_cast)[name = tensor<string, []>("reshape_64_cast")]; |
|
tensor<int32, [3]> reduce_mean_48_axes_0 = const()[name = tensor<string, []>("reduce_mean_48_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_48_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_48_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_48_cast = reduce_mean(axes = reduce_mean_48_axes_0, keep_dims = reduce_mean_48_keep_dims_0, x = reshape_64_cast)[name = tensor<string, []>("reduce_mean_48_cast")]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> sub_32_cast = sub(x = reshape_64_cast, y = reduce_mean_48_cast)[name = tensor<string, []>("sub_32_cast")]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> square_16_cast = square(x = sub_32_cast)[name = tensor<string, []>("square_16_cast")]; |
|
tensor<int32, [3]> reduce_mean_50_axes_0 = const()[name = tensor<string, []>("reduce_mean_50_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_50_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_50_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_50_cast = reduce_mean(axes = reduce_mean_50_axes_0, keep_dims = reduce_mean_50_keep_dims_0, x = square_16_cast)[name = tensor<string, []>("reduce_mean_50_cast")]; |
|
tensor<fp16, []> add_32_y_0_to_fp16 = const()[name = tensor<string, []>("add_32_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_32_cast = add(x = reduce_mean_50_cast, y = add_32_y_0_to_fp16)[name = tensor<string, []>("add_32_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_16_cast = sqrt(x = add_32_cast)[name = tensor<string, []>("sqrt_16_cast")]; |
|
tensor<fp16, [1, 32, 16, 128, 128]> real_div_16_cast = real_div(x = sub_32_cast, y = sqrt_16_cast)[name = tensor<string, []>("real_div_16_cast")]; |
|
tensor<int32, [4]> reshape_65_shape_0 = const()[name = tensor<string, []>("reshape_65_shape_0"), val = tensor<int32, [4]>([1, 512, 128, 128])]; |
|
tensor<fp16, [1, 512, 128, 128]> reshape_65_cast = reshape(shape = reshape_65_shape_0, x = real_div_16_cast)[name = tensor<string, []>("reshape_65_cast")]; |
|
tensor<fp16, [512]> add_33_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_33_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(77692864)))]; |
|
tensor<fp16, [512]> add_33_beta_0_to_fp16 = const()[name = tensor<string, []>("add_33_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(77693952)))]; |
|
tensor<fp16, []> add_33_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_33_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 512, 128, 128]> add_33_cast = batch_norm(beta = add_33_beta_0_to_fp16, epsilon = add_33_epsilon_0_to_fp16, gamma = add_33_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_65_cast)[name = tensor<string, []>("add_33_cast")]; |
|
tensor<fp16, [1, 512, 128, 128]> input_89_cast = silu(x = add_33_cast)[name = tensor<string, []>("input_89_cast")]; |
|
tensor<int32, [2]> var_379 = const()[name = tensor<string, []>("op_379"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_381 = const()[name = tensor<string, []>("op_381"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> hidden_states_65_pad_type_0 = const()[name = tensor<string, []>("hidden_states_65_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> hidden_states_65_pad_0 = const()[name = tensor<string, []>("hidden_states_65_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_1_resnets_2_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_2_conv2_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(77695040)))]; |
|
tensor<fp16, [512]> decoder_up_blocks_1_resnets_2_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_resnets_2_conv2_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(82413696)))]; |
|
tensor<fp16, [1, 512, 128, 128]> hidden_states_65_cast = conv(bias = decoder_up_blocks_1_resnets_2_conv2_bias_to_fp16, dilations = var_381, groups = var_26, pad = hidden_states_65_pad_0, pad_type = hidden_states_65_pad_type_0, strides = var_379, weight = decoder_up_blocks_1_resnets_2_conv2_weight_to_fp16, x = input_89_cast)[name = tensor<string, []>("hidden_states_65_cast")]; |
|
tensor<fp16, [1, 512, 128, 128]> var_384_cast = add(x = var_354_cast, y = hidden_states_65_cast)[name = tensor<string, []>("op_384_cast")]; |
|
tensor<fp32, []> hidden_states_69_scale_factor_height_0 = const()[name = tensor<string, []>("hidden_states_69_scale_factor_height_0"), val = tensor<fp32, []>(0x1p+1)]; |
|
tensor<fp32, []> hidden_states_69_scale_factor_width_0 = const()[name = tensor<string, []>("hidden_states_69_scale_factor_width_0"), val = tensor<fp32, []>(0x1p+1)]; |
|
tensor<fp16, [1, 512, 256, 256]> hidden_states_69_cast = upsample_nearest_neighbor(scale_factor_height = hidden_states_69_scale_factor_height_0, scale_factor_width = hidden_states_69_scale_factor_width_0, x = var_384_cast)[name = tensor<string, []>("hidden_states_69_cast")]; |
|
tensor<int32, [2]> var_392 = const()[name = tensor<string, []>("op_392"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_394 = const()[name = tensor<string, []>("op_394"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_91_pad_type_0 = const()[name = tensor<string, []>("input_91_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_91_pad_0 = const()[name = tensor<string, []>("input_91_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [512, 512, 3, 3]> decoder_up_blocks_1_upsamplers_0_conv_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_upsamplers_0_conv_weight_to_fp16"), val = tensor<fp16, [512, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(82414784)))]; |
|
tensor<fp16, [512]> decoder_up_blocks_1_upsamplers_0_conv_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_1_upsamplers_0_conv_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(87133440)))]; |
|
tensor<fp16, [1, 512, 256, 256]> input_91_cast = conv(bias = decoder_up_blocks_1_upsamplers_0_conv_bias_to_fp16, dilations = var_394, groups = var_26, pad = input_91_pad_0, pad_type = input_91_pad_type_0, strides = var_392, weight = decoder_up_blocks_1_upsamplers_0_conv_weight_to_fp16, x = hidden_states_69_cast)[name = tensor<string, []>("input_91_cast")]; |
|
tensor<int32, [5]> reshape_68_shape_0 = const()[name = tensor<string, []>("reshape_68_shape_0"), val = tensor<int32, [5]>([1, 32, 16, 256, 256])]; |
|
tensor<fp16, [1, 32, 16, 256, 256]> reshape_68_cast = reshape(shape = reshape_68_shape_0, x = input_91_cast)[name = tensor<string, []>("reshape_68_cast")]; |
|
tensor<int32, [3]> reduce_mean_51_axes_0 = const()[name = tensor<string, []>("reduce_mean_51_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_51_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_51_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_51_cast = reduce_mean(axes = reduce_mean_51_axes_0, keep_dims = reduce_mean_51_keep_dims_0, x = reshape_68_cast)[name = tensor<string, []>("reduce_mean_51_cast")]; |
|
tensor<fp16, [1, 32, 16, 256, 256]> sub_34_cast = sub(x = reshape_68_cast, y = reduce_mean_51_cast)[name = tensor<string, []>("sub_34_cast")]; |
|
tensor<fp16, [1, 32, 16, 256, 256]> square_17_cast = square(x = sub_34_cast)[name = tensor<string, []>("square_17_cast")]; |
|
tensor<int32, [3]> reduce_mean_53_axes_0 = const()[name = tensor<string, []>("reduce_mean_53_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_53_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_53_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_53_cast = reduce_mean(axes = reduce_mean_53_axes_0, keep_dims = reduce_mean_53_keep_dims_0, x = square_17_cast)[name = tensor<string, []>("reduce_mean_53_cast")]; |
|
tensor<fp16, []> add_34_y_0_to_fp16 = const()[name = tensor<string, []>("add_34_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_34_cast = add(x = reduce_mean_53_cast, y = add_34_y_0_to_fp16)[name = tensor<string, []>("add_34_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_17_cast = sqrt(x = add_34_cast)[name = tensor<string, []>("sqrt_17_cast")]; |
|
tensor<fp16, [1, 32, 16, 256, 256]> real_div_17_cast = real_div(x = sub_34_cast, y = sqrt_17_cast)[name = tensor<string, []>("real_div_17_cast")]; |
|
tensor<int32, [4]> reshape_69_shape_0 = const()[name = tensor<string, []>("reshape_69_shape_0"), val = tensor<int32, [4]>([1, 512, 256, 256])]; |
|
tensor<fp16, [1, 512, 256, 256]> reshape_69_cast = reshape(shape = reshape_69_shape_0, x = real_div_17_cast)[name = tensor<string, []>("reshape_69_cast")]; |
|
tensor<fp16, [512]> add_35_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_35_gamma_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(87134528)))]; |
|
tensor<fp16, [512]> add_35_beta_0_to_fp16 = const()[name = tensor<string, []>("add_35_beta_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(87135616)))]; |
|
tensor<fp16, []> add_35_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_35_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 512, 256, 256]> add_35_cast = batch_norm(beta = add_35_beta_0_to_fp16, epsilon = add_35_epsilon_0_to_fp16, gamma = add_35_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_69_cast)[name = tensor<string, []>("add_35_cast")]; |
|
tensor<fp16, [1, 512, 256, 256]> hidden_states_71_cast = silu(x = add_35_cast)[name = tensor<string, []>("hidden_states_71_cast")]; |
|
tensor<int32, [2]> var_416 = const()[name = tensor<string, []>("op_416"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_418 = const()[name = tensor<string, []>("op_418"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_95_pad_type_0 = const()[name = tensor<string, []>("input_95_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_95_pad_0 = const()[name = tensor<string, []>("input_95_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [256, 512, 3, 3]> decoder_up_blocks_2_resnets_0_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_0_conv1_weight_to_fp16"), val = tensor<fp16, [256, 512, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(87136704)))]; |
|
tensor<fp16, [256]> decoder_up_blocks_2_resnets_0_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_0_conv1_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(89496064)))]; |
|
tensor<fp16, [1, 256, 256, 256]> input_95_cast = conv(bias = decoder_up_blocks_2_resnets_0_conv1_bias_to_fp16, dilations = var_418, groups = var_26, pad = input_95_pad_0, pad_type = input_95_pad_type_0, strides = var_416, weight = decoder_up_blocks_2_resnets_0_conv1_weight_to_fp16, x = hidden_states_71_cast)[name = tensor<string, []>("input_95_cast")]; |
|
tensor<int32, [5]> reshape_72_shape_0 = const()[name = tensor<string, []>("reshape_72_shape_0"), val = tensor<int32, [5]>([1, 32, 8, 256, 256])]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> reshape_72_cast = reshape(shape = reshape_72_shape_0, x = input_95_cast)[name = tensor<string, []>("reshape_72_cast")]; |
|
tensor<int32, [3]> reduce_mean_54_axes_0 = const()[name = tensor<string, []>("reduce_mean_54_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_54_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_54_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_54_cast = reduce_mean(axes = reduce_mean_54_axes_0, keep_dims = reduce_mean_54_keep_dims_0, x = reshape_72_cast)[name = tensor<string, []>("reduce_mean_54_cast")]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> sub_36_cast = sub(x = reshape_72_cast, y = reduce_mean_54_cast)[name = tensor<string, []>("sub_36_cast")]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> square_18_cast = square(x = sub_36_cast)[name = tensor<string, []>("square_18_cast")]; |
|
tensor<int32, [3]> reduce_mean_56_axes_0 = const()[name = tensor<string, []>("reduce_mean_56_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_56_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_56_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_56_cast = reduce_mean(axes = reduce_mean_56_axes_0, keep_dims = reduce_mean_56_keep_dims_0, x = square_18_cast)[name = tensor<string, []>("reduce_mean_56_cast")]; |
|
tensor<fp16, []> add_36_y_0_to_fp16 = const()[name = tensor<string, []>("add_36_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_36_cast = add(x = reduce_mean_56_cast, y = add_36_y_0_to_fp16)[name = tensor<string, []>("add_36_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_18_cast = sqrt(x = add_36_cast)[name = tensor<string, []>("sqrt_18_cast")]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> real_div_18_cast = real_div(x = sub_36_cast, y = sqrt_18_cast)[name = tensor<string, []>("real_div_18_cast")]; |
|
tensor<int32, [4]> reshape_73_shape_0 = const()[name = tensor<string, []>("reshape_73_shape_0"), val = tensor<int32, [4]>([1, 256, 256, 256])]; |
|
tensor<fp16, [1, 256, 256, 256]> reshape_73_cast = reshape(shape = reshape_73_shape_0, x = real_div_18_cast)[name = tensor<string, []>("reshape_73_cast")]; |
|
tensor<fp16, [256]> add_37_mean_0_to_fp16 = const()[name = tensor<string, []>("add_37_mean_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(89496640)))]; |
|
tensor<fp16, [256]> add_37_variance_0_to_fp16 = const()[name = tensor<string, []>("add_37_variance_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(89497216)))]; |
|
tensor<fp16, [256]> add_37_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_37_gamma_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(89497792)))]; |
|
tensor<fp16, [256]> add_37_beta_0_to_fp16 = const()[name = tensor<string, []>("add_37_beta_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(89498368)))]; |
|
tensor<fp16, []> add_37_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_37_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 256, 256, 256]> add_37_cast = batch_norm(beta = add_37_beta_0_to_fp16, epsilon = add_37_epsilon_0_to_fp16, gamma = add_37_gamma_0_to_fp16, mean = add_37_mean_0_to_fp16, variance = add_37_variance_0_to_fp16, x = reshape_73_cast)[name = tensor<string, []>("add_37_cast")]; |
|
tensor<fp16, [1, 256, 256, 256]> input_99_cast = silu(x = add_37_cast)[name = tensor<string, []>("input_99_cast")]; |
|
tensor<int32, [2]> var_428 = const()[name = tensor<string, []>("op_428"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_430 = const()[name = tensor<string, []>("op_430"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> hidden_states_75_pad_type_0 = const()[name = tensor<string, []>("hidden_states_75_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> hidden_states_75_pad_0 = const()[name = tensor<string, []>("hidden_states_75_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [256, 256, 3, 3]> decoder_up_blocks_2_resnets_0_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_0_conv2_weight_to_fp16"), val = tensor<fp16, [256, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(89498944)))]; |
|
tensor<fp16, [256]> decoder_up_blocks_2_resnets_0_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_0_conv2_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(90678656)))]; |
|
tensor<fp16, [1, 256, 256, 256]> hidden_states_75_cast = conv(bias = decoder_up_blocks_2_resnets_0_conv2_bias_to_fp16, dilations = var_430, groups = var_26, pad = hidden_states_75_pad_0, pad_type = hidden_states_75_pad_type_0, strides = var_428, weight = decoder_up_blocks_2_resnets_0_conv2_weight_to_fp16, x = input_99_cast)[name = tensor<string, []>("hidden_states_75_cast")]; |
|
tensor<int32, [2]> var_435 = const()[name = tensor<string, []>("op_435"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_437 = const()[name = tensor<string, []>("op_437"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_tensor_1_pad_type_0 = const()[name = tensor<string, []>("input_tensor_1_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_tensor_1_pad_0 = const()[name = tensor<string, []>("input_tensor_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<fp16, [256, 512, 1, 1]> decoder_up_blocks_2_resnets_0_conv_shortcut_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_0_conv_shortcut_weight_to_fp16"), val = tensor<fp16, [256, 512, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(90679232)))]; |
|
tensor<fp16, [256]> decoder_up_blocks_2_resnets_0_conv_shortcut_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_0_conv_shortcut_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(90941440)))]; |
|
tensor<fp16, [1, 256, 256, 256]> input_tensor_1_cast = conv(bias = decoder_up_blocks_2_resnets_0_conv_shortcut_bias_to_fp16, dilations = var_437, groups = var_26, pad = input_tensor_1_pad_0, pad_type = input_tensor_1_pad_type_0, strides = var_435, weight = decoder_up_blocks_2_resnets_0_conv_shortcut_weight_to_fp16, x = input_91_cast)[name = tensor<string, []>("input_tensor_1_cast")]; |
|
tensor<fp16, [1, 256, 256, 256]> var_440_cast = add(x = input_tensor_1_cast, y = hidden_states_75_cast)[name = tensor<string, []>("op_440_cast")]; |
|
tensor<int32, [5]> reshape_76_shape_0 = const()[name = tensor<string, []>("reshape_76_shape_0"), val = tensor<int32, [5]>([1, 32, 8, 256, 256])]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> reshape_76_cast = reshape(shape = reshape_76_shape_0, x = var_440_cast)[name = tensor<string, []>("reshape_76_cast")]; |
|
tensor<int32, [3]> reduce_mean_57_axes_0 = const()[name = tensor<string, []>("reduce_mean_57_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_57_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_57_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_57_cast = reduce_mean(axes = reduce_mean_57_axes_0, keep_dims = reduce_mean_57_keep_dims_0, x = reshape_76_cast)[name = tensor<string, []>("reduce_mean_57_cast")]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> sub_38_cast = sub(x = reshape_76_cast, y = reduce_mean_57_cast)[name = tensor<string, []>("sub_38_cast")]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> square_19_cast = square(x = sub_38_cast)[name = tensor<string, []>("square_19_cast")]; |
|
tensor<int32, [3]> reduce_mean_59_axes_0 = const()[name = tensor<string, []>("reduce_mean_59_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_59_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_59_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_59_cast = reduce_mean(axes = reduce_mean_59_axes_0, keep_dims = reduce_mean_59_keep_dims_0, x = square_19_cast)[name = tensor<string, []>("reduce_mean_59_cast")]; |
|
tensor<fp16, []> add_38_y_0_to_fp16 = const()[name = tensor<string, []>("add_38_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_38_cast = add(x = reduce_mean_59_cast, y = add_38_y_0_to_fp16)[name = tensor<string, []>("add_38_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_19_cast = sqrt(x = add_38_cast)[name = tensor<string, []>("sqrt_19_cast")]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> real_div_19_cast = real_div(x = sub_38_cast, y = sqrt_19_cast)[name = tensor<string, []>("real_div_19_cast")]; |
|
tensor<int32, [4]> reshape_77_shape_0 = const()[name = tensor<string, []>("reshape_77_shape_0"), val = tensor<int32, [4]>([1, 256, 256, 256])]; |
|
tensor<fp16, [1, 256, 256, 256]> reshape_77_cast = reshape(shape = reshape_77_shape_0, x = real_div_19_cast)[name = tensor<string, []>("reshape_77_cast")]; |
|
tensor<fp16, [256]> add_39_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_39_gamma_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(90942016)))]; |
|
tensor<fp16, [256]> add_39_beta_0_to_fp16 = const()[name = tensor<string, []>("add_39_beta_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(90942592)))]; |
|
tensor<fp16, []> add_39_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_39_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 256, 256, 256]> add_39_cast = batch_norm(beta = add_39_beta_0_to_fp16, epsilon = add_39_epsilon_0_to_fp16, gamma = add_39_gamma_0_to_fp16, mean = add_37_mean_0_to_fp16, variance = add_37_variance_0_to_fp16, x = reshape_77_cast)[name = tensor<string, []>("add_39_cast")]; |
|
tensor<fp16, [1, 256, 256, 256]> hidden_states_77_cast = silu(x = add_39_cast)[name = tensor<string, []>("hidden_states_77_cast")]; |
|
tensor<int32, [2]> var_453 = const()[name = tensor<string, []>("op_453"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_455 = const()[name = tensor<string, []>("op_455"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_105_pad_type_0 = const()[name = tensor<string, []>("input_105_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_105_pad_0 = const()[name = tensor<string, []>("input_105_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [256, 256, 3, 3]> decoder_up_blocks_2_resnets_1_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_1_conv1_weight_to_fp16"), val = tensor<fp16, [256, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(90943168)))]; |
|
tensor<fp16, [256]> decoder_up_blocks_2_resnets_1_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_1_conv1_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(92122880)))]; |
|
tensor<fp16, [1, 256, 256, 256]> input_105_cast = conv(bias = decoder_up_blocks_2_resnets_1_conv1_bias_to_fp16, dilations = var_455, groups = var_26, pad = input_105_pad_0, pad_type = input_105_pad_type_0, strides = var_453, weight = decoder_up_blocks_2_resnets_1_conv1_weight_to_fp16, x = hidden_states_77_cast)[name = tensor<string, []>("input_105_cast")]; |
|
tensor<int32, [5]> reshape_80_shape_0 = const()[name = tensor<string, []>("reshape_80_shape_0"), val = tensor<int32, [5]>([1, 32, 8, 256, 256])]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> reshape_80_cast = reshape(shape = reshape_80_shape_0, x = input_105_cast)[name = tensor<string, []>("reshape_80_cast")]; |
|
tensor<int32, [3]> reduce_mean_60_axes_0 = const()[name = tensor<string, []>("reduce_mean_60_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_60_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_60_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_60_cast = reduce_mean(axes = reduce_mean_60_axes_0, keep_dims = reduce_mean_60_keep_dims_0, x = reshape_80_cast)[name = tensor<string, []>("reduce_mean_60_cast")]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> sub_40_cast = sub(x = reshape_80_cast, y = reduce_mean_60_cast)[name = tensor<string, []>("sub_40_cast")]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> square_20_cast = square(x = sub_40_cast)[name = tensor<string, []>("square_20_cast")]; |
|
tensor<int32, [3]> reduce_mean_62_axes_0 = const()[name = tensor<string, []>("reduce_mean_62_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_62_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_62_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_62_cast = reduce_mean(axes = reduce_mean_62_axes_0, keep_dims = reduce_mean_62_keep_dims_0, x = square_20_cast)[name = tensor<string, []>("reduce_mean_62_cast")]; |
|
tensor<fp16, []> add_40_y_0_to_fp16 = const()[name = tensor<string, []>("add_40_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_40_cast = add(x = reduce_mean_62_cast, y = add_40_y_0_to_fp16)[name = tensor<string, []>("add_40_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_20_cast = sqrt(x = add_40_cast)[name = tensor<string, []>("sqrt_20_cast")]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> real_div_20_cast = real_div(x = sub_40_cast, y = sqrt_20_cast)[name = tensor<string, []>("real_div_20_cast")]; |
|
tensor<int32, [4]> reshape_81_shape_0 = const()[name = tensor<string, []>("reshape_81_shape_0"), val = tensor<int32, [4]>([1, 256, 256, 256])]; |
|
tensor<fp16, [1, 256, 256, 256]> reshape_81_cast = reshape(shape = reshape_81_shape_0, x = real_div_20_cast)[name = tensor<string, []>("reshape_81_cast")]; |
|
tensor<fp16, [256]> add_41_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_41_gamma_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(92123456)))]; |
|
tensor<fp16, [256]> add_41_beta_0_to_fp16 = const()[name = tensor<string, []>("add_41_beta_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(92124032)))]; |
|
tensor<fp16, []> add_41_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_41_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 256, 256, 256]> add_41_cast = batch_norm(beta = add_41_beta_0_to_fp16, epsilon = add_41_epsilon_0_to_fp16, gamma = add_41_gamma_0_to_fp16, mean = add_37_mean_0_to_fp16, variance = add_37_variance_0_to_fp16, x = reshape_81_cast)[name = tensor<string, []>("add_41_cast")]; |
|
tensor<fp16, [1, 256, 256, 256]> input_109_cast = silu(x = add_41_cast)[name = tensor<string, []>("input_109_cast")]; |
|
tensor<int32, [2]> var_465 = const()[name = tensor<string, []>("op_465"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_467 = const()[name = tensor<string, []>("op_467"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> hidden_states_81_pad_type_0 = const()[name = tensor<string, []>("hidden_states_81_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> hidden_states_81_pad_0 = const()[name = tensor<string, []>("hidden_states_81_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [256, 256, 3, 3]> decoder_up_blocks_2_resnets_1_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_1_conv2_weight_to_fp16"), val = tensor<fp16, [256, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(92124608)))]; |
|
tensor<fp16, [256]> decoder_up_blocks_2_resnets_1_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_1_conv2_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(93304320)))]; |
|
tensor<fp16, [1, 256, 256, 256]> hidden_states_81_cast = conv(bias = decoder_up_blocks_2_resnets_1_conv2_bias_to_fp16, dilations = var_467, groups = var_26, pad = hidden_states_81_pad_0, pad_type = hidden_states_81_pad_type_0, strides = var_465, weight = decoder_up_blocks_2_resnets_1_conv2_weight_to_fp16, x = input_109_cast)[name = tensor<string, []>("hidden_states_81_cast")]; |
|
tensor<fp16, [1, 256, 256, 256]> var_470_cast = add(x = var_440_cast, y = hidden_states_81_cast)[name = tensor<string, []>("op_470_cast")]; |
|
tensor<int32, [5]> reshape_84_shape_0 = const()[name = tensor<string, []>("reshape_84_shape_0"), val = tensor<int32, [5]>([1, 32, 8, 256, 256])]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> reshape_84_cast = reshape(shape = reshape_84_shape_0, x = var_470_cast)[name = tensor<string, []>("reshape_84_cast")]; |
|
tensor<int32, [3]> reduce_mean_63_axes_0 = const()[name = tensor<string, []>("reduce_mean_63_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_63_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_63_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_63_cast = reduce_mean(axes = reduce_mean_63_axes_0, keep_dims = reduce_mean_63_keep_dims_0, x = reshape_84_cast)[name = tensor<string, []>("reduce_mean_63_cast")]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> sub_42_cast = sub(x = reshape_84_cast, y = reduce_mean_63_cast)[name = tensor<string, []>("sub_42_cast")]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> square_21_cast = square(x = sub_42_cast)[name = tensor<string, []>("square_21_cast")]; |
|
tensor<int32, [3]> reduce_mean_65_axes_0 = const()[name = tensor<string, []>("reduce_mean_65_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_65_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_65_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_65_cast = reduce_mean(axes = reduce_mean_65_axes_0, keep_dims = reduce_mean_65_keep_dims_0, x = square_21_cast)[name = tensor<string, []>("reduce_mean_65_cast")]; |
|
tensor<fp16, []> add_42_y_0_to_fp16 = const()[name = tensor<string, []>("add_42_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_42_cast = add(x = reduce_mean_65_cast, y = add_42_y_0_to_fp16)[name = tensor<string, []>("add_42_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_21_cast = sqrt(x = add_42_cast)[name = tensor<string, []>("sqrt_21_cast")]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> real_div_21_cast = real_div(x = sub_42_cast, y = sqrt_21_cast)[name = tensor<string, []>("real_div_21_cast")]; |
|
tensor<int32, [4]> reshape_85_shape_0 = const()[name = tensor<string, []>("reshape_85_shape_0"), val = tensor<int32, [4]>([1, 256, 256, 256])]; |
|
tensor<fp16, [1, 256, 256, 256]> reshape_85_cast = reshape(shape = reshape_85_shape_0, x = real_div_21_cast)[name = tensor<string, []>("reshape_85_cast")]; |
|
tensor<fp16, [256]> add_43_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_43_gamma_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(93304896)))]; |
|
tensor<fp16, [256]> add_43_beta_0_to_fp16 = const()[name = tensor<string, []>("add_43_beta_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(93305472)))]; |
|
tensor<fp16, []> add_43_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_43_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 256, 256, 256]> add_43_cast = batch_norm(beta = add_43_beta_0_to_fp16, epsilon = add_43_epsilon_0_to_fp16, gamma = add_43_gamma_0_to_fp16, mean = add_37_mean_0_to_fp16, variance = add_37_variance_0_to_fp16, x = reshape_85_cast)[name = tensor<string, []>("add_43_cast")]; |
|
tensor<fp16, [1, 256, 256, 256]> hidden_states_83_cast = silu(x = add_43_cast)[name = tensor<string, []>("hidden_states_83_cast")]; |
|
tensor<int32, [2]> var_483 = const()[name = tensor<string, []>("op_483"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_485 = const()[name = tensor<string, []>("op_485"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_115_pad_type_0 = const()[name = tensor<string, []>("input_115_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_115_pad_0 = const()[name = tensor<string, []>("input_115_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [256, 256, 3, 3]> decoder_up_blocks_2_resnets_2_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_2_conv1_weight_to_fp16"), val = tensor<fp16, [256, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(93306048)))]; |
|
tensor<fp16, [256]> decoder_up_blocks_2_resnets_2_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_2_conv1_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(94485760)))]; |
|
tensor<fp16, [1, 256, 256, 256]> input_115_cast = conv(bias = decoder_up_blocks_2_resnets_2_conv1_bias_to_fp16, dilations = var_485, groups = var_26, pad = input_115_pad_0, pad_type = input_115_pad_type_0, strides = var_483, weight = decoder_up_blocks_2_resnets_2_conv1_weight_to_fp16, x = hidden_states_83_cast)[name = tensor<string, []>("input_115_cast")]; |
|
tensor<int32, [5]> reshape_88_shape_0 = const()[name = tensor<string, []>("reshape_88_shape_0"), val = tensor<int32, [5]>([1, 32, 8, 256, 256])]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> reshape_88_cast = reshape(shape = reshape_88_shape_0, x = input_115_cast)[name = tensor<string, []>("reshape_88_cast")]; |
|
tensor<int32, [3]> reduce_mean_66_axes_0 = const()[name = tensor<string, []>("reduce_mean_66_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_66_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_66_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_66_cast = reduce_mean(axes = reduce_mean_66_axes_0, keep_dims = reduce_mean_66_keep_dims_0, x = reshape_88_cast)[name = tensor<string, []>("reduce_mean_66_cast")]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> sub_44_cast = sub(x = reshape_88_cast, y = reduce_mean_66_cast)[name = tensor<string, []>("sub_44_cast")]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> square_22_cast = square(x = sub_44_cast)[name = tensor<string, []>("square_22_cast")]; |
|
tensor<int32, [3]> reduce_mean_68_axes_0 = const()[name = tensor<string, []>("reduce_mean_68_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_68_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_68_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_68_cast = reduce_mean(axes = reduce_mean_68_axes_0, keep_dims = reduce_mean_68_keep_dims_0, x = square_22_cast)[name = tensor<string, []>("reduce_mean_68_cast")]; |
|
tensor<fp16, []> add_44_y_0_to_fp16 = const()[name = tensor<string, []>("add_44_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_44_cast = add(x = reduce_mean_68_cast, y = add_44_y_0_to_fp16)[name = tensor<string, []>("add_44_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_22_cast = sqrt(x = add_44_cast)[name = tensor<string, []>("sqrt_22_cast")]; |
|
tensor<fp16, [1, 32, 8, 256, 256]> real_div_22_cast = real_div(x = sub_44_cast, y = sqrt_22_cast)[name = tensor<string, []>("real_div_22_cast")]; |
|
tensor<int32, [4]> reshape_89_shape_0 = const()[name = tensor<string, []>("reshape_89_shape_0"), val = tensor<int32, [4]>([1, 256, 256, 256])]; |
|
tensor<fp16, [1, 256, 256, 256]> reshape_89_cast = reshape(shape = reshape_89_shape_0, x = real_div_22_cast)[name = tensor<string, []>("reshape_89_cast")]; |
|
tensor<fp16, [256]> add_45_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_45_gamma_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(94486336)))]; |
|
tensor<fp16, [256]> add_45_beta_0_to_fp16 = const()[name = tensor<string, []>("add_45_beta_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(94486912)))]; |
|
tensor<fp16, []> add_45_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_45_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 256, 256, 256]> add_45_cast = batch_norm(beta = add_45_beta_0_to_fp16, epsilon = add_45_epsilon_0_to_fp16, gamma = add_45_gamma_0_to_fp16, mean = add_37_mean_0_to_fp16, variance = add_37_variance_0_to_fp16, x = reshape_89_cast)[name = tensor<string, []>("add_45_cast")]; |
|
tensor<fp16, [1, 256, 256, 256]> input_119_cast = silu(x = add_45_cast)[name = tensor<string, []>("input_119_cast")]; |
|
tensor<int32, [2]> var_495 = const()[name = tensor<string, []>("op_495"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_497 = const()[name = tensor<string, []>("op_497"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> hidden_states_87_pad_type_0 = const()[name = tensor<string, []>("hidden_states_87_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> hidden_states_87_pad_0 = const()[name = tensor<string, []>("hidden_states_87_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [256, 256, 3, 3]> decoder_up_blocks_2_resnets_2_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_2_conv2_weight_to_fp16"), val = tensor<fp16, [256, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(94487488)))]; |
|
tensor<fp16, [256]> decoder_up_blocks_2_resnets_2_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_resnets_2_conv2_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(95667200)))]; |
|
tensor<fp16, [1, 256, 256, 256]> hidden_states_87_cast = conv(bias = decoder_up_blocks_2_resnets_2_conv2_bias_to_fp16, dilations = var_497, groups = var_26, pad = hidden_states_87_pad_0, pad_type = hidden_states_87_pad_type_0, strides = var_495, weight = decoder_up_blocks_2_resnets_2_conv2_weight_to_fp16, x = input_119_cast)[name = tensor<string, []>("hidden_states_87_cast")]; |
|
tensor<fp16, [1, 256, 256, 256]> var_500_cast = add(x = var_470_cast, y = hidden_states_87_cast)[name = tensor<string, []>("op_500_cast")]; |
|
tensor<fp32, []> hidden_states_91_scale_factor_height_0 = const()[name = tensor<string, []>("hidden_states_91_scale_factor_height_0"), val = tensor<fp32, []>(0x1p+1)]; |
|
tensor<fp32, []> hidden_states_91_scale_factor_width_0 = const()[name = tensor<string, []>("hidden_states_91_scale_factor_width_0"), val = tensor<fp32, []>(0x1p+1)]; |
|
tensor<fp16, [1, 256, 512, 512]> hidden_states_91_cast = upsample_nearest_neighbor(scale_factor_height = hidden_states_91_scale_factor_height_0, scale_factor_width = hidden_states_91_scale_factor_width_0, x = var_500_cast)[name = tensor<string, []>("hidden_states_91_cast")]; |
|
tensor<int32, [2]> var_508 = const()[name = tensor<string, []>("op_508"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_510 = const()[name = tensor<string, []>("op_510"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_121_pad_type_0 = const()[name = tensor<string, []>("input_121_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_121_pad_0 = const()[name = tensor<string, []>("input_121_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [256, 256, 3, 3]> decoder_up_blocks_2_upsamplers_0_conv_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_upsamplers_0_conv_weight_to_fp16"), val = tensor<fp16, [256, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(95667776)))]; |
|
tensor<fp16, [256]> decoder_up_blocks_2_upsamplers_0_conv_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_2_upsamplers_0_conv_bias_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(96847488)))]; |
|
tensor<fp16, [1, 256, 512, 512]> input_121_cast = conv(bias = decoder_up_blocks_2_upsamplers_0_conv_bias_to_fp16, dilations = var_510, groups = var_26, pad = input_121_pad_0, pad_type = input_121_pad_type_0, strides = var_508, weight = decoder_up_blocks_2_upsamplers_0_conv_weight_to_fp16, x = hidden_states_91_cast)[name = tensor<string, []>("input_121_cast")]; |
|
tensor<int32, [5]> reshape_92_shape_0 = const()[name = tensor<string, []>("reshape_92_shape_0"), val = tensor<int32, [5]>([1, 32, 8, 512, 512])]; |
|
tensor<fp16, [1, 32, 8, 512, 512]> reshape_92_cast = reshape(shape = reshape_92_shape_0, x = input_121_cast)[name = tensor<string, []>("reshape_92_cast")]; |
|
tensor<int32, [3]> reduce_mean_69_axes_0 = const()[name = tensor<string, []>("reduce_mean_69_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_69_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_69_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_69_cast = reduce_mean(axes = reduce_mean_69_axes_0, keep_dims = reduce_mean_69_keep_dims_0, x = reshape_92_cast)[name = tensor<string, []>("reduce_mean_69_cast")]; |
|
tensor<fp16, [1, 32, 8, 512, 512]> sub_46_cast = sub(x = reshape_92_cast, y = reduce_mean_69_cast)[name = tensor<string, []>("sub_46_cast")]; |
|
tensor<fp16, [1, 32, 8, 512, 512]> square_23_cast = square(x = sub_46_cast)[name = tensor<string, []>("square_23_cast")]; |
|
tensor<int32, [3]> reduce_mean_71_axes_0 = const()[name = tensor<string, []>("reduce_mean_71_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_71_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_71_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_71_cast = reduce_mean(axes = reduce_mean_71_axes_0, keep_dims = reduce_mean_71_keep_dims_0, x = square_23_cast)[name = tensor<string, []>("reduce_mean_71_cast")]; |
|
tensor<fp16, []> add_46_y_0_to_fp16 = const()[name = tensor<string, []>("add_46_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_46_cast = add(x = reduce_mean_71_cast, y = add_46_y_0_to_fp16)[name = tensor<string, []>("add_46_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_23_cast = sqrt(x = add_46_cast)[name = tensor<string, []>("sqrt_23_cast")]; |
|
tensor<fp16, [1, 32, 8, 512, 512]> real_div_23_cast = real_div(x = sub_46_cast, y = sqrt_23_cast)[name = tensor<string, []>("real_div_23_cast")]; |
|
tensor<int32, [4]> reshape_93_shape_0 = const()[name = tensor<string, []>("reshape_93_shape_0"), val = tensor<int32, [4]>([1, 256, 512, 512])]; |
|
tensor<fp16, [1, 256, 512, 512]> reshape_93_cast = reshape(shape = reshape_93_shape_0, x = real_div_23_cast)[name = tensor<string, []>("reshape_93_cast")]; |
|
tensor<fp16, [256]> add_47_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_47_gamma_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(96848064)))]; |
|
tensor<fp16, [256]> add_47_beta_0_to_fp16 = const()[name = tensor<string, []>("add_47_beta_0_to_fp16"), val = tensor<fp16, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(96848640)))]; |
|
tensor<fp16, []> add_47_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_47_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 256, 512, 512]> add_47_cast = batch_norm(beta = add_47_beta_0_to_fp16, epsilon = add_47_epsilon_0_to_fp16, gamma = add_47_gamma_0_to_fp16, mean = add_37_mean_0_to_fp16, variance = add_37_variance_0_to_fp16, x = reshape_93_cast)[name = tensor<string, []>("add_47_cast")]; |
|
tensor<fp16, [1, 256, 512, 512]> hidden_states_93_cast = silu(x = add_47_cast)[name = tensor<string, []>("hidden_states_93_cast")]; |
|
tensor<int32, [2]> var_530 = const()[name = tensor<string, []>("op_530"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_532 = const()[name = tensor<string, []>("op_532"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_125_pad_type_0 = const()[name = tensor<string, []>("input_125_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_125_pad_0 = const()[name = tensor<string, []>("input_125_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [128, 256, 3, 3]> decoder_up_blocks_3_resnets_0_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_0_conv1_weight_to_fp16"), val = tensor<fp16, [128, 256, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(96849216)))]; |
|
tensor<fp16, [128]> decoder_up_blocks_3_resnets_0_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_0_conv1_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97439104)))]; |
|
tensor<fp16, [1, 128, 512, 512]> input_125_cast = conv(bias = decoder_up_blocks_3_resnets_0_conv1_bias_to_fp16, dilations = var_532, groups = var_26, pad = input_125_pad_0, pad_type = input_125_pad_type_0, strides = var_530, weight = decoder_up_blocks_3_resnets_0_conv1_weight_to_fp16, x = hidden_states_93_cast)[name = tensor<string, []>("input_125_cast")]; |
|
tensor<int32, [5]> reshape_96_shape_0 = const()[name = tensor<string, []>("reshape_96_shape_0"), val = tensor<int32, [5]>([1, 32, 4, 512, 512])]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> reshape_96_cast = reshape(shape = reshape_96_shape_0, x = input_125_cast)[name = tensor<string, []>("reshape_96_cast")]; |
|
tensor<int32, [3]> reduce_mean_72_axes_0 = const()[name = tensor<string, []>("reduce_mean_72_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_72_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_72_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_72_cast = reduce_mean(axes = reduce_mean_72_axes_0, keep_dims = reduce_mean_72_keep_dims_0, x = reshape_96_cast)[name = tensor<string, []>("reduce_mean_72_cast")]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> sub_48_cast = sub(x = reshape_96_cast, y = reduce_mean_72_cast)[name = tensor<string, []>("sub_48_cast")]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> square_24_cast = square(x = sub_48_cast)[name = tensor<string, []>("square_24_cast")]; |
|
tensor<int32, [3]> reduce_mean_74_axes_0 = const()[name = tensor<string, []>("reduce_mean_74_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_74_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_74_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_74_cast = reduce_mean(axes = reduce_mean_74_axes_0, keep_dims = reduce_mean_74_keep_dims_0, x = square_24_cast)[name = tensor<string, []>("reduce_mean_74_cast")]; |
|
tensor<fp16, []> add_48_y_0_to_fp16 = const()[name = tensor<string, []>("add_48_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_48_cast = add(x = reduce_mean_74_cast, y = add_48_y_0_to_fp16)[name = tensor<string, []>("add_48_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_24_cast = sqrt(x = add_48_cast)[name = tensor<string, []>("sqrt_24_cast")]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> real_div_24_cast = real_div(x = sub_48_cast, y = sqrt_24_cast)[name = tensor<string, []>("real_div_24_cast")]; |
|
tensor<int32, [4]> reshape_97_shape_0 = const()[name = tensor<string, []>("reshape_97_shape_0"), val = tensor<int32, [4]>([1, 128, 512, 512])]; |
|
tensor<fp16, [1, 128, 512, 512]> reshape_97_cast = reshape(shape = reshape_97_shape_0, x = real_div_24_cast)[name = tensor<string, []>("reshape_97_cast")]; |
|
tensor<fp16, [128]> add_49_mean_0_to_fp16 = const()[name = tensor<string, []>("add_49_mean_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97439424)))]; |
|
tensor<fp16, [128]> add_49_variance_0_to_fp16 = const()[name = tensor<string, []>("add_49_variance_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97439744)))]; |
|
tensor<fp16, [128]> add_49_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_49_gamma_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97440064)))]; |
|
tensor<fp16, [128]> add_49_beta_0_to_fp16 = const()[name = tensor<string, []>("add_49_beta_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97440384)))]; |
|
tensor<fp16, []> add_49_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_49_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 128, 512, 512]> add_49_cast = batch_norm(beta = add_49_beta_0_to_fp16, epsilon = add_49_epsilon_0_to_fp16, gamma = add_49_gamma_0_to_fp16, mean = add_49_mean_0_to_fp16, variance = add_49_variance_0_to_fp16, x = reshape_97_cast)[name = tensor<string, []>("add_49_cast")]; |
|
tensor<fp16, [1, 128, 512, 512]> input_129_cast = silu(x = add_49_cast)[name = tensor<string, []>("input_129_cast")]; |
|
tensor<int32, [2]> var_542 = const()[name = tensor<string, []>("op_542"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_544 = const()[name = tensor<string, []>("op_544"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> hidden_states_97_pad_type_0 = const()[name = tensor<string, []>("hidden_states_97_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> hidden_states_97_pad_0 = const()[name = tensor<string, []>("hidden_states_97_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [128, 128, 3, 3]> decoder_up_blocks_3_resnets_0_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_0_conv2_weight_to_fp16"), val = tensor<fp16, [128, 128, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97440704)))]; |
|
tensor<fp16, [128]> decoder_up_blocks_3_resnets_0_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_0_conv2_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97735680)))]; |
|
tensor<fp16, [1, 128, 512, 512]> hidden_states_97_cast = conv(bias = decoder_up_blocks_3_resnets_0_conv2_bias_to_fp16, dilations = var_544, groups = var_26, pad = hidden_states_97_pad_0, pad_type = hidden_states_97_pad_type_0, strides = var_542, weight = decoder_up_blocks_3_resnets_0_conv2_weight_to_fp16, x = input_129_cast)[name = tensor<string, []>("hidden_states_97_cast")]; |
|
tensor<int32, [2]> var_549 = const()[name = tensor<string, []>("op_549"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_551 = const()[name = tensor<string, []>("op_551"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_tensor_pad_type_0 = const()[name = tensor<string, []>("input_tensor_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_tensor_pad_0 = const()[name = tensor<string, []>("input_tensor_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])]; |
|
tensor<fp16, [128, 256, 1, 1]> decoder_up_blocks_3_resnets_0_conv_shortcut_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_0_conv_shortcut_weight_to_fp16"), val = tensor<fp16, [128, 256, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97736000)))]; |
|
tensor<fp16, [128]> decoder_up_blocks_3_resnets_0_conv_shortcut_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_0_conv_shortcut_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97801600)))]; |
|
tensor<fp16, [1, 128, 512, 512]> input_tensor_cast = conv(bias = decoder_up_blocks_3_resnets_0_conv_shortcut_bias_to_fp16, dilations = var_551, groups = var_26, pad = input_tensor_pad_0, pad_type = input_tensor_pad_type_0, strides = var_549, weight = decoder_up_blocks_3_resnets_0_conv_shortcut_weight_to_fp16, x = input_121_cast)[name = tensor<string, []>("input_tensor_cast")]; |
|
tensor<fp16, [1, 128, 512, 512]> var_554_cast = add(x = input_tensor_cast, y = hidden_states_97_cast)[name = tensor<string, []>("op_554_cast")]; |
|
tensor<int32, [5]> reshape_100_shape_0 = const()[name = tensor<string, []>("reshape_100_shape_0"), val = tensor<int32, [5]>([1, 32, 4, 512, 512])]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> reshape_100_cast = reshape(shape = reshape_100_shape_0, x = var_554_cast)[name = tensor<string, []>("reshape_100_cast")]; |
|
tensor<int32, [3]> reduce_mean_75_axes_0 = const()[name = tensor<string, []>("reduce_mean_75_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_75_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_75_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_75_cast = reduce_mean(axes = reduce_mean_75_axes_0, keep_dims = reduce_mean_75_keep_dims_0, x = reshape_100_cast)[name = tensor<string, []>("reduce_mean_75_cast")]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> sub_50_cast = sub(x = reshape_100_cast, y = reduce_mean_75_cast)[name = tensor<string, []>("sub_50_cast")]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> square_25_cast = square(x = sub_50_cast)[name = tensor<string, []>("square_25_cast")]; |
|
tensor<int32, [3]> reduce_mean_77_axes_0 = const()[name = tensor<string, []>("reduce_mean_77_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_77_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_77_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_77_cast = reduce_mean(axes = reduce_mean_77_axes_0, keep_dims = reduce_mean_77_keep_dims_0, x = square_25_cast)[name = tensor<string, []>("reduce_mean_77_cast")]; |
|
tensor<fp16, []> add_50_y_0_to_fp16 = const()[name = tensor<string, []>("add_50_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_50_cast = add(x = reduce_mean_77_cast, y = add_50_y_0_to_fp16)[name = tensor<string, []>("add_50_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_25_cast = sqrt(x = add_50_cast)[name = tensor<string, []>("sqrt_25_cast")]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> real_div_25_cast = real_div(x = sub_50_cast, y = sqrt_25_cast)[name = tensor<string, []>("real_div_25_cast")]; |
|
tensor<int32, [4]> reshape_101_shape_0 = const()[name = tensor<string, []>("reshape_101_shape_0"), val = tensor<int32, [4]>([1, 128, 512, 512])]; |
|
tensor<fp16, [1, 128, 512, 512]> reshape_101_cast = reshape(shape = reshape_101_shape_0, x = real_div_25_cast)[name = tensor<string, []>("reshape_101_cast")]; |
|
tensor<fp16, [128]> add_51_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_51_gamma_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97801920)))]; |
|
tensor<fp16, [128]> add_51_beta_0_to_fp16 = const()[name = tensor<string, []>("add_51_beta_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97802240)))]; |
|
tensor<fp16, []> add_51_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_51_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 128, 512, 512]> add_51_cast = batch_norm(beta = add_51_beta_0_to_fp16, epsilon = add_51_epsilon_0_to_fp16, gamma = add_51_gamma_0_to_fp16, mean = add_49_mean_0_to_fp16, variance = add_49_variance_0_to_fp16, x = reshape_101_cast)[name = tensor<string, []>("add_51_cast")]; |
|
tensor<fp16, [1, 128, 512, 512]> hidden_states_99_cast = silu(x = add_51_cast)[name = tensor<string, []>("hidden_states_99_cast")]; |
|
tensor<int32, [2]> var_567 = const()[name = tensor<string, []>("op_567"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_569 = const()[name = tensor<string, []>("op_569"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_135_pad_type_0 = const()[name = tensor<string, []>("input_135_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_135_pad_0 = const()[name = tensor<string, []>("input_135_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [128, 128, 3, 3]> decoder_up_blocks_3_resnets_1_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_1_conv1_weight_to_fp16"), val = tensor<fp16, [128, 128, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97802560)))]; |
|
tensor<fp16, [128]> decoder_up_blocks_3_resnets_1_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_1_conv1_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98097536)))]; |
|
tensor<fp16, [1, 128, 512, 512]> input_135_cast = conv(bias = decoder_up_blocks_3_resnets_1_conv1_bias_to_fp16, dilations = var_569, groups = var_26, pad = input_135_pad_0, pad_type = input_135_pad_type_0, strides = var_567, weight = decoder_up_blocks_3_resnets_1_conv1_weight_to_fp16, x = hidden_states_99_cast)[name = tensor<string, []>("input_135_cast")]; |
|
tensor<int32, [5]> reshape_104_shape_0 = const()[name = tensor<string, []>("reshape_104_shape_0"), val = tensor<int32, [5]>([1, 32, 4, 512, 512])]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> reshape_104_cast = reshape(shape = reshape_104_shape_0, x = input_135_cast)[name = tensor<string, []>("reshape_104_cast")]; |
|
tensor<int32, [3]> reduce_mean_78_axes_0 = const()[name = tensor<string, []>("reduce_mean_78_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_78_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_78_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_78_cast = reduce_mean(axes = reduce_mean_78_axes_0, keep_dims = reduce_mean_78_keep_dims_0, x = reshape_104_cast)[name = tensor<string, []>("reduce_mean_78_cast")]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> sub_52_cast = sub(x = reshape_104_cast, y = reduce_mean_78_cast)[name = tensor<string, []>("sub_52_cast")]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> square_26_cast = square(x = sub_52_cast)[name = tensor<string, []>("square_26_cast")]; |
|
tensor<int32, [3]> reduce_mean_80_axes_0 = const()[name = tensor<string, []>("reduce_mean_80_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_80_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_80_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_80_cast = reduce_mean(axes = reduce_mean_80_axes_0, keep_dims = reduce_mean_80_keep_dims_0, x = square_26_cast)[name = tensor<string, []>("reduce_mean_80_cast")]; |
|
tensor<fp16, []> add_52_y_0_to_fp16 = const()[name = tensor<string, []>("add_52_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_52_cast = add(x = reduce_mean_80_cast, y = add_52_y_0_to_fp16)[name = tensor<string, []>("add_52_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_26_cast = sqrt(x = add_52_cast)[name = tensor<string, []>("sqrt_26_cast")]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> real_div_26_cast = real_div(x = sub_52_cast, y = sqrt_26_cast)[name = tensor<string, []>("real_div_26_cast")]; |
|
tensor<int32, [4]> reshape_105_shape_0 = const()[name = tensor<string, []>("reshape_105_shape_0"), val = tensor<int32, [4]>([1, 128, 512, 512])]; |
|
tensor<fp16, [1, 128, 512, 512]> reshape_105_cast = reshape(shape = reshape_105_shape_0, x = real_div_26_cast)[name = tensor<string, []>("reshape_105_cast")]; |
|
tensor<fp16, [128]> add_53_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_53_gamma_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98097856)))]; |
|
tensor<fp16, [128]> add_53_beta_0_to_fp16 = const()[name = tensor<string, []>("add_53_beta_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98098176)))]; |
|
tensor<fp16, []> add_53_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_53_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 128, 512, 512]> add_53_cast = batch_norm(beta = add_53_beta_0_to_fp16, epsilon = add_53_epsilon_0_to_fp16, gamma = add_53_gamma_0_to_fp16, mean = add_49_mean_0_to_fp16, variance = add_49_variance_0_to_fp16, x = reshape_105_cast)[name = tensor<string, []>("add_53_cast")]; |
|
tensor<fp16, [1, 128, 512, 512]> input_139_cast = silu(x = add_53_cast)[name = tensor<string, []>("input_139_cast")]; |
|
tensor<int32, [2]> var_579 = const()[name = tensor<string, []>("op_579"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_581 = const()[name = tensor<string, []>("op_581"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> hidden_states_103_pad_type_0 = const()[name = tensor<string, []>("hidden_states_103_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> hidden_states_103_pad_0 = const()[name = tensor<string, []>("hidden_states_103_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [128, 128, 3, 3]> decoder_up_blocks_3_resnets_1_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_1_conv2_weight_to_fp16"), val = tensor<fp16, [128, 128, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98098496)))]; |
|
tensor<fp16, [128]> decoder_up_blocks_3_resnets_1_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_1_conv2_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98393472)))]; |
|
tensor<fp16, [1, 128, 512, 512]> hidden_states_103_cast = conv(bias = decoder_up_blocks_3_resnets_1_conv2_bias_to_fp16, dilations = var_581, groups = var_26, pad = hidden_states_103_pad_0, pad_type = hidden_states_103_pad_type_0, strides = var_579, weight = decoder_up_blocks_3_resnets_1_conv2_weight_to_fp16, x = input_139_cast)[name = tensor<string, []>("hidden_states_103_cast")]; |
|
tensor<fp16, [1, 128, 512, 512]> var_584_cast = add(x = var_554_cast, y = hidden_states_103_cast)[name = tensor<string, []>("op_584_cast")]; |
|
tensor<int32, [5]> reshape_108_shape_0 = const()[name = tensor<string, []>("reshape_108_shape_0"), val = tensor<int32, [5]>([1, 32, 4, 512, 512])]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> reshape_108_cast = reshape(shape = reshape_108_shape_0, x = var_584_cast)[name = tensor<string, []>("reshape_108_cast")]; |
|
tensor<int32, [3]> reduce_mean_81_axes_0 = const()[name = tensor<string, []>("reduce_mean_81_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_81_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_81_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_81_cast = reduce_mean(axes = reduce_mean_81_axes_0, keep_dims = reduce_mean_81_keep_dims_0, x = reshape_108_cast)[name = tensor<string, []>("reduce_mean_81_cast")]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> sub_54_cast = sub(x = reshape_108_cast, y = reduce_mean_81_cast)[name = tensor<string, []>("sub_54_cast")]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> square_27_cast = square(x = sub_54_cast)[name = tensor<string, []>("square_27_cast")]; |
|
tensor<int32, [3]> reduce_mean_83_axes_0 = const()[name = tensor<string, []>("reduce_mean_83_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_83_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_83_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_83_cast = reduce_mean(axes = reduce_mean_83_axes_0, keep_dims = reduce_mean_83_keep_dims_0, x = square_27_cast)[name = tensor<string, []>("reduce_mean_83_cast")]; |
|
tensor<fp16, []> add_54_y_0_to_fp16 = const()[name = tensor<string, []>("add_54_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_54_cast = add(x = reduce_mean_83_cast, y = add_54_y_0_to_fp16)[name = tensor<string, []>("add_54_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_27_cast = sqrt(x = add_54_cast)[name = tensor<string, []>("sqrt_27_cast")]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> real_div_27_cast = real_div(x = sub_54_cast, y = sqrt_27_cast)[name = tensor<string, []>("real_div_27_cast")]; |
|
tensor<int32, [4]> reshape_109_shape_0 = const()[name = tensor<string, []>("reshape_109_shape_0"), val = tensor<int32, [4]>([1, 128, 512, 512])]; |
|
tensor<fp16, [1, 128, 512, 512]> reshape_109_cast = reshape(shape = reshape_109_shape_0, x = real_div_27_cast)[name = tensor<string, []>("reshape_109_cast")]; |
|
tensor<fp16, [128]> add_55_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_55_gamma_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98393792)))]; |
|
tensor<fp16, [128]> add_55_beta_0_to_fp16 = const()[name = tensor<string, []>("add_55_beta_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98394112)))]; |
|
tensor<fp16, []> add_55_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_55_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 128, 512, 512]> add_55_cast = batch_norm(beta = add_55_beta_0_to_fp16, epsilon = add_55_epsilon_0_to_fp16, gamma = add_55_gamma_0_to_fp16, mean = add_49_mean_0_to_fp16, variance = add_49_variance_0_to_fp16, x = reshape_109_cast)[name = tensor<string, []>("add_55_cast")]; |
|
tensor<fp16, [1, 128, 512, 512]> hidden_states_105_cast = silu(x = add_55_cast)[name = tensor<string, []>("hidden_states_105_cast")]; |
|
tensor<int32, [2]> var_597 = const()[name = tensor<string, []>("op_597"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_599 = const()[name = tensor<string, []>("op_599"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> input_145_pad_type_0 = const()[name = tensor<string, []>("input_145_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> input_145_pad_0 = const()[name = tensor<string, []>("input_145_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [128, 128, 3, 3]> decoder_up_blocks_3_resnets_2_conv1_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_2_conv1_weight_to_fp16"), val = tensor<fp16, [128, 128, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98394432)))]; |
|
tensor<fp16, [128]> decoder_up_blocks_3_resnets_2_conv1_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_2_conv1_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98689408)))]; |
|
tensor<fp16, [1, 128, 512, 512]> input_145_cast = conv(bias = decoder_up_blocks_3_resnets_2_conv1_bias_to_fp16, dilations = var_599, groups = var_26, pad = input_145_pad_0, pad_type = input_145_pad_type_0, strides = var_597, weight = decoder_up_blocks_3_resnets_2_conv1_weight_to_fp16, x = hidden_states_105_cast)[name = tensor<string, []>("input_145_cast")]; |
|
tensor<int32, [5]> reshape_112_shape_0 = const()[name = tensor<string, []>("reshape_112_shape_0"), val = tensor<int32, [5]>([1, 32, 4, 512, 512])]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> reshape_112_cast = reshape(shape = reshape_112_shape_0, x = input_145_cast)[name = tensor<string, []>("reshape_112_cast")]; |
|
tensor<int32, [3]> reduce_mean_84_axes_0 = const()[name = tensor<string, []>("reduce_mean_84_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_84_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_84_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_84_cast = reduce_mean(axes = reduce_mean_84_axes_0, keep_dims = reduce_mean_84_keep_dims_0, x = reshape_112_cast)[name = tensor<string, []>("reduce_mean_84_cast")]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> sub_56_cast = sub(x = reshape_112_cast, y = reduce_mean_84_cast)[name = tensor<string, []>("sub_56_cast")]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> square_28_cast = square(x = sub_56_cast)[name = tensor<string, []>("square_28_cast")]; |
|
tensor<int32, [3]> reduce_mean_86_axes_0 = const()[name = tensor<string, []>("reduce_mean_86_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_86_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_86_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_86_cast = reduce_mean(axes = reduce_mean_86_axes_0, keep_dims = reduce_mean_86_keep_dims_0, x = square_28_cast)[name = tensor<string, []>("reduce_mean_86_cast")]; |
|
tensor<fp16, []> add_56_y_0_to_fp16 = const()[name = tensor<string, []>("add_56_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_56_cast = add(x = reduce_mean_86_cast, y = add_56_y_0_to_fp16)[name = tensor<string, []>("add_56_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_28_cast = sqrt(x = add_56_cast)[name = tensor<string, []>("sqrt_28_cast")]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> real_div_28_cast = real_div(x = sub_56_cast, y = sqrt_28_cast)[name = tensor<string, []>("real_div_28_cast")]; |
|
tensor<int32, [4]> reshape_113_shape_0 = const()[name = tensor<string, []>("reshape_113_shape_0"), val = tensor<int32, [4]>([1, 128, 512, 512])]; |
|
tensor<fp16, [1, 128, 512, 512]> reshape_113_cast = reshape(shape = reshape_113_shape_0, x = real_div_28_cast)[name = tensor<string, []>("reshape_113_cast")]; |
|
tensor<fp16, [128]> add_57_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_57_gamma_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98689728)))]; |
|
tensor<fp16, [128]> add_57_beta_0_to_fp16 = const()[name = tensor<string, []>("add_57_beta_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98690048)))]; |
|
tensor<fp16, []> add_57_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_57_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 128, 512, 512]> add_57_cast = batch_norm(beta = add_57_beta_0_to_fp16, epsilon = add_57_epsilon_0_to_fp16, gamma = add_57_gamma_0_to_fp16, mean = add_49_mean_0_to_fp16, variance = add_49_variance_0_to_fp16, x = reshape_113_cast)[name = tensor<string, []>("add_57_cast")]; |
|
tensor<fp16, [1, 128, 512, 512]> input_149_cast = silu(x = add_57_cast)[name = tensor<string, []>("input_149_cast")]; |
|
tensor<int32, [2]> var_609 = const()[name = tensor<string, []>("op_609"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_611 = const()[name = tensor<string, []>("op_611"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> hidden_states_pad_type_0 = const()[name = tensor<string, []>("hidden_states_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> hidden_states_pad_0 = const()[name = tensor<string, []>("hidden_states_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [128, 128, 3, 3]> decoder_up_blocks_3_resnets_2_conv2_weight_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_2_conv2_weight_to_fp16"), val = tensor<fp16, [128, 128, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98690368)))]; |
|
tensor<fp16, [128]> decoder_up_blocks_3_resnets_2_conv2_bias_to_fp16 = const()[name = tensor<string, []>("decoder_up_blocks_3_resnets_2_conv2_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98985344)))]; |
|
tensor<fp16, [1, 128, 512, 512]> hidden_states_cast = conv(bias = decoder_up_blocks_3_resnets_2_conv2_bias_to_fp16, dilations = var_611, groups = var_26, pad = hidden_states_pad_0, pad_type = hidden_states_pad_type_0, strides = var_609, weight = decoder_up_blocks_3_resnets_2_conv2_weight_to_fp16, x = input_149_cast)[name = tensor<string, []>("hidden_states_cast")]; |
|
tensor<fp16, [1, 128, 512, 512]> var_614_cast = add(x = var_584_cast, y = hidden_states_cast)[name = tensor<string, []>("op_614_cast")]; |
|
tensor<int32, [5]> reshape_116_shape_0 = const()[name = tensor<string, []>("reshape_116_shape_0"), val = tensor<int32, [5]>([1, 32, 4, 512, 512])]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> reshape_116_cast = reshape(shape = reshape_116_shape_0, x = var_614_cast)[name = tensor<string, []>("reshape_116_cast")]; |
|
tensor<int32, [3]> reduce_mean_87_axes_0 = const()[name = tensor<string, []>("reduce_mean_87_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_87_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_87_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_87_cast = reduce_mean(axes = reduce_mean_87_axes_0, keep_dims = reduce_mean_87_keep_dims_0, x = reshape_116_cast)[name = tensor<string, []>("reduce_mean_87_cast")]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> sub_58_cast = sub(x = reshape_116_cast, y = reduce_mean_87_cast)[name = tensor<string, []>("sub_58_cast")]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> square_29_cast = square(x = sub_58_cast)[name = tensor<string, []>("square_29_cast")]; |
|
tensor<int32, [3]> reduce_mean_89_axes_0 = const()[name = tensor<string, []>("reduce_mean_89_axes_0"), val = tensor<int32, [3]>([2, 3, 4])]; |
|
tensor<bool, []> reduce_mean_89_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_89_keep_dims_0"), val = tensor<bool, []>(true)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> reduce_mean_89_cast = reduce_mean(axes = reduce_mean_89_axes_0, keep_dims = reduce_mean_89_keep_dims_0, x = square_29_cast)[name = tensor<string, []>("reduce_mean_89_cast")]; |
|
tensor<fp16, []> add_58_y_0_to_fp16 = const()[name = tensor<string, []>("add_58_y_0_to_fp16"), val = tensor<fp16, []>(0x1.1p-20)]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> add_58_cast = add(x = reduce_mean_89_cast, y = add_58_y_0_to_fp16)[name = tensor<string, []>("add_58_cast")]; |
|
tensor<fp16, [1, 32, 1, 1, 1]> sqrt_29_cast = sqrt(x = add_58_cast)[name = tensor<string, []>("sqrt_29_cast")]; |
|
tensor<fp16, [1, 32, 4, 512, 512]> real_div_29_cast = real_div(x = sub_58_cast, y = sqrt_29_cast)[name = tensor<string, []>("real_div_29_cast")]; |
|
tensor<int32, [4]> reshape_117_shape_0 = const()[name = tensor<string, []>("reshape_117_shape_0"), val = tensor<int32, [4]>([1, 128, 512, 512])]; |
|
tensor<fp16, [1, 128, 512, 512]> reshape_117_cast = reshape(shape = reshape_117_shape_0, x = real_div_29_cast)[name = tensor<string, []>("reshape_117_cast")]; |
|
tensor<fp16, [128]> add_59_gamma_0_to_fp16 = const()[name = tensor<string, []>("add_59_gamma_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98985664)))]; |
|
tensor<fp16, [128]> add_59_beta_0_to_fp16 = const()[name = tensor<string, []>("add_59_beta_0_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98985984)))]; |
|
tensor<fp16, []> add_59_epsilon_0_to_fp16 = const()[name = tensor<string, []>("add_59_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)]; |
|
tensor<fp16, [1, 128, 512, 512]> add_59_cast = batch_norm(beta = add_59_beta_0_to_fp16, epsilon = add_59_epsilon_0_to_fp16, gamma = add_59_gamma_0_to_fp16, mean = add_49_mean_0_to_fp16, variance = add_49_variance_0_to_fp16, x = reshape_117_cast)[name = tensor<string, []>("add_59_cast")]; |
|
tensor<fp16, [1, 128, 512, 512]> input_cast = silu(x = add_59_cast)[name = tensor<string, []>("input_cast")]; |
|
tensor<int32, [2]> var_623 = const()[name = tensor<string, []>("op_623"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<int32, [2]> var_625 = const()[name = tensor<string, []>("op_625"), val = tensor<int32, [2]>([1, 1])]; |
|
tensor<string, []> var_627_pad_type_0 = const()[name = tensor<string, []>("op_627_pad_type_0"), val = tensor<string, []>("custom")]; |
|
tensor<int32, [4]> var_627_pad_0 = const()[name = tensor<string, []>("op_627_pad_0"), val = tensor<int32, [4]>([1, 1, 1, 1])]; |
|
tensor<fp16, [3, 128, 3, 3]> decoder_conv_out_weight_to_fp16 = const()[name = tensor<string, []>("decoder_conv_out_weight_to_fp16"), val = tensor<fp16, [3, 128, 3, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98986304)))]; |
|
tensor<fp16, [3]> decoder_conv_out_bias_to_fp16 = const()[name = tensor<string, []>("decoder_conv_out_bias_to_fp16"), val = tensor<fp16, [3]>([0x1.06p-6, -0x1.4ap-6, -0x1.78p-5])]; |
|
tensor<fp16, [1, 3, 512, 512]> var_627_cast = conv(bias = decoder_conv_out_bias_to_fp16, dilations = var_625, groups = var_26, pad = var_627_pad_0, pad_type = var_627_pad_type_0, strides = var_623, weight = decoder_conv_out_weight_to_fp16, x = input_cast)[name = tensor<string, []>("op_627_cast")]; |
|
tensor<string, []> var_627_cast_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_627_cast_to_fp32_dtype_0"), val = tensor<string, []>("fp32")]; |
|
tensor<fp32, [1, 3, 512, 512]> image = cast(dtype = var_627_cast_to_fp32_dtype_0, x = var_627_cast)[name = tensor<string, []>("cast_37")]; |
|
} -> (image); |
|
} |