--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer metrics: - bleu - wer model-index: - name: donut_experiment_bayesian_trial_6 results: [] --- # donut_experiment_bayesian_trial_6 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5515 - Bleu: 0.0683 - Precisions: [0.8127572016460906, 0.7412587412587412, 0.6854838709677419, 0.638095238095238] - Brevity Penalty: 0.0954 - Length Ratio: 0.2985 - Translation Length: 486 - Reference Length: 1628 - Cer: 0.7532 - Wer: 0.8274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00016063260663724173 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:| | 0.3276 | 1.0 | 253 | 0.6672 | 0.0589 | [0.76875, 0.6737588652482269, 0.6092896174863388, 0.5436893203883495] | 0.0915 | 0.2948 | 480 | 1628 | 0.7586 | 0.8473 | | 0.2008 | 2.0 | 506 | 0.5780 | 0.0662 | [0.7905544147843943, 0.7069767441860465, 0.6595174262734584, 0.6107594936708861] | 0.0960 | 0.2991 | 487 | 1628 | 0.7559 | 0.8374 | | 0.1356 | 3.0 | 759 | 0.5355 | 0.0651 | [0.8238993710691824, 0.7452380952380953, 0.6942148760330579, 0.6535947712418301] | 0.0895 | 0.2930 | 477 | 1628 | 0.7580 | 0.8299 | | 0.0394 | 4.0 | 1012 | 0.5515 | 0.0683 | [0.8127572016460906, 0.7412587412587412, 0.6854838709677419, 0.638095238095238] | 0.0954 | 0.2985 | 486 | 1628 | 0.7532 | 0.8274 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.0 - Datasets 2.18.0 - Tokenizers 0.19.1