---
license: apache-2.0
tags:
- medical
---
## FLAIR: A Foundation LAnguage Image model of the Retina
A Foundation LAnguage Image model of the Retina (FLAIR):
Encoding expert knowledge in text supervision
[Julio Silva-Rodriguez1](https://scholar.google.es/citations?user=1UMYgHMAAAAJ&hl),
[Hadi Chakor2](https://scholar.google.ca/citations?user=0Njg-cQAAAAJ&hl),
[Riadh Kobbi2](https://ca.linkedin.com/in/riadh-kobbi),
[Jose Dolz1](https://scholar.google.es/citations?user=yHQIFFMAAAAJ&hl),
[Ismail Ben Ayed1](https://scholar.google.es/citations?user=29vyUccAAAAJ&hl)
[1LIVIA - ETS Montreal](https://liviamtl.ca/), [2DIAGNOS Inc.](https://www.diagnos.com/)
| [Project](https://jusiro.github.io/projects/flair) | [Paper](https://arxiv.org/pdf/2308.07898.pdf) | [Code](https://github.com/jusiro/FLAIR) | [Tutorials](https://colab.research.google.com/drive/1LE50MQmsEQxMM-qvytXGeJ9WAu09w1MR?usp=sharing) |
**note** this is a duplicate of the model card at https://github.com/jusiro/FLAIR/blob/main/readme.md updated to support loading from the Hugging Face Hub.
## Install FLAIR
* Install in your enviroment a compatible torch version with your GPU. For example:
```
conda create -n flair_env python=3.8 -y
conda activate flair_env
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge
```
* Install FLAIR library.
```
pip install git+https://github.com/jusiro/FLAIR.git
```
* Install the huggingface_hub library.
```
pip install huggingface_hub
```
## Usage
```
from PIL import Image
import numpy as np
# Import FLAIR
from flair import FLAIRModel
rom huggingface_hub import hf_hub_download
# Set model
model_path = hf_hub_download(repo_id="davanstrien/flair", filename="flair_resnet.pth")
model = FLAIRModel.load_from_pretrained(model_path)
# Load image and set target categories
# (if the repo is not cloned, download the image and change the path!)
image = np.array(Image.open("./documents/sample_macular_hole.png"))
text = ["normal", "healthy", "macular edema", "diabetic retinopathy", "glaucoma", "macular hole",
"lesion", "lesion in the macula"]
# Forward FLAIR model to compute similarities
probs, logits = model(image, text)
print("Image-Text similarities:")
print(logits.round(3)) # [[-0.32 -2.782 3.164 4.388 5.919 6.639 6.579 10.478]]
print("Probabilities:")
print(probs.round(3)) # [[0. 0. 0.001 0.002 0.01 0.02 0.019 0.948]]
```
## **Note**: problems during automatic **pre-trained weights download**
If you encounter any issue while downloading the **pre-trained weights** (i.e. `from_checkpoint=True`), you can manually download the weights from the following links (see Table), unzip the file, and store them at: `./flair/modeling/flair_pretrained_weights/[ID].pth`.
| Backbone | ID | |
|-----------|:------------:|:---------------------------------------------------------------------------------------------:|
| ResNet-50 | flair_resnet | [LINK](https://drive.google.com/file/d/1l24_2IzwQdnaa034I0zcyDLs_zMujsbR/view?usp=drive_link) |
## Pre-training and transferability
In the following, we present the scripts for model pre-training and transferability. To use them, we recommend cloning the whole repository.
```
git clone https://github.com/jusiro/FLAIR.git
cd FLAIR
pip install -r requirements.txt
```
### 📦 Foundation model pre-training
* Define the relative paths for datasets and dataframes in `./local_data/constants.py`.
* Prepare the FUNDUS assembly dataset - check `./local_data/prepare_partitions.py` to prepare the dataframes.
| | | | | | |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| [01_EYEPACS](https://www.kaggle.com/datasets/mariaherrerot/eyepacspreprocess) | [08_ODIR-5K](https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k) | [15_APTOS](https://www.kaggle.com/competitions/aptos2019-blindness-detection/data) | [22_HEI-MED](https://github.com/lgiancaUTH/HEI-MED) | [29_AIROGS](https://zenodo.org/record/5793241#.ZDi2vNLMJH5) | [36_ACRIMA](https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-019-0649-y) |
| [02_MESIDOR](https://www.adcis.net/en/third-party/messidor2/) | [09_PAPILA](https://figshare.com/articles/dataset/PAPILA/14798004/1) | [16_FUND-OCT](https://data.mendeley.com/datasets/trghs22fpg/3) | [23_HRF](http://www5.cs.fau.de/research/data/fundus-images/) | [30_SUSTech-SYSU](https://figshare.com/articles/dataset/The_SUSTech-SYSU_dataset_for_automated_exudate_detection_and_diabetic_retinopathy_grading/12570770/1) | [37_DeepDRiD](https://github.com/deepdrdoc/DeepDRiD) |
| [03_IDRID](https://idrid.grand-challenge.org/Rules/) | [10_PARAGUAY](https://zenodo.org/record/4647952#.ZBT5xXbMJD9) | [17_DiaRetDB1](https://www.it.lut.fi/project/imageret/diaretdb1_v2_1/) | [24_ORIGA](https://pubmed.ncbi.nlm.nih.gov/21095735/) | [31_JICHI](https://figshare.com/articles/figure/Davis_Grading_of_One_and_Concatenated_Figures/4879853/1) | |
| [04_RFMid](https://ieee-dataport.org/documents/retinal-fundus-multi-disease-image-dataset-rfmid-20) | [11_STARE](https://cecas.clemson.edu/~ahoover/stare/) | [18_DRIONS-DB](http://www.ia.uned.es/~ejcarmona/DRIONS-DB.html) | [25_REFUGE](https://refuge.grand-challenge.org/) | [32_CHAKSU](https://figshare.com/articles/dataset/Ch_k_u_A_glaucoma_specific_fundus_image_database/20123135?file=38944805) | |
| [05_1000x39](https://www.nature.com/articles/s41467-021-25138-w#Sec16) | [12_ARIA](https://www.damianjjfarnell.com/?page_id=276) | [19_Drishti-GS1](http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php) | [26_ROC](http://webeye.ophth.uiowa.edu/ROC/) | [33_DR1-2](https://figshare.com/articles/dataset/Advancing_Bag_of_Visual_Words_Representations_for_Lesion_Classification_in_Retinal_Images/953671?file=6502302) | |
| [06_DEN](https://github.com/Jhhuangkay/DeepOpht-Medical-Report-Generation-for-Retinal-Images-via-Deep-Models-and-Visual-Explanation) | [13_FIVES](https://figshare.com/articles/figure/FIVES_A_Fundus_Image_Dataset_for_AI-based_Vessel_Segmentation/19688169/1) | [20_E-ophta](https://www.adcis.net/en/third-party/e-ophtha/) | [27_BRSET](https://physionet.org/content/brazilian-ophthalmological/1.0.0/) | [34_Cataract](https://www.kaggle.com/datasets/jr2ngb/cataractdataset) | |
| [07_LAG](https://github.com/smilell/AG-CNN) | [14_AGAR300](https://ieee-dataport.org/open-access/diabetic-retinopathy-fundus-image-datasetagar300) | [21_G1020](https://arxiv.org/abs/2006.09158) | [28_OIA-DDR](https://github.com/nkicsl/DDR-dataset) | [35_ScarDat](https://github.com/li-xirong/fundus10k) | |
* Vision-Language Pre-training.
```
python main_pretrain.py --augment_description True --balance True --epochs 15 --batch_size 128 --num_workers 6
```
### 📦 Transferability to downstream tasks/domains
* Define the relative paths for datasets and dataframes in `./local_data/constants.py`.
* Prepare the experiment setting for the target dataset - we used `./local_data/experiments.py` to store them.
```
if experiment == "02_MESSIDOR":
setting = {"dataframe": PATH_DATAFRAME_TRANSFERABILITY_CLASSIFICATION + "02_MESSIDOR.csv",
"task": "classification",
"targets": {"no diabetic retinopathy": 0,
"mild diabetic retinopathy": 1,
"moderate diabetic retinopathy": 2,
"severe diabetic retinopathy": 3,
"proliferative diabetic retinopathy": 4}}
```
* Zero-shot (no adaptation).
```
python main_transferability.py --experiment 02_MESSIDOR --method zero_shot --load_weights True --domain_knowledge True --shots_train 0% --shots_test 100% --project_features True --norm_features True --folds 1
```
* Linear Probing.
```
python main_transferability.py --experiment 02_MESSIDOR --method lp --load_weights True --shots_train 80% --shots_test 20% --project_features False --norm_features False --folds 5
```
# Citation
If you find this repository useful, please consider citing this paper:
```
@article{FLAIR2023,
title={A Foundation LAnguage-Image model of the Retina (FLAIR): Encoding expert knowledge in text supervision},
author={Julio Silva-Rodriguez and Hadi Chakor and Riadh Kobbi and Jose Dolz and Ismail Ben Ayed},
journal={ArXiv Preprint},
year={2023}
}
```
# License
- **Code and Model Weights** are released under [Apache 2.0 license](LICENSE)