Commit
·
a079f98
1
Parent(s):
3792c6a
Upload envibert_tokenizer.py
Browse files- envibert_tokenizer.py +321 -0
envibert_tokenizer.py
ADDED
|
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# !pip install sentencepiece==0.1.96 transformers==4.10.0
|
| 2 |
+
import sentencepiece as spm
|
| 3 |
+
import os
|
| 4 |
+
from transformers import PreTrainedTokenizer
|
| 5 |
+
from collections import Counter
|
| 6 |
+
from typing import List, Optional, Tuple
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class RobertaTokenizer(PreTrainedTokenizer):
|
| 10 |
+
def __init__(
|
| 11 |
+
self,
|
| 12 |
+
pretrained_file,
|
| 13 |
+
bos_token="<s>",
|
| 14 |
+
eos_token="</s>",
|
| 15 |
+
sep_token="</s>",
|
| 16 |
+
cls_token="<s>",
|
| 17 |
+
unk_token="<unk>",
|
| 18 |
+
pad_token="<pad>",
|
| 19 |
+
mask_token="<mask>",
|
| 20 |
+
**kwargs
|
| 21 |
+
):
|
| 22 |
+
super().__init__(
|
| 23 |
+
bos_token=bos_token,
|
| 24 |
+
eos_token=eos_token,
|
| 25 |
+
unk_token=unk_token,
|
| 26 |
+
sep_token=sep_token,
|
| 27 |
+
cls_token=cls_token,
|
| 28 |
+
pad_token=pad_token,
|
| 29 |
+
mask_token=mask_token,
|
| 30 |
+
**kwargs,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# load bpe model and vocab file
|
| 34 |
+
sentencepiece_model = os.path.join(pretrained_file, 'sentencepiece.bpe.model')
|
| 35 |
+
vocab_file = os.path.join(pretrained_file, 'dict.txt')
|
| 36 |
+
self.sp_model = spm.SentencePieceProcessor()
|
| 37 |
+
self.sp_model.Load(
|
| 38 |
+
sentencepiece_model) # please dont use anything from sp_model bcz it makes everything goes wrong
|
| 39 |
+
|
| 40 |
+
self.bpe_dict = Dictionary().load(vocab_file)
|
| 41 |
+
|
| 42 |
+
# Mimic fairseq token-to-id alignment for the first 4 token
|
| 43 |
+
self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
|
| 44 |
+
|
| 45 |
+
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
|
| 46 |
+
self.fairseq_offset = 0
|
| 47 |
+
|
| 48 |
+
self.fairseq_tokens_to_ids["<mask>"] = len(self.bpe_dict) + self.fairseq_offset
|
| 49 |
+
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
|
| 50 |
+
|
| 51 |
+
def _tokenize(self, text):
|
| 52 |
+
return self.sp_model.EncodeAsPieces(text)
|
| 53 |
+
|
| 54 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 55 |
+
#TODO
|
| 56 |
+
return "", ""
|
| 57 |
+
|
| 58 |
+
def _convert_token_to_id(self, token):
|
| 59 |
+
""" Converts a token (str) in an id using the vocab. """
|
| 60 |
+
if token in self.fairseq_tokens_to_ids:
|
| 61 |
+
return self.fairseq_tokens_to_ids[token]
|
| 62 |
+
spm_id = self.bpe_dict.index(token)
|
| 63 |
+
return spm_id
|
| 64 |
+
|
| 65 |
+
def _convert_id_to_token(self, index):
|
| 66 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 67 |
+
if index in self.fairseq_ids_to_tokens:
|
| 68 |
+
return self.fairseq_ids_to_tokens[index]
|
| 69 |
+
return self.bpe_dict[index]
|
| 70 |
+
|
| 71 |
+
def build_inputs_with_special_tokens(
|
| 72 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 73 |
+
) -> List[int]:
|
| 74 |
+
"""
|
| 75 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
| 76 |
+
adding special tokens.
|
| 77 |
+
|
| 78 |
+
This implementation does not add special tokens and this method should be overridden in a subclass.
|
| 79 |
+
|
| 80 |
+
Args:
|
| 81 |
+
token_ids_0 (:obj:`List[int]`): The first tokenized sequence.
|
| 82 |
+
token_ids_1 (:obj:`List[int]`, `optional`): The second tokenized sequence.
|
| 83 |
+
|
| 84 |
+
Returns:
|
| 85 |
+
:obj:`List[int]`: The model input with special tokens.
|
| 86 |
+
"""
|
| 87 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
| 88 |
+
|
| 89 |
+
def create_token_type_ids_from_sequences(
|
| 90 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 91 |
+
) -> List[int]:
|
| 92 |
+
"""
|
| 93 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
|
| 94 |
+
not make use of token type ids, therefore a list of zeros is returned.
|
| 95 |
+
|
| 96 |
+
Args:
|
| 97 |
+
token_ids_0 (:obj:`List[int]`):
|
| 98 |
+
List of IDs.
|
| 99 |
+
token_ids_1 (:obj:`List[int]`, `optional`):
|
| 100 |
+
Optional second list of IDs for sequence pairs.
|
| 101 |
+
|
| 102 |
+
Returns:
|
| 103 |
+
:obj:`List[int]`: List of zeros.
|
| 104 |
+
|
| 105 |
+
"""
|
| 106 |
+
|
| 107 |
+
sep = [self.sep_token_id]
|
| 108 |
+
cls = [self.cls_token_id]
|
| 109 |
+
|
| 110 |
+
return len(cls + token_ids_0 + sep) * [0]
|
| 111 |
+
|
| 112 |
+
@property
|
| 113 |
+
def vocab_size(self):
|
| 114 |
+
return len(self.bpe_dict) + self.fairseq_offset + 1 # Add the <mask> token
|
| 115 |
+
|
| 116 |
+
def get_vocab(self):
|
| 117 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
| 118 |
+
vocab.update(self.added_tokens_encoder)
|
| 119 |
+
return vocab
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
class Dictionary(object):
|
| 123 |
+
"""A mapping from symbols to consecutive integers"""
|
| 124 |
+
|
| 125 |
+
def __init__(
|
| 126 |
+
self,
|
| 127 |
+
pad='<pad>',
|
| 128 |
+
eos='</s>',
|
| 129 |
+
unk='<unk>',
|
| 130 |
+
bos='<s>',
|
| 131 |
+
extra_special_symbols=None,
|
| 132 |
+
):
|
| 133 |
+
self.unk_word, self.pad_word, self.eos_word = unk, pad, eos
|
| 134 |
+
self.symbols = []
|
| 135 |
+
self.count = []
|
| 136 |
+
self.indices = {}
|
| 137 |
+
self.bos_index = self.add_symbol(bos)
|
| 138 |
+
self.pad_index = self.add_symbol(pad)
|
| 139 |
+
self.eos_index = self.add_symbol(eos)
|
| 140 |
+
self.unk_index = self.add_symbol(unk)
|
| 141 |
+
if extra_special_symbols:
|
| 142 |
+
for s in extra_special_symbols:
|
| 143 |
+
self.add_symbol(s)
|
| 144 |
+
self.nspecial = len(self.symbols)
|
| 145 |
+
|
| 146 |
+
def __eq__(self, other):
|
| 147 |
+
return self.indices == other.indices
|
| 148 |
+
|
| 149 |
+
def __getitem__(self, idx):
|
| 150 |
+
if idx < len(self.symbols):
|
| 151 |
+
return self.symbols[idx]
|
| 152 |
+
return self.unk_word
|
| 153 |
+
|
| 154 |
+
def __len__(self):
|
| 155 |
+
"""Returns the number of symbols in the dictionary"""
|
| 156 |
+
return len(self.symbols)
|
| 157 |
+
|
| 158 |
+
def __contains__(self, sym):
|
| 159 |
+
return sym in self.indices
|
| 160 |
+
|
| 161 |
+
def index(self, sym):
|
| 162 |
+
"""Returns the index of the specified symbol"""
|
| 163 |
+
assert isinstance(sym, str)
|
| 164 |
+
if sym in self.indices:
|
| 165 |
+
return self.indices[sym]
|
| 166 |
+
return self.unk_index
|
| 167 |
+
|
| 168 |
+
def unk_string(self, escape=False):
|
| 169 |
+
"""Return unknown string, optionally escaped as: <<unk>>"""
|
| 170 |
+
if escape:
|
| 171 |
+
return '<{}>'.format(self.unk_word)
|
| 172 |
+
else:
|
| 173 |
+
return self.unk_word
|
| 174 |
+
|
| 175 |
+
def add_symbol(self, word, n=1):
|
| 176 |
+
"""Adds a word to the dictionary"""
|
| 177 |
+
if word in self.indices:
|
| 178 |
+
idx = self.indices[word]
|
| 179 |
+
self.count[idx] = self.count[idx] + n
|
| 180 |
+
return idx
|
| 181 |
+
else:
|
| 182 |
+
idx = len(self.symbols)
|
| 183 |
+
self.indices[word] = idx
|
| 184 |
+
self.symbols.append(word)
|
| 185 |
+
self.count.append(n)
|
| 186 |
+
return idx
|
| 187 |
+
|
| 188 |
+
def update(self, new_dict):
|
| 189 |
+
"""Updates counts from new dictionary."""
|
| 190 |
+
for word in new_dict.symbols:
|
| 191 |
+
idx2 = new_dict.indices[word]
|
| 192 |
+
if word in self.indices:
|
| 193 |
+
idx = self.indices[word]
|
| 194 |
+
self.count[idx] = self.count[idx] + new_dict.count[idx2]
|
| 195 |
+
else:
|
| 196 |
+
idx = len(self.symbols)
|
| 197 |
+
self.indices[word] = idx
|
| 198 |
+
self.symbols.append(word)
|
| 199 |
+
self.count.append(new_dict.count[idx2])
|
| 200 |
+
|
| 201 |
+
def finalize(self, threshold=-1, nwords=-1, padding_factor=8):
|
| 202 |
+
"""Sort symbols by frequency in descending order, ignoring special ones.
|
| 203 |
+
|
| 204 |
+
Args:
|
| 205 |
+
- threshold defines the minimum word count
|
| 206 |
+
- nwords defines the total number of words in the final dictionary,
|
| 207 |
+
including special symbols
|
| 208 |
+
- padding_factor can be used to pad the dictionary size to be a
|
| 209 |
+
multiple of 8, which is important on some hardware (e.g., Nvidia
|
| 210 |
+
Tensor Cores).
|
| 211 |
+
"""
|
| 212 |
+
if nwords <= 0:
|
| 213 |
+
nwords = len(self)
|
| 214 |
+
|
| 215 |
+
new_indices = dict(zip(self.symbols[:self.nspecial], range(self.nspecial)))
|
| 216 |
+
new_symbols = self.symbols[:self.nspecial]
|
| 217 |
+
new_count = self.count[:self.nspecial]
|
| 218 |
+
|
| 219 |
+
c = Counter(dict(sorted(zip(self.symbols[self.nspecial:], self.count[self.nspecial:]))))
|
| 220 |
+
for symbol, count in c.most_common(nwords - self.nspecial):
|
| 221 |
+
if count >= threshold:
|
| 222 |
+
new_indices[symbol] = len(new_symbols)
|
| 223 |
+
new_symbols.append(symbol)
|
| 224 |
+
new_count.append(count)
|
| 225 |
+
else:
|
| 226 |
+
break
|
| 227 |
+
|
| 228 |
+
threshold_nwords = len(new_symbols)
|
| 229 |
+
if padding_factor > 1:
|
| 230 |
+
i = 0
|
| 231 |
+
while threshold_nwords % padding_factor != 0:
|
| 232 |
+
symbol = 'madeupword{:04d}'.format(i)
|
| 233 |
+
new_indices[symbol] = len(new_symbols)
|
| 234 |
+
new_symbols.append(symbol)
|
| 235 |
+
new_count.append(0)
|
| 236 |
+
i += 1
|
| 237 |
+
threshold_nwords += 1
|
| 238 |
+
|
| 239 |
+
assert len(new_symbols) % padding_factor == 0
|
| 240 |
+
assert len(new_symbols) == len(new_indices)
|
| 241 |
+
|
| 242 |
+
self.count = list(new_count)
|
| 243 |
+
self.symbols = list(new_symbols)
|
| 244 |
+
self.indices = new_indices
|
| 245 |
+
|
| 246 |
+
def bos(self):
|
| 247 |
+
"""Helper to get index of beginning-of-sentence symbol"""
|
| 248 |
+
return self.bos_index
|
| 249 |
+
|
| 250 |
+
def pad(self):
|
| 251 |
+
"""Helper to get index of pad symbol"""
|
| 252 |
+
return self.pad_index
|
| 253 |
+
|
| 254 |
+
def eos(self):
|
| 255 |
+
"""Helper to get index of end-of-sentence symbol"""
|
| 256 |
+
return self.eos_index
|
| 257 |
+
|
| 258 |
+
def unk(self):
|
| 259 |
+
"""Helper to get index of unk symbol"""
|
| 260 |
+
return self.unk_index
|
| 261 |
+
|
| 262 |
+
@classmethod
|
| 263 |
+
def load(cls, f):
|
| 264 |
+
"""Loads the dictionary from a text file with the format:
|
| 265 |
+
|
| 266 |
+
```
|
| 267 |
+
<symbol0> <count0>
|
| 268 |
+
<symbol1> <count1>
|
| 269 |
+
...
|
| 270 |
+
```
|
| 271 |
+
"""
|
| 272 |
+
d = cls()
|
| 273 |
+
d.add_from_file(f)
|
| 274 |
+
return d
|
| 275 |
+
|
| 276 |
+
def add_from_file(self, f):
|
| 277 |
+
"""
|
| 278 |
+
Loads a pre-existing dictionary from a text file and adds its symbols
|
| 279 |
+
to this instance.
|
| 280 |
+
"""
|
| 281 |
+
if isinstance(f, str):
|
| 282 |
+
try:
|
| 283 |
+
with open(f, 'r', encoding='utf-8') as fd:
|
| 284 |
+
self.add_from_file(fd)
|
| 285 |
+
except FileNotFoundError as fnfe:
|
| 286 |
+
raise fnfe
|
| 287 |
+
except UnicodeError:
|
| 288 |
+
raise Exception("Incorrect encoding detected in {}, please "
|
| 289 |
+
"rebuild the dataset".format(f))
|
| 290 |
+
return
|
| 291 |
+
|
| 292 |
+
lines = f.readlines()
|
| 293 |
+
indices_start_line = self._load_meta(lines)
|
| 294 |
+
for line in lines[indices_start_line:]:
|
| 295 |
+
idx = line.rfind(' ')
|
| 296 |
+
if idx == -1:
|
| 297 |
+
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'")
|
| 298 |
+
word = line[:idx]
|
| 299 |
+
count = int(line[idx + 1:])
|
| 300 |
+
self.indices[word] = len(self.symbols)
|
| 301 |
+
self.symbols.append(word)
|
| 302 |
+
self.count.append(count)
|
| 303 |
+
|
| 304 |
+
def _save(self, f, kv_iterator):
|
| 305 |
+
if isinstance(f, str):
|
| 306 |
+
os.makedirs(os.path.dirname(f), exist_ok=True)
|
| 307 |
+
with open(f, 'w', encoding='utf-8') as fd:
|
| 308 |
+
return self.save(fd)
|
| 309 |
+
for k, v in kv_iterator:
|
| 310 |
+
print('{} {}'.format(k, v), file=f)
|
| 311 |
+
|
| 312 |
+
def _get_meta(self):
|
| 313 |
+
return [], []
|
| 314 |
+
|
| 315 |
+
def _load_meta(self, lines):
|
| 316 |
+
return 0
|
| 317 |
+
|
| 318 |
+
def save(self, f):
|
| 319 |
+
"""Stores dictionary into a text file"""
|
| 320 |
+
ex_keys, ex_vals = self._get_meta()
|
| 321 |
+
self._save(f, zip(ex_keys + self.symbols[self.nspecial:], ex_vals + self.count[self.nspecial:]))
|