--- license: other base_model: "black-forest-labs/FLUX.1-dev" tags: - flux - flux-diffusers - text-to-image - diffusers - simpletuner - lora - template:sd-lora inference: true --- # simpletuner-lora This is a standard PEFT LoRA derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev). The main validation prompt used during training was: ``` An illustration of a serene landscape at night, moonlit mountain scene, tall pine trees on a small island, snow-capped mountains in the background, still lake reflecting trees and full moon, cloud-speckled sky dotted with stars, soft ambient lighting, primary color tones of blue and white, ambient and tranquil atmosphere, high resolution, extremely detailed. ``` ## Validation settings - CFG: `3.0` - CFG Rescale: `0.0` - Steps: `20` - Sampler: `None` - Seed: `42` - Resolutions: `1024x1024,1344x768` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 9 - Training steps: 0 - Learning rate: 0.0001 - Effective batch size: 1 - Micro-batch size: 1 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Prediction type: flow-matching - Rescaled betas zero SNR: False - Optimizer: adamw_bf16 - Precision: bf16 - Quantised: No - Xformers: Not used - LoRA Rank: 16 - LoRA Alpha: None - LoRA Dropout: 0.1 - LoRA initialisation style: default ## Datasets ### pseudo-natural-booru-flux - Repeats: 0 - Total number of images: 1089 - Total number of aspect buckets: 1 - Resolution: 0.262144 megapixels - Cropped: True - Crop style: center - Crop aspect: square ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'black-forest-labs/FLUX.1-dev' adapter_id = 'datnt114/simpletuner-lora' pipeline = DiffusionPipeline.from_pretrained(model_id) pipeline.load_lora_weights(adapter_id) prompt = "An illustration of a serene landscape at night, moonlit mountain scene, tall pine trees on a small island, snow-capped mountains in the background, still lake reflecting trees and full moon, cloud-speckled sky dotted with stars, soft ambient lighting, primary color tones of blue and white, ambient and tranquil atmosphere, high resolution, extremely detailed." pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') image = pipeline( prompt=prompt, num_inference_steps=20, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1024, height=1024, guidance_scale=3.0, ).images[0] image.save("output.png", format="PNG") ```