End of training
Browse files
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: deepset/gbert-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: gerskill-gbert
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# gerskill-gbert
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.1516
|
19 |
+
- Hard: {'precision': 0.6638023630504833, 'recall': 0.7696139476961394, 'f1': 0.7128027681660899, 'number': 803}
|
20 |
+
- Soft: {'precision': 0.6542553191489362, 'recall': 0.7935483870967742, 'f1': 0.7172011661807581, 'number': 155}
|
21 |
+
- Overall Precision: 0.6622
|
22 |
+
- Overall Recall: 0.7735
|
23 |
+
- Overall F1: 0.7135
|
24 |
+
- Overall Accuracy: 0.9526
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 2e-05
|
44 |
+
- train_batch_size: 32
|
45 |
+
- eval_batch_size: 32
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 5
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Hard | Soft | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
55 |
+
| No log | 1.0 | 158 | 0.1602 | {'precision': 0.5013054830287206, 'recall': 0.7173100871731009, 'f1': 0.5901639344262294, 'number': 803} | {'precision': 0.47639484978540775, 'recall': 0.7161290322580646, 'f1': 0.5721649484536083, 'number': 155} | 0.4971 | 0.7171 | 0.5872 | 0.9375 |
|
56 |
+
| No log | 2.0 | 316 | 0.1340 | {'precision': 0.600802407221665, 'recall': 0.7459526774595268, 'f1': 0.6655555555555556, 'number': 803} | {'precision': 0.605, 'recall': 0.7806451612903226, 'f1': 0.6816901408450703, 'number': 155} | 0.6015 | 0.7516 | 0.6682 | 0.9476 |
|
57 |
+
| No log | 3.0 | 474 | 0.1315 | {'precision': 0.6577825159914712, 'recall': 0.7683686176836861, 'f1': 0.7087880528431935, 'number': 803} | {'precision': 0.6631016042780749, 'recall': 0.8, 'f1': 0.7251461988304094, 'number': 155} | 0.6587 | 0.7735 | 0.7115 | 0.9522 |
|
58 |
+
| 0.1497 | 4.0 | 632 | 0.1456 | {'precision': 0.6789989118607181, 'recall': 0.7770859277708593, 'f1': 0.7247386759581882, 'number': 803} | {'precision': 0.5970873786407767, 'recall': 0.7935483870967742, 'f1': 0.6814404432132964, 'number': 155} | 0.664 | 0.7797 | 0.7172 | 0.9525 |
|
59 |
+
| 0.1497 | 5.0 | 790 | 0.1516 | {'precision': 0.6638023630504833, 'recall': 0.7696139476961394, 'f1': 0.7128027681660899, 'number': 803} | {'precision': 0.6542553191489362, 'recall': 0.7935483870967742, 'f1': 0.7172011661807581, 'number': 155} | 0.6622 | 0.7735 | 0.7135 | 0.9526 |
|
60 |
+
|
61 |
+
|
62 |
+
### Framework versions
|
63 |
+
|
64 |
+
- Transformers 4.38.1
|
65 |
+
- Pytorch 2.1.2+cu121
|
66 |
+
- Datasets 2.18.0
|
67 |
+
- Tokenizers 0.15.2
|