--- dataset_info: - config_name: default features: - name: premise dtype: large_string - name: hypothesis dtype: large_string - name: template_num dtype: int64 - name: time_format dtype: large_string - name: time_span dtype: large_string - name: category dtype: large_string - name: label dtype: class_label: names: '0': entailment '1': neutral '2': contradiction splits: - name: train num_bytes: 2424590 num_examples: 9950 - name: test num_bytes: 88516 num_examples: 348 download_size: 594545 dataset_size: 2513106 - config_name: template features: - name: id dtype: int64 - name: premise dtype: large_string - name: hypothesis dtype: large_string - name: entailment dtype: large_string - name: contradiction dtype: large_string - name: ng time unit dtype: large_string - name: test time format dtype: large_string - name: category dtype: large_string splits: - name: train num_bytes: 26196 num_examples: 79 download_size: 9709 dataset_size: 26196 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - config_name: template data_files: - split: train path: template/train-* license: cc-by-sa-4.0 task_categories: - text-classification language: - ja tags: - nli - evaluation - benchmark pretty_name: >- Jamp: Controlled Japanese Temporal Inference Dataset for Evaluating Generalization Capacity of Language Models --- # Jamp: Controlled Japanese Temporal Inference Dataset for Evaluating Generalization Capacity of Language Models Jamp([tomo-vv/temporalNLI_dataset](https://github.com/tomo-vv/temporalNLI_dataset)) is the Japanese temporal inference benchmark. This dataset consists of templates, test data, and training data. Template subset containing template, time format, or time span in their names are split based on tense fragment, time format, or time span, respectively. ## Dataset Details ### Dataset Description - **Created by:** tomo-vv(sugimoto.tomoki@is.s.u-tokyo.ac.jp) - **Language(s) (NLP):** Japanese - **License:** CC BY-SA 4.0 ### Dataset Sources - **Repository:** [tomo-vv/temporalNLI_dataset](https://github.com/tomo-vv/temporalNLI_dataset) - **Paper:** [Jamp: Controlled Japanese Temporal Inference Dataset for Evaluating Generalization Capacity of Language Models](https://aclanthology.org/2023.acl-srw.8) (Sugimoto et al., ACL 2023) ## Citation **BibTeX:** ``` @inproceedings{sugimoto-etal-2023-jamp, title = "Jamp: Controlled {J}apanese Temporal Inference Dataset for Evaluating Generalization Capacity of Language Models", author = "Sugimoto, Tomoki and Onoe, Yasumasa and Yanaka, Hitomi", booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)", month = jul, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.acl-srw.8", pages = "57--68", } ``` **APA:** Sugimoto, T., Onoe, Y., & Yanaka, H. (2023). Jamp: Controlled Japanese Temporal Inference Dataset for Evaluating Generalization Capacity of Language Models. arXiv preprint arXiv:2306.10727.