# coding=utf-8 # References: # (1) https://huggingface.co/datasets/cnn_dailymail/blob/main/cnn_dailymail.py # (2) https://huggingface.co/docs/datasets/dataset_script """Distilled CNN/DailyMail Summarization dataset.""" import os import datasets import nltk _DESCRIPTION = """\ Distilled CNN/DailyMail non-anonymized summarization dataset. There are two features: - article: text of news article, used as the document to be summarized - highlights: joined text of highlights with and around each highlight, which is the target summary The distilled data is obtained by running facebook/bart-large-cnn on the training dataset. The files used here is directly downloaded from https://github.com/huggingface/transformers/blob/main/examples/research_projects/seq2seq-distillation/precomputed_pseudo_labels.md. """ _CITATION = "" _DL_URLS = { "cnn_bart_pl": "https://cdn-datasets.huggingface.co/pseudo/cnn_dm/cnn_bart_pl.tgz", "cnn_pegasus_pl": "https://cdn-datasets.huggingface.co/pseudo/cnn_dm/pegasus_cnn_cnn_pls.tgz", } # as mentioned in https://github.com/huggingface/transformers/blob/main/examples/research_projects/seq2seq-distillation/precomputed_pseudo_labels.md#available-pseudo-labels, # about 5K are missing, and the training should be 282173. _NUM_EXAMPLES = {"train": 282173, "val": 13368, "test": 11490} # maps from datasets.Split to the one used in the downloaded data. _SPLIT_MAP = {"train": "train", "test": "test", "validation": "val"} _SUPPORTED_VERSIONS = [ # Using the pseudo labels generated by BART. datasets.Version("1.0.0", "Using cased version and the one generated by BART."), # Using the pseudo labels generated by Pegasus. datasets.Version("2.0.0", "Using cased version and the one generated by PEGASUS."), ] _DEFAULT_VERSION = datasets.Version("2.0.0", "Using cased version.") class DistillCNNDMConfig(datasets.BuilderConfig): """BuilderConfig for DistillCNNDM.""" def __init__(self, **kwargs): super().__init__(**kwargs) class DistillCNNDM(datasets.GeneratorBasedBuilder): """Distilled CNN/DailyMail non-anonymized summarization dataset.""" BUILDER_CONFIGS = [ DistillCNNDMConfig(name=str(version), description="Plain text", version=version) for version in _SUPPORTED_VERSIONS ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "article": datasets.Value("string"), "highlights": datasets.Value("string"), } ), supervised_keys=None, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager): """Split generators. Note that the validation data have prefix val instead of validation, so we use a split mapping. Although dl_manager is not used, we still need to keep it. """ dl_paths = dl_manager.download(_DL_URLS) if self.config.version == "1.0.0": return [ datasets.SplitGenerator( name=split, gen_kwargs={ "src_path": os.path.join( dl_paths["cnn_bart_pl"], f"{_SPLIT_MAP[split]}.source" ), "tgt_path": os.path.join( dl_paths["cnn_bart_pl"], f"{_SPLIT_MAP[split]}.target" ), "num_examples": _NUM_EXAMPLES[_SPLIT_MAP[split]], }, ) for split in [ datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST, ] ] elif self.config.version == "2.0.0": return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "src_path": os.path.join( dl_paths["cnn_pegasus_pl"], "train.source" ), "tgt_path": os.path.join( dl_paths["cnn_pegasus_pl"], "train.target" ), "num_examples": 287112, }, ) ] def _generate_examples(self, src_path, tgt_path, num_examples): """This function returns the examples in the raw text form. The output article and highlights formats resemble those given by `load_dataset("cnn_dailymail", "3.0.0")`. """ with open(src_path) as src, open(tgt_path) as tgt: for idx in range(num_examples): article = src.readline().strip() if article[:5] == "(CNN)": article = article[5:] highlights = tgt.readline().strip() highlights = "\n".join(nltk.sent_tokenize(highlights)) yield idx, { "article": article, "highlights": highlights, }