# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import datasets import pandas as pd _CITATION = """\ @misc{wei2024aceval, title={AC-EVAL: Evaluating Ancient Chinese Language Understanding in Large Language Models}, author={Yuting Wei and Yuanxing Xu and Xinru Wei and Simin Yang and Yangfu Zhu and Yuqing Li and Di Liu and Bin Wu}, year={2024}, eprint={2403.06574}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _DESCRIPTION = """\ AC-EVAL presents a thorough evaluation suite for Large Language Models (LLMs) focusing on ancient Chinese, covering eras from the Pre-Qin period to the Qing dynasty. This suite includes 3245 multi-choice questions across 3 levels of difficulty and 13 diverse tasks. """ _HOMEPAGE = "https://github.com/yuting-wei/AC-EVAL" _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License" _URL = r"https://huggingface.co/datasets/yuting-wei/aceval/resolve/main/aceval.zip" task_list = [ 'historical_facts', 'geography', 'social_customs', 'art_and_cultural_heritage', 'philosophy_and_religion', 'lexical_pragmatics_analysis', 'allusions_and_idioms', 'word_sense_disambiguation', 'translation', 'event_extraction', 'sentence_pauses', 'summarization_and_analysis', 'poetry_appreciation' ] class ACEVALConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super().__init__(version=datasets.Version("1.0.0"), **kwargs) class ACEVAL(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ ACEVALConfig( name=task_name ) for task_name in task_list ] def _info(self): features = datasets.Features( { "Question": datasets.Value("string"), "A": datasets.Value("string"), "B": datasets.Value("string"), "C": datasets.Value("string"), "D": datasets.Value("string"), "Answer": datasets.Value("string"), "Explanation":datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_URL) task_name = self.config.name return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join(data_dir, f"test/{task_name}.csv"), }, ), datasets.SplitGenerator( name=datasets.Split("dev"), gen_kwargs={ "filepath": os.path.join(data_dir, f"dev/{task_name}.csv"), }, ), ] def _generate_examples(self, filepath): df = pd.read_csv(filepath, header=0, index_col=0, encoding="utf-8") for i, instance in enumerate(df.to_dict(orient="records")): if "Answer" not in instance.keys(): instance["Answer"]="" if "Explanation" not in instance.keys(): instance["Explanation"]="" yield i, instance