File size: 2,913 Bytes
52d5f6c
4eca7c8
 
52d5f6c
25a3f03
e0dd3d8
52d5f6c
 
 
 
 
4eca7c8
0f6c208
52d5f6c
 
e0dd3d8
 
 
 
 
 
 
 
 
 
 
52d5f6c
 
 
 
 
 
4eca7c8
 
0f6c208
4eca7c8
ce3ecb3
0f6c208
4eca7c8
ce3ecb3
52d5f6c
ce3ecb3
52d5f6c
 
ce3ecb3
52d5f6c
25a3f03
ce3ecb3
52d5f6c
ce3ecb3
 
 
 
 
 
52d5f6c
ce3ecb3
a322b20
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
import datasets
from datasets import DatasetBuilder, SplitGenerator, DownloadConfig, load_dataset, DownloadManager, DatasetInfo, GeneratorBasedBuilder
from rdflib import Graph, URIRef, Literal, BNode
from rdflib.namespace import RDF, RDFS, OWL, XSD, Namespace, NamespaceManager
from datasets.features import Features, Value

SCHEMA = Namespace('http://schema.org/')

YAGO = Namespace('http://yago-knowledge.org/resource/')

class YAGO45DatasetBuilder(GeneratorBasedBuilder):
    VERSION = "1.0.1"

    def _info(self):
        return DatasetInfo(
            description="A subset of the YAGO 4.5 dataset maintaining only English labels",
            citation="@article{suchanek2023integrating,title={Integrating the Wikidata Taxonomy into YAGO},author={Suchanek, Fabian M and Alam, Mehwish and Bonald, Thomas and Paris, Pierre-Henri and Soria, Jules},journal={arXiv preprint arXiv:2308.11884},year={2023}}",
            homepage="https://yago-knowledge.org/",
            license="https://creativecommons.org/licenses/by-sa/3.0/",
            features=Features({
                'subject': Value('string'),
                'predicate': Value('string'),
                'object': Value('string')
            })
        )
    
    def _split_generators(self, dl_manager):
        # Download and extract the dataset
        # Define splits for each chunk of your dataset.
        
        # Download and extract the dataset files
        facts, taxonomy = dl_manager.download_and_extract(["facts.tar.gz", "yago-taxonomy.ttl"])

        facts = os.path.join(facts, "facts/")

        # Define splits for each chunk of your dataset.
        chunk_paths = [os.path.join(facts, chunk) for chunk in os.listdir(facts) if chunk.endswith('.nt')] + [taxonomy]
        return [SplitGenerator(name=datasets.Split.TRAIN, 
                               gen_kwargs={'chunk_paths': chunk_paths})]
    
    def _generate_examples(self, chunk_paths):
        # Load the chunks into an rdflib graph
        # Yield individual triples from the graph
        id_ = 0
        for chunk_path in chunk_paths:
            graph = Graph(bind_namespaces="core")
            graph.parse(chunk_path)
            
            # Yield individual triples from the graph as N3
            for (s, p, o) in graph.triples((None, None, None)):
                yield id_, {
                    'subject': s.n3(),
                    'predicate': p.n3(),
                    'object': o.n3()
                }
                id_ += 1

from rdflib.util import from_n3

def triples(features):
    try:
        subject_node = from_n3(features['subject'])
        predicate_node = from_n3(features['predicate'])
        object_node = from_n3(features['object'])
        return (subject_node, predicate_node, object_node)
    except Exception as e:
        print(f"Error transforming features {features}: {e}")
        return (None, None, None)