Datasets:
File size: 2,913 Bytes
52d5f6c 4eca7c8 52d5f6c 25a3f03 e0dd3d8 52d5f6c 4eca7c8 0f6c208 52d5f6c e0dd3d8 52d5f6c 4eca7c8 0f6c208 4eca7c8 ce3ecb3 0f6c208 4eca7c8 ce3ecb3 52d5f6c ce3ecb3 52d5f6c ce3ecb3 52d5f6c 25a3f03 ce3ecb3 52d5f6c ce3ecb3 52d5f6c ce3ecb3 a322b20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import os
import datasets
from datasets import DatasetBuilder, SplitGenerator, DownloadConfig, load_dataset, DownloadManager, DatasetInfo, GeneratorBasedBuilder
from rdflib import Graph, URIRef, Literal, BNode
from rdflib.namespace import RDF, RDFS, OWL, XSD, Namespace, NamespaceManager
from datasets.features import Features, Value
SCHEMA = Namespace('http://schema.org/')
YAGO = Namespace('http://yago-knowledge.org/resource/')
class YAGO45DatasetBuilder(GeneratorBasedBuilder):
VERSION = "1.0.1"
def _info(self):
return DatasetInfo(
description="A subset of the YAGO 4.5 dataset maintaining only English labels",
citation="@article{suchanek2023integrating,title={Integrating the Wikidata Taxonomy into YAGO},author={Suchanek, Fabian M and Alam, Mehwish and Bonald, Thomas and Paris, Pierre-Henri and Soria, Jules},journal={arXiv preprint arXiv:2308.11884},year={2023}}",
homepage="https://yago-knowledge.org/",
license="https://creativecommons.org/licenses/by-sa/3.0/",
features=Features({
'subject': Value('string'),
'predicate': Value('string'),
'object': Value('string')
})
)
def _split_generators(self, dl_manager):
# Download and extract the dataset
# Define splits for each chunk of your dataset.
# Download and extract the dataset files
facts, taxonomy = dl_manager.download_and_extract(["facts.tar.gz", "yago-taxonomy.ttl"])
facts = os.path.join(facts, "facts/")
# Define splits for each chunk of your dataset.
chunk_paths = [os.path.join(facts, chunk) for chunk in os.listdir(facts) if chunk.endswith('.nt')] + [taxonomy]
return [SplitGenerator(name=datasets.Split.TRAIN,
gen_kwargs={'chunk_paths': chunk_paths})]
def _generate_examples(self, chunk_paths):
# Load the chunks into an rdflib graph
# Yield individual triples from the graph
id_ = 0
for chunk_path in chunk_paths:
graph = Graph(bind_namespaces="core")
graph.parse(chunk_path)
# Yield individual triples from the graph as N3
for (s, p, o) in graph.triples((None, None, None)):
yield id_, {
'subject': s.n3(),
'predicate': p.n3(),
'object': o.n3()
}
id_ += 1
from rdflib.util import from_n3
def triples(features):
try:
subject_node = from_n3(features['subject'])
predicate_node = from_n3(features['predicate'])
object_node = from_n3(features['object'])
return (subject_node, predicate_node, object_node)
except Exception as e:
print(f"Error transforming features {features}: {e}")
return (None, None, None)
|