Datasets:
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,4 +1,23 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
dataset_info:
|
3 |
features:
|
4 |
- name: image
|
@@ -35,13 +54,242 @@ dataset_info:
|
|
35 |
dtype: int32
|
36 |
splits:
|
37 |
- name: train
|
38 |
-
num_bytes:
|
39 |
num_examples: 20000
|
40 |
-
download_size:
|
41 |
-
dataset_size:
|
42 |
configs:
|
43 |
- config_name: default
|
44 |
data_files:
|
45 |
- split: train
|
46 |
path: data/train-*
|
|
|
47 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
task_categories:
|
4 |
+
- image-classification
|
5 |
+
- object-detection
|
6 |
+
- visual-question-answering
|
7 |
+
- zero-shot-image-classification
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
tags:
|
11 |
+
- ego4d
|
12 |
+
- egocentric-vision
|
13 |
+
- computer-vision
|
14 |
+
- random-sampling
|
15 |
+
- video-frames
|
16 |
+
- first-person-view
|
17 |
+
- activity-recognition
|
18 |
+
size_categories:
|
19 |
+
- 10K<n<100K
|
20 |
+
pretty_name: Ego4D Random Views Dataset
|
21 |
dataset_info:
|
22 |
features:
|
23 |
- name: image
|
|
|
54 |
dtype: int32
|
55 |
splits:
|
56 |
- name: train
|
57 |
+
num_bytes: 21000000000
|
58 |
num_examples: 20000
|
59 |
+
download_size: 21000000000
|
60 |
+
dataset_size: 21000000000
|
61 |
configs:
|
62 |
- config_name: default
|
63 |
data_files:
|
64 |
- split: train
|
65 |
path: data/train-*
|
66 |
+
viewer: true
|
67 |
---
|
68 |
+
|
69 |
+
# Ego4D Random Views Dataset
|
70 |
+
|
71 |
+
This dataset contains **20,000 random view frames** sampled from the [Ego4D dataset](https://ego4d-data.org/) using a high-performance multi-process generation system.
|
72 |
+
|
73 |
+

|
74 |
+
|
75 |
+
## Dataset Overview
|
76 |
+
|
77 |
+
- **Total Images**: 20,000 high-quality frames
|
78 |
+
- **Image Format**: PNG (1024×1024 resolution)
|
79 |
+
- **Source**: Ego4D v2 dataset (52,665+ video files)
|
80 |
+
- **Sampling Method**: Multi-process random sampling with maximum diversity
|
81 |
+
- **Generation Time**: 797.57 seconds (~13 minutes)
|
82 |
+
- **Generation Speed**: 25.08 frames/second
|
83 |
+
- **Success Rate**: 100.0%
|
84 |
+
|
85 |
+
## Key Features
|
86 |
+
|
87 |
+
🎬 **Maximum Diversity**: Sampled from 50,000+ different Ego4D videos
|
88 |
+
🚀 **High Performance**: Generated using 128 parallel workers
|
89 |
+
📊 **Complete Metadata**: Full metadata for each frame including video source, timestamp, etc.
|
90 |
+
🎯 **High Quality**: 1024×1024 resolution PNG images
|
91 |
+
💾 **Efficient Storage**: Stored in parquet format for fast loading
|
92 |
+
🔍 **Rich Context**: Each frame includes video UID, timestamp, and source information
|
93 |
+
|
94 |
+
## Dataset Schema
|
95 |
+
|
96 |
+
Each sample contains:
|
97 |
+
|
98 |
+
| Field | Type | Description |
|
99 |
+
|-------|------|-------------|
|
100 |
+
| `image` | Image | The frame image (1024×1024 PNG) |
|
101 |
+
| `frame_id` | string | Unique frame identifier |
|
102 |
+
| `video_uid` | string | Original Ego4D video UID |
|
103 |
+
| `video_filename` | string | Source video filename |
|
104 |
+
| `video_path` | string | Full path to source video |
|
105 |
+
| `frame_idx` | int32 | Frame index in original video |
|
106 |
+
| `total_frames` | int32 | Total frames in source video |
|
107 |
+
| `timestamp_sec` | float32 | Timestamp in video (seconds) |
|
108 |
+
| `fps` | float32 | Video frame rate |
|
109 |
+
| `worker_id` | int32 | Generation worker ID |
|
110 |
+
| `generated_at` | string | Generation timestamp |
|
111 |
+
| `image_width` | int32 | Image width (1024) |
|
112 |
+
| `image_height` | int32 | Image height (1024) |
|
113 |
+
| `original_shape_*` | int32 | Original video frame dimensions |
|
114 |
+
|
115 |
+
## Usage
|
116 |
+
|
117 |
+
### Quick Start
|
118 |
+
|
119 |
+
```python
|
120 |
+
from datasets import load_dataset
|
121 |
+
|
122 |
+
# Load the dataset
|
123 |
+
dataset = load_dataset("weikaih/ego4d-random-views-20k")
|
124 |
+
|
125 |
+
# Get a sample
|
126 |
+
sample = dataset['train'][0]
|
127 |
+
image = sample['image'] # PIL Image
|
128 |
+
print(f"Video: {sample['video_filename']}")
|
129 |
+
print(f"Timestamp: {sample['timestamp_sec']:.2f}s")
|
130 |
+
```
|
131 |
+
|
132 |
+
### Exploring the Data
|
133 |
+
|
134 |
+
```python
|
135 |
+
import matplotlib.pyplot as plt
|
136 |
+
|
137 |
+
# Display a sample image
|
138 |
+
sample = dataset['train'][42]
|
139 |
+
plt.figure(figsize=(10, 6))
|
140 |
+
|
141 |
+
plt.subplot(1, 2, 1)
|
142 |
+
plt.imshow(sample['image'])
|
143 |
+
plt.title(f"Frame from {sample['video_uid'][:8]}...")
|
144 |
+
plt.axis('off')
|
145 |
+
|
146 |
+
plt.subplot(1, 2, 2)
|
147 |
+
plt.text(0.1, 0.8, f"Video: {sample['video_filename'][:30]}...")
|
148 |
+
plt.text(0.1, 0.7, f"Timestamp: {sample['timestamp_sec']:.2f}s")
|
149 |
+
plt.text(0.1, 0.6, f"Frame: {sample['frame_idx']}/{sample['total_frames']}")
|
150 |
+
plt.text(0.1, 0.5, f"FPS: {sample['fps']}")
|
151 |
+
plt.axis('off')
|
152 |
+
plt.show()
|
153 |
+
```
|
154 |
+
|
155 |
+
### PyTorch Integration
|
156 |
+
|
157 |
+
```python
|
158 |
+
import torch
|
159 |
+
from torch.utils.data import DataLoader
|
160 |
+
from torchvision import transforms
|
161 |
+
|
162 |
+
# Define transforms
|
163 |
+
transform = transforms.Compose([
|
164 |
+
transforms.Resize((224, 224)),
|
165 |
+
transforms.ToTensor(),
|
166 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
167 |
+
std=[0.229, 0.224, 0.225])
|
168 |
+
])
|
169 |
+
|
170 |
+
# Custom dataset class
|
171 |
+
class Ego4DDataset(torch.utils.data.Dataset):
|
172 |
+
def __init__(self, hf_dataset, transform=None):
|
173 |
+
self.dataset = hf_dataset
|
174 |
+
self.transform = transform
|
175 |
+
|
176 |
+
def __len__(self):
|
177 |
+
return len(self.dataset)
|
178 |
+
|
179 |
+
def __getitem__(self, idx):
|
180 |
+
sample = self.dataset[idx]
|
181 |
+
image = sample['image']
|
182 |
+
|
183 |
+
if self.transform:
|
184 |
+
image = self.transform(image)
|
185 |
+
|
186 |
+
return image, sample
|
187 |
+
|
188 |
+
# Create dataset and dataloader
|
189 |
+
pytorch_dataset = Ego4DDataset(dataset['train'], transform=transform)
|
190 |
+
dataloader = DataLoader(pytorch_dataset, batch_size=32, shuffle=True)
|
191 |
+
|
192 |
+
# Training loop example
|
193 |
+
for batch_idx, (images, metadata) in enumerate(dataloader):
|
194 |
+
# Your training code here
|
195 |
+
print(f"Batch {batch_idx}: {images.shape}")
|
196 |
+
if batch_idx >= 2: # Just show first few batches
|
197 |
+
break
|
198 |
+
```
|
199 |
+
|
200 |
+
### Data Analysis
|
201 |
+
|
202 |
+
```python
|
203 |
+
import pandas as pd
|
204 |
+
from collections import Counter
|
205 |
+
|
206 |
+
# Convert to pandas for analysis
|
207 |
+
data = []
|
208 |
+
for sample in dataset['train']:
|
209 |
+
data.append({
|
210 |
+
'video_uid': sample['video_uid'],
|
211 |
+
'timestamp_sec': sample['timestamp_sec'],
|
212 |
+
'fps': sample['fps'],
|
213 |
+
'total_frames': sample['total_frames'],
|
214 |
+
'worker_id': sample['worker_id']
|
215 |
+
})
|
216 |
+
|
217 |
+
df = pd.DataFrame(data)
|
218 |
+
|
219 |
+
# Basic statistics
|
220 |
+
print(f"Unique videos: {df['video_uid'].nunique()}")
|
221 |
+
print(f"Average FPS: {df['fps'].mean():.2f}")
|
222 |
+
print(f"Timestamp range: {df['timestamp_sec'].min():.2f}s - {df['timestamp_sec'].max():.2f}s")
|
223 |
+
|
224 |
+
# Video distribution
|
225 |
+
video_counts = Counter(df['video_uid'])
|
226 |
+
print(f"Samples per video - Min: {min(video_counts.values())}, Max: {max(video_counts.values())}")
|
227 |
+
```
|
228 |
+
|
229 |
+
## Applications
|
230 |
+
|
231 |
+
This dataset is suitable for:
|
232 |
+
|
233 |
+
- **Egocentric vision research**: First-person view understanding
|
234 |
+
- **Activity recognition**: Daily activity classification
|
235 |
+
- **Object detection**: Objects in natural settings
|
236 |
+
- **Scene understanding**: Indoor/outdoor scene analysis
|
237 |
+
- **Transfer learning**: Pre-training for egocentric tasks
|
238 |
+
- **Multi-modal learning**: Combining with video metadata
|
239 |
+
- **Temporal analysis**: Using timestamp information
|
240 |
+
|
241 |
+
## Generation Statistics
|
242 |
+
|
243 |
+
- **Target Frames**: 20,000
|
244 |
+
- **Generated Frames**: 20,000
|
245 |
+
- **Success Rate**: 100.0%
|
246 |
+
- **Generation Time**: 13.3 minutes
|
247 |
+
- **Workers Used**: 128
|
248 |
+
- **Processing Speed**: 25.08 frames/second
|
249 |
+
- **Source Videos**: 52,665+ Ego4D video files
|
250 |
+
- **Diversity**: Maximum diversity through distributed sampling
|
251 |
+
|
252 |
+
## Technical Details
|
253 |
+
|
254 |
+
### Sampling Strategy
|
255 |
+
- **Random Selection**: Both video and frame positions randomly sampled
|
256 |
+
- **Worker Distribution**: Videos distributed across 128 workers for diversity
|
257 |
+
- **Quality Control**: Automatic validation and error recovery
|
258 |
+
- **Metadata Preservation**: Complete provenance tracking
|
259 |
+
|
260 |
+
### Data Quality
|
261 |
+
- **Image Quality**: All frames validated during generation
|
262 |
+
- **Resolution**: Consistent 1024×1024 PNG format
|
263 |
+
- **Color Space**: RGB color space
|
264 |
+
- **Compression**: PNG lossless compression
|
265 |
+
- **Metadata Completeness**: 100% metadata coverage
|
266 |
+
|
267 |
+
## Citation
|
268 |
+
|
269 |
+
If you use this dataset, please cite the original Ego4D paper:
|
270 |
+
|
271 |
+
```bibtex
|
272 |
+
@inproceedings{grauman2022ego4d,
|
273 |
+
title={Ego4d: Around the world in 3,000 hours of egocentric video},
|
274 |
+
author={Grauman, Kristen and Westbury, Andrew and Byrnes, Eugene and others},
|
275 |
+
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
276 |
+
pages={18211--18230},
|
277 |
+
year={2022}
|
278 |
+
}
|
279 |
+
```
|
280 |
+
|
281 |
+
## License
|
282 |
+
|
283 |
+
This dataset follows the same license terms as the original Ego4D dataset. Please refer to the [Ego4D license](https://ego4d-data.org/pdfs/Ego4D-License.pdf) for usage terms.
|
284 |
+
|
285 |
+
## Dataset Creation
|
286 |
+
|
287 |
+
This dataset was generated using a high-performance multi-process sampling system designed for maximum diversity and efficiency. The generation process:
|
288 |
+
|
289 |
+
1. **Video Indexing**: Scanned 52,665+ Ego4D video files
|
290 |
+
2. **Distributed Sampling**: Used 128 parallel workers for maximum diversity
|
291 |
+
3. **Quality Assurance**: Validated each frame during generation
|
292 |
+
4. **Metadata Collection**: Captured complete provenance information
|
293 |
+
5. **Efficient Upload**: Used HuggingFace datasets library with parquet format
|
294 |
+
|
295 |
+
For more details on the generation process, see the [technical documentation](https://github.com/your-repo/ego4d-random-sampling).
|