File size: 16,828 Bytes
a59d9c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b5ba6c
 
a59d9c8
7b5ba6c
 
a59d9c8
 
 
 
7b5ba6c
 
 
 
 
a59d9c8
 
 
 
 
 
 
 
 
 
 
 
7b5ba6c
 
a59d9c8
 
 
7b5ba6c
a59d9c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
# /// script
# requires-python = ">=3.11"
# dependencies = [
#     "datasets>=3.1.0",
#     "pyarrow>=17.0.0,<18.0.0",
#     "huggingface-hub",
#     "pillow",
#     "vllm",
#     "toolz",
#     "torch",
# ]
#
# [[tool.uv.index]]
# url = "https://wheels.vllm.ai/nightly"
#
# [tool.uv]
# prerelease = "allow"
# override-dependencies = ["transformers @ git+https://github.com/huggingface/transformers.git"]
# ///

"""
Convert document images to markdown using GLM-OCR with vLLM.

GLM-OCR is a compact 0.9B parameter OCR model achieving 94.62% on OmniDocBench V1.5.
Uses CogViT visual encoder with GLM-0.5B language decoder and Multi-Token Prediction
(MTP) loss for fast, accurate document parsing.

NOTE: Requires vLLM nightly wheels and transformers from git for GLM-OCR support.
First run may take a few minutes to download and install dependencies.

Features:
- 0.9B parameters (ultra-compact)
- 94.62% on OmniDocBench V1.5 (SOTA for sub-1B models)
- Text recognition with markdown output
- LaTeX formula recognition
- Table extraction (HTML format)
- Multilingual: zh, en, fr, es, ru, de, ja, ko
- MIT licensed

Model: zai-org/GLM-OCR
vLLM: Requires vLLM nightly build + transformers from git
Performance: 94.62% on OmniDocBench V1.5
"""

import argparse
import base64
import io
import json
import logging
import os
import sys
from datetime import datetime
from typing import Any, Dict, List, Union

import torch
from datasets import load_dataset
from huggingface_hub import DatasetCard, login
from PIL import Image
from toolz import partition_all
from vllm import LLM, SamplingParams

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

MODEL = "zai-org/GLM-OCR"

# Task prompts as specified by the model
TASK_PROMPTS = {
    "ocr": "Text Recognition:",
    "formula": "Formula Recognition:",
    "table": "Table Recognition:",
}


def check_cuda_availability():
    """Check if CUDA is available and exit if not."""
    if not torch.cuda.is_available():
        logger.error("CUDA is not available. This script requires a GPU.")
        logger.error("Please run on a machine with a CUDA-capable GPU.")
        sys.exit(1)
    else:
        logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")


def make_ocr_message(
    image: Union[Image.Image, Dict[str, Any], str],
    task: str = "ocr",
) -> List[Dict]:
    """
    Create chat message for OCR processing.

    GLM-OCR uses a chat format with an image and a task prompt prefix.
    Supported tasks: ocr, formula, table.
    """
    # Convert to PIL Image if needed
    if isinstance(image, Image.Image):
        pil_img = image
    elif isinstance(image, dict) and "bytes" in image:
        pil_img = Image.open(io.BytesIO(image["bytes"]))
    elif isinstance(image, str):
        pil_img = Image.open(image)
    else:
        raise ValueError(f"Unsupported image type: {type(image)}")

    # Convert to RGB
    pil_img = pil_img.convert("RGB")

    # Convert to base64 data URI
    buf = io.BytesIO()
    pil_img.save(buf, format="PNG")
    data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"

    prompt_text = TASK_PROMPTS.get(task, TASK_PROMPTS["ocr"])

    return [
        {
            "role": "user",
            "content": [
                {"type": "image_url", "image_url": {"url": data_uri}},
                {"type": "text", "text": prompt_text},
            ],
        }
    ]


def create_dataset_card(
    source_dataset: str,
    model: str,
    num_samples: int,
    processing_time: str,
    batch_size: int,
    max_model_len: int,
    max_tokens: int,
    gpu_memory_utilization: float,
    temperature: float,
    top_p: float,
    task: str,
    image_column: str = "image",
    split: str = "train",
) -> str:
    """Create a dataset card documenting the OCR process."""
    model_name = model.split("/")[-1]
    task_desc = {"ocr": "text recognition", "formula": "formula recognition", "table": "table recognition"}

    return f"""---
tags:
- ocr
- document-processing
- glm-ocr
- markdown
- uv-script
- generated
---

# Document OCR using {model_name}

This dataset contains OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using GLM-OCR, a compact 0.9B OCR model achieving SOTA performance.

## Processing Details

- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
- **Model**: [{model}](https://huggingface.co/{model})
- **Task**: {task_desc.get(task, task)}
- **Number of Samples**: {num_samples:,}
- **Processing Time**: {processing_time}
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}

### Configuration

- **Image Column**: `{image_column}`
- **Output Column**: `markdown`
- **Dataset Split**: `{split}`
- **Batch Size**: {batch_size}
- **Max Model Length**: {max_model_len:,} tokens
- **Max Output Tokens**: {max_tokens:,}
- **Temperature**: {temperature}
- **Top P**: {top_p}
- **GPU Memory Utilization**: {gpu_memory_utilization:.1%}

## Model Information

GLM-OCR is a compact, high-performance OCR model:
- 0.9B parameters
- 94.62% on OmniDocBench V1.5
- CogViT visual encoder + GLM-0.5B language decoder
- Multi-Token Prediction (MTP) loss for efficiency
- Multilingual: zh, en, fr, es, ru, de, ja, ko
- MIT licensed

## Dataset Structure

The dataset contains all original columns plus:
- `markdown`: The extracted text in markdown format
- `inference_info`: JSON list tracking all OCR models applied to this dataset

## Reproduction

```bash
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/glm-ocr.py \\
    {source_dataset} \\
    <output-dataset> \\
    --image-column {image_column} \\
    --batch-size {batch_size} \\
    --task {task}
```

Generated with [UV Scripts](https://huggingface.co/uv-scripts)
"""


def main(
    input_dataset: str,
    output_dataset: str,
    image_column: str = "image",
    batch_size: int = 16,
    max_model_len: int = 8192,
    max_tokens: int = 16384,
    temperature: float = 0.01,
    top_p: float = 0.00001,
    repetition_penalty: float = 1.1,
    gpu_memory_utilization: float = 0.8,
    task: str = "ocr",
    hf_token: str = None,
    split: str = "train",
    max_samples: int = None,
    private: bool = False,
    shuffle: bool = False,
    seed: int = 42,
    output_column: str = "markdown",
):
    """Process images from HF dataset through GLM-OCR model."""

    check_cuda_availability()

    start_time = datetime.now()

    HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
    if HF_TOKEN:
        login(token=HF_TOKEN)

    # Validate task
    if task not in TASK_PROMPTS:
        logger.error(f"Unknown task '{task}'. Supported: {list(TASK_PROMPTS.keys())}")
        sys.exit(1)

    logger.info(f"Using model: {MODEL}")
    logger.info(f"Task: {task} (prompt: '{TASK_PROMPTS[task]}')")

    # Load dataset
    logger.info(f"Loading dataset: {input_dataset}")
    dataset = load_dataset(input_dataset, split=split)

    if image_column not in dataset.column_names:
        raise ValueError(
            f"Column '{image_column}' not found. Available: {dataset.column_names}"
        )

    if shuffle:
        logger.info(f"Shuffling dataset with seed {seed}")
        dataset = dataset.shuffle(seed=seed)

    if max_samples:
        dataset = dataset.select(range(min(max_samples, len(dataset))))
        logger.info(f"Limited to {len(dataset)} samples")

    # Initialize vLLM
    logger.info("Initializing vLLM with GLM-OCR")
    logger.info("This may take a few minutes on first run...")
    llm = LLM(
        model=MODEL,
        trust_remote_code=True,
        max_model_len=max_model_len,
        gpu_memory_utilization=gpu_memory_utilization,
        limit_mm_per_prompt={"image": 1},
    )

    # Sampling defaults from GLM-OCR SDK (github.com/zai-org/GLM-OCR)
    # glmocr/config.py PageLoaderConfig: temperature=0.01, top_p=0.00001,
    # top_k=1, repetition_penalty=1.1, max_tokens=16384
    # generation_config.json on HF also sets do_sample=false (greedy)
    sampling_params = SamplingParams(
        temperature=temperature,
        top_p=top_p,
        max_tokens=max_tokens,
        repetition_penalty=repetition_penalty,
    )

    logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
    logger.info(f"Output will be written to column: {output_column}")

    all_outputs = []
    total_batches = (len(dataset) + batch_size - 1) // batch_size
    processed = 0

    for batch_num, batch_indices in enumerate(
        partition_all(batch_size, range(len(dataset))), 1
    ):
        batch_indices = list(batch_indices)
        batch_images = [dataset[i][image_column] for i in batch_indices]

        logger.info(
            f"Batch {batch_num}/{total_batches} "
            f"({processed}/{len(dataset)} images done)"
        )

        try:
            batch_messages = [
                make_ocr_message(img, task=task)
                for img in batch_images
            ]

            outputs = llm.chat(batch_messages, sampling_params)

            for output in outputs:
                text = output.outputs[0].text.strip()
                all_outputs.append(text)

            processed += len(batch_images)

        except Exception as e:
            logger.error(f"Error processing batch: {e}")
            all_outputs.extend(["[OCR ERROR]"] * len(batch_images))
            processed += len(batch_images)

    processing_duration = datetime.now() - start_time
    processing_time_str = f"{processing_duration.total_seconds() / 60:.1f} min"

    logger.info(f"Adding '{output_column}' column to dataset")
    dataset = dataset.add_column(output_column, all_outputs)

    # Inference info tracking
    inference_entry = {
        "model_id": MODEL,
        "model_name": "GLM-OCR",
        "column_name": output_column,
        "timestamp": datetime.now().isoformat(),
        "task": task,
        "temperature": temperature,
        "top_p": top_p,
        "repetition_penalty": repetition_penalty,
        "max_tokens": max_tokens,
    }

    if "inference_info" in dataset.column_names:
        logger.info("Updating existing inference_info column")

        def update_inference_info(example):
            try:
                existing_info = json.loads(example["inference_info"]) if example["inference_info"] else []
            except (json.JSONDecodeError, TypeError):
                existing_info = []
            existing_info.append(inference_entry)
            return {"inference_info": json.dumps(existing_info)}

        dataset = dataset.map(update_inference_info)
    else:
        logger.info("Creating new inference_info column")
        inference_list = [json.dumps([inference_entry])] * len(dataset)
        dataset = dataset.add_column("inference_info", inference_list)

    # Push to hub
    logger.info(f"Pushing to {output_dataset}")
    dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)

    # Create and push dataset card
    logger.info("Creating dataset card")
    card_content = create_dataset_card(
        source_dataset=input_dataset,
        model=MODEL,
        num_samples=len(dataset),
        processing_time=processing_time_str,
        batch_size=batch_size,
        max_model_len=max_model_len,
        max_tokens=max_tokens,
        gpu_memory_utilization=gpu_memory_utilization,
        temperature=temperature,
        top_p=top_p,
        task=task,
        image_column=image_column,
        split=split,
    )

    card = DatasetCard(card_content)
    card.push_to_hub(output_dataset, token=HF_TOKEN)

    logger.info("Done! GLM-OCR processing complete.")
    logger.info(f"Dataset available at: https://huggingface.co/datasets/{output_dataset}")
    logger.info(f"Processing time: {processing_time_str}")
    logger.info(f"Processing speed: {len(dataset) / processing_duration.total_seconds():.2f} images/sec")


if __name__ == "__main__":
    if len(sys.argv) == 1:
        print("=" * 70)
        print("GLM-OCR Document Processing")
        print("=" * 70)
        print("\n0.9B OCR model - 94.62% on OmniDocBench V1.5")
        print("\nTask modes:")
        print("  ocr      - Text recognition (default)")
        print("  formula  - LaTeX formula recognition")
        print("  table    - Table extraction")
        print("\nExamples:")
        print("\n1. Basic OCR:")
        print("   uv run glm-ocr.py input-dataset output-dataset")
        print("\n2. Formula recognition:")
        print("   uv run glm-ocr.py docs results --task formula")
        print("\n3. Table extraction:")
        print("   uv run glm-ocr.py docs results --task table")
        print("\n4. Test with small sample:")
        print("   uv run glm-ocr.py large-dataset test --max-samples 10 --shuffle")
        print("\n5. Running on HF Jobs:")
        print("   hf jobs uv run --flavor l4x1 \\")
        print("     -s HF_TOKEN \\")
        print("     https://huggingface.co/datasets/uv-scripts/ocr/raw/main/glm-ocr.py \\")
        print("       input-dataset output-dataset --batch-size 16")
        print("\nFor full help: uv run glm-ocr.py --help")
        sys.exit(0)

    parser = argparse.ArgumentParser(
        description="Document OCR using GLM-OCR (0.9B, 94.62% OmniDocBench V1.5)",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Task modes:
  ocr      Text recognition to markdown (default)
  formula  LaTeX formula recognition
  table    Table extraction

Examples:
  uv run glm-ocr.py my-docs analyzed-docs
  uv run glm-ocr.py docs results --task formula
  uv run glm-ocr.py large-dataset test --max-samples 50 --shuffle
        """,
    )

    parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
    parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
    parser.add_argument(
        "--image-column",
        default="image",
        help="Column containing images (default: image)",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=16,
        help="Batch size for processing (default: 16)",
    )
    parser.add_argument(
        "--max-model-len",
        type=int,
        default=8192,
        help="Maximum model context length (default: 8192)",
    )
    parser.add_argument(
        "--max-tokens",
        type=int,
        default=16384,
        help="Maximum tokens to generate (default: 16384)",
    )
    parser.add_argument(
        "--temperature",
        type=float,
        default=0.01,
        help="Sampling temperature (default: 0.01, near-greedy for OCR accuracy)",
    )
    parser.add_argument(
        "--top-p",
        type=float,
        default=0.00001,
        help="Top-p sampling parameter (default: 0.00001, near-greedy)",
    )
    parser.add_argument(
        "--repetition-penalty",
        type=float,
        default=1.1,
        help="Repetition penalty to prevent loops (default: 1.1)",
    )
    parser.add_argument(
        "--gpu-memory-utilization",
        type=float,
        default=0.8,
        help="GPU memory utilization (default: 0.8)",
    )
    parser.add_argument(
        "--task",
        choices=["ocr", "formula", "table"],
        default="ocr",
        help="OCR task mode (default: ocr)",
    )
    parser.add_argument("--hf-token", help="Hugging Face API token")
    parser.add_argument(
        "--split", default="train", help="Dataset split to use (default: train)"
    )
    parser.add_argument(
        "--max-samples",
        type=int,
        help="Maximum number of samples to process (for testing)",
    )
    parser.add_argument(
        "--private", action="store_true", help="Make output dataset private"
    )
    parser.add_argument(
        "--shuffle", action="store_true", help="Shuffle dataset before processing"
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="Random seed for shuffling (default: 42)",
    )
    parser.add_argument(
        "--output-column",
        default="markdown",
        help="Column name for output text (default: markdown)",
    )

    args = parser.parse_args()

    main(
        input_dataset=args.input_dataset,
        output_dataset=args.output_dataset,
        image_column=args.image_column,
        batch_size=args.batch_size,
        max_model_len=args.max_model_len,
        max_tokens=args.max_tokens,
        temperature=args.temperature,
        top_p=args.top_p,
        repetition_penalty=args.repetition_penalty,
        gpu_memory_utilization=args.gpu_memory_utilization,
        task=args.task,
        hf_token=args.hf_token,
        split=args.split,
        max_samples=args.max_samples,
        private=args.private,
        shuffle=args.shuffle,
        seed=args.seed,
        output_column=args.output_column,
    )