File size: 16,828 Bytes
a59d9c8 7b5ba6c a59d9c8 7b5ba6c a59d9c8 7b5ba6c a59d9c8 7b5ba6c a59d9c8 7b5ba6c a59d9c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
# /// script
# requires-python = ">=3.11"
# dependencies = [
# "datasets>=3.1.0",
# "pyarrow>=17.0.0,<18.0.0",
# "huggingface-hub",
# "pillow",
# "vllm",
# "toolz",
# "torch",
# ]
#
# [[tool.uv.index]]
# url = "https://wheels.vllm.ai/nightly"
#
# [tool.uv]
# prerelease = "allow"
# override-dependencies = ["transformers @ git+https://github.com/huggingface/transformers.git"]
# ///
"""
Convert document images to markdown using GLM-OCR with vLLM.
GLM-OCR is a compact 0.9B parameter OCR model achieving 94.62% on OmniDocBench V1.5.
Uses CogViT visual encoder with GLM-0.5B language decoder and Multi-Token Prediction
(MTP) loss for fast, accurate document parsing.
NOTE: Requires vLLM nightly wheels and transformers from git for GLM-OCR support.
First run may take a few minutes to download and install dependencies.
Features:
- 0.9B parameters (ultra-compact)
- 94.62% on OmniDocBench V1.5 (SOTA for sub-1B models)
- Text recognition with markdown output
- LaTeX formula recognition
- Table extraction (HTML format)
- Multilingual: zh, en, fr, es, ru, de, ja, ko
- MIT licensed
Model: zai-org/GLM-OCR
vLLM: Requires vLLM nightly build + transformers from git
Performance: 94.62% on OmniDocBench V1.5
"""
import argparse
import base64
import io
import json
import logging
import os
import sys
from datetime import datetime
from typing import Any, Dict, List, Union
import torch
from datasets import load_dataset
from huggingface_hub import DatasetCard, login
from PIL import Image
from toolz import partition_all
from vllm import LLM, SamplingParams
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
MODEL = "zai-org/GLM-OCR"
# Task prompts as specified by the model
TASK_PROMPTS = {
"ocr": "Text Recognition:",
"formula": "Formula Recognition:",
"table": "Table Recognition:",
}
def check_cuda_availability():
"""Check if CUDA is available and exit if not."""
if not torch.cuda.is_available():
logger.error("CUDA is not available. This script requires a GPU.")
logger.error("Please run on a machine with a CUDA-capable GPU.")
sys.exit(1)
else:
logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
def make_ocr_message(
image: Union[Image.Image, Dict[str, Any], str],
task: str = "ocr",
) -> List[Dict]:
"""
Create chat message for OCR processing.
GLM-OCR uses a chat format with an image and a task prompt prefix.
Supported tasks: ocr, formula, table.
"""
# Convert to PIL Image if needed
if isinstance(image, Image.Image):
pil_img = image
elif isinstance(image, dict) and "bytes" in image:
pil_img = Image.open(io.BytesIO(image["bytes"]))
elif isinstance(image, str):
pil_img = Image.open(image)
else:
raise ValueError(f"Unsupported image type: {type(image)}")
# Convert to RGB
pil_img = pil_img.convert("RGB")
# Convert to base64 data URI
buf = io.BytesIO()
pil_img.save(buf, format="PNG")
data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"
prompt_text = TASK_PROMPTS.get(task, TASK_PROMPTS["ocr"])
return [
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": data_uri}},
{"type": "text", "text": prompt_text},
],
}
]
def create_dataset_card(
source_dataset: str,
model: str,
num_samples: int,
processing_time: str,
batch_size: int,
max_model_len: int,
max_tokens: int,
gpu_memory_utilization: float,
temperature: float,
top_p: float,
task: str,
image_column: str = "image",
split: str = "train",
) -> str:
"""Create a dataset card documenting the OCR process."""
model_name = model.split("/")[-1]
task_desc = {"ocr": "text recognition", "formula": "formula recognition", "table": "table recognition"}
return f"""---
tags:
- ocr
- document-processing
- glm-ocr
- markdown
- uv-script
- generated
---
# Document OCR using {model_name}
This dataset contains OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using GLM-OCR, a compact 0.9B OCR model achieving SOTA performance.
## Processing Details
- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
- **Model**: [{model}](https://huggingface.co/{model})
- **Task**: {task_desc.get(task, task)}
- **Number of Samples**: {num_samples:,}
- **Processing Time**: {processing_time}
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}
### Configuration
- **Image Column**: `{image_column}`
- **Output Column**: `markdown`
- **Dataset Split**: `{split}`
- **Batch Size**: {batch_size}
- **Max Model Length**: {max_model_len:,} tokens
- **Max Output Tokens**: {max_tokens:,}
- **Temperature**: {temperature}
- **Top P**: {top_p}
- **GPU Memory Utilization**: {gpu_memory_utilization:.1%}
## Model Information
GLM-OCR is a compact, high-performance OCR model:
- 0.9B parameters
- 94.62% on OmniDocBench V1.5
- CogViT visual encoder + GLM-0.5B language decoder
- Multi-Token Prediction (MTP) loss for efficiency
- Multilingual: zh, en, fr, es, ru, de, ja, ko
- MIT licensed
## Dataset Structure
The dataset contains all original columns plus:
- `markdown`: The extracted text in markdown format
- `inference_info`: JSON list tracking all OCR models applied to this dataset
## Reproduction
```bash
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/glm-ocr.py \\
{source_dataset} \\
<output-dataset> \\
--image-column {image_column} \\
--batch-size {batch_size} \\
--task {task}
```
Generated with [UV Scripts](https://huggingface.co/uv-scripts)
"""
def main(
input_dataset: str,
output_dataset: str,
image_column: str = "image",
batch_size: int = 16,
max_model_len: int = 8192,
max_tokens: int = 16384,
temperature: float = 0.01,
top_p: float = 0.00001,
repetition_penalty: float = 1.1,
gpu_memory_utilization: float = 0.8,
task: str = "ocr",
hf_token: str = None,
split: str = "train",
max_samples: int = None,
private: bool = False,
shuffle: bool = False,
seed: int = 42,
output_column: str = "markdown",
):
"""Process images from HF dataset through GLM-OCR model."""
check_cuda_availability()
start_time = datetime.now()
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
# Validate task
if task not in TASK_PROMPTS:
logger.error(f"Unknown task '{task}'. Supported: {list(TASK_PROMPTS.keys())}")
sys.exit(1)
logger.info(f"Using model: {MODEL}")
logger.info(f"Task: {task} (prompt: '{TASK_PROMPTS[task]}')")
# Load dataset
logger.info(f"Loading dataset: {input_dataset}")
dataset = load_dataset(input_dataset, split=split)
if image_column not in dataset.column_names:
raise ValueError(
f"Column '{image_column}' not found. Available: {dataset.column_names}"
)
if shuffle:
logger.info(f"Shuffling dataset with seed {seed}")
dataset = dataset.shuffle(seed=seed)
if max_samples:
dataset = dataset.select(range(min(max_samples, len(dataset))))
logger.info(f"Limited to {len(dataset)} samples")
# Initialize vLLM
logger.info("Initializing vLLM with GLM-OCR")
logger.info("This may take a few minutes on first run...")
llm = LLM(
model=MODEL,
trust_remote_code=True,
max_model_len=max_model_len,
gpu_memory_utilization=gpu_memory_utilization,
limit_mm_per_prompt={"image": 1},
)
# Sampling defaults from GLM-OCR SDK (github.com/zai-org/GLM-OCR)
# glmocr/config.py PageLoaderConfig: temperature=0.01, top_p=0.00001,
# top_k=1, repetition_penalty=1.1, max_tokens=16384
# generation_config.json on HF also sets do_sample=false (greedy)
sampling_params = SamplingParams(
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
repetition_penalty=repetition_penalty,
)
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
logger.info(f"Output will be written to column: {output_column}")
all_outputs = []
total_batches = (len(dataset) + batch_size - 1) // batch_size
processed = 0
for batch_num, batch_indices in enumerate(
partition_all(batch_size, range(len(dataset))), 1
):
batch_indices = list(batch_indices)
batch_images = [dataset[i][image_column] for i in batch_indices]
logger.info(
f"Batch {batch_num}/{total_batches} "
f"({processed}/{len(dataset)} images done)"
)
try:
batch_messages = [
make_ocr_message(img, task=task)
for img in batch_images
]
outputs = llm.chat(batch_messages, sampling_params)
for output in outputs:
text = output.outputs[0].text.strip()
all_outputs.append(text)
processed += len(batch_images)
except Exception as e:
logger.error(f"Error processing batch: {e}")
all_outputs.extend(["[OCR ERROR]"] * len(batch_images))
processed += len(batch_images)
processing_duration = datetime.now() - start_time
processing_time_str = f"{processing_duration.total_seconds() / 60:.1f} min"
logger.info(f"Adding '{output_column}' column to dataset")
dataset = dataset.add_column(output_column, all_outputs)
# Inference info tracking
inference_entry = {
"model_id": MODEL,
"model_name": "GLM-OCR",
"column_name": output_column,
"timestamp": datetime.now().isoformat(),
"task": task,
"temperature": temperature,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"max_tokens": max_tokens,
}
if "inference_info" in dataset.column_names:
logger.info("Updating existing inference_info column")
def update_inference_info(example):
try:
existing_info = json.loads(example["inference_info"]) if example["inference_info"] else []
except (json.JSONDecodeError, TypeError):
existing_info = []
existing_info.append(inference_entry)
return {"inference_info": json.dumps(existing_info)}
dataset = dataset.map(update_inference_info)
else:
logger.info("Creating new inference_info column")
inference_list = [json.dumps([inference_entry])] * len(dataset)
dataset = dataset.add_column("inference_info", inference_list)
# Push to hub
logger.info(f"Pushing to {output_dataset}")
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
# Create and push dataset card
logger.info("Creating dataset card")
card_content = create_dataset_card(
source_dataset=input_dataset,
model=MODEL,
num_samples=len(dataset),
processing_time=processing_time_str,
batch_size=batch_size,
max_model_len=max_model_len,
max_tokens=max_tokens,
gpu_memory_utilization=gpu_memory_utilization,
temperature=temperature,
top_p=top_p,
task=task,
image_column=image_column,
split=split,
)
card = DatasetCard(card_content)
card.push_to_hub(output_dataset, token=HF_TOKEN)
logger.info("Done! GLM-OCR processing complete.")
logger.info(f"Dataset available at: https://huggingface.co/datasets/{output_dataset}")
logger.info(f"Processing time: {processing_time_str}")
logger.info(f"Processing speed: {len(dataset) / processing_duration.total_seconds():.2f} images/sec")
if __name__ == "__main__":
if len(sys.argv) == 1:
print("=" * 70)
print("GLM-OCR Document Processing")
print("=" * 70)
print("\n0.9B OCR model - 94.62% on OmniDocBench V1.5")
print("\nTask modes:")
print(" ocr - Text recognition (default)")
print(" formula - LaTeX formula recognition")
print(" table - Table extraction")
print("\nExamples:")
print("\n1. Basic OCR:")
print(" uv run glm-ocr.py input-dataset output-dataset")
print("\n2. Formula recognition:")
print(" uv run glm-ocr.py docs results --task formula")
print("\n3. Table extraction:")
print(" uv run glm-ocr.py docs results --task table")
print("\n4. Test with small sample:")
print(" uv run glm-ocr.py large-dataset test --max-samples 10 --shuffle")
print("\n5. Running on HF Jobs:")
print(" hf jobs uv run --flavor l4x1 \\")
print(" -s HF_TOKEN \\")
print(" https://huggingface.co/datasets/uv-scripts/ocr/raw/main/glm-ocr.py \\")
print(" input-dataset output-dataset --batch-size 16")
print("\nFor full help: uv run glm-ocr.py --help")
sys.exit(0)
parser = argparse.ArgumentParser(
description="Document OCR using GLM-OCR (0.9B, 94.62% OmniDocBench V1.5)",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Task modes:
ocr Text recognition to markdown (default)
formula LaTeX formula recognition
table Table extraction
Examples:
uv run glm-ocr.py my-docs analyzed-docs
uv run glm-ocr.py docs results --task formula
uv run glm-ocr.py large-dataset test --max-samples 50 --shuffle
""",
)
parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
parser.add_argument(
"--image-column",
default="image",
help="Column containing images (default: image)",
)
parser.add_argument(
"--batch-size",
type=int,
default=16,
help="Batch size for processing (default: 16)",
)
parser.add_argument(
"--max-model-len",
type=int,
default=8192,
help="Maximum model context length (default: 8192)",
)
parser.add_argument(
"--max-tokens",
type=int,
default=16384,
help="Maximum tokens to generate (default: 16384)",
)
parser.add_argument(
"--temperature",
type=float,
default=0.01,
help="Sampling temperature (default: 0.01, near-greedy for OCR accuracy)",
)
parser.add_argument(
"--top-p",
type=float,
default=0.00001,
help="Top-p sampling parameter (default: 0.00001, near-greedy)",
)
parser.add_argument(
"--repetition-penalty",
type=float,
default=1.1,
help="Repetition penalty to prevent loops (default: 1.1)",
)
parser.add_argument(
"--gpu-memory-utilization",
type=float,
default=0.8,
help="GPU memory utilization (default: 0.8)",
)
parser.add_argument(
"--task",
choices=["ocr", "formula", "table"],
default="ocr",
help="OCR task mode (default: ocr)",
)
parser.add_argument("--hf-token", help="Hugging Face API token")
parser.add_argument(
"--split", default="train", help="Dataset split to use (default: train)"
)
parser.add_argument(
"--max-samples",
type=int,
help="Maximum number of samples to process (for testing)",
)
parser.add_argument(
"--private", action="store_true", help="Make output dataset private"
)
parser.add_argument(
"--shuffle", action="store_true", help="Shuffle dataset before processing"
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="Random seed for shuffling (default: 42)",
)
parser.add_argument(
"--output-column",
default="markdown",
help="Column name for output text (default: markdown)",
)
args = parser.parse_args()
main(
input_dataset=args.input_dataset,
output_dataset=args.output_dataset,
image_column=args.image_column,
batch_size=args.batch_size,
max_model_len=args.max_model_len,
max_tokens=args.max_tokens,
temperature=args.temperature,
top_p=args.top_p,
repetition_penalty=args.repetition_penalty,
gpu_memory_utilization=args.gpu_memory_utilization,
task=args.task,
hf_token=args.hf_token,
split=args.split,
max_samples=args.max_samples,
private=args.private,
shuffle=args.shuffle,
seed=args.seed,
output_column=args.output_column,
)
|