Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
"""TODO(drop): Add a description here.""" | |
import json | |
import os | |
import datasets | |
_CITATION = """\ | |
@inproceedings{Dua2019DROP, | |
author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner}, | |
title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs}, | |
booktitle={Proc. of NAACL}, | |
year={2019} | |
} | |
""" | |
_DESCRIPTION = """\ | |
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs. | |
. DROP is a crowdsourced, adversarially-created, 96k-question benchmark, in which a system must resolve references in a | |
question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or | |
sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was | |
necessary for prior datasets. | |
""" | |
_URL = "https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip" | |
class AnswerParsingError(Exception): | |
pass | |
class DropDateObject: | |
""" | |
Custom parser for date answers in DROP. | |
A date answer is a dict <date> with at least one of day|month|year. | |
Example: date == { | |
'day': '9', | |
'month': 'March', | |
'year': '2021' | |
} | |
This dict is parsed and flattend to '{day} {month} {year}', not including | |
blank values. | |
Example: str(DropDateObject(date)) == '9 March 2021' | |
""" | |
def __init__(self, dict_date): | |
self.year = dict_date.get("year", "") | |
self.month = dict_date.get("month", "") | |
self.day = dict_date.get("day", "") | |
def __iter__(self): | |
yield from [self.day, self.month, self.year] | |
def __bool__(self): | |
return any(self) | |
def __repr__(self): | |
return " ".join(self).strip() | |
class Drop(datasets.GeneratorBasedBuilder): | |
"""TODO(drop): Short description of my dataset.""" | |
# TODO(drop): Set up version. | |
VERSION = datasets.Version("0.1.0") | |
def _info(self): | |
# TODO(drop): Specifies the datasets.DatasetInfo object | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# datasets.features.FeatureConnectors | |
features=datasets.Features( | |
{ | |
"section_id": datasets.Value("string"), | |
"query_id": datasets.Value("string"), | |
"passage": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"answers_spans": datasets.features.Sequence( | |
{"spans": datasets.Value("string"), "types": datasets.Value("string")} | |
) | |
# These are the features of your dataset like images, labels ... | |
} | |
), | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage="https://allennlp.org/drop", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO(drop): Downloads the data and defines the splits | |
# dl_manager is a datasets.download.DownloadManager that can be used to | |
# download and extract URLs | |
dl_dir = dl_manager.download_and_extract(_URL) | |
data_dir = os.path.join(dl_dir, "drop_dataset") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_train.json"), "split": "train"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_dev.json"), "split": "validation"}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
"""Yields examples.""" | |
# TODO(drop): Yields (key, example) tuples from the dataset | |
with open(filepath, mode="r", encoding="utf-8") as f: | |
data = json.load(f) | |
id_ = 0 | |
for i, (section_id, section) in enumerate(data.items()): | |
for j, qa in enumerate(section["qa_pairs"]): | |
example = { | |
"section_id": section_id, | |
"query_id": qa["query_id"], | |
"passage": section["passage"], | |
"question": qa["question"], | |
} | |
if split == "train": | |
answers = [qa["answer"]] | |
else: | |
answers = qa["validated_answers"] | |
try: | |
example["answers_spans"] = self.build_answers(answers) | |
yield id_, example | |
id_ += 1 | |
except AnswerParsingError: | |
# This is expected for 9 examples of train | |
# and 1 of validation. | |
continue | |
def _raise(message): | |
""" | |
Raise a custom AnswerParsingError, to be sure to only catch our own | |
errors. Messages are irrelavant for this script, but are written to | |
ease understanding the code. | |
""" | |
raise AnswerParsingError(message) | |
def build_answers(self, answers): | |
returned_answers = { | |
"spans": list(), | |
"types": list(), | |
} | |
for answer in answers: | |
date = DropDateObject(answer["date"]) | |
if answer["number"] != "": | |
# sanity checks | |
if date: | |
self._raise("This answer is both number and date!") | |
if len(answer["spans"]): | |
self._raise("This answer is both number and text!") | |
returned_answers["spans"].append(answer["number"]) | |
returned_answers["types"].append("number") | |
elif date: | |
# sanity check | |
if len(answer["spans"]): | |
self._raise("This answer is both date and text!") | |
returned_answers["spans"].append(str(date)) | |
returned_answers["types"].append("date") | |
# won't triger if len(answer['spans']) == 0 | |
for span in answer["spans"]: | |
# sanity checks | |
if answer["number"] != "": | |
self._raise("This answer is both text and number!") | |
if date: | |
self._raise("This answer is both text and date!") | |
returned_answers["spans"].append(span) | |
returned_answers["types"].append("span") | |
# sanity check | |
_len = len(returned_answers["spans"]) | |
if not _len: | |
self._raise("Empty answer.") | |
if any(len(l) != _len for _, l in returned_answers.items()): | |
self._raise("Something went wrong while parsing answer values/types") | |
return returned_answers | |