Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
"""TODO(drop): Add a description here.""" | |
from __future__ import absolute_import, division, print_function | |
import json | |
import os | |
import datasets | |
# TODO(drop): BibTeX citation | |
_CITATION = """\ | |
@inproceedings{Dua2019DROP, | |
author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner}, | |
title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs}, | |
booktitle={Proc. of NAACL}, | |
year={2019} | |
} | |
""" | |
# TODO(drop): | |
_DESCRIPTION = """\ | |
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs. | |
. DROP is a crowdsourced, adversarially-created, 96k-question benchmark, in which a system must resolve references in a | |
question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or | |
sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was | |
necessary for prior datasets. | |
""" | |
_URl = "https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip" | |
class Drop(datasets.GeneratorBasedBuilder): | |
"""TODO(drop): Short description of my dataset.""" | |
# TODO(drop): Set up version. | |
VERSION = datasets.Version("0.1.0") | |
def _info(self): | |
# TODO(drop): Specifies the datasets.DatasetInfo object | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# datasets.features.FeatureConnectors | |
features=datasets.Features( | |
{ | |
"passage": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"answers_spans": datasets.features.Sequence({"spans": datasets.Value("string")}) | |
# These are the features of your dataset like images, labels ... | |
} | |
), | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage="https://allennlp.org/drop", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO(drop): Downloads the data and defines the splits | |
# dl_manager is a datasets.download.DownloadManager that can be used to | |
# download and extract URLs | |
dl_dir = dl_manager.download_and_extract(_URl) | |
data_dir = os.path.join(dl_dir, "drop_dataset") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_train.json")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_dev.json")}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
# TODO(drop): Yields (key, example) tuples from the dataset | |
with open(filepath, encoding="utf-8") as f: | |
data = json.load(f) | |
for i, key in enumerate(data): | |
example = data[key] | |
qa_pairs = example["qa_pairs"] | |
for j, qa in enumerate(qa_pairs): | |
question = qa["question"] | |
answers = qa["answer"]["spans"] | |
yield str(i) + "_" + str(j), { | |
"passage": example["passage"], | |
"question": question, | |
"answers_spans": {"spans": answers}, | |
} | |