# Trainer At TRL we support PPO (Proximal Policy Optimisation) with an implementation that largely follows the structure introduced in the paper "Fine-Tuning Language Models from Human Preferences" by D. Ziegler et al. [[paper](https://huggingface.co/papers/1909.08593), [code](https://github.com/openai/lm-human-preferences)]. The Trainer and model classes are largely inspired from `transformers.Trainer` and `transformers.AutoModel` classes and adapted for RL. We also support a `RewardTrainer` that can be used to train a reward model. ## CPOConfig [[autodoc]] CPOConfig ## CPOTrainer [[autodoc]] CPOTrainer ## DDPOConfig [[autodoc]] DDPOConfig ## DDPOTrainer [[autodoc]] DDPOTrainer ## DPOTrainer [[autodoc]] DPOTrainer ## IterativeSFTTrainer [[autodoc]] IterativeSFTTrainer ## KTOConfig [[autodoc]] KTOConfig ## KTOTrainer [[autodoc]] KTOTrainer ## ORPOConfig [[autodoc]] ORPOConfig ## ORPOTrainer [[autodoc]] ORPOTrainer ## PPOConfig [[autodoc]] PPOConfig ## PPOTrainer [[autodoc]] PPOTrainer ## RewardConfig [[autodoc]] RewardConfig ## RewardTrainer [[autodoc]] RewardTrainer ## SFTTrainer [[autodoc]] SFTTrainer ## set_seed [[autodoc]] set_seed