# Iterative Trainer Iterative fine-tuning is a training method that enables to perform custom actions (generation and filtering for example) between optimization steps. In TRL we provide an easy-to-use API to fine-tune your models in an iterative way in just a few lines of code. ## Usage To get started quickly, instantiate an instance a model, and a tokenizer. ```python model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token trainer = IterativeSFTTrainer( model, tokenizer ) ``` You have the choice to either provide a list of strings or a list of tensors to the step function. #### Using a list of tensors as input: ```python inputs = { "input_ids": input_ids, "attention_mask": attention_mask } trainer.step(**inputs) ``` #### Using a list of strings as input: ```python inputs = { "texts": texts } trainer.step(**inputs) ``` For causal language models, labels will automatically be created from input_ids or from texts. When using sequence to sequence models you will have to provide your own labels or text_labels. ## IterativeTrainer [[autodoc]] IterativeSFTTrainer