DeepBindWeight / deepbind.py
thewall's picture
Update deepbind.py
989c0b7
"""
/*
Copyright (c) 2023, thewall.
All rights reserved.
BSD 3-clause license:
Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the
above copyright notice, this list of conditions
and the following disclaimer.
2. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions
and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the
names of its contributors may be used to endorse or
promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""
import os
import datasets
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
import pandas as pd
from typing import List
from functools import partial
DEEPBIND_MODEL_CONFIG = datasets.load_dataset(path="thewall/deepbindweight", split="all")
SELEX_CONFIG = pd.read_excel(DEEPBIND_MODEL_CONFIG[0]['selex'], index_col=0)
class DeepBind(nn.Module):
ALPHABET = "ATGCN"
ALPHABET_MAP = {key: i for i, key in enumerate(ALPHABET)}
ALPHABET_MAP["U"] = 1
ALPHABET_COMPLEMENT = "TACGN"
COMPLEMENT_ID_MAP = torch.IntTensor([1, 0, 3, 2, 4])
def __init__(self, reverse_complement=True, num_detectors=16, detector_len=24, has_avg_pooling=True, num_hidden=1,
tokenizer=None):
super(DeepBind, self).__init__()
self.reverse_complement = reverse_complement
self.num_detectors = num_detectors
self.detector_len = detector_len
self.has_avg_pooling = has_avg_pooling
self.num_hidden = num_hidden
self.build_embedding()
self.detectors = nn.Conv1d(4, num_detectors, detector_len)
if has_avg_pooling:
self.avg_pool = nn.AvgPool1d(detector_len)
self.max_pool = nn.MaxPool1d(detector_len)
fcs = [nn.Linear(num_detectors * 2 if self.has_avg_pooling else num_detectors, num_hidden)]
if num_hidden > 1:
fcs.append(nn.ReLU())
fcs.append(nn.Linear(num_hidden, 1))
self.fc = nn.Sequential(*fcs)
self.tokenizer = tokenizer if tokenizer is not None else self.get_tokenizer()
@classmethod
def get_tokenizer(cls):
from tokenizers import Tokenizer, models, decoders
tokenizer = Tokenizer(models.BPE(vocab=cls.ALPHABET_MAP, merges=[]))
tokenizer.decoder = decoders.ByteLevel()
return tokenizer
@classmethod
def complement_idxs_encode_batch(cls, idxs, reverse=False):
return torch.stack(list(map(partial(cls.complement_idxs_encode, reverse=reverse), idxs)))
@classmethod
def complement_idxs_encode(cls, idxs, reverse=False):
if reverse:
idxs = reversed(idxs)
return cls.COMPLEMENT_ID_MAP[idxs]
def build_embedding(self):
"""ATGC->ACGT:0321"""
embedding = torch.zeros(5, 4)
embedding[0, 0] = 1
embedding[1, 3] = 1
embedding[2, 2] = 1
embedding[3, 1] = 1
embedding[-1] = 0.25
self.embedding = nn.Embedding.from_pretrained(embedding, freeze=True)
return embedding
@property
def device(self):
return self.detectors.bias.device
def _load_detector(self, fobj):
# dtype = functools.partial(lambda x:torch.Tensor(eval(x))
dtype = lambda x: torch.Tensor(eval(x))
weight1 = self._load_param(fobj, "detectors", dtype).reshape(self.detector_len, 4, self.num_detectors)
biases1 = self._load_param(fobj, "thresholds", dtype)
# Tx4xC->Cx4xT
self.detectors.weight.data = weight1.permute(2, 1, 0).contiguous().to(device=self.detectors.weight.device)
self.detectors.bias.data = biases1.to(device=self.detectors.bias.device)
def _load_fc1(self, fobj):
num_hidden1 = self.num_detectors * 2 if self.has_avg_pooling else self.num_detectors
dtype = lambda x: torch.Tensor(np.array(eval(x)))
weight1 = self._load_param(fobj, "weights1", dtype).reshape(num_hidden1, self.num_hidden)
biases1 = self._load_param(fobj, "biases1", dtype)
self.fc[0].weight.data = weight1.T.contiguous().to(device=self.fc[0].weight.device)
self.fc[0].bias.data = biases1.to(device=self.fc[0].bias.device)
def _load_fc2(self, fobj):
dtype = lambda x: torch.Tensor(np.array(eval(x)))
weight2 = self._load_param(fobj, "weights2", dtype)
biases2 = self._load_param(fobj, "biases2", dtype)
assert not (weight2 is None and self.num_hidden > 1)
assert not (biases2 is None and self.num_hidden > 1)
if self.num_hidden > 1:
self.fc[2].weight.data = weight2.reshape(1, -1).to(device=self.fc[2].weight.device)
self.fc[2].bias.data = biases2.to(device=self.fc[2].bias.device)
@classmethod
def _load_param(cls, fobj, param_name, dtype):
line = fobj.readline().strip()
tmp = line.split("=")
assert tmp[0].strip() == param_name
if len(tmp) > 1 and len(tmp[1].strip()) > 0:
return dtype(tmp[1].strip())
@classmethod
def load_model(cls, sra_id="ERR173157", file=None, ID=None):
if file is None:
if ID is None:
data = SELEX_CONFIG
ID = data.loc[sra_id]["ID"]
file = os.path.join(DEEPBIND_MODEL_CONFIG['config'][0], f"{ID}.txt")
keys = [("reverse_complement", lambda x: bool(eval(x))), ("num_detectors", int), ("detector_len", int),
("has_avg_pooling", lambda x: bool(eval(x))), ("num_hidden", int)]
hparams = {}
with open(file) as fobj:
version = fobj.readline()[1:].strip()
for key in keys:
value = cls._load_param(fobj, key[0], key[1])
hparams[key[0]] = value
if hparams['num_hidden'] == 0:
hparams['num_hidden'] = 1
model = cls(**hparams)
model._load_detector(fobj)
model._load_fc1(fobj)
model._load_fc2(fobj)
print(f"load model from {file}")
return model
def inference(self, sequence: List[str], window_size=0, average_flag=False):
if isinstance(sequence, str):
sequence = [sequence]
ans = []
self.tokenizer.no_padding()
for seq in sequence:
inputs = torch.IntTensor(self.tokenizer.encode(seq).ids).unsqueeze(0).to(device=self.device)
score = self.test(inputs, window_size, average_flag).item()
ans.append(score)
return ans
@torch.no_grad()
def batch_inference(self, sequences: List[str], window_size=0, average_flag=False):
if isinstance(sequences, str):
sequences = [sequences]
self.tokenizer.enable_padding()
encodings = self.tokenizer.encode_batch(sequences)
ids = torch.Tensor([encoding.ids for encoding in encodings]).to(device=self.device)
mask = torch.BoolTensor([encoding.attention_mask for encoding in encodings]).to(device=self.device)
seq_len = mask.sum(dim=1)
score = self.batch_scan_model(ids, seq_len, window_size, average_flag)
if self.reverse_complement:
rev_seq = self.complement_idxs_encode_batch(ids.cpu().long(), reverse=True)
rev_seq = torch.Tensor(rev_seq).to(device=self.device).float()
rev_score = self.batch_scan_model(rev_seq, seq_len, window_size, average_flag)
score = torch.stack([rev_score, score], dim=-1).max(dim=-1)[0]
return score.cpu().tolist()
def batch_scan_model(self, ids, seq_len, window_size: int = 0, average_flag: bool = False):
if window_size < 1:
window_size = int(self.detector_len * 1.5)
scores = torch.zeros_like(seq_len).float()
masked = seq_len <= window_size
for idx in torch.where(masked)[0]:
scores[idx] = self.forward(ids[idx:idx + 1, :seq_len[idx]].int())
if torch.all(masked):
return scores
fold_ids = F.unfold(ids[~masked].unsqueeze(1).unsqueeze(1), kernel_size=(1, window_size), stride=1)
B, W, G = fold_ids.shape
fold_ids = fold_ids.permute(0, 2, 1).reshape(-1, W)
ans = self.forward(fold_ids.int())
ans = ans.reshape(B, G)
if average_flag:
valid_len = seq_len - window_size + 1
for idx, value in zip(torch.where(~masked)[0], ans):
scores[idx] = value[:valid_len[idx]].mean()
else:
unvalid_mask = torch.arange(G).unsqueeze(0).to(seq_len.device) >= (
seq_len[~masked] - window_size + 1).unsqueeze(1)
ans[unvalid_mask] = -torch.inf
scores[~masked] = ans.max(dim=1)[0]
return scores
@torch.no_grad()
def test(self, seq: torch.IntTensor, window_size=0, average_flag=False):
score = self.scan_model(seq, window_size, average_flag)
if self.reverse_complement:
rev_seq = self.complement_idxs_encode_batch(seq.cpu().long(), reverse=True)
rev_seq = torch.IntTensor(rev_seq).to(device=seq.device)
rev_score = self.scan_model(rev_seq, window_size, average_flag)
score = torch.cat([rev_score, score], dim=-1).max(dim=-1)[0]
return score
def scan_model(self, seq: torch.IntTensor, window_size: int = 0, average_flag: bool = False):
seq_len = seq.shape[1]
if window_size < 1:
window_size = int(self.detector_len * 1.5)
if seq_len <= window_size:
return self.forward(seq)
else:
scores = []
for i in range(0, seq_len - window_size + 1):
scores.append(self.forward(seq[:, i:i + window_size]))
scores = torch.stack(scores, dim=-1)
if average_flag:
return scores.mean(dim=-1)
else:
return scores.max(dim=-1)[0]
def forward(self, seq: torch.IntTensor):
seq = F.pad(seq, (self.detector_len - 1, self.detector_len - 1), value=4)
x = self.embedding(seq)
x = x.permute(0, 2, 1)
x = self.detectors(x)
x = torch.relu(x)
x = x.permute(0, 2, 1)
if self.has_avg_pooling:
x = torch.stack([torch.max(x, dim=1)[0], torch.mean(x, dim=1)], dim=-1)
x = torch.flatten(x, 1)
else:
x = torch.max(x, dim=1)[0]
x = x.squeeze(dim=-1)
x = self.fc(x)
return x
if __name__ == "__main__":
"""
AGGUAAUAAUUUGCAUGAAAUAACUUGGAGAGGAUAGC
AGACAGAGCUUCCAUCAGCGCUAGCAGCAGAGACCAUU
GAGGTTACGCGGCAAGATAA
TACCACTAGGGGGCGCCACC
To generate 16 predictions (4 models, 4 sequences), run
the deepbind executable as follows:
% deepbind example.ids < example.seq
D00210.001 D00120.001 D00410.003 D00328.003
7.451420 -0.166146 -0.408751 -0.026180
-0.155398 4.113817 0.516956 -0.248167
-0.140683 0.181295 5.885349 -0.026180
-0.174985 -0.152521 -0.379695 17.682623
"""
sequences = ["AGGUAAUAAUUUGCAUGAAAUAACUUGGAGAGGAUAGC",
"AGACAGAGCUUCCAUCAGCGCUAGCAGCAGAGACCAUU",
"GAGGTTACGCGGCAAGATAA",
"TACCACTAGGGGGCGCCACC"]
model = DeepBind.load_model(ID='D00410.003')
print(model.batch_inference(sequences))
import random
import time
from tqdm import tqdm
sequences = ["".join([random.choice("ATGC") for _ in range(40)]) for i in range(1000)]
def test_fn(sequences, fn):
start_time = time.time()
for start in tqdm(range(0, len(sequences), 256)):
batch = sequences[start: min(start + 256, len(sequences))]
fn(batch)
print(time.time() - start_time)
# test_fn(sequences, model.inference)
# test_fn(sequences, model.batch_inference)
model = model.cuda()
test_fn(sequences, model.batch_inference)
test_fn(sequences, model.inference)
test_fn(sequences, model.batch_inference)
test_fn(sequences, model.inference)