cyrilzhang
commited on
Commit
·
b0d21d5
1
Parent(s):
dbf2014
unify indentation
Browse files- automata.py +572 -580
automata.py
CHANGED
@@ -109,660 +109,652 @@ class AutomatonDataset(datasets.GeneratorBasedBuilder):
|
|
109 |
}
|
110 |
|
111 |
class Automaton:
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
if 'seed' in self.data_config:
|
119 |
-
self.np_rng = np.random.default_rng(self.data_config['seed'])
|
120 |
-
else:
|
121 |
-
self.np_rng = np.random.default_rng()
|
122 |
-
|
123 |
-
if 'length' not in data_config: # sequence length
|
124 |
-
data_config['length'] = 20
|
125 |
-
self.T = self.data_config['length']
|
126 |
-
|
127 |
-
if 'random_length' not in data_config:
|
128 |
-
data_config['random_length'] = 0
|
129 |
-
self.random_length = data_config['random_length']
|
130 |
-
|
131 |
-
self.__info__ = \
|
132 |
-
" - T (int): sequence length.\n" \
|
133 |
-
+ " - random_length (int in {0, 1}): whether to randomly sample a length per sample.\n"
|
134 |
-
|
135 |
-
def f(self, x):
|
136 |
-
"""
|
137 |
-
Get output sequence given an input seq
|
138 |
-
"""
|
139 |
-
raise NotImplementedError()
|
140 |
-
|
141 |
-
def sample(self):
|
142 |
-
raise NotImplementedError()
|
143 |
-
|
144 |
-
def sample_length(self):
|
145 |
-
if self.random_length:
|
146 |
-
return self.np_rng.choice(range(1, self.T+1))
|
147 |
-
return self.T
|
148 |
-
|
149 |
-
def help(self):
|
150 |
-
print(self.__info__)
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
super().__init__(data_config)
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
self.__info__ = " - prob1 (float in [0,1]): probability of token 1\n" \
|
166 |
-
+ self.__info__
|
167 |
|
168 |
-
|
169 |
-
|
|
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
super().__init__(data_config)
|
179 |
-
self.name = 'parity'
|
180 |
|
181 |
-
self
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
+ self.__info__
|
186 |
|
187 |
-
|
188 |
-
|
189 |
|
190 |
-
class
|
191 |
-
"""
|
192 |
-
Note: gridworld currently doesn't include a no-op.
|
193 |
-
"""
|
194 |
-
def __init__(self, data_config):
|
195 |
-
super().__init__(data_config)
|
196 |
-
|
197 |
-
if 'n' not in data_config:
|
198 |
-
data_config['n'] = 9
|
199 |
-
"""
|
200 |
-
NOTE: n is the number of states, and S is the id (0-indexing) of the rightmost state.
|
201 |
-
i.e. the states are 0,1,2,...,S, where S=n-1.
|
202 |
"""
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
if 'label_type' not in data_config:
|
207 |
-
# Options: state, parity, boundary
|
208 |
-
data_config['label_type'] = 'state'
|
209 |
-
self.label_type = data_config['label_type']
|
210 |
-
|
211 |
-
self.name = f'Grid{self.n}'
|
212 |
-
|
213 |
-
self.__info__ = f"1d Gridworld of n={self.n} states:\n" \
|
214 |
-
+ "- Inputs: binary strings, i.e. move left(0) or right(1)\n" \
|
215 |
-
+ "- Labels: depending on 'label_type'. \n" \
|
216 |
-
+ "- Config: \n" \
|
217 |
-
+ " - n (int): number of states; i.e. the states are 0,1,2,...,n-1.\n" \
|
218 |
-
+ " - label_type (str): choosing from the following options:\n" \
|
219 |
-
+ " - 'state' (default): the state id, i.e. 0 to n-1.\n" \
|
220 |
-
+ " - 'parity': the state id mod 2.\n" \
|
221 |
-
+ " - 'boundary': whether the current state is in {0, n-1} or not.\n" \
|
222 |
-
+ self.__info__
|
223 |
-
|
224 |
-
|
225 |
-
def f(self, x):
|
226 |
-
x = copy(x)
|
227 |
-
x[x == 0] = -1
|
228 |
-
if OLD_PY_VERSION:
|
229 |
-
# NOTE: for Python 3.7 or below, accumulate doesn't have the 'initial' argument.
|
230 |
-
x = np.concatenate([np.array([0]), x]).astype(np.int64)
|
231 |
-
states = list(itertools.accumulate(x, lambda a,b: max(min(a+b, self.S), 0)))
|
232 |
-
states = states[1:]
|
233 |
-
else:
|
234 |
-
states = list(itertools.accumulate(x, lambda a,b: max(min(a+b, self.S), 0), initial=0))
|
235 |
-
states = states[1:] # remove the 1st entry with is the (meaningless) initial value 0
|
236 |
-
return np.array(states).astype(np.int64)
|
237 |
|
|
|
|
|
|
|
|
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
if 'prob_abab_pos_sample' not in data_config:
|
245 |
-
# The probability of having a positive sequence, i.e. 010101010101...
|
246 |
-
data_config['prob_abab_pos_sample'] = 0.25
|
247 |
-
if 'label_type' not in data_config:
|
248 |
-
# Options: 'state', 'boundary'
|
249 |
-
data_config['label_type'] = 'state'
|
250 |
-
|
251 |
-
self.prob_abab_pos_sample = data_config['prob_abab_pos_sample']
|
252 |
-
self.label_type = data_config['label_type']
|
253 |
-
|
254 |
-
self.transition = np.array(
|
255 |
-
[[4, 1], # state 0
|
256 |
-
[2, 4], # state 1
|
257 |
-
[4, 3], # state 2
|
258 |
-
[0, 4], # state 3
|
259 |
-
[4, 4], # state 4
|
260 |
-
])
|
261 |
-
|
262 |
-
self.__info__ = "abab: an automaton with 4 states + 1 absorbing state:\n" \
|
263 |
-
+ "- Inputs: binary strings\n" \
|
264 |
-
+ "- Labels: depending on 'label_type'.\n" \
|
265 |
-
+ "- Config:\n" \
|
266 |
-
+ " - prob_abab_pos_sample (float in [0,1]): probability of having a 'positive' sequence, i.e. 01010101010...\n" \
|
267 |
-
+ " - label_type (str): choosing from the following options:\n" \
|
268 |
-
+ " - 'state' (default): the state id.\n" \
|
269 |
-
+ " - 'boundary': whether the state is in state 3 (the states are 0,1,2,3).\n" \
|
270 |
-
+ self.__info__
|
271 |
-
|
272 |
-
def f(self, x):
|
273 |
-
labels = []
|
274 |
-
curr_state = 3
|
275 |
-
for each in x:
|
276 |
-
curr_state = self.transition[curr_state, each]
|
277 |
-
labels += curr_state,
|
278 |
-
labels = np.array(labels).astype(np.int64)
|
279 |
-
if self.label_type == 'boundary':
|
280 |
-
labels = (labels == 3).astype(np.int64)
|
281 |
-
return labels
|
282 |
-
|
283 |
-
def sample(self):
|
284 |
-
pos_sample = self.np_rng.random() < self.prob_abab_pos_sample
|
285 |
-
if pos_sample:
|
286 |
-
T = self.sample_length()
|
287 |
-
x = [0,1,0,1] * (T//4)
|
288 |
-
x += [0,1,0,1][:(T%4)]
|
289 |
-
x = np.array(x)
|
290 |
-
return x, self.f(x)
|
291 |
-
else:
|
292 |
-
return super().sample()
|
293 |
|
|
|
|
|
294 |
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
if 'n_addends' not in data_config:
|
301 |
-
data_config['n_addends'] = 2
|
302 |
-
self.n_addends = data_config['n_addends']
|
303 |
-
self.addend_scales = np.array([2**i for i in range(self.n_addends)]).reshape(-1, 1)
|
304 |
-
|
305 |
-
if 'label_type' not in data_config:
|
306 |
-
data_config['label_type'] = 'state'
|
307 |
-
self.label_type = data_config['label_type']
|
308 |
-
|
309 |
-
self.__info__ = f'Adder of n={self.n_addends} binary numbers:\n' \
|
310 |
-
+f"- Inputs: {self.n_addends} binary numbers, encoded as the int for the {self.n_addends}-bit binary number.\n" \
|
311 |
-
+ "- Labels: depending on the label_type.\n" \
|
312 |
-
+ "- Config:\n" \
|
313 |
-
+ " - n_addends (int): number of binary numbers to be added; default as 2.\n" \
|
314 |
-
+ " - label_type (str): choosing from the following options: \n" \
|
315 |
-
+f" - 'state': the state id, i.e. the int for the base-{self.n_addends} int corresponding to the number (carry, digit). \n" \
|
316 |
-
+f" - 'digit': the current output base-{self.n_addends} digit, without the carry. \n" \
|
317 |
-
+ " - 'position': the current carry bit.\n" \
|
318 |
-
+ self.__info__
|
319 |
-
|
320 |
-
|
321 |
-
def f(self, x):
|
322 |
-
outputs, carries = [], []
|
323 |
-
carry = 0
|
324 |
-
T = x.shape[-1]
|
325 |
-
for i in range(T):
|
326 |
-
curr_sum = x[:, i].sum() + carry
|
327 |
-
# NOTE: 'mod n_addends' makes sure the carry is binary
|
328 |
-
output, carry = curr_sum % self.n_addends, curr_sum // self.n_addends
|
329 |
-
outputs += output,
|
330 |
-
carries += carry,
|
331 |
-
outputs = np.array(outputs).astype(np.int64)
|
332 |
-
carries = np.array(carries).astype(np.int64)
|
333 |
-
|
334 |
-
if self.label_type == 'state':
|
335 |
-
return outputs + self.n_addends*carries
|
336 |
-
elif self.label_type == 'digit':
|
337 |
-
return outputs
|
338 |
-
elif self.label_type == 'carry':
|
339 |
-
return carries
|
340 |
-
|
341 |
-
def sample_addend(self, T):
|
342 |
-
a = self.np_rng.binomial(1, self.prob1, size=T)
|
343 |
-
return a
|
344 |
-
|
345 |
-
def sample(self):
|
346 |
-
T = self.sample_length()
|
347 |
-
x = np.stack([self.sample_addend(T) for _ in range(self.n_addends)])
|
348 |
-
# Pad the most significant bit (rightmost position, i.e. we're reversing the number) with 0 to handle the potential carry
|
349 |
-
pad = np.zeros((self.n_addends, 1))
|
350 |
-
x = np.concatenate([x, pad], 1)
|
351 |
-
|
352 |
-
x_encode = (self.addend_scales * x).sum(0)
|
353 |
-
return x_encode, self.f(x)
|
354 |
|
|
|
|
|
|
|
|
|
355 |
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
if 'n' not in data_config:
|
362 |
-
data_config['n'] = 2
|
363 |
-
|
364 |
-
self.n_states = data_config['n']
|
365 |
-
self.n_actions = self.n_states + 1
|
366 |
-
self.transition = np.array([list(range(self.n_actions))] + [[i+1]*self.n_actions for i in range(self.n_states)]).T
|
367 |
|
368 |
-
|
369 |
-
|
370 |
-
+ "- Labels: the state id.\n" \
|
371 |
-
+ "- Config:\n" \
|
372 |
-
+ " - n (int): number of write states; i.e. the states are 1,2,...,n, plus a default start state 0.\n" \
|
373 |
-
+ self.__info__
|
374 |
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
|
390 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
|
392 |
|
393 |
-
class
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
+ " e.g. if the current permutation is [2,1,4,3], then 'first_chair' is 2.\n" \
|
415 |
-
+ self.__info__
|
416 |
|
417 |
-
|
418 |
-
|
419 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
|
421 |
-
def f(self, x):
|
422 |
-
curr_state = np.arange(self.n)
|
423 |
-
labels = []
|
424 |
-
for action_id in x:
|
425 |
-
curr_state = self.actions[action_id].dot(curr_state)
|
426 |
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
|
432 |
-
|
|
|
|
|
|
|
|
|
|
|
433 |
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
|
438 |
-
|
|
|
|
|
|
|
|
|
439 |
|
|
|
|
|
|
|
|
|
|
|
440 |
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
- parity (whether a state is even): this may need packages (e.g. Permutation from sympy)
|
445 |
-
- position / toggle: for S3 ~ D6, we can add labels for substructures as in Dihedral groups.
|
446 |
-
"""
|
447 |
-
def __init__(self, data_config):
|
448 |
-
super().__init__(data_config)
|
449 |
|
450 |
-
|
451 |
|
452 |
-
"""
|
453 |
-
Get states
|
454 |
-
"""
|
455 |
-
self.state_encode = lambda state: ''.join([str(int(each)) for each in state])
|
456 |
-
self.state_label_map = {}
|
457 |
-
for si, state in enumerate(itertools.permutations(range(self.n))):
|
458 |
-
enc = self.state_encode(state)
|
459 |
-
self.state_label_map[enc] = si
|
460 |
|
|
|
461 |
"""
|
462 |
-
|
|
|
|
|
463 |
"""
|
464 |
-
|
465 |
-
|
466 |
-
self.n_actions = data_config['n_actions']
|
467 |
-
self.actions = {0: np.eye(self.n)}
|
468 |
-
# shift all elements to the right by 1
|
469 |
-
shift_idx = list(range(1, self.n)) + [0]
|
470 |
-
self.actions[1] = np.eye(self.n)[shift_idx]
|
471 |
-
# swap the first 2 elements
|
472 |
-
shift_idx = [1, 0] + list(range(2, self.n))
|
473 |
-
self.actions[2] = np.eye(self.n)[shift_idx]
|
474 |
-
|
475 |
-
if self.n_actions > 3:
|
476 |
-
# add permutations in the order given by itertools.permutations
|
477 |
-
self.all_permutations = list(itertools.permutations(range(self.n)))[1:]
|
478 |
-
cnt = 2
|
479 |
-
for each in self.all_permutations:
|
480 |
-
action = np.eye(self.n)[list(each)]
|
481 |
-
if np.linalg.norm(action - self.actions[0]) == 0:
|
482 |
-
continue
|
483 |
-
elif np.linalg.norm(action - self.actions[1]) == 0:
|
484 |
-
continue
|
485 |
-
self.actions[cnt] = action
|
486 |
-
cnt += 1
|
487 |
-
if cnt == self.n_actions: break
|
488 |
-
|
489 |
-
self.__info__ = f"Symmetric group on n={self.n} objects:\n" \
|
490 |
-
+f"- Inputs: tokens are either 0 (no-op), or 1:{self.n_actions} (corresponding to {self.n_actions} permutations).\n" \
|
491 |
-
+ "- Labels: depending on 'label_type'.\n" \
|
492 |
-
+ "- Config:\n" \
|
493 |
-
+ " - n (int): number of objects, i.e. there are n! states.\n" \
|
494 |
-
+ " - n_actions (int): number of permutations to include in the generator set;\n" \
|
495 |
-
+ " the ordering is given by itertools.permutations, and the first 'n_actions' permutations will be included.\n" \
|
496 |
-
+ self.__info__
|
497 |
|
|
|
498 |
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
|
|
|
|
505 |
|
506 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
507 |
|
508 |
-
"""
|
509 |
-
Get states
|
510 |
-
"""
|
511 |
-
self.state_label_map = {}
|
512 |
-
self.state_encode = lambda state: ''.join([str(int(each)) for each in state])
|
513 |
-
cnt = 0
|
514 |
-
for si, state in enumerate(itertools.permutations(range(self.n))):
|
515 |
-
if not Permutation(state).is_even:
|
516 |
-
continue
|
517 |
-
enc = self.state_encode(state)
|
518 |
-
self.state_label_map[enc] = cnt
|
519 |
-
cnt += 1
|
520 |
|
|
|
521 |
"""
|
522 |
-
|
523 |
"""
|
524 |
-
|
525 |
-
|
526 |
-
# (1, 2, idx)
|
527 |
-
shift_idx = list(range(self.n))
|
528 |
-
shift_idx[0],shift_idx[1], shift_idx[idx] = shift_idx[1], shift_idx[idx], shift_idx[0]
|
529 |
-
self.actions[idx-1] = np.eye(self.n)[shift_idx]
|
530 |
-
self.n_actions = len(self.actions)
|
531 |
|
532 |
-
|
533 |
-
+f"- Inputs: tokens from 0 to n-3, corresponding to all 3-cycles of the form (12x).\n" \
|
534 |
-
+ "- Labels: depending on 'label_type'.\n" \
|
535 |
-
+ "- Config:\n" \
|
536 |
-
+ " - n (int): number of objects, i.e. there are n!/2 states.\n" \
|
537 |
-
+ self.__info__
|
538 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
539 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
540 |
|
541 |
|
542 |
class CyclicAutomaton(Automaton):
|
543 |
-
|
544 |
-
|
545 |
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
|
570 |
-
|
571 |
-
|
572 |
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
|
577 |
-
|
578 |
|
579 |
|
580 |
class DihedralAutomaton(Automaton):
|
581 |
-
|
582 |
-
|
583 |
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
def sample(self):
|
663 |
-
T = self.sample_length()
|
664 |
-
x = self.np_rng.choice(range(self.n_actions), replace=True, size=T)
|
665 |
|
666 |
-
|
|
|
|
|
667 |
|
|
|
668 |
|
669 |
|
670 |
class QuaternionAutomaton(Automaton):
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
|
|
703 |
|
704 |
|
705 |
class PermutationResetAutomaton(Automaton):
|
706 |
-
|
707 |
-
|
708 |
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
|
753 |
|
754 |
|
755 |
dataset_map = {
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
|
|
109 |
}
|
110 |
|
111 |
class Automaton:
|
112 |
+
"""
|
113 |
+
This is a parent class that must be inherited.
|
114 |
+
"""
|
115 |
+
def __init__(self, data_config):
|
116 |
+
self.data_config = data_config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
if 'seed' in self.data_config:
|
119 |
+
self.np_rng = np.random.default_rng(self.data_config['seed'])
|
120 |
+
else:
|
121 |
+
self.np_rng = np.random.default_rng()
|
122 |
|
123 |
+
if 'length' not in data_config: # sequence length
|
124 |
+
data_config['length'] = 20
|
125 |
+
self.T = self.data_config['length']
|
|
|
126 |
|
127 |
+
if 'random_length' not in data_config:
|
128 |
+
data_config['random_length'] = 0
|
129 |
+
self.random_length = data_config['random_length']
|
|
|
|
|
130 |
|
131 |
+
self.__info__ = \
|
132 |
+
" - T (int): sequence length.\n" \
|
133 |
+
+ " - random_length (int in {0, 1}): whether to randomly sample a length per sample.\n"
|
134 |
|
135 |
+
def f(self, x):
|
136 |
+
"""
|
137 |
+
Get output sequence given an input seq
|
138 |
+
"""
|
139 |
+
raise NotImplementedError()
|
140 |
|
141 |
+
def sample(self):
|
142 |
+
raise NotImplementedError()
|
|
|
|
|
143 |
|
144 |
+
def sample_length(self):
|
145 |
+
if self.random_length:
|
146 |
+
return self.np_rng.choice(range(1, self.T+1))
|
147 |
+
return self.T
|
|
|
148 |
|
149 |
+
def help(self):
|
150 |
+
print(self.__info__)
|
151 |
|
152 |
+
class BinaryInputAutomaton(Automaton):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
"""
|
154 |
+
This is a parent class that must be inherited.
|
155 |
+
Subclasses: ParityAutomaton, GridworldAutomaton, ABABAutomaton
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
+
TODO: sample sequences with a given number of 1s
|
158 |
+
"""
|
159 |
+
def __init__(self, data_config):
|
160 |
+
super().__init__(data_config)
|
161 |
|
162 |
+
if 'prob1' not in data_config:
|
163 |
+
data_config['prob1'] = 0.5
|
164 |
+
self.prob1 = data_config['prob1']
|
165 |
+
self.__info__ = " - prob1 (float in [0,1]): probability of token 1\n" \
|
166 |
+
+ self.__info__
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
def f(self, x):
|
169 |
+
raise NotImplementedError()
|
170 |
|
171 |
+
def sample(self):
|
172 |
+
T = self.sample_length()
|
173 |
+
x = self.np_rng.binomial(1, self.prob1, size=T)
|
174 |
+
return x, self.f(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
+
class ParityAutomaton(BinaryInputAutomaton):
|
177 |
+
def __init__(self, data_config):
|
178 |
+
super().__init__(data_config)
|
179 |
+
self.name = 'parity'
|
180 |
|
181 |
+
self.__info__ = "Parity machine with 2 states: \n" \
|
182 |
+
+ "- Inputs: binary strings\n" \
|
183 |
+
+ "- Labels: binary strings of the partial parity\n" \
|
184 |
+
+ "- Config: \n" \
|
185 |
+
+ self.__info__
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
+
def f(self, x):
|
188 |
+
return np.cumsum(x) % 2
|
|
|
|
|
|
|
|
|
189 |
|
190 |
+
class GridworldAutomaton(BinaryInputAutomaton):
|
191 |
+
"""
|
192 |
+
Note: gridworld currently doesn't include a no-op.
|
193 |
+
"""
|
194 |
+
def __init__(self, data_config):
|
195 |
+
super().__init__(data_config)
|
196 |
|
197 |
+
if 'n' not in data_config:
|
198 |
+
data_config['n'] = 9
|
199 |
+
"""
|
200 |
+
NOTE: n is the number of states, and S is the id (0-indexing) of the rightmost state.
|
201 |
+
i.e. the states are 0,1,2,...,S, where S=n-1.
|
202 |
+
"""
|
203 |
+
self.n = data_config['n']
|
204 |
+
self.S = self.n - 1
|
205 |
+
|
206 |
+
if 'label_type' not in data_config:
|
207 |
+
# Options: state, parity, boundary
|
208 |
+
data_config['label_type'] = 'state'
|
209 |
+
self.label_type = data_config['label_type']
|
210 |
+
|
211 |
+
self.name = f'Grid{self.n}'
|
212 |
+
|
213 |
+
self.__info__ = f"1d Gridworld of n={self.n} states:\n" \
|
214 |
+
+ "- Inputs: binary strings, i.e. move left(0) or right(1)\n" \
|
215 |
+
+ "- Labels: depending on 'label_type'. \n" \
|
216 |
+
+ "- Config: \n" \
|
217 |
+
+ " - n (int): number of states; i.e. the states are 0,1,2,...,n-1.\n" \
|
218 |
+
+ " - label_type (str): choosing from the following options:\n" \
|
219 |
+
+ " - 'state' (default): the state id, i.e. 0 to n-1.\n" \
|
220 |
+
+ " - 'parity': the state id mod 2.\n" \
|
221 |
+
+ " - 'boundary': whether the current state is in {0, n-1} or not.\n" \
|
222 |
+
+ self.__info__
|
223 |
+
|
224 |
+
def f(self, x):
|
225 |
+
x = copy(x)
|
226 |
+
x[x == 0] = -1
|
227 |
+
if OLD_PY_VERSION:
|
228 |
+
# NOTE: for Python 3.7 or below, accumulate doesn't have the 'initial' argument.
|
229 |
+
x = np.concatenate([np.array([0]), x]).astype(np.int64)
|
230 |
+
states = list(itertools.accumulate(x, lambda a,b: max(min(a+b, self.S), 0)))
|
231 |
+
states = states[1:]
|
232 |
+
else:
|
233 |
+
states = list(itertools.accumulate(x, lambda a,b: max(min(a+b, self.S), 0), initial=0))
|
234 |
+
states = states[1:] # remove the 1st entry with is the (meaningless) initial value 0
|
235 |
+
return np.array(states).astype(np.int64)
|
236 |
|
237 |
|
238 |
+
class ABABAutomaton(BinaryInputAutomaton):
|
239 |
+
def __init__(self, data_config):
|
240 |
+
super().__init__(data_config)
|
241 |
+
self.name = 'abab'
|
242 |
+
|
243 |
+
if 'prob_abab_pos_sample' not in data_config:
|
244 |
+
# The probability of having a positive sequence, i.e. 010101010101...
|
245 |
+
data_config['prob_abab_pos_sample'] = 0.25
|
246 |
+
if 'label_type' not in data_config:
|
247 |
+
# Options: 'state', 'boundary'
|
248 |
+
data_config['label_type'] = 'state'
|
249 |
+
|
250 |
+
self.prob_abab_pos_sample = data_config['prob_abab_pos_sample']
|
251 |
+
self.label_type = data_config['label_type']
|
252 |
+
|
253 |
+
self.transition = np.array(
|
254 |
+
[[4, 1], # state 0
|
255 |
+
[2, 4], # state 1
|
256 |
+
[4, 3], # state 2
|
257 |
+
[0, 4], # state 3
|
258 |
+
[4, 4], # state 4
|
259 |
+
])
|
260 |
+
|
261 |
+
self.__info__ = "abab: an automaton with 4 states + 1 absorbing state:\n" \
|
262 |
+
+ "- Inputs: binary strings\n" \
|
263 |
+
+ "- Labels: depending on 'label_type'.\n" \
|
264 |
+
+ "- Config:\n" \
|
265 |
+
+ " - prob_abab_pos_sample (float in [0,1]): probability of having a 'positive' sequence, i.e. 01010101010...\n" \
|
266 |
+
+ " - label_type (str): choosing from the following options:\n" \
|
267 |
+
+ " - 'state' (default): the state id.\n" \
|
268 |
+
+ " - 'boundary': whether the state is in state 3 (the states are 0,1,2,3).\n" \
|
269 |
+
+ self.__info__
|
270 |
+
|
271 |
+
def f(self, x):
|
272 |
+
labels = []
|
273 |
+
curr_state = 3
|
274 |
+
for each in x:
|
275 |
+
curr_state = self.transition[curr_state, each]
|
276 |
+
labels += curr_state,
|
277 |
+
labels = np.array(labels).astype(np.int64)
|
278 |
+
if self.label_type == 'boundary':
|
279 |
+
labels = (labels == 3).astype(np.int64)
|
280 |
+
return labels
|
281 |
+
|
282 |
+
def sample(self):
|
283 |
+
pos_sample = self.np_rng.random() < self.prob_abab_pos_sample
|
284 |
+
if pos_sample:
|
285 |
+
T = self.sample_length()
|
286 |
+
x = [0,1,0,1] * (T//4)
|
287 |
+
x += [0,1,0,1][:(T%4)]
|
288 |
+
x = np.array(x)
|
289 |
+
return x, self.f(x)
|
290 |
+
else:
|
291 |
+
return super().sample()
|
292 |
|
293 |
|
294 |
+
class AdderAutomaton(BinaryInputAutomaton):
|
295 |
+
def __init__(self, data_config):
|
296 |
+
super().__init__(data_config)
|
297 |
+
self.name = 'addition'
|
298 |
+
|
299 |
+
if 'n_addends' not in data_config:
|
300 |
+
data_config['n_addends'] = 2
|
301 |
+
self.n_addends = data_config['n_addends']
|
302 |
+
self.addend_scales = np.array([2**i for i in range(self.n_addends)]).reshape(-1, 1)
|
303 |
+
|
304 |
+
if 'label_type' not in data_config:
|
305 |
+
data_config['label_type'] = 'state'
|
306 |
+
self.label_type = data_config['label_type']
|
307 |
+
|
308 |
+
self.__info__ = f'Adder of n={self.n_addends} binary numbers:\n' \
|
309 |
+
+f"- Inputs: {self.n_addends} binary numbers, encoded as the int for the {self.n_addends}-bit binary number.\n" \
|
310 |
+
+ "- Labels: depending on the label_type.\n" \
|
311 |
+
+ "- Config:\n" \
|
312 |
+
+ " - n_addends (int): number of binary numbers to be added; default as 2.\n" \
|
313 |
+
+ " - label_type (str): choosing from the following options: \n" \
|
314 |
+
+f" - 'state': the state id, i.e. the int for the base-{self.n_addends} int corresponding to the number (carry, digit). \n" \
|
315 |
+
+f" - 'digit': the current output base-{self.n_addends} digit, without the carry. \n" \
|
316 |
+
+ " - 'position': the current carry bit.\n" \
|
317 |
+
+ self.__info__
|
318 |
+
|
319 |
+
def f(self, x):
|
320 |
+
outputs, carries = [], []
|
321 |
+
carry = 0
|
322 |
+
T = x.shape[-1]
|
323 |
+
for i in range(T):
|
324 |
+
curr_sum = x[:, i].sum() + carry
|
325 |
+
# NOTE: 'mod n_addends' makes sure the carry is binary
|
326 |
+
output, carry = curr_sum % self.n_addends, curr_sum // self.n_addends
|
327 |
+
outputs += output,
|
328 |
+
carries += carry,
|
329 |
+
outputs = np.array(outputs).astype(np.int64)
|
330 |
+
carries = np.array(carries).astype(np.int64)
|
331 |
+
|
332 |
+
if self.label_type == 'state':
|
333 |
+
return outputs + self.n_addends*carries
|
334 |
+
elif self.label_type == 'digit':
|
335 |
+
return outputs
|
336 |
+
elif self.label_type == 'carry':
|
337 |
+
return carries
|
338 |
+
|
339 |
+
def sample_addend(self, T):
|
340 |
+
a = self.np_rng.binomial(1, self.prob1, size=T)
|
341 |
+
return a
|
342 |
+
|
343 |
+
def sample(self):
|
344 |
+
T = self.sample_length()
|
345 |
+
x = np.stack([self.sample_addend(T) for _ in range(self.n_addends)])
|
346 |
+
# Pad the most significant bit (rightmost position, i.e. we're reversing the number) with 0 to handle the potential carry
|
347 |
+
pad = np.zeros((self.n_addends, 1))
|
348 |
+
x = np.concatenate([x, pad], 1)
|
349 |
+
|
350 |
+
x_encode = (self.addend_scales * x).sum(0)
|
351 |
+
return x_encode, self.f(x)
|
352 |
|
353 |
+
class FlipFlopAutomaton(Automaton):
|
354 |
+
def __init__(self, data_config):
|
355 |
+
super().__init__(data_config)
|
356 |
+
self.name = 'flipflop'
|
|
|
|
|
357 |
|
358 |
+
if 'n' not in data_config:
|
359 |
+
data_config['n'] = 2
|
360 |
+
|
361 |
+
self.n_states = data_config['n']
|
362 |
+
self.n_actions = self.n_states + 1
|
363 |
+
self.transition = np.array([list(range(self.n_actions))] + [[i+1]*self.n_actions for i in range(self.n_states)]).T
|
364 |
+
|
365 |
+
self.__info__ = f"Flipflop with n={self.n_states} states:\n" \
|
366 |
+
+f"- Inputs: tokens are either 0 (read) or 1:{self.n} (write).\n" \
|
367 |
+
+ "- Labels: the state id.\n" \
|
368 |
+
+ "- Config:\n" \
|
369 |
+
+ " - n (int): number of write states; i.e. the states are 1,2,...,n, plus a default start state 0.\n" \
|
370 |
+
+ self.__info__
|
371 |
+
|
372 |
+
def f(self, x):
|
373 |
+
state, states = 0, []
|
374 |
+
for action_id in x:
|
375 |
+
state = self.transition[state, action_id]
|
376 |
+
states += state,
|
377 |
+
return np.array(states)
|
378 |
+
|
379 |
+
def sample(self):
|
380 |
+
T = self.sample_length()
|
381 |
+
rand = self.np_rng.uniform(size=T)
|
382 |
+
nonzero_pos = (rand < 0.5).astype(np.int64)
|
383 |
+
writes = self.np_rng.choice(range(1, self.n_states+1), size=T)
|
384 |
+
x = writes * nonzero_pos
|
385 |
+
return x, self.f(x)
|
386 |
|
|
|
|
|
|
|
|
|
|
|
387 |
|
388 |
+
class PermutationAutomaton(Automaton):
|
389 |
+
"""
|
390 |
+
This is a parent class that must be inherited.
|
391 |
+
Subclasses: SymmetricAutomaton, AlternatingAutomaton
|
392 |
+
"""
|
393 |
+
def __init__(self, data_config):
|
394 |
+
super().__init__(data_config)
|
395 |
+
|
396 |
+
if 'n' not in data_config:
|
397 |
+
data_config['n'] = 5
|
398 |
+
if 'label_type' not in data_config:
|
399 |
+
# Options: 'state', 'first_chair'
|
400 |
+
data_config['label_type'] = 'state'
|
401 |
+
|
402 |
+
self.n = data_config['n'] # the symmetric group Sn
|
403 |
+
self.label_type = data_config['label_type']
|
404 |
|
405 |
+
self.__info__ = \
|
406 |
+
" - label_type (str): choosing from the following options:\n" \
|
407 |
+
+ " - 'state' (default): the state id.\n" \
|
408 |
+
+ " - 'first_chair': the element in the first position of the permutation.\n" \
|
409 |
+
+ " e.g. if the current permutation is [2,1,4,3], then 'first_chair' is 2.\n" \
|
410 |
+
+ self.__info__
|
411 |
|
412 |
+
def get_state_label(self, state):
|
413 |
+
enc = self.state_encode(state)
|
414 |
+
return self.state_label_map[enc]
|
415 |
|
416 |
+
def f(self, x):
|
417 |
+
curr_state = np.arange(self.n)
|
418 |
+
labels = []
|
419 |
+
for action_id in x:
|
420 |
+
curr_state = self.actions[action_id].dot(curr_state)
|
421 |
|
422 |
+
if self.label_type == 'state':
|
423 |
+
labels += self.get_state_label(curr_state),
|
424 |
+
elif self.label_type == 'first_chair':
|
425 |
+
labels += curr_state[0],
|
426 |
+
return np.array(labels)
|
427 |
|
428 |
+
def sample(self):
|
429 |
+
T = self.sample_length()
|
430 |
+
x = self.np_rng.choice(range(self.n_actions), replace=True, size=T)
|
|
|
|
|
|
|
|
|
|
|
431 |
|
432 |
+
return x, self.f(x)
|
433 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
|
435 |
+
class SymmetricAutomaton(PermutationAutomaton):
|
436 |
"""
|
437 |
+
TODO: add options for labels as functions of states
|
438 |
+
- parity (whether a state is even): this may need packages (e.g. Permutation from sympy)
|
439 |
+
- position / toggle: for S3 ~ D6, we can add labels for substructures as in Dihedral groups.
|
440 |
"""
|
441 |
+
def __init__(self, data_config):
|
442 |
+
super().__init__(data_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
443 |
|
444 |
+
self.name = f'S{self.n}'
|
445 |
|
446 |
+
"""
|
447 |
+
Get states
|
448 |
+
"""
|
449 |
+
self.state_encode = lambda state: ''.join([str(int(each)) for each in state])
|
450 |
+
self.state_label_map = {}
|
451 |
+
for si, state in enumerate(itertools.permutations(range(self.n))):
|
452 |
+
enc = self.state_encode(state)
|
453 |
+
self.state_label_map[enc] = si
|
454 |
|
455 |
+
"""
|
456 |
+
Get actions (3 defaults: id, shift-by-1, swap-first-two)
|
457 |
+
"""
|
458 |
+
if 'n_actions' not in data_config:
|
459 |
+
data_config['n_actions'] = 3
|
460 |
+
self.n_actions = data_config['n_actions']
|
461 |
+
self.actions = {0: np.eye(self.n)}
|
462 |
+
# shift all elements to the right by 1
|
463 |
+
shift_idx = list(range(1, self.n)) + [0]
|
464 |
+
self.actions[1] = np.eye(self.n)[shift_idx]
|
465 |
+
# swap the first 2 elements
|
466 |
+
shift_idx = [1, 0] + list(range(2, self.n))
|
467 |
+
self.actions[2] = np.eye(self.n)[shift_idx]
|
468 |
+
|
469 |
+
if self.n_actions > 3:
|
470 |
+
# add permutations in the order given by itertools.permutations
|
471 |
+
self.all_permutations = list(itertools.permutations(range(self.n)))[1:]
|
472 |
+
cnt = 2
|
473 |
+
for each in self.all_permutations:
|
474 |
+
action = np.eye(self.n)[list(each)]
|
475 |
+
if np.linalg.norm(action - self.actions[0]) == 0:
|
476 |
+
continue
|
477 |
+
elif np.linalg.norm(action - self.actions[1]) == 0:
|
478 |
+
continue
|
479 |
+
self.actions[cnt] = action
|
480 |
+
cnt += 1
|
481 |
+
if cnt == self.n_actions: break
|
482 |
+
|
483 |
+
self.__info__ = f"Symmetric group on n={self.n} objects:\n" \
|
484 |
+
+f"- Inputs: tokens are either 0 (no-op), or 1:{self.n_actions} (corresponding to {self.n_actions} permutations).\n" \
|
485 |
+
+ "- Labels: depending on 'label_type'.\n" \
|
486 |
+
+ "- Config:\n" \
|
487 |
+
+ " - n (int): number of objects, i.e. there are n! states.\n" \
|
488 |
+
+ " - n_actions (int): number of permutations to include in the generator set;\n" \
|
489 |
+
+ " the ordering is given by itertools.permutations, and the first 'n_actions' permutations will be included.\n" \
|
490 |
+
+ self.__info__
|
491 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
492 |
|
493 |
+
class AlternatingAutomaton(PermutationAutomaton):
|
494 |
"""
|
495 |
+
TODO: other choices of generators (currently using (12x))?
|
496 |
"""
|
497 |
+
def __init__(self, data_config):
|
498 |
+
super().__init__(data_config)
|
|
|
|
|
|
|
|
|
|
|
499 |
|
500 |
+
self.name = f'A{self.n}'
|
|
|
|
|
|
|
|
|
|
|
501 |
|
502 |
+
"""
|
503 |
+
Get states
|
504 |
+
"""
|
505 |
+
self.state_label_map = {}
|
506 |
+
self.state_encode = lambda state: ''.join([str(int(each)) for each in state])
|
507 |
+
cnt = 0
|
508 |
+
for si, state in enumerate(itertools.permutations(range(self.n))):
|
509 |
+
if not Permutation(state).is_even:
|
510 |
+
continue
|
511 |
+
enc = self.state_encode(state)
|
512 |
+
self.state_label_map[enc] = cnt
|
513 |
+
cnt += 1
|
514 |
|
515 |
+
"""
|
516 |
+
Get actions: all 3 cycles of the form (12x)
|
517 |
+
"""
|
518 |
+
self.actions = {0: np.eye(self.n)}
|
519 |
+
for idx in range(2, self.n):
|
520 |
+
# (1, 2, idx)
|
521 |
+
shift_idx = list(range(self.n))
|
522 |
+
shift_idx[0],shift_idx[1], shift_idx[idx] = shift_idx[1], shift_idx[idx], shift_idx[0]
|
523 |
+
self.actions[idx-1] = np.eye(self.n)[shift_idx]
|
524 |
+
self.n_actions = len(self.actions)
|
525 |
+
|
526 |
+
self.__info__ = f"Alternating group on n={self.n} objects:\n" \
|
527 |
+
+f"- Inputs: tokens from 0 to n-3, corresponding to all 3-cycles of the form (12x).\n" \
|
528 |
+
+ "- Labels: depending on 'label_type'.\n" \
|
529 |
+
+ "- Config:\n" \
|
530 |
+
+ " - n (int): number of objects, i.e. there are n!/2 states.\n" \
|
531 |
+
+ self.__info__
|
532 |
|
533 |
|
534 |
class CyclicAutomaton(Automaton):
|
535 |
+
def __init__(self, data_config):
|
536 |
+
super().__init__(data_config)
|
537 |
|
538 |
+
if 'n' not in data_config:
|
539 |
+
data_config['n'] = 5
|
540 |
+
self.n = data_config['n']
|
541 |
|
542 |
+
"""
|
543 |
+
Get actions: shift by i positions, for i = 0 to n_actions-1
|
544 |
+
"""
|
545 |
+
if 'n_actions' not in data_config:
|
546 |
+
data_config['n_actions'] = 2
|
547 |
+
self.n_actions = data_config['n_actions']
|
548 |
+
shift_idx = list(range(1, self.n)) + [0]
|
549 |
+
self.actions = {}
|
550 |
+
for i in range(self.n_actions):
|
551 |
+
shift_idx = list(range(i, self.n)) + list(range(0, i))
|
552 |
+
self.actions[i] = np.eye(self.n)[shift_idx]
|
553 |
|
554 |
+
self.__info__ = 'Cyclic group of n={self.n} states:\n' \
|
555 |
+
+f"- Inputs: tokens from 0 to n_actions-1\n" \
|
556 |
+
+ "- Labels: the current state.\n" \
|
557 |
+
+ "- Config:\n" \
|
558 |
+
+ " - n (int): number of states.\n" \
|
559 |
+
+ " - n_actions (int): number of actions/generators, which are 0, 1, ..., n_actions-1.\n" \
|
560 |
+
+ self.__info__
|
561 |
|
562 |
+
def f(self, x):
|
563 |
+
return np.cumsum(x) % self.n
|
564 |
|
565 |
+
def sample(self):
|
566 |
+
T = self.sample_length()
|
567 |
+
x = self.np_rng.choice(range(self.n_actions), replace=True, size=T)
|
568 |
|
569 |
+
return x, self.f(x)
|
570 |
|
571 |
|
572 |
class DihedralAutomaton(Automaton):
|
573 |
+
def __init__(self, data_config):
|
574 |
+
super().__init__(data_config)
|
575 |
|
576 |
+
if 'n' not in data_config:
|
577 |
+
data_config['n'] = 4
|
578 |
+
self.n = data_config['n']
|
579 |
|
580 |
+
if 'label_type' not in data_config:
|
581 |
+
# Options: 'state', 'toggle', 'position'
|
582 |
+
data_config['label_type'] = 'state'
|
583 |
+
self.label_type = data_config['label_type']
|
584 |
|
585 |
+
"""
|
586 |
+
2 actions: toggle, or shift by 1 position (direction determined by the toggle).
|
587 |
+
"""
|
588 |
+
self.n_actions = 2
|
589 |
+
self.actions = {}
|
590 |
+
# shift all elements to the left (counter-clockwise) by 1
|
591 |
+
shift_idx = list(range(1, self.n)) + [0]
|
592 |
+
self.actions[0] = np.eye(self.n)[shift_idx]
|
593 |
+
# shift all elements to the right (closewise) by 1
|
594 |
+
shift_idx = [self.n-1] + list(range(self.n-1))
|
595 |
+
self.actions[1] = np.eye(self.n)[shift_idx]
|
596 |
+
|
597 |
+
self.__info__ = 'Dihedral group of order 2n, where n={self.n}:\n' \
|
598 |
+
+f"- Inputs: binary tokens:\n" \
|
599 |
+
+ " 0 for toggle, i.e. change direction in the n-cycle;\n" \
|
600 |
+
+ " 1 for drive, i.e. move forward 1 step on the n-cycle.\n" \
|
601 |
+
+ "- Labels: depending on the label_type.\n" \
|
602 |
+
+ "- Config:\n" \
|
603 |
+
+ " - n (int): size of the 'cycle'; i.e. there are 2n states considering also the toggle bit.\n" \
|
604 |
+
+ " - label_type (str): choosing from the following options: \n" \
|
605 |
+
+ " - 'state': the state id, i.e. considering both toggle and position. \n" \
|
606 |
+
+ " - 'toggle': the toggle bit (in {0, 1}). \n" \
|
607 |
+
+ " - 'position': the position on the n-cycle (in [n]).\n" \
|
608 |
+
+ self.__info__
|
609 |
+
|
610 |
+
def f_sequential(self, x):
|
611 |
+
# sanity check: sequential solution
|
612 |
+
position = np.arange(self.n)
|
613 |
+
states = []
|
614 |
+
toggle = 0 # i.e. parity
|
615 |
+
for action in x:
|
616 |
+
if action == 0:
|
617 |
+
# toggle direction
|
618 |
+
toggle = 1 - toggle
|
619 |
+
else:
|
620 |
+
# drive by 1
|
621 |
+
position = self.actions[toggle].dot(position)
|
622 |
+
states += (toggle, position[0]),
|
623 |
+
return states
|
624 |
+
|
625 |
+
def f(self, x):
|
626 |
+
# Parallel solution
|
627 |
+
|
628 |
+
# Get toggles: a parity task on the toggle bit
|
629 |
+
toggles = (x == 0).astype(np.int64)
|
630 |
+
toggle_status = np.cumsum(toggles) % 2
|
631 |
+
|
632 |
+
# Get positions: a directed modular counter
|
633 |
+
directions = (-1)**toggle_status
|
634 |
+
directed_drives = (x != 0).astype(np.int64) * directions
|
635 |
+
positions = np.cumsum(directed_drives) % self.n
|
636 |
+
|
637 |
+
if self.label_type == 'state':
|
638 |
+
labels = [self.get_state_label(each) for each in zip(toggle_status, positions)]
|
639 |
+
return np.array(labels).astype(np.int64)
|
640 |
+
elif self.label_type == 'toggle':
|
641 |
+
return toggle_status
|
642 |
+
elif self.label_type == 'positions':
|
643 |
+
return positions
|
644 |
+
|
645 |
+
def get_state_label(self, state):
|
646 |
+
"""
|
647 |
+
toggle in {0,1}
|
648 |
+
position in [k]
|
649 |
+
"""
|
650 |
+
toggle, position = state
|
651 |
+
label = self.n*toggle + position
|
652 |
+
return label
|
|
|
|
|
|
|
|
|
653 |
|
654 |
+
def sample(self):
|
655 |
+
T = self.sample_length()
|
656 |
+
x = self.np_rng.choice(range(self.n_actions), replace=True, size=T)
|
657 |
|
658 |
+
return x, self.f(x)
|
659 |
|
660 |
|
661 |
class QuaternionAutomaton(Automaton):
|
662 |
+
def __init__(self, data_config):
|
663 |
+
super().__init__(data_config)
|
664 |
+
|
665 |
+
self.vocab_size = 8 # {-1, 1} x {1, i, j, k}
|
666 |
+
self.n_actions = 4 # {1, i, j, k}
|
667 |
+
self.transition_pos = [
|
668 |
+
0, 1, 2, 3,
|
669 |
+
1, 4, 3, 6,
|
670 |
+
2, 7, 4, 1,
|
671 |
+
3, 2, 5, 4,
|
672 |
+
]
|
673 |
+
self.transition_neg = [(each+4)%8 for each in self.transition_pos]
|
674 |
+
self.transition = np.array(self.transition_pos + self.transition_neg)
|
675 |
+
self.transition = self.transition.reshape(-1, 4)
|
676 |
+
|
677 |
+
self.__info__ = "Quaternion group:\n" \
|
678 |
+
+ "- Inputs: tokens in {0,1,2,3}, corresponding to 1,i,j,k.\n" \
|
679 |
+
+ "- Labels: the state id; 8 states in total: 2 signs ({-1,1}) x 4 values ({1,i,j,k}).\n" \
|
680 |
+
+ "- Config:\n" \
|
681 |
+
+ self.__info__
|
682 |
+
|
683 |
+
def f(self, x):
|
684 |
+
curr_state = 0
|
685 |
+
states = []
|
686 |
+
for action_id in x:
|
687 |
+
curr_state = self.transition[curr_state, action_id]
|
688 |
+
states += curr_state,
|
689 |
+
return np.array(states).astype(np.int64)
|
690 |
+
|
691 |
+
def sample(self):
|
692 |
+
T = self.sample_length()
|
693 |
+
x = self.np_rng.choice(range(self.n_actions), size=T)
|
694 |
+
return x, self.f(x)
|
695 |
|
696 |
|
697 |
class PermutationResetAutomaton(Automaton):
|
698 |
+
def __init__(self, data_config):
|
699 |
+
super().__init__(data_config)
|
700 |
|
701 |
+
self.n = data_config['n']
|
702 |
+
self.generators = data_config['generators']
|
703 |
+
self.perm_probs = data_config['perm_probs']
|
704 |
+
if type(self.generators[0]) is str:
|
705 |
+
self.generators = [ np.array(list(map(int, list(g)))) for g in self.generators ]
|
706 |
|
707 |
+
self.vocab_size = math.factorial(self.n) # states = permutations; maybe rename
|
708 |
+
self.n_generators = len(self.generators) # actions = generators
|
709 |
+
self.n_actions = self.vocab_size + self.n_generators # 1 reset symbol per state, 1 apply symbol per generator
|
710 |
|
711 |
+
self.init_state = np.arange(self.n) # identity permutation
|
712 |
+
|
713 |
+
# lookup tables
|
714 |
+
self.int2perm = list(map(np.array, itertools.permutations(range(self.n))))
|
715 |
+
self.perm2int = {tuple(p):i for i,p in enumerate(self.int2perm)}
|
716 |
+
|
717 |
+
# interval lengths
|
718 |
+
T = self.sample_length()
|
719 |
+
self.lags = [1]
|
720 |
+
while self.lags[-1]*2 < T:
|
721 |
+
self.lags.append(self.lags[-1]*2)
|
722 |
+
|
723 |
+
def f(self, x):
|
724 |
+
curr_state = self.init_state
|
725 |
+
states = []
|
726 |
+
for action_id in x:
|
727 |
+
if action_id >= self.vocab_size:
|
728 |
+
curr_state = self.generators[action_id - self.vocab_size][curr_state]
|
729 |
+
else:
|
730 |
+
curr_state = self.int2perm[action_id]
|
731 |
+
states.append(self.perm2int[tuple(curr_state)])
|
732 |
+
return np.array(states, dtype=np.int64)
|
733 |
+
|
734 |
+
def sample(self):
|
735 |
+
T = self.sample_length()
|
736 |
+
x = self.np_rng.choice(range(self.n_generators), p=self.perm_probs, size=T) + self.vocab_size
|
737 |
+
|
738 |
+
i = 0
|
739 |
+
while i < T:
|
740 |
+
x[i] = self.np_rng.choice(range(self.vocab_size))
|
741 |
+
i += self.np_rng.choice(self.lags)
|
742 |
+
|
743 |
+
return x, self.f(x)
|
744 |
|
745 |
|
746 |
|
747 |
dataset_map = {
|
748 |
+
'abab': ABABAutomaton,
|
749 |
+
'add': AdderAutomaton,
|
750 |
+
'alternating': AlternatingAutomaton,
|
751 |
+
'cyclic': CyclicAutomaton,
|
752 |
+
'dihedral': DihedralAutomaton,
|
753 |
+
'flipflop': FlipFlopAutomaton,
|
754 |
+
'gridworld': GridworldAutomaton,
|
755 |
+
'parity': ParityAutomaton,
|
756 |
+
'quaternion': QuaternionAutomaton,
|
757 |
+
'symmetric': SymmetricAutomaton,
|
758 |
+
'permutation_reset': PermutationResetAutomaton
|
759 |
+
# TODO: add Dyck
|
760 |
+
}
|