File size: 8,750 Bytes
3b67543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition"""

import os

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@inproceedings{ritter2011named,
  title={Named entity recognition in tweets: an experimental study},
  author={Ritter, Alan and Clark, Sam and Etzioni, Oren and others},
  booktitle={Proceedings of the 2011 conference on empirical methods in natural language processing},
  pages={1524--1534},
  year={2011}
}

@inproceedings{foster2011hardtoparse,
  title={\# hardtoparse: POS Tagging and Parsing the Twitterverse},
  author={Foster, Jennifer and Cetinoglu, Ozlem and Wagner, Joachim and Le Roux, Joseph and Hogan, Stephen and Nivre, Joakim and Hogan, Deirdre and Van Genabith, Josef},
  booktitle={Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelligence},
  year={2011}
}

@inproceedings{derczynski2013twitter,
  title={Twitter part-of-speech tagging for all: Overcoming sparse and noisy data},
  author={Derczynski, Leon and Ritter, Alan and Clark, Sam and Bontcheva, Kalina},
  booktitle={Proceedings of the international conference recent advances in natural language processing ranlp 2013},
  pages={198--206},
  year={2013}
}
"""

_DESCRIPTION = """\
Part-of-speech information is basic NLP task. However, Twitter text
is difficult to part-of-speech tag: it is noisy, with linguistic errors and idiosyncratic style.
This dataset contains two datasets for English PoS tagging for tweets:

* Ritter, with train/dev/test
* Foster, with dev/test

Splits defined in the Derczynski paper, but the data is from Ritter and Foster.

For more details see:

* https://gate.ac.uk/wiki/twitter-postagger.html
* https://aclanthology.org/D11-1141.pdf
* https://www.aaai.org/ocs/index.php/ws/aaaiw11/paper/download/3912/4191
"""

_URL = "http://downloads.gate.ac.uk/twitie/twitie-tagger.zip"
_RITTER_TRAIN = "twitie-tagger/corpora/ritter_train.stanford"
_RITTER_DEV = "twitie-tagger/corpora/ritter_dev.stanford"
_RITTER_TEST = "twitie-tagger/corpora/ritter_eval.stanford"
_FOSTER_TRAIN = None
_FOSTER_DEV = "twitie-tagger/corpora/foster_dev.stanford"
_FOSTER_TEST = "twitie-tagger/corpora/foster_eval.stanford"


class TwitterPosConfig(datasets.BuilderConfig):
    """BuilderConfig for TwitterPos"""

    def __init__(self, **kwargs):
        """BuilderConfig for TwitterPos.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(TwitterPosConfig, self).__init__(**kwargs)
        #assert variant in ('foster', 'ritter'), (f'Unrecognised variation: {variant}')


class TwitterPos(datasets.GeneratorBasedBuilder):
    """TwitterPos dataset."""

    BUILDER_CONFIGS = [
        TwitterPosConfig(name="foster", description="Foster English Twitter PoS bootstrap dataset"),
        TwitterPosConfig(name="ritter", description="Ritter English Twitter PoS bootstrap dataset"),
    ]

    def _info(self):
        variant = self.config.name
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "pos_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                '"',
                                "''",
                                "#",
                                "%",
                                "$",
                                "(",
                                ")",
                                ",",
                                ".",
                                ":",
                                "``",
                                "CC",
                                "CD",
                                "DT",
                                "EX",
                                "FW",
                                "IN",
                                "JJ",
                                "JJR",
                                "JJS",
                                "LS",
                                "MD",
                                "NN",
                                "NNP",
                                "NNPS",
                                "NNS",
                                "NN|SYM",
                                "PDT",
                                "POS",
                                "PRP",
                                "PRP$",
                                "RB",
                                "RBR",
                                "RBS",
                                "RP",
                                "SYM",
                                "TO",
                                "UH",
                                "VB",
                                "VBD",
                                "VBG",
                                "VBN",
                                "VBP",
                                "VBZ",
                                "WDT",
                                "WP",
                                "WP$",
                                "WRB",
                                "RT",
                                "HT",
                                "USR",
                                "URL",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://gate.ac.uk/wiki/twitter-postagger.html",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        downloaded_file = dl_manager.download_and_extract(_URL)

        if self.config.name == 'ritter':
            data_files = {
                "train": os.path.join(downloaded_file, _RITTER_TRAIN),
                "dev": os.path.join(downloaded_file, _RITTER_DEV),
                "test": os.path.join(downloaded_file, _RITTER_TEST),
            }
        elif self.config.name == 'foster':
            data_files = {
                "dev": os.path.join(downloaded_file, _FOSTER_DEV),
                "test": os.path.join(downloaded_file, _FOSTER_TEST),
            }

        splits = [
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
        ]

        if "train" in data_files:
            splits.append(datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}))

        return splits

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            for line in f:
                tokens = []
                pos_tags = []
                if line.startswith("-DOCSTART-") or line.strip() == "" or line == "\n":
                    continue
                else:
                    line = line.replace('_VPB ', '_VBP ') # tag type fixes
                    line = line.replace('_TD ', '_DT ') # tag type fixes
                    line = line.replace('_ADVP ', '_RB ') # tag type fixes
                    line = line.replace('_NONE ', '_: ') # tag type fixes
                    line = line.replace(' please_VPP ', ' please_VBP ') # tag type fixes
                    line = line.replace(' ".._O ', ' ".._" ') # tag type fixes
                    # twitter-pos gives one seq per line, as token_tag
                    annotated_words = line.strip().split(' ')
                    tokens = ['_'.join(token.split('_')[:-1]) for token in annotated_words]
                    pos_tags = [token.split('_')[-1] for token in annotated_words]
                    yield guid, {
                        "id": str(guid),
                        "tokens": tokens,
                        "pos_tags": pos_tags,
                    }
                    guid += 1