{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "42ac3dd1-7154-40ec-ae54-38e4389c5ea8", "metadata": {}, "outputs": [], "source": [ "import os\n", "import random\n", "import requests\n", "import zipfile\n", "\n", "from io import BytesIO" ] }, { "cell_type": "code", "execution_count": 2, "id": "1ba83fb8-8c38-427e-83c1-68da2b5b4bbd", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading dataset from https://coltekin.github.io/offensive-turkish/offenseval2020-turkish.zip\n", "Extracting files to './'...\n", "Extracted files: ['offenseval2020-turkish/', 'offenseval2020-turkish/offenseval-tr-training-v1/', 'offenseval2020-turkish/offenseval-tr-training-v1/offenseval-annotation.txt', 'offenseval2020-turkish/offenseval-tr-training-v1/offenseval-tr-training-v1.tsv', 'offenseval2020-turkish/offenseval-tr-training-v1/readme-trainingset-tr.txt', 'offenseval2020-turkish/offenseval-tr-testset-v1/', 'offenseval2020-turkish/offenseval-tr-testset-v1/offenseval-tr-testset-v1.tsv', 'offenseval2020-turkish/offenseval-tr-testset-v1/offenseval-tr-labela-v1.tsv', 'offenseval2020-turkish/README.txt']\n" ] } ], "source": [ "def download_and_extract_zip(url, extract_to=\"./\"):\n", " try:\n", " print(f\"Downloading dataset from {url}\")\n", " response = requests.get(url)\n", " response.raise_for_status()\n", "\n", " with zipfile.ZipFile(BytesIO(response.content)) as z:\n", " print(f\"Extracting files to '{extract_to}'...\")\n", " z.extractall(extract_to)\n", " extracted_files = z.namelist()\n", " print(f\"Extracted files: {extracted_files}\")\n", " except Exception as e:\n", " print(f\"An error occurred: {e}\")\n", "\n", "url = \"https://coltekin.github.io/offensive-turkish/offenseval2020-turkish.zip\" # Replace with the actual URL\n", "download_and_extract_zip(url, \"./\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "b74682a7-ccf8-44ad-98a0-73636c35e10e", "metadata": {}, "outputs": [], "source": [ "original_train_file = \"./offenseval2020-turkish/offenseval-tr-training-v1/offenseval-tr-training-v1.tsv\"\n", "original_test_file = \"./offenseval2020-turkish/offenseval-tr-testset-v1/offenseval-tr-testset-v1.tsv\"\n", "orginal_label_test_file = \"./offenseval2020-turkish/offenseval-tr-testset-v1/offenseval-tr-labela-v1.tsv\"" ] }, { "cell_type": "code", "execution_count": 4, "id": "af3ba702-1341-4e70-8c74-87078eeaddf1", "metadata": {}, "outputs": [], "source": [ "def get_instances(filename: str):\n", " instances = []\n", " with open(filename, \"rt\") as f_p:\n", " for line in f_p:\n", " line = line.strip()\n", " \n", " if not line:\n", " continue\n", " \n", " if line.startswith(\"id\"):\n", " continue\n", " \n", " _, tweet, label = line.split(\"\\t\")\n", "\n", " instances.append([label, tweet])\n", "\n", " print(f\"Found {len(instances)} training instances.\")\n", "\n", " return instances" ] }, { "cell_type": "code", "execution_count": 5, "id": "a397f04d-354c-4d97-9f93-794929c5e51d", "metadata": {}, "outputs": [], "source": [ "def get_test_instances(filename: str, label_filename: str):\n", " # E.g. 41993,NOT is mapped to \"41993\" -> \"NOT\"\n", " id_label_mapping = {}\n", " with open(label_filename, \"rt\") as f_p:\n", " for line in f_p:\n", " line = line.strip()\n", "\n", " if not line:\n", " continue\n", "\n", " id_, label = line.split(\",\")\n", "\n", " id_label_mapping[id_] = label\n", "\n", " print(f\"Found {len(id_label_mapping)} labelled test instances\")\n", "\n", " instances = []\n", " \n", " with open(filename, \"rt\") as f_p:\n", " for line in f_p:\n", " line = line.strip()\n", " \n", " if not line:\n", " continue\n", " \n", " if line.startswith(\"id\"):\n", " continue\n", " \n", " id_, tweet = line.split(\"\\t\")\n", "\n", " label = id_label_mapping[id_]\n", "\n", " instances.append([label, tweet])\n", " return instances\n", "\n", " assert len(id_label_mapping) == len(instances)" ] }, { "cell_type": "code", "execution_count": 6, "id": "06508ca8-649b-44ea-a8c6-09c2c2b434f4", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found 31756 training instances.\n", "Found 3528 labelled test instances\n" ] } ], "source": [ "original_train_instances = get_instances(original_train_file)\n", "original_test_instances = get_test_instances(original_test_file, orginal_label_test_file)" ] }, { "cell_type": "code", "execution_count": 7, "id": "cd4a7942-42c9-4bdb-9079-c6039ff908c4", "metadata": {}, "outputs": [], "source": [ "# Shuffling is done in-place\n", "random.seed(83607)\n", "random.shuffle(original_train_instances)" ] }, { "cell_type": "code", "execution_count": 8, "id": "6ab61fde-e534-4ffe-9302-f80581e503eb", "metadata": {}, "outputs": [], "source": [ "train_instances = original_train_instances[:30_000]\n", "dev_instances = original_train_instances[30_000:]" ] }, { "cell_type": "code", "execution_count": 9, "id": "84f9c044-7906-4c04-9154-70e2b8d55982", "metadata": {}, "outputs": [], "source": [ "def write_instances(instances: str, split_name: str):\n", " with open(f\"{split_name}.txt\", \"wt\") as f_out:\n", " for instance in instances:\n", " label, tweet = instance\n", "\n", " # We stick to Flair format for classification tasks, which is basically FastText inspired ;)\n", " new_label = \"__label__\" + label\n", " f_out.write(f\"{new_label} {tweet}\\n\")" ] }, { "cell_type": "code", "execution_count": 10, "id": "0bf06e96-2b25-46ed-8a7e-0672e7aa6af8", "metadata": {}, "outputs": [], "source": [ "write_instances(train_instances, \"train\")\n", "write_instances(dev_instances, \"dev\")\n", "write_instances(original_test_instances, \"test\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" } }, "nbformat": 4, "nbformat_minor": 5 }