id
int64 0
19
| arxiv_id
stringlengths 11
12
| page
int64 1
234
| bounding_box
sequencelengths 4
4
| latex_content
stringlengths 217
28.9k
| extracted_content
sequencelengths 1
85
| similarity_score
float64 0.36
1
| table_image
unknown | page_image
unknown |
---|---|---|---|---|---|---|---|---|
8 | 1407.0375v1 | 123 | [
146.77099609375,
212.04400634765625,
485.1419982910156,
448.3580017089844
] | \begin{table}[ht]
\begin{center}
\begin{tabular}{|p{2.5cm}|c|c|c|c|c|c|c}\hline
& \multicolumn{6}{|c|}{No Sparsification} \\ \hline
Graph & \multicolumn{2}{|c|}{Exact} & \multicolumn{2}{|c|}{Simple} &\multicolumn{2}{|c|}{Hybrid} \\ \hline
& err(\%) & time & err(\%) & time & err(\%) & time \\ \hline
AS-Skitter & 0.000 & 4.452 & 1.308 & 0.746 & 0.128 & 1.204 \\ \hline
Flickr & 0.000 & 41.981 & 0.166 & 1.049 & 0.128 & 2.016 \\ \hline
Livejournal-links & 0.000 & 50.828 & 0.309 & 2.998 & 0.116 & 9.375 \\ \hline
Orkut-links & 0.000 & 202.012 & 0.564 & 6.208 & 0.286 & 21.328 \\ \hline
Soc-LiveJournal & 0.000 & 38.271 & 0.285 & 2.619 & 0.108 & 7.451 \\ \hline
Web-EDU & 0.000 & 8.502 & 0.157 & 2.631 & 0.047 & 3.300 \\ \hline
Web-Google & 0.000 & 1.599 & 0.286 & 0.379 & 0.045 & 0.740 \\ \hline
Wiki-2005 & 0.000 & 32.472 & 0.976 & 1.197 & 0.318 & 3.613 \\ \hline
Wiki-2006/9 & 0.000 & 86.623 & 0.886 & 2.250 & 0.361 & 7.483 \\ \hline
Wiki-2006/11 & 0.000 & 96.114 & 1.915 & 2.362 & 0.530 & 7.972 \\ \hline
Wiki-2007 & 0.000 & 122.395 & 0.943 & 2.728 & 0.178 & 9.268 \\ \hline
Youtube & 0.000 & 1.347 & 1.114 & 0.333 & 0.127 & 0.500 \\ \hline
\end{tabular}
\end{center}
\caption{\label{tab:degreeresults1}Results of experiments averaged over 5 Trials using only triple sampling.}
\end{table} | [
[
"",
"No Sparsification",
null,
null,
null,
null,
null
],
[
"Graph",
"Exact",
null,
"Simple",
null,
"Hybrid",
null
],
[
"",
"err(%)",
"time",
"err(%)",
"time",
"err(%)",
"time"
],
[
"AS-Skitter",
"0.000",
"4.452",
"1.308",
"0.746",
"0.128",
"1.204"
],
[
"Flickr",
"0.000",
"41.981",
"0.166",
"1.049",
"0.128",
"2.016"
],
[
"Livejournal-\nlinks",
"0.000",
"50.828",
"0.309",
"2.998",
"0.116",
"9.375"
],
[
"Orkut-links",
"0.000",
"202.012",
"0.564",
"6.208",
"0.286",
"21.328"
],
[
"Soc-\nLiveJournal",
"0.000",
"38.271",
"0.285",
"2.619",
"0.108",
"7.451"
],
[
"Web-EDU",
"0.000",
"8.502",
"0.157",
"2.631",
"0.047",
"3.300"
],
[
"Web-Google",
"0.000",
"1.599",
"0.286",
"0.379",
"0.045",
"0.740"
],
[
"Wiki-2005",
"0.000",
"32.472",
"0.976",
"1.197",
"0.318",
"3.613"
],
[
"Wiki-2006/9",
"0.000",
"86.623",
"0.886",
"2.250",
"0.361",
"7.483"
],
[
"Wiki-2006/11",
"0.000",
"96.114",
"1.915",
"2.362",
"0.530",
"7.972"
],
[
"Wiki-2007",
"0.000",
"122.395",
"0.943",
"2.728",
"0.178",
"9.268"
],
[
"Youtube",
"0.000",
"1.347",
"1.114",
"0.333",
"0.127",
"0.500"
]
] | 0.892371 | null | null |
9 | 1407.0375v1 | 124 | [
154.9530029296875,
194.42999267578125,
476.9599914550781,
430.7439880371094
] | \begin{table}[ht]
\begin{center}
\begin{tabular}{|p{2.5cm}|c|c|c|c|c|c|c}\hline
& \multicolumn{6}{|c|}{Sparsified ($p = 0.1$)} \\ \hline
Graph & \multicolumn{2}{|c|}{Exact} & \multicolumn{2}{|c|}{Simple} &\multicolumn{2}{|c|}{Hybrid} \\ \hline
& err(\%) & time & err(\%) & time & err(\%) & time \\ \hline
AS-Skitter & 2.188 & 0.641 & 3.208 & 0.651 & 1.388 & 0.877 \\ \hline
Flickr & 0.530 & 1.389 & 0.746 & 0.860 & 0.818 & 1.033 \\ \hline
Livejournal-links & 0.242 & 3.900 & 0.628 & 2.518 & 1.011 & 3.475 \\ \hline
Orkut-links & 0.172 & 9.881 & 1.980 & 5.322 & 0.761 & 7.227 \\ \hline
Soc-LiveJournal & 0.681 & 3.493 & 0.830 & 2.222 & 0.462 & 2.962 \\ \hline
Web-EDU & 0.571 & 2.864 & 0.771 & 2.354 & 0.383 & 2.732 \\ \hline
Web-Google & 1.112 & 0.251 & 1.262 & 0.371 & 0.264 & 0.265 \\ \hline
Wiki-2005 & 1.249 & 1.529 & 7.498 & 1.025 & 0.695 & 1.313 \\ \hline
Wiki-2006/9 & 0.402 & 3.431 & 6.209 & 1.843 & 2.091 & 2.598 \\ \hline
Wiki-2006/11 & 0.634 & 3.578 & 4.050 & 1.947 & 0.950 & 2.778 \\ \hline
Wiki-2007 & 0.819 & 4.407 & 3.099 & 2.224 & 1.448 & 3.196 \\ \hline
Youtube & 1.358 & 0.210 & 5.511 & 0.302 & 1.836 & 0.268 \\ \hline
\end{tabular}
\end{center}
\caption{Results of experiments averaged over 5 trials using sparsification and triple sampling.}
\label{tab:degreeresults2}
\end{table} | [
[
"",
"Sparsified (p = 0.1)",
null,
null,
null,
null,
null
],
[
"Graph",
"Exact",
null,
"Simple",
null,
"Hybrid",
null
],
[
"",
"err(%)",
"time",
"err(%)",
"time",
"err(%)",
"time"
],
[
"AS-Skitter",
"2.188",
"0.641",
"3.208",
"0.651",
"1.388",
"0.877"
],
[
"Flickr",
"0.530",
"1.389",
"0.746",
"0.860",
"0.818",
"1.033"
],
[
"Livejournal-\nlinks",
"0.242",
"3.900",
"0.628",
"2.518",
"1.011",
"3.475"
],
[
"Orkut-links",
"0.172",
"9.881",
"1.980",
"5.322",
"0.761",
"7.227"
],
[
"Soc-\nLiveJournal",
"0.681",
"3.493",
"0.830",
"2.222",
"0.462",
"2.962"
],
[
"Web-EDU",
"0.571",
"2.864",
"0.771",
"2.354",
"0.383",
"2.732"
],
[
"Web-Google",
"1.112",
"0.251",
"1.262",
"0.371",
"0.264",
"0.265"
],
[
"Wiki-2005",
"1.249",
"1.529",
"7.498",
"1.025",
"0.695",
"1.313"
],
[
"Wiki-2006/9",
"0.402",
"3.431",
"6.209",
"1.843",
"2.091",
"2.598"
],
[
"Wiki-2006/11",
"0.634",
"3.578",
"4.050",
"1.947",
"0.950",
"2.778"
],
[
"Wiki-2007",
"0.819",
"4.407",
"3.099",
"2.224",
"1.448",
"3.196"
],
[
"Youtube",
"1.358",
"0.210",
"5.511",
"0.302",
"1.836",
"0.268"
]
] | 0.885089 | null | null |
10 | 1407.0375v1 | 133 | [
108,
82.32098388671875,
593.469970703125,
167.15997314453125
] | \begin{table}[ht]
\begin{center}
\begin{tabular}{|l|r|r|r|r|r|r|r|} \hline
Name & Vertices($n$) & Edges($m$) & Triangle Count($t$) & $\Delta$ & $t_{\max}$& $\sum_{e \in E(G)} \delta_e^2$ & 3$\Delta t$ \\ \hline
AS & 7,716 & 12,572 & 6,584 & 344 & 2,047 & 595,632 & 6,794,688 \\ \hline
Oregon & 11,492 & 23,409 & 19,894 & 537 & 3,638 & 2,347,560 & 32,049,234 \\ \hline
Enron & 36,692 & 183,831 & 727,044 & 420 & 17,744 & 75,237,684 & 916,075,440 \\ \hline
ca-HepPh & 12,008 & 118,489 & 3,358,499 & 450 & 39,633 & 1.8839 $\times 10^9$ & 4.534$\times 10^9$ \\ \hline
AstroPh & 18,772 & 198,050 & 1,351,441 & 350 & 11,269 & 148,765,753 & 1.419$\times 10^9$ \\ \hline
\end{tabular}
\end{center}
\caption{Values for the variables involved in our formulae for five real-world graphs. Typically,
$\Delta$ and $t_{\max}$ are significantly less than the obvious upper bounds $n-2$
and ${n-1 \choose 2}$ respectively. Furthermore, $3\Delta t$
is significantly larger than $\sum_{e \in E(G)} \delta_e^2$. }
\label{tab:colorfuldatasets}
\end{table} | [
[
"Name",
"Vertices(n)",
"Edges(m)",
"Triangle Count(t)",
"∆",
"t\nmax",
"P δ2\ne∈E(G) e",
"3∆t"
],
[
"AS",
"7,716",
"12,572",
"6,584",
"344",
"2,047",
"595,632",
"6,794,688"
],
[
"Oregon",
"11,492",
"23,409",
"19,894",
"537",
"3,638",
"2,347,560",
"32,049,234"
],
[
"Enron",
"36,692",
"183,831",
"727,044",
"420",
"17,744",
"75,237,684",
"916,075,440"
],
[
"ca-HepPh",
"12,008",
"118,489",
"3,358,499",
"450",
"39,633",
"1.8839 109\n×",
"4.534 109\n×"
],
[
"AstroPh",
"18,772",
"198,050",
"1,351,441",
"350",
"11,269",
"148,765,753",
"1.419 109\n×"
]
] | 0.649205 | null | null |
11 | 1407.0375v1 | 210 | [
155.3520050048828,
81.32501220703125,
476.5610063340929,
317.239990234375
] | \begin{table}%[ht]
\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Name} & \textbf{Vertices} & \textbf{Edges} & \textbf{Description} \\ \hline \hline
YahooWeb & 1,413 M & 6,636 M & WWW pages in 2002\\ \hline
LinkedIn & 7.5 M & 58 M & person-person in 2006\\
& 4.4 M & 27 M & person-person in 2005\\
& 1.6 M & 6.8 M & person-person in 2004\\
& 85 K & 230 K & person-person in 2003\\ \hline
Wikipedia & 3.5 M & 42 M & doc-doc in 2007/02 \\
& 3 M & 35 M & doc-doc in 2006/09 \\
& 1.6 M & 18.5 M & doc-doc in 2005/11 \\ \hline
Kronecker & 177 K & 1,977 M & synthetic \\
& 120 K & 1,145 M & synthetic \\
& 59 K & 282 M & synthetic \\
& 19 K & 40 M & synthetic\\ \hline
% & 6.6 K & 5 M & synthetic\\
WWW-Barabasi & 325 K & 1,497 K & WWW pages in nd.edu\\ \hline
DBLP & 471 K & 112 K & document-document \\ \hline
flickr & 404 K & 2.1 M & person-person \\ \hline
Epinions & 75 K & 508 K & who trusts whom \\ \hline
% YahooWeb & 1,413,511,390 & 6,636,600,779 & WWW pages crawled at 2002\\
% LinkedIn & 7,550,955 & 58,323,792 & person-person in 2006\\
% & 4,419,433 & 27,576,870 & person-person in 2005\\
% & 1,637,128 & 6,836,430 & person-person in 2004\\
% & 85,092 & 230,028 & person-person in 2003\\
% Wikipedia & 3,566,907 & 42,375,912 & document-document in 2007/02 \\
% & 2,983,494 & 35,048,116 & document-document in 2006/09 \\
% & 1,634,989 & 18,540,603 & document-document in 2005/11 \\
% Kronecker & 177,147 & 1,977,149,596 & synthetic\\
% & 120,552 & 1,145,744,786 & synthetic\\
% & 59,049 & 282,416,200 & synthetic\\
% & 19,683 & 40,333,924 & synthetic\\
% & 6,561 & 5,758,240 & synthetic\\
% DBLP & 471,514 & 112,378 & document-document \\
% flickr & 404,733 & 2,110,078 & person-person \\
% Epinions & 75,888 & 508,960 & who trusts whom \\
\end{tabular}
\end{center}
\caption{Order and size of networks.
}
\label{tab:datasets}
\end{table} | [
[
"Name",
"Vertices",
"Edges",
"Description"
],
[
"YahooWeb",
"1,413 M",
"6,636 M",
"WWW pages in 2002"
],
[
"LinkedIn",
"7.5 M\n4.4 M\n1.6 M\n85 K",
"58 M\n27 M\n6.8 M\n230 K",
"person-person in 2006\nperson-person in 2005\nperson-person in 2004\nperson-person in 2003"
],
[
"Wikipedia",
"3.5 M\n3 M\n1.6 M",
"42 M\n35 M\n18.5 M",
"doc-doc in 2007/02\ndoc-doc in 2006/09\ndoc-doc in 2005/11"
],
[
"Kronecker",
"177 K\n120 K\n59 K\n19 K",
"1,977 M\n1,145 M\n282 M\n40 M",
"synthetic\nsynthetic\nsynthetic\nsynthetic"
],
[
"WWW-Barabasi",
"325 K",
"1,497 K",
"WWW pages in nd.edu"
],
[
"DBLP",
"471 K",
"112 K",
"document-document"
],
[
"flickr",
"404 K",
"2.1 M",
"person-person"
],
[
"Epinions",
"75 K",
"508 K",
"who trusts whom"
]
] | 0.438606 | null | null |
12 | 1407.0375v1 | 168 | [
182.16600036621094,
351.4429931640625,
449.7470980557528,
475.37799072265625
] | \begin{table}[h]
\begin{center}
{\small
\begin{tabular}{|r||r|r|r|l| } \hline
\textbf{Graph} & \textbf{Nodes} & \textbf{Edges} & \textbf{File} & \textbf{Description} \\ \hline \hline
YahooWeb & 1.4 B & 6.6 B & 116G & page-page \\ \hline
LinkedIn & 7.5 M & 58 M & 1G & person-person\\ \hline
Patents & 6 M & 16 M & 264M & patent-patent\\
\hline
Kronecker
& 177 K & 1,977 M & 25G & synthetic\\
& 120 K & 1,145M & 13.9G & \\
& 59 K & 282 M & 3.3G &\\
\hline
Erd{\H o}s-R\'enyi
& 177 K & 1,977 M & 25G & random $G_{n,p}$\\
& 120 K & 1,145 M & 13.9G &\\
& 59 K & 282 M & 3.3G &\\
\hline
\end{tabular}
} % small
\end{center}
\caption{Datasets (B: Billion, M: Million, K: Thousand, G: Gigabytes)}
\label{tab:datasummary}
\end{table} | [
[
"Graph",
"Nodes",
"Edges",
"File",
"Description"
],
[
"YahooWeb",
"1.4 B",
"6.6 B",
"116G",
"page-page"
],
[
"LinkedIn",
"7.5 M",
"58 M",
"1G",
"person-person"
],
[
"Patents",
"6 M",
"16 M",
"264M",
"patent-patent"
],
[
"Kronecker",
"177 K\n120 K\n59 K",
"1,977 M\n1,145M\n282 M",
"25G\n13.9G\n3.3G",
"synthetic"
],
[
"Erd˝os-R´enyi",
"177 K\n120 K\n59 K",
"1,977 M\n1,145 M\n282 M",
"25G\n13.9G\n3.3G",
"random G\nn,p"
]
] | 0.579025 | null | null |
0 | 2312.02632v1 | 14 | [
145.3328857421875,
476.2720031738281,
446.6211107042101,
573.1090087890625
] | \begin{table}[b]
\centering
\begin{tabular}{|l|r|r|}
\hline
\multicolumn{3}{|c|}{\textbf{Feature Matching Results}} \\
\hline
\textbf{Metric}& \textbf{OSM} &\textbf{GeoDanmark} \\
\hline
Count of matched segments & \num{351476} & \num{564661} \\
Length of matched segments (km) & \num{3490} & \num{5564} \\
Percent matched segments & \num{23}{\%} & \num{64}{\%} \\
Local min. of \% matched segments & \num{0}{\%} & \num{1}{\%} \\
Local max. of \% matched segments & \num{100}{\%} & \num{100}{\%} \\
Local average of \% matched segments & \num{53}{\%} & \num{83}{\%} \\
\hline
\end{tabular}
\smallskip
\caption{\textbf{Feature matching summary}. Selected results from matching of corresponding segments in OSM and GeoDanmark data.}
\label{table:fm_table}
\end{table} | [
[
"Feature Matching Results",
null,
null
],
[
"Metric",
"OSM",
"GeoDanmark"
],
[
"Count of matched segments\nLength of matched segments (km)\nPercent matched segments\nLocal min. of % matched segments\nLocal max. of % matched segments\nLocal average of % matched segments",
"351,476\n3,490\n23%\n0%\n100%\n53%",
"564,661\n5,564\n64%\n1%\n100%\n83%"
]
] | 0.500695 | null | null |
0 | 1508.04928v1 | 3 | [
338.2699890136719,
432.6499938964844,
548.6900024414062,
517.5400390625
] | \begin{table}[htb]
\small
\begin{center}
\caption{Requirement \changeHKK{assessment} of each method.}
\begin{tabular}[width=\columnwidth]{l|c|c}\hline
\shortstack{}&\multicolumn{2}{|c}{Requirements} \\
\hline
\shortstack{Method}&\shortstack{\changeHKK{State duration}}&\shortstack{\changeHKK{State interval}} \\
\hline
\hline
HMM \cite{Eddy1996}&& \\ \hline
IO-HMM \cite{Bengio1995}&& \\ \hline
HSMM \cite{Yu2010}\cite{Murphy2002}&\checkmark& \\ \hline
% FO-HMM \cite{Salzenstein2007}&& \\ \hline
HMM-selftrans \cite{Xue2006} &\checkmark& \\ \hline
EDM \cite{Yu2003}&\checkmark& \\ \hline
DI-HMM \changeHK{(Proposal)}&\checkmark&\checkmark \\ \hline
\end{tabular}
\label{tab:Satisfaction}
\end{center}
\end{table} | [
[
"",
"Requirements",
null
],
[
"Method",
"State duration",
"State interval"
],
[
"HMM [13]",
"",
""
],
[
"IO-HMM [15]",
"",
""
],
[
"HSMM [19][20]",
"✓",
""
],
[
"HMM-selftrans [14]",
"✓",
""
],
[
"EDM [17]",
"✓",
""
],
[
"DI-HMM (Proposal)",
"✓",
"✓"
]
] | 0.567237 | null | null |
1 | 1508.04928v1 | 7 | [
50.66999816894531,
67.93000030517578,
299.3500061035156,
149.4199981689453
] | \begin{table}[htb]
\normalsize
\begin{center}
\caption{\changeHKK{Generated Music Data.}}
\begin{tabular}[width=\columnwidth]{c|c|c}\hline
Index & Instrument & Minimum Length of Note\\ \hline \hline
Data 1 & Grand Piano & 3/4 length of crotchet\\ \hline
Data 2 & Grand Piano & 1/2 length of crotchet\\ \hline
Data 3 & Puncy Grand Piano & 1/4 length of crotchet\\ \hline
Data 4 & Electric Piano & 1/4 length of crotchet\\ \hline
Data 5 & Drum & 1/4 length of crotchet\\ \hline
Data 6 & Organ & 1/2 length of crotchet\\ \hline
\end{tabular}
\end{center}
\end{table} | [
[
"Index",
"Instrument",
"Minimum Length of Note"
],
[
"Data 1",
"Grand Piano",
"3/4 length of crotchet"
],
[
"Data 2",
"Grand Piano",
"1/2 length of crotchet"
],
[
"Data 3",
"Puncy Grand Piano",
"1/4 length of crotchet"
],
[
"Data 4",
"Electric Piano",
"1/4 length of crotchet"
],
[
"Data 5",
"Drum",
"1/4 length of crotchet"
],
[
"Data 6",
"Organ",
"1/2 length of crotchet"
]
] | 1 | null | null |
0 | 2106.13397v2 | 3 | [
129.35983947753905,
200.59100341796875,
479.84745864868165,
479.4445037841797
] | \begin{table}[h]
\centering
\begin{tabularx}{0.75\columnwidth}{|X|m{0.03\textwidth}|m{0.03\textwidth}|}
\hline
Features & HX & PM \\ \hline
%
\rowcolor{aliceblue}\multicolumn{3}{|c|}{Mapper graph computation and visualization} \\ \hline
Mapper graph layout adjustment & \cellcolor{babypink}{N} & \cellcolor{babyblue}{Y} \\ \hline
Interactive parameter adjustment & \cellcolor{babyblue}{Y} & \cellcolor{babyblue}{Y} \\ \hline
On-the-fly mapper graph computation & \cellcolor{babyblue}{Y} & \cellcolor{babyblue}{Y} \\ \hline
%
\rowcolor{aliceblue}\multicolumn{3}{|c|}{Interactive visualization} \\ \hline
Node selection & \cellcolor{babyblue}{Y} & \cellcolor{babyblue}{Y} \\ \hline
Path selection & \cellcolor{babyblue}{Y} & \cellcolor{babyblue}{Y} \\ \hline
Subgraph (connected component/cluster) selection & \cellcolor{babypink}{N} & \cellcolor{babyblue}{Y} \\ \hline
Structural feature extraction (flares and special paths) & \cellcolor{babyblue}{Y} & \cellcolor{babypink}{N} \\ \hline
Easily extensible GUI & \cellcolor{babypink}{N} & \cellcolor{babyblue}{Y} \\ \hline
%
\rowcolor{aliceblue}\multicolumn{3}{|c|}{Data analysis and ML modules} \\ \hline
Semi-automatic hypothesis formulation & \cellcolor{babyblue}{Y} & \cellcolor{babyblue}{Y} \\ \hline
Easily extensible analysis and ML modules & \cellcolor{babypink}{N} & \cellcolor{babyblue}{Y} \\ \hline
Regression & \cellcolor{babypink}{N} & \cellcolor{babyblue}{Y} \\ \hline
Feature selection & \cellcolor{babypink}{N} & \cellcolor{babyblue}{Y} \\ \hline
Dimensionality reduction & \cellcolor{babypink}{N} & \cellcolor{babyblue}{Y} \\ \hline
%
\rowcolor{aliceblue}\multicolumn{3}{|c|}{Controls and other features} \\ \hline
Import and export selected subpopulations & \cellcolor{babypink}{N} & \cellcolor{babyblue}{Y} \\ \hline
Open source implementation & \cellcolor{babyblue}{Y} & \cellcolor{babyblue}{Y} \\ \hline
\end{tabularx}
\vspace{1mm}
\caption{Comparing features of \textsf{Hippo-X} (HX) against {\tool}. Blue means ``yes'' (Y), pink means ``no'' (N).}
\label{table:compare}
\vspace{-6mm}
\end{table} | [
[
"Features",
"HX",
"PM"
],
[
"Mapper graph computation and visualization",
null,
null
],
[
"Mapper graph layout adjustment",
"N",
"Y"
],
[
"Interactive parameter adjustment",
"Y",
"Y"
],
[
"On-the-fly mapper graph computation",
"Y",
"Y"
],
[
"Interactive visualization",
null,
null
],
[
"Node selection",
"Y",
"Y"
],
[
"Path selection",
"Y",
"Y"
],
[
"Subgraph (connected component/cluster) selection",
"N",
"Y"
],
[
"Structural feature extraction (flares and special paths)",
"Y",
"N"
],
[
"Easily extensible GUI",
"N",
"Y"
],
[
"Data analysis and ML modules",
null,
null
],
[
"Semi-automatic hypothesis formulation",
"Y",
"Y"
],
[
"Easily extensible analysis and ML modules",
"N",
"Y"
],
[
"Regression",
"N",
"Y"
],
[
"Feature selection",
"N",
"Y"
],
[
"Dimensionality reduction",
"N",
"Y"
],
[
"Controls and other features",
null,
null
],
[
"Import and export selected subpopulations",
"N",
"Y"
],
[
"Open source implementation",
"Y",
"Y"
]
] | 0.541877 | null | null |
0 | 1907.02335v1 | 4 | [
143.79299926757812,
135.96002197265625,
471.56298828125,
191.95001220703125
] | \begin{table}[htbp]\centering
\caption{Current and expected data rates of TAIGA setups, TB/year}\label{tab_taiga}
\begin{tabular}{|l|c|c|}
\hline
Setup & Current data rate & Expected data rate\\
\hline
TAIGA-HiSCORE & 6.4 &18\\
TAIGA-IACT & 0.5 &1.5\\
Tunka-Grande, Tunka-133 and Tunka-Rex & 0.5 &0.5\\ \hline
Total &7.4 &20\\
\hline
\end{tabular}
\end{table} | [
[
"Setup",
"Current data rate",
"Expected data rate"
],
[
"TAIGA-HiSCORE\nTAIGA-IACT\nTunka-Grande, Tunka-133 and Tunka-Rex",
"6.4\n0.5\n0.5",
"18\n1.5\n0.5"
],
[
"Total",
"7.4",
"20"
]
] | 0.893617 | null | null |
0 | 2311.01875v1 | 17 | [
98.38200378417969,
368.1969909667969,
513.6170043945312,
470.114990234375
] | \begin{table}[h]
\caption{Prediction errors (mean squared errors) for continuous scalar response.}
\label{tab1}
\begin{center}
\begin{tabular}{ll | rrrrrr}
\hline
$q$ & type & SNN & FNN & FLM1 & FLM2 & FNLM & FAM \\
\hline
5 & linear & 1.39E-02 & 1.91E-02 & 4.70E-01 & 1.90E-02 & 9.47E-03 & \textbf{9.45E-03} \\
9 & linear & \textbf{1.61E-02} & 1.97E-02 & 4.53E-01 & 2.00E-02 & 2.66E-02 & 2.62E-02 \\
21 & linear & \textbf{2.69E-02} & 2.84E-02 & 4.53E-01 & 2.92E-02 & 6.74E-02 & 6.63E-02 \\
5 & sin & 1.42E-02 & 1.89E-02 & 4.52E-01 & 1.91E-02 & 9.62E-03 & \textbf{9.60E-03} \\
9 & sin & \textbf{1.57E-02} & 1.94E-02 & 4.37E-01 & 1.96E-02 & 2.33E-02 & 2.28E-02 \\
21 & sin & \textbf{2.18E-02} & 2.43E-02 & 4.40E-01 & 2.47E-02 & 6.73E-02 & 6.55E-02 \\\hline
\end{tabular}
\end{center}
\end{table} | [
[
"q type",
"SNN FNN FLM1 FLM2 FNLM FAM"
],
[
"5 linear\n9 linear\n21 linear\n5 sin\n9 sin\n21 sin",
"1.39E-02 1.91E-02 4.70E-01 1.90E-02 9.47E-03 9.45E-03\n1.61E-02 1.97E-02 4.53E-01 2.00E-02 2.66E-02 2.62E-02\n2.69E-02 2.84E-02 4.53E-01 2.92E-02 6.74E-02 6.63E-02\n1.42E-02 1.89E-02 4.52E-01 1.91E-02 9.62E-03 9.60E-03\n1.57E-02 1.94E-02 4.37E-01 1.96E-02 2.33E-02 2.28E-02\n2.18E-02 2.43E-02 4.40E-01 2.47E-02 6.73E-02 6.55E-02"
]
] | 0.685644 | null | null |
1 | 2311.01875v1 | 18 | [
211.78599548339844,
221.572021484375,
400.2149963378906,
323.489990234375
] | \begin{table}[h]
\caption{Prediction errors (mean squared errors) for binary scalar response.}
\label{tab2}
\begin{center}
\begin{tabular}{ll | rrr}
\hline
$q$ & type & SNN & FNN & FLM \\
\hline
5 & linear & 0.069 & 0.075 & \textbf{0.011} \\
9 & linear & \textbf{0.083} & 0.135 & 0.148 \\
21 & linear & \textbf{0.105} & 0.361 & 0.207 \\
5 & sin & 0.072 & 0.067 & \textbf{0.013} \\
9 & sin & \textbf{0.082} & 0.140 & 0.151 \\
21 & sin & \textbf{0.170} & 0.405 & 0.230 \\
\hline
\end{tabular}
\end{center}
\end{table} | [
[
"q type",
"SNN FNN FLM"
],
[
"5 linear\n9 linear\n21 linear\n5 sin\n9 sin\n21 sin",
"0.069 0.075 0.011\n0.083 0.135 0.148\n0.105 0.361 0.207\n0.072 0.067 0.013\n0.082 0.140 0.151\n0.170 0.405 0.230"
]
] | 0.780347 | null | null |
0 | 1808.10009v1 | 12 | [
72.18241437276204,
349.48101806640625,
299.19766489664715,
762.7670288085938
] | \begin{table}[H]
\begin{tabular}{|L{4cm}|C{1.5cm}|C{1.2cm}|}
\hline
Feature Ablated & Success rate & Average Dialog Length \\ \hline \hline
None & \textbf{0.44} & \textbf{12.95} \\ \hline
Number of system turns used - normalized & 0.41 & \textbf{3.8} \\ \hline
Density of object in label query & 0.4 & \textbf{12.89} \\\hline
Fraction of previous dialogs using predicate in query that have succeeded & 0.39 & \textbf{5.46} \\ \hline
Score (normalized) of top region & 0.39 & \textbf{6.3} \\ \hline
Fraction of k nearest neighbors of the object in label query, which are unlabeled & 0.39 & \textbf{10.41} \\ \hline
Indicator for guess action & 0.38 & \textbf{7.21} \\ \hline
Minimum value of $C(p)$ for $p \in P_A$ & 0.37 & \textbf{6.37} \\ \hline
Decision of $p_{sec}$ for object with highest score & 0.37 & \textbf{11.21} \\ \hline
Difference between decision of $p_{best}$ for object with highest score, and the average of its decisions for objects in the active test set & 0.36 & \textbf{2.78} \\ \hline
\end{tabular}
\end{table} | [
[
"Feature Ablated",
"Success\nrate",
"Aver-\nage\nDialog\nLength"
],
[
"None",
"0.44",
"12.95"
],
[
"Number of system turns\nused - normalized",
"0.41",
"3.8"
],
[
"Density of object in label\nquery",
"0.4",
"12.89"
],
[
"Fraction of previous\ndialogs using predicate in\nquery that have\nsucceeded",
"0.39",
"5.46"
],
[
"Score (normalized) of top\nregion",
"0.39",
"6.3"
],
[
"Fraction of k nearest\nneighbors of the object in\nlabel query, which are\nunlabeled",
"0.39",
"10.41"
],
[
"Indicator for guess action",
"0.38",
"7.21"
],
[
"Minimum value of C(p)\nfor p P\n∈ A",
"0.37",
"6.37"
],
[
"Decision of p for\nsec\nobject with highest score",
"0.37",
"11.21"
],
[
"Difference between\ndecision of p for\nbest\nobject with highest score,\nand the average of its\ndecisions for objects in\nthe active test set",
"0.36",
"2.78"
]
] | 0.969925 | null | null |
1 | 1808.10009v1 | 12 | [
307.46453214946547,
63.00799560546875,
528.7984972502056,
790.696044921875
] | \begin{table}[H]
\begin{tabular}{|L{3.5cm}|C{1.5cm}|C{1.5cm}|}
\hline
Feature Ablated & Success rate & Average Dialog Length \\ \hline \hline
Indicator of whether the question is on-topic & 0.36 & \textbf{5.25} \\ \hline
Is decision of $p_{best}$ same for objects with top two scores & 0.36 & \textbf{5.32} \\ \hline
Indicate of whether the predicate in the query has a classifier & 0.36 & \textbf{13.97} \\ \hline
Frequency of use of the predicate in query - normalized & 0.35 & \textbf{4.48} \\ \hline
Indicator for the action of asking a positive example & 0.35 & \textbf{5.36} \\ \hline
Second highest value of $C(p)$ for $p \in P_A$ & 0.35 & \textbf{5.9} \\ \hline
Current estimated F1 for classifier of the predicate in query & 0.35 & \textbf{6.53} \\ \hline
Decision of $p_{best}$ for object with highest score & 0.34 & \textbf{3.85} \\ \hline
Indicator for the action of asking a label & 0.34 & \textbf{7.05} \\ \hline
Average value of $C(p)$ for $p \in P_A$ & 0.34 & \textbf{7.63} \\ \hline
Margin of object in label query & 0.34 & \textbf{8.08} \\ \hline
Maximum value of $C(p)$ for $p \in P_A$ & 0.33 & \textbf{6.31} \\ \hline
Difference between decision of $p_{sec}$ for object with highest score, and the average of its decisions for objects in the active test set & 0.33 & \textbf{8.84} \\ \hline
Difference between top two scores in the active test set & 0.32 & \textbf{8.05} \\ \hline
Is decision of $p_{best}$ same for objects with top two scores & 0.32 & \textbf{10.01} \\ \hline
Difference between top score and average score in the active test set & 0.31 & \textbf{7.18} \\ \hline
Baseline & 0.29 & 16 \\ \hline
\end{tabular}
\caption{Results of individual feature ablation. Boldface indicates that the difference in that metric with respect to \textit{Static} is statistically significant according to an unpaired Welch t-test with $p < 0.05$.}
\label{tab:individual_ablation}
\end{table} | [
[
"Feature Ablated",
"Success\nrate",
"Average\nDialog\nLength"
],
[
"Indicator of whether\nthe question is\non-topic",
"0.36",
"5.25"
],
[
"Is decision of p\nbest\nsame for objects with\ntop two scores",
"0.36",
"5.32"
],
[
"Indicate of whether\nthe predicate in the\nquery has a classifier",
"0.36",
"13.97"
],
[
"Frequency of use of\nthe predicate in query\n- normalized",
"0.35",
"4.48"
],
[
"Indicator for the\naction of asking a\npositive example",
"0.35",
"5.36"
],
[
"Second highest value\nof C(p) for p P\n∈ A",
"0.35",
"5.9"
],
[
"Current estimated F1\nfor classifier of the\npredicate in query",
"0.35",
"6.53"
],
[
"Decision of p for\nbest\nobject with highest\nscore",
"0.34",
"3.85"
],
[
"Indicator for the\naction of asking a\nlabel",
"0.34",
"7.05"
],
[
"Average value of C(p)\nfor p P\n∈ A",
"0.34",
"7.63"
],
[
"Margin of object in\nlabel query",
"0.34",
"8.08"
],
[
"Maximum value of\nC(p) for p P\n∈ A",
"0.33",
"6.31"
],
[
"Difference between\ndecision of p for\nsec\nobject with highest\nscore, and the average\nof its decisions for\nobjects in the active\ntest set",
"0.33",
"8.84"
],
[
"Difference between\ntop two scores in the\nactive test set",
"0.32",
"8.05"
],
[
"Is decision of p\nbest\nsame for objects with\ntop two scores",
"0.32",
"10.01"
],
[
"Difference between\ntop score and average\nscore in the active test\nset",
"0.31",
"7.18"
],
[
"Baseline",
"0.29",
"16"
]
] | 0.886731 | null | null |
0 | 2107.09519v1 | 5 | [
331.07504119873045,
112.04998779296875,
541.9249298095704,
385.8219909667969
] | \begin{table}
\centering
\caption{Mean of AUC for the 5 experiments performed with each stationary machine and with the 'baseline', 'NMF' and 'nnCP' procedures.}\label{F-sta2}
\begin{tabular}{|c|c|c|c|c|}
\hline
Machine & SNR & {\color{blue}Baseline} &{\color{c3}NMF} &{\color{c5}nnCP} \\
\hline
\hline
\multirow{2}{.2\columnwidth}{\centering Pump-00}
& 0 dB & 0.62 & 0.67 & \textbf{0.86} \\
\cline{2-5}
& -6 dB & 0.59 & 0.69 & \textbf{0.74 }\\
\hline
\multirow{2}{.2\columnwidth}{\centering Pump-02}
& 0 dB & 0.49 & 0.72 & \textbf{0.88} \\
\cline{2-5}
& -6 dB & 0.53 & 0.65 & \textbf{0.73 }\\
\hline
\multirow{2}{.2\columnwidth}{\centering Pump-04}
& 0 dB & 0.94 & 0.97 & \textbf{0.98} \\
\cline{2-5}
& -6 dB & 0.91 & \textbf{0.93 } & \textbf{0.93 }\\
\hline
\multirow{2}{.2\columnwidth}{\centering Pump-06}
& 0 dB & 0.81 & 0.83 & \textbf{0.87} \\
\cline{2-5}
& -6 dB & \textbf{0.65} & 0.50 & 0.63 \\
\hline
\multirow{2}{.2\columnwidth}{\centering Fan-00}
& 0 dB & 0.63 & 0.57 & \textbf{0.70} \\
\cline{2-5}
& -6 dB &0.56 & 0.51 &\textbf{ 0.61 }\\
\hline
\multirow{2}{.2\columnwidth}{\centering Fan-02}
& 0 dB &0.87 & 0.87 & \textbf{0.96} \\
\cline{2-5}
& -6 dB &0.69 & 0.64 &\textbf{ 0.77 }\\
\hline
\multirow{2}{.2\columnwidth}{\centering Fan-04}
& 0 dB &0.77 & 0.72 & \textbf{0.90} \\
\cline{2-5}
& -6 dB &0.59 & 0.50 &\textbf{ 0.68 }\\
\hline
\multirow{2}{.2\columnwidth}{\centering Fan-06}
& 0 dB & 0.99 & \textbf{1.00} & \textbf{1.00} \\
\cline{2-5}
& -6 dB &0.88 & 0.90 &\textbf{ 0.97 }\\
\hline
\hline
\multirow{2}{.2\columnwidth}{\centering \textbf{Average}}
& 0 dB & 0.77 & 0.80 & \textbf{0.90} \\
\cline{2-5}
& -6 dB &0.67 & 0.66 &\textbf{ 0.76 }\\
\hline
\end{tabular}
\end{table} | [
[
"Machine",
"SNR",
"Baseline",
"NMF",
"nnCP"
],
[
"Pump-00",
"0 dB",
"0.62",
"0.67",
"0.86"
],
[
null,
"-6 dB",
"0.59",
"0.69",
"0.74"
],
[
"Pump-02",
"0 dB",
"0.49",
"0.72",
"0.88"
],
[
null,
"-6 dB",
"0.53",
"0.65",
"0.73"
],
[
"Pump-04",
"0 dB",
"0.94",
"0.97",
"0.98"
],
[
null,
"-6 dB",
"0.91",
"0.93",
"0.93"
],
[
"Pump-06",
"0 dB",
"0.81",
"0.83",
"0.87"
],
[
null,
"-6 dB",
"0.65",
"0.50",
"0.63"
],
[
"Fan-00",
"0 dB",
"0.63",
"0.57",
"0.70"
],
[
null,
"-6 dB",
"0.56",
"0.51",
"0.61"
],
[
"Fan-02",
"0 dB",
"0.87",
"0.87",
"0.96"
],
[
null,
"-6 dB",
"0.69",
"0.64",
"0.77"
],
[
"Fan-04",
"0 dB",
"0.77",
"0.72",
"0.90"
],
[
null,
"-6 dB",
"0.59",
"0.50",
"0.68"
],
[
"Fan-06",
"0 dB",
"0.99",
"1.00",
"1.00"
],
[
null,
"-6 dB",
"0.88",
"0.90",
"0.97"
],
[
"Average",
"0 dB",
"0.77",
"0.80",
"0.90"
],
[
null,
"-6 dB",
"0.67",
"0.66",
"0.76"
]
] | 0.3654 | null | null |
1 | 2107.09519v1 | 7 | [
93.31091100519353,
112.04998779296875,
257.6891729181463,
260.29302978515625
] | \begin{table}
\centering
\caption{Mean of AUC for the 5 experiments performed with each non-stationary machine and with the 'baseline', 'NMF' and 'nnCP' procedures.}\label{F-nons2}
\begin{tabular}{|c|c|c|c|}
\hline
Machine & {\color{blue}Baseline} &{\color{c3}NMF} &{\color{c5}nnCP} \\
\hline
\hline
Valve-00 & 0.62 &\textbf{ 0.69} & 0.47 \\
\hline
Valve-02 & 0.59 & 0.59 & \textbf{0.62} \\
\hline
Valve-04 & \textbf{0.65} & 0.61 & 0.48 \\
\hline
Valve-06 & 0.67 & \textbf{0.76} & 0.56 \\
\hline
Slider-00 & 0.98 &\textbf{ 1.00} & 0.93 \\
\hline
Slider-02 & 0.83 & 0.86 & \textbf{0.90} \\
\hline
Slider-04 & 0.81 & \textbf{ 0.82} & 0.70 \\
\hline
Slider-06 & 0.55 & \textbf{0.62 }& 0.45 \\
\hline
\hline
Average & 0.71 &\textbf{ 0.74 }& 0.64 \\
\hline
\end{tabular}
\end{table} | [
[
"Machine",
"Baseline",
"NMF",
"nnCP"
],
[
"Valve-00",
"0.62",
"0.69",
"0.47"
],
[
"Valve-02",
"0.59",
"0.59",
"0.62"
],
[
"Valve-04",
"0.65",
"0.61",
"0.48"
],
[
"Valve-06",
"0.67",
"0.76",
"0.56"
],
[
"Slider-00",
"0.98",
"1.00",
"0.93"
],
[
"Slider-02",
"0.83",
"0.86",
"0.90"
],
[
"Slider-04",
"0.81",
"0.82",
"0.70"
],
[
"Slider-06",
"0.55",
"0.62",
"0.45"
],
[
"Average",
"0.71",
"0.74",
"0.64"
]
] | 0.983871 | null | null |
0 | 1607.03456v1 | 12 | [
133.72277323404947,
56.89202880859375,
461.55311414930554,
175.64703369140625
] | \begin{table}[ht]
\centering
\begin{tabular}{|l|l|l|}
\hline Step & Operations & Storage (not including storage of $A$) \\
\hline \ref{alg2:init} & $O(mn)$ & $O(n)$ \\
\hline \ref{alg2:max_arg}& $O(ns-s^2)$ & $O(1)$ \\
\hline \ref{alg2:under_diag}& $O(s^2)$ & $O(s^2)$ \\
\hline \ref{alg2:above_diag1}& $O(m(ns-s^2))$ & $O(m)$\\
\hline \ref{alg2:above_diag2}& $O(s(ns-s^2))$ & $O(ns-s^2)$\\
\hline \ref{alg2:above_diag3}& $O(ns-s^2)$ & $O(1)$\\
\hline Total: & $O(mns) $ & $ O(ns) $\\ \hline
\end{tabular}
\caption{Computational and storage complexities of Algorithm~\ref{alg: q-less}.}
\end{table} | [
[
"Step",
"Operations",
"Storage (not including storage of A)"
],
[
"1",
"O(mn)",
"O(n)"
],
[
"4",
"O(ns s2)\n−",
"O(1)"
],
[
"7",
"O(s2)",
"O(s2)"
],
[
"10",
"O(m(ns s2))\n−",
"O(m)"
],
[
"11",
"O(s(ns s2))\n−",
"O(ns s2)\n−"
],
[
"12",
"O(ns s2)\n−",
"O(1)"
],
[
"Total:",
"O(mns)",
"O(ns)"
]
] | 0.62 | null | null |
1 | 1607.03456v1 | 22 | [
146.58177947998047,
56.89202880859375,
448.69320024762834,
246.67999267578125
] | \begin{table}[H]
\begin{center}
\begin{tabular}{ |c|l|c|c| }
\hline
$\mu$ & & ICPQR-based DM & $\mu$IDM~\cite{Salhov:uIDM2014} \\
\hline
& Dictionary size $s$ & $1,246$ & $2,305$ \\
$0.1$ & Execution time & $43$ sec. & $7$ hours \\
& Actual distortion & $0.01$ & $0.03$ \\
\hline
& Dictionary size $s$ & $752$ & $1,293$ \\
$1$ & Execution time & $27$ sec. & $71$ minutes \\
& Actual distortion & $0.23$ & $0.61$ \\
\hline
& Dictionary size $s$ & $382$ & $630$ \\
$5$ & Execution time & $17$ sec. & $15$ minutes \\
& Actual distortion & $3.91$ & $4.46$ \\
\hline
& Dictionary size $s$ & $190$ & $284$ \\
$10$ & Execution time & $9$ sec. & $4$ minutes \\
& Actual distortion & $12.81$ & $13.24$ \\
\hline
\end{tabular}
\caption{Comparison between ICPQR-based DM and $\mu$IDM algorithms related to dictionary size, execution time and actual distortion\protect\footnotemark, w.r.t. $\timel{\map\Psi}{1}$, for various distortion parameters. Clearly, the actual distortion is bounded by $2\mu$. Execution times are averaged over $10$ runs of the algorithms.} \label{tbl:compare_icpqr_idm}
\end{center}
\end{table} | [
[
"µ",
"",
"ICPQR-based DM",
"µIDM [41]"
],
[
"0.1",
"Dictionary size s\nExecution time\nActual distortion",
"1, 246\n43 sec.\n0.01",
"2, 305\n7 hours\n0.03"
],
[
"1",
"Dictionary size s\nExecution time\nActual distortion",
"752\n27 sec.\n0.23",
"1, 293\n71 minutes\n0.61"
],
[
"5",
"Dictionary size s\nExecution time\nActual distortion",
"382\n17 sec.\n3.91",
"630\n15 minutes\n4.46"
],
[
"10",
"Dictionary size s\nExecution time\nActual distortion",
"190\n9 sec.\n12.81",
"284\n4 minutes\n13.24"
]
] | 0.374445 | null | null |
2 | 1607.03456v1 | 23 | [
124.92357417515346,
361.218017578125,
470.35142735072543,
450.2840270996094
] | \begin{table}[ht]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline Set & Size & \# of anomalies & Accuracy [\%] & False Alarms [\%] \\
\hline $\set T_{mon}$ & $1,321$ & $1$ & $100$ & $0.68$\\
\hline $\set T_{tue}$ & $1,140$ & $53$ &$100$ & $0.53$\\
\hline $\set T_{wed}$ & $1,321$ & $16$ &$100$ & $0.08$\\
\hline $\set T_{thu}$ & $1,320$ & $24$ &$96$ & $1.74$\\
\hline $\set T_{fri}$ & $1,320$ & $18$ &$100$ & $0.15$\\
\hline
\end{tabular}
\caption{Anomaly detection performances.}
\end{table} | [
[
"Set",
"Size",
"# of anomalies",
"Accuracy [%]",
"False Alarms [%]"
],
[
"Tmon",
"1, 321",
"1",
"100",
"0.68"
],
[
"Ttue",
"1, 140",
"53",
"100",
"0.53"
],
[
"Twed",
"1, 321",
"16",
"100",
"0.08"
],
[
"Tthu",
"1, 320",
"24",
"96",
"1.74"
],
[
"Tfri",
"1, 320",
"18",
"100",
"0.15"
]
] | 0.847545 | null | null |
0 | 2311.10962v1 | 4 | [
50.74773406982422,
438.4798177083333,
298.23504638671875,
464.90110270182294
] | \begin{table}[htbp]
% \centering
\caption{Classification accuracy percentage with different train sizes}
\resizebox{\hsize}{!}{
{\begin{tabular}
{crccccc|ccccc}
\hline
\hline
& & & & PCA & & & & & LDA & & \\
\hline
& \multicolumn{1}{l}{Train size (\%)} & 40 & 50 & 60 & 70 & 80 & 40 & 50 & 60 & 70 & 80 \\
\hline
SVM & & 79.19 & 79.83 & 79.86 & 81.95 & 82.82 & 90.42 & 90.10 & 89.99 & 89.17 & 89.41 \\[+0.1em]
RF & & 83.75 & 84.35 & 83.62 & 83.00 & 83.05 & 91.13 & 89.91 & 90.22 & 90.26 & 88.94 \\[+0.1em]
\hline
\hline
\end{tabular}}
}
\end{table} | [
[
"PCA",
"LDA"
],
[
"Train size (%) 40 50 60 70 80",
"40 50 60 70 80"
],
[
"SVM 79.19 79.83 79.86 81.95 82.82\nRF 83.75 84.35 83.62 83.00 83.05",
"90.42 90.10 89.99 89.17 89.41\n91.13 89.91 90.22 90.26 88.94"
]
] | 0.785146 | null | null |
0 | 2303.03659v1 | 88 | [
134.15104598999022,
96.60797119140625,
477.84894104003905,
376.2590026855469
] | \begin{table}[htbp]
%\captionsetup{font=small}
\centering
\caption{Subject distributed programs and test inputs used}
%\small
%\vspace{-5pt}
%\resizebox{0.98\columnwidth}{!}{%
\begin{tabular}{|l|r|r|l|l|}
\hline
\multicolumn{1}{|c|}{\textbf{Subject}} & \multicolumn{1}{c|}{\textbf{\#SLOC}} & \multicolumn{1}{c|}{\textbf{\#Method}} & \multicolumn{1}{c|}{\textbf{Scenario}} & \multicolumn{1}{c|}{\textbf{Tests}} \\
\hline
NIOEcho & 412 & 27 & Client-server & Integration \\
\hline
MultiChat & 470 & 37 & Peer-to-peer & Integration \\
\hline
ADEN & 4,385 & 260 & Peer-to-peer & Integration \\
\hline
Raining Sockets & 6,711 & 319 & Client-server & Integration \\
\hline
OpenChord & 9,244 & 736 & Peer-to-peer & Integration \\
\hline
Thrift & 14,510 & 1,941 & Client-server & Integration \\
\hline
xSocket & 15,760 & 2,209 & Peer-to-peer & Integration \\
\hline
& & & Client-server & Integration \\
\cline{4-5} ZooKeeper & 62,194 & 5,383 & N-tier & Load \\
\cline{4-5} & & & N-tier & System \\
\hline
\multirow{2}[4]{*}{RocketMQ} & \multirow{2}[4]{*}{105,444} & \multirow{2}[4]{*}{6,198} & N-tier & Integration \\
\cline{4-5} & & & N-tier & System \\
\hline
& & & Client-server & Integration \\
\cline{4-5} Voldemort & 115,310 & 20,406 & N-tier & Load \\
\cline{4-5} & & & N-tier & System \\
\hline
Netty & 167,961 & 12,389 & N-tier & Integration \\
\hline
\multirow{2}[4]{*}{HSQLDB} & \multirow{2}[4]{*}{326,678} & \multirow{2}[4]{*}{10,095} & Client-server & Integration \\
\cline{4-5} & & & N-tier & System \\
\hline
\end{tabular}%
%}
\label{tab:flowdistsubjects}%
% \vspace{-10pt}
\end{table} | [
[
"Subject",
"#SLOC",
"#Method",
"Scenario",
"Tests"
],
[
"NIOEcho",
"412",
"27",
"Client-server",
"Integration"
],
[
"MultiChat",
"470",
"37",
"Peer-to-peer",
"Integration"
],
[
"ADEN",
"4,385",
"260",
"Peer-to-peer",
"Integration"
],
[
"Raining Sockets",
"6,711",
"319",
"Client-server",
"Integration"
],
[
"OpenChord",
"9,244",
"736",
"Peer-to-peer",
"Integration"
],
[
"Thrift",
"14,510",
"1,941",
"Client-server",
"Integration"
],
[
"xSocket",
"15,760",
"2,209",
"Peer-to-peer",
"Integration"
],
[
"ZooKeeper",
"62,194",
"5,383",
"Client-server",
"Integration"
],
[
null,
null,
null,
"N-tier",
"Load"
],
[
null,
null,
null,
"N-tier",
"System"
],
[
"RocketMQ",
"105,444",
"6,198",
"N-tier",
"Integration"
],
[
null,
null,
null,
"N-tier",
"System"
],
[
"Voldemort",
"115,310",
"20,406",
"Client-server",
"Integration"
],
[
null,
null,
null,
"N-tier",
"Load"
],
[
null,
null,
null,
"N-tier",
"System"
],
[
"Netty",
"167,961",
"12,389",
"N-tier",
"Integration"
],
[
"HSQLDB",
"326,678",
"10,095",
"Client-server",
"Integration"
],
[
null,
null,
null,
"N-tier",
"System"
]
] | 0.806387 | null | null |
1 | 2303.03659v1 | 90 | [
137.56405487060547,
111.05401611328125,
474.43594512939455,
376.0589904785156
] | \begin{table}[tp]
%\captionsetup{font=small}
\small
%\vspace{-10pt}
\centering
\caption{Numbers of intraprocess ({\em Ir}) source/sink pairs ({\em Pr}) and information flow paths ({\em Ps}), versus interprocess ({\em Int}) ones}
\vspace{-0pt}
\begin{tabular}{|l|r|r|r|r|r|}
\hline
\textbf{Execution} & \multicolumn{1}{l|}{\textbf{\#IrPr}} & \multicolumn{1}{l|}{\textbf{\#IrPs}} & \multicolumn{1}{l|}{\textbf{\#IntPr}} & \multicolumn{1}{l|}{\textbf{\#IntPs}} & \multicolumn{1}{l|}{\textbf{IntPs/AllPs}} \\
\hline
NioEcho & 66 & 21 & 12 & 6 & 22.22\% \\
\hline
\textcolor[rgb]{ .502, .502, .502}{MultiChat} & \textcolor[rgb]{ .502, .502, .502}{42} & \textcolor[rgb]{ .502, .502, .502}{0} & \textcolor[rgb]{ .502, .502, .502}{12} & \textcolor[rgb]{ .502, .502, .502}{0} & \textcolor[rgb]{ .502, .502, .502}{0.00\%} \\
\hline
\textcolor[rgb]{ .502, .502, .502}{ADEN} & \textcolor[rgb]{ .502, .502, .502}{0} & \textcolor[rgb]{ .502, .502, .502}{0} & \textcolor[rgb]{ .502, .502, .502}{5} & \textcolor[rgb]{ .502, .502, .502}{0} & \textcolor[rgb]{ .502, .502, .502}{0.00\%} \\
\hline
Raining Sockets & 12 & 3 & 0 & 0 & 0.00\% \\
\hline
\textcolor[rgb]{ .502, .502, .502}{OpenChord} & \textcolor[rgb]{ .502, .502, .502}{14} & \textcolor[rgb]{ .502, .502, .502}{0} & \textcolor[rgb]{ .502, .502, .502}{24} & \textcolor[rgb]{ .502, .502, .502}{0} & \textcolor[rgb]{ .502, .502, .502}{0.00\%} \\
\hline
Thrift & 4 & 0 & 4 & 3 & 100.00\% \\
\hline
xSocket & 10 & 8 & 26 & 2 & 20.00\% \\
\hline
\textcolor[rgb]{ .502, .502, .502}{Zookeeper Integration} & \textcolor[rgb]{ .502, .502, .502}{9} & \textcolor[rgb]{ .502, .502, .502}{0} & \textcolor[rgb]{ .502, .502, .502}{33} & \textcolor[rgb]{ .502, .502, .502}{0} & \textcolor[rgb]{ .502, .502, .502}{0.00\%} \\
\hline
Zookeeper Load & 1086 & 1 & 6522 & 64 & 98.46\% \\
\hline
Zookeeper System & 124 & 0 & 1116 & 46 & 100.00\% \\
\hline
RocketMQ Integration & 19 & 23 & 46 & 17 & 42.50\% \\
\hline
RocketMQ System & 24 & 0 & 187 & 50 & 100.00\% \\
\hline
Voldemort Integration & 198 & 30 & 193 & 138 & 82.14\% \\
\hline
\textcolor[rgb]{ .502, .502, .502}{Voldemort Load} & \textcolor[rgb]{ .502, .502, .502}{6} & \textcolor[rgb]{ .502, .502, .502}{0} & \textcolor[rgb]{ .502, .502, .502}{6} & \textcolor[rgb]{ .502, .502, .502}{0} & \textcolor[rgb]{ .502, .502, .502}{0.00\%} \\
\hline
Voldemort System & 80 & 30 & 77 & 42 & 58.33\% \\
\hline
Netty & 9 & 3 & 7 & 2 & 40.00\% \\
\hline
HSQLDB Integration & 140 & 10 & 668 & 0 & 0.00\% \\
\hline
HSQLDB System & 7 & 2 & 11 & 4 & 66.67\% \\
\hline
\end{tabular}%
\label{tab:localremotepaths}%
% \vspace{-10pt}
\end{table} | [
[
"Execution",
"#IrPr",
"#IrPs",
"#IntPr",
"#IntPs",
"IntPs/AllPs"
],
[
"NioEcho",
"66",
"21",
"12",
"6",
"22.22%"
],
[
"MultiChat",
"42",
"0",
"12",
"0",
"0.00%"
],
[
"ADEN",
"0",
"0",
"5",
"0",
"0.00%"
],
[
"Raining Sockets",
"12",
"3",
"0",
"0",
"0.00%"
],
[
"OpenChord",
"14",
"0",
"24",
"0",
"0.00%"
],
[
"Thrift",
"4",
"0",
"4",
"3",
"100.00%"
],
[
"xSocket",
"10",
"8",
"26",
"2",
"20.00%"
],
[
"Zookeeper Integration",
"9",
"0",
"33",
"0",
"0.00%"
],
[
"Zookeeper Load",
"1086",
"1",
"6522",
"64",
"98.46%"
],
[
"Zookeeper System",
"124",
"0",
"1116",
"46",
"100.00%"
],
[
"RocketMQ Integration",
"19",
"23",
"46",
"17",
"42.50%"
],
[
"RocketMQ System",
"24",
"0",
"187",
"50",
"100.00%"
],
[
"Voldemort Integration",
"198",
"30",
"193",
"138",
"82.14%"
],
[
"Voldemort Load",
"6",
"0",
"6",
"0",
"0.00%"
],
[
"Voldemort System",
"80",
"30",
"77",
"42",
"58.33%"
],
[
"Netty",
"9",
"3",
"7",
"2",
"40.00%"
],
[
"HSQLDB Integration",
"140",
"10",
"668",
"0",
"0.00%"
],
[
"HSQLDB System",
"7",
"2",
"11",
"4",
"66.67%"
]
] | 0.428703 | null | null |
2 | 2303.03659v1 | 91 | [
90.5589554526589,
269.06097412109375,
521.4410511363636,
580.3930053710938
] | \begin{table}[htbp]
\captionsetup{font=small}
%\scriptsize
\centering
% \vspace{-40pt}
\caption{Time (in seconds) and storage (in MB) costs of {\flowdist}}
% \vspace{-10pt}
\begin{tabular}{|l|r|r|r|r|r|r|r|r|r|}
\hline
\multicolumn{1}{|c|}{\multirow{2}[2]{*}{\textbf{Executions}}} & \multicolumn{1}{c|}{Norm} & \multicolumn{4}{c|}{Phase 1 Time} & \multicolumn{3}{c|}{Phase 2 Time} & \multicolumn{1}{r|}{\multirow{2}[2]{*}{Stor.}} \\
\cline{3-9} & \multicolumn{1}{c|}{Run} & \multicolumn{1}{c|}{Static} & \multicolumn{1}{c|}{Run} & \multicolumn{1}{c|}{Slowdown} & \multicolumn{1}{c|}{Query} & \multicolumn{1}{c|}{Static} & \multicolumn{1}{c|}{Coverage} & \multicolumn{1}{c|}{Query} & \\
\hline
NioEcho & 39 & 53 & 41 & 5.16\% & 0.2 & 50 & 1 & 1.0 & 1.6 \\
\hline
MultiChat & 26 & 55 & 28 & 6.12\% & 0.2 & 50 & 1 & 0.1 & 1.0 \\
\hline
ADEN & 21 & 117 & 23 & 10.23\% & 0.3 & 59 & 3 & 0.3 & 4.0 \\
\hline
Raining Sockets. & 6 & 40 & 6 & 7.67\% & 0.3 & 122 & 6 & 0.4 & 14.5 \\
\hline
OpenChord & 54 & 177 & 59 & 8.54\% & 0.3 & 740 & 41 & 4.7 & 26.7 \\
\hline
Thrift & 8 & 146 & 10 & 24.83\% & 0.5 & 79 & 45 & 0.6 & 26.1 \\
\hline
xSocket & 11 & 101 & 19 & 63.99\% & 0.5 & 70 & 14 & 0.1 & 29.3 \\
\hline
Zookeeper Integration & 71 & 292 & 121 & 70.16\% & 0.5 & 193 & 108 & 1.8 & 231.2 \\
\hline
Zookeeper Load & 99 & 292 & 177 & 78.83\% & 0.6 & 137 & 67 & 2.0 & 404.0 \\
\hline
Zookeeper System & 98 & 292 & 178 & 81.87\% & 0.5 & 250 & 93 & 1.1 & 417.5 \\
\hline
RocketMQ Integration & 105 & 56 & 196 & 87.05\% & 0.6 & 704 & 49 & 21.5 & 291.0 \\
\hline
RocketMQ System & 339 & 156 & 753 & 122.09\% & 0.6 & 727 & 52 & 34.0 & 463.2 \\
\hline
Voldemort Integration & 28 & 1206 & 58 & 106.06\% & 0.6 & 566 & 317 & 9.1 & 560.4 \\
\hline
Voldemort Load & 11 & 1206 & 23 & 113.37\% & 0.6 & 435 & 260 & 14.4 & 523.1 \\
\hline
Voldemort System & 31 & 1206 & 65 & 109.81\% & 0.6 & 618 & 344 & 22.2 & 545.1 \\
\hline
Netty & 12 & 1132 & 22 & 81.65\% & 0.6 & 381 & 317 & 30.1 & 417.6 \\
\hline
HSQLDB Integration & 9 & 659 & 19 & 107.46\% & 0.7 & 2227 & 96 & 41.5 & 591.1 \\
\hline
HSQLDB System & 15 & 684 & 36 & 142.71\% & 0.7 & 2771 & 408 & 49.7 & 733.7 \\
\hline
\textbf{Overall Average} & \textbf{55} & \textbf{437} & \textbf{102} & \textbf{68.20\%} & \textbf{0.5} & \textbf{565} & \textbf{124} & \textbf{13.0} & \textbf{293.4} \\
\hline
\end{tabular}%
\label{tab:fdcosts}%
% \vspace{-5pt}
\end{table} | [
[
"Executions",
"Norm\nRun",
"Phase 1 Time",
null,
null,
null,
"Phase 2 Time",
null,
null,
"Stor."
],
[
null,
null,
"Static",
"Run",
"Slowdown",
"Query",
"Static",
"Coverage",
"Query",
null
],
[
"NioEcho",
"39",
"53",
"41",
"5.16%",
"0.2",
"50",
"1",
"1.0",
"1.6"
],
[
"MultiChat",
"26",
"55",
"28",
"6.12%",
"0.2",
"50",
"1",
"0.1",
"1.0"
],
[
"ADEN",
"21",
"117",
"23",
"10.23%",
"0.3",
"59",
"3",
"0.3",
"4.0"
],
[
"Raining Sockets.",
"6",
"40",
"6",
"7.67%",
"0.3",
"122",
"6",
"0.4",
"14.5"
],
[
"OpenChord",
"54",
"177",
"59",
"8.54%",
"0.3",
"740",
"41",
"4.7",
"26.7"
],
[
"Thrift",
"8",
"146",
"10",
"24.83%",
"0.5",
"79",
"45",
"0.6",
"26.1"
],
[
"xSocket",
"11",
"101",
"19",
"63.99%",
"0.5",
"70",
"14",
"0.1",
"29.3"
],
[
"Zookeeper Integration",
"71",
"292",
"121",
"70.16%",
"0.5",
"193",
"108",
"1.8",
"231.2"
],
[
"Zookeeper Load",
"99",
"292",
"177",
"78.83%",
"0.6",
"137",
"67",
"2.0",
"404.0"
],
[
"Zookeeper System",
"98",
"292",
"178",
"81.87%",
"0.5",
"250",
"93",
"1.1",
"417.5"
],
[
"RocketMQ Integration",
"105",
"56",
"196",
"87.05%",
"0.6",
"704",
"49",
"21.5",
"291.0"
],
[
"RocketMQ System",
"339",
"156",
"753",
"122.09%",
"0.6",
"727",
"52",
"34.0",
"463.2"
],
[
"Voldemort Integration",
"28",
"1206",
"58",
"106.06%",
"0.6",
"566",
"317",
"9.1",
"560.4"
],
[
"Voldemort Load",
"11",
"1206",
"23",
"113.37%",
"0.6",
"435",
"260",
"14.4",
"523.1"
],
[
"Voldemort System",
"31",
"1206",
"65",
"109.81%",
"0.6",
"618",
"344",
"22.2",
"545.1"
],
[
"Netty",
"12",
"1132",
"22",
"81.65%",
"0.6",
"381",
"317",
"30.1",
"417.6"
],
[
"HSQLDB Integration",
"9",
"659",
"19",
"107.46%",
"0.7",
"2227",
"96",
"41.5",
"591.1"
],
[
"HSQLDB System",
"15",
"684",
"36",
"142.71%",
"0.7",
"2771",
"408",
"49.7",
"733.7"
],
[
"Overall Average",
"55",
"437",
"102",
"68.20%",
"0.5",
"565",
"124",
"13.0",
"293.4"
]
] | 0.908451 | null | null |
3 | 2303.03659v1 | 95 | [
154.07367636940697,
182.61798095703125,
458.7614491780599,
316.2170104980469
] | \begin{table}[htbp]
%\captionsetup{font=small}
\centering
%\vspace{-5pt}
\caption{New vulnerabilities discovered by {\flowdist}}
%\vspace{-5pt}
%\small
%\resizebox{0.85\columnwidth}{!}{%
\begin{tabular}{|l||r|r|r|}
\hline
{\textbf{Subject}} & \multicolumn{1}{|l|}{\textbf{\#Fixed}} & \multicolumn{1}{l|}{\textbf{\#Confirmed}} & \multicolumn{1}{l|}{\textbf{\#Pending}} \\
\hline
HSQLDB & 0 & 5 & 2 \\
\hline
Netty & 1 & 1 & 0 \\
\hline
Raining Sockets & 0 & 1 & 0 \\
\hline
RocketMQ & 0 & 4 & 0 \\
\hline
Thrift & 0 & 5 & 0 \\
\hline
Voldemort & 0 & 0 & 4 \\
\hline
xSocket & 0 & 0 & 1 \\
\hline
Zookeeper & 1 & 1 & 0 \\
\hline
\end{tabular}%
%}
\label{tab:newbugs}%
%\vspace{-10pt}
\end{table} | [
[
"Subject",
"#Fixed #Co",
"nfirmed",
"#Pending"
],
[
"HSQLDB",
"0",
"5",
"2"
],
[
"Netty",
"1",
"1",
"0"
],
[
"Raining Socket",
"s 0",
"1",
"0"
],
[
"RocketMQ",
"0",
"4",
"0"
],
[
"Thrift",
"0",
"5",
"0"
],
[
"Voldemort",
"0",
"0",
"4"
],
[
"xSocket",
"0",
"0",
"1"
],
[
"Zookeeper",
"1",
"1",
"0"
]
] | 0.911765 | null | null |
4 | 2303.03659v1 | 123 | [
132.4210952758789,
96.60797119140625,
479.57899169921876,
230.20697021484375
] | \begin{table}[tp]
\centering
%\vspace{-20pt}
\caption{Experimental subjects}
%\vspace{-15pt}
% \resizebox{\columnwidth}{!}{%
\begin{tabular}{|l|r|r|c|}
\hline
\multicolumn{1}{|c|}{\textbf{Subject (Version)}} & \multicolumn{1}{c|}{\textbf{\#Method}} & \multicolumn{1}{c|}{\textbf{\#SLOC}} & \multicolumn{1}{c|}{\textbf{Test Type}} \\
\hline
NioEcho (r69) & 27 & 412 & Integration \\
\hline
MultiChat (r5) & 37 & 470 & Integration \\
\hline
OpenChord (v1.0.5) & 736 & 9,244 & Integration \\
\hline
Thrift (v0.11.0) & 1,941 & 14,510 & Integration \\
\hline
xSocket (v2.8.15) & 2,209 & 15,760 & Integration \\
\hline
ZooKeeper (v3.4.11) & 5,383 & 62,194 & Integration, Load, System \\
\hline
Netty (v4.1.19) & 12,389 & 167,961 & Integration \\
\hline
Voldemort (v1.9.6) & 20,406 & 115,310 & Integration, Load, System \\
\hline
\end{tabular}%
% }
\label{tab:seadssubjects}%
%\vspace{-10pt}
\end{table} | [
[
"Subject (Version)",
"#Method",
"#SLOC",
"Test Type"
],
[
"NioEcho (r69)",
"27",
"412",
"Integration"
],
[
"MultiChat (r5)",
"37",
"470",
"Integration"
],
[
"OpenChord (v1.0.5)",
"736",
"9,244",
"Integration"
],
[
"Thrift (v0.11.0)",
"1,941",
"14,510",
"Integration"
],
[
"xSocket (v2.8.15)",
"2,209",
"15,760",
"Integration"
],
[
"ZooKeeper (v3.4.11)",
"5,383",
"62,194",
"Integration, Load, System"
],
[
"Netty (v4.1.19)",
"12,389",
"167,961",
"Integration"
],
[
"Voldemort (v1.9.6)",
"20,406",
"115,310",
"Integration, Load, System"
]
] | 0.955368 | null | null |
5 | 2303.03659v1 | 132 | [
193.2969970703125,
96.60797119140625,
418.7019958496094,
304.4280090332031
] | \begin{table}[tp]
\centering
%\vspace{-10pt}
%\caption{\small{The number of iterations and learning time (in seconds) of Q-learning in {\seads}}}
\caption{The number of iterations and learning time (in seconds) of Q-learning}
%\vspace{-10pt}
\begin{tabular}{l||r|r}
\hline
\multicolumn{1}{c||}{\textbf{Execution}} & \multicolumn{1}{c|}{\textbf{\#Iteration}} & \multicolumn{1}{c}{\textbf{Time}} \\
\hline
NIOEcho & 1 & 36.73 \\
\hline
MultiChat & 1 & 41.38 \\
\hline
OpenChord & 2 & 327.19 \\
\hline
Thrift & 2 & 316.70 \\
\hline
xSocket & 3 & 639.37 \\
\hline
ZooKeeper\_integration & 4 & 1013.73 \\
\hline
ZooKeeper\_load & 4 & 1097.26 \\
\hline
ZooKeeper\_system & 4 & 1053.82 \\
\hline
Netty & 4 & 1132.98 \\
\hline
Voldemort\_integration & 3 & 697.35 \\
\hline
Voldemort\_load & 3 & 632.42 \\
\hline
Voldemort\_system & 3 & 621.94 \\
\hline
\textbf{Overall Average:} & \textbf{3} & \textbf{634.24} \\
\hline
\end{tabular}%
\label{tab:seadsitime}%
%\vspace{-10pt}
\end{table} | [
[
"Execution",
"#Iteration",
"Time"
],
[
"NIOEcho",
"1",
"36.73"
],
[
"MultiChat",
"1",
"41.38"
],
[
"OpenChord",
"2",
"327.19"
],
[
"Thrift",
"2",
"316.70"
],
[
"xSocket",
"3",
"639.37"
],
[
"ZooKeeper integration",
"4",
"1013.73"
],
[
"ZooKeeper load",
"4",
"1097.26"
],
[
"ZooKeeper system",
"4",
"1053.82"
],
[
"Netty",
"4",
"1132.98"
],
[
"Voldemort integration",
"3",
"697.35"
],
[
"Voldemort load",
"3",
"632.42"
],
[
"Voldemort system",
"3",
"621.94"
],
[
"Overall Average:",
"3",
"634.24"
]
] | 0.945455 | null | null |
6 | 2303.03659v1 | 54 | [
88.89273173014323,
96.60797119140625,
523.1072591145834,
304.4280090332031
] | \begin{table}[htbp]
\centering
%\vspace{-10pt}
\caption{System-level IPC measurement results} %\vspace{-10pt}
%\resizebox{\columnwidth}{!}{%
\begin{tabular}{|l||r|r|r|r|r|r|r|}
\hline
\multicolumn{1}{|c||}{\textbf{Subject Executions}} & \multicolumn{1}{c|}{\textbf{RMC}} & \multicolumn{1}{c|}{\textbf{RCC}} & \multicolumn{1}{c|}{\textbf{CCC}} & \multicolumn{1}{c|}{\textbf{IPR}} & \multicolumn{1}{c|}{\textbf{CCL}} & \multicolumn{1}{c|}{\textbf{PLC}} \\
\hline
XNIO & 16.82 & 58.96 & 2.76 & 0.51 & 74.43 & 41.10 \\
\hline
OpenChord & 3.14 & 67.15 & 5.29 & 0.78 & 267.36 & 255.78 \\
\hline
xSocket & 20.74 & 76.77 & 3.63 & 0.36 & 257.98 & 208.19 \\
\hline
QuickServer & 2.12 & 36.21 & 2.42 & 0.40 & 113.27 & 70.85 \\
\hline
Thrift & 11.59 & 25.27 & 3.17 & 0.56 & 23.40 & 41.59 \\
\hline
Grizzly & 39.68 & 152.09 & 2.16 & 0.67 & 665.13 & 673.34 \\
\hline
Karaf & 2.85 & 22.31 & 1.06 & 0.45 & 70.16 & 78.32 \\
\hline
ZooKeeper & 6.26 & 191.83 & 3.04 & 0.42 & 506.32 & 461.36 \\
\hline
ZooKeeper Load & 4.01 & 90.02 & 1.19 & 0.37 & 391.41 & 369.29 \\
\hline
ZooKeeper System & 4.84 & 131.32 & 2.62 & 0.39 & 382.56 & 332.70 \\
\hline
Voldemort & 40.17 & 301.54 & 5.02 & 0.54 & 528.32 & 569.79 \\
\hline
Netty & 1.00 & 129.00 & 2.38 & 0.54 & 863.39 & 765.36 \\
\hline
Derby & 3.31 & 29.45 & 2.22 & 0.72 & 717.70 & 734.12 \\
\hline
% \textbf{Average:} & \textbf{12.04} & \textbf{100.92} & \textbf{2.84} & \textbf{0.52} & \textbf{373.96} & \textbf{353.98} \\
\end{tabular}%
%}
\label{tab:rmcrccipr}%
%\vspace{-15pt}
\end{table} | [
[
"Subject Executions",
"RMC",
"RCC",
"CCC",
"IPR",
"CCL",
"PLC"
],
[
"XNIO",
"16.82",
"58.96",
"2.76",
"0.51",
"74.43",
"41.10"
],
[
"OpenChord",
"3.14",
"67.15",
"5.29",
"0.78",
"267.36",
"255.78"
],
[
"xSocket",
"20.74",
"76.77",
"3.63",
"0.36",
"257.98",
"208.19"
],
[
"QuickServer",
"2.12",
"36.21",
"2.42",
"0.40",
"113.27",
"70.85"
],
[
"Thrift",
"11.59",
"25.27",
"3.17",
"0.56",
"23.40",
"41.59"
],
[
"Grizzly",
"39.68",
"152.09",
"2.16",
"0.67",
"665.13",
"673.34"
],
[
"Karaf",
"2.85",
"22.31",
"1.06",
"0.45",
"70.16",
"78.32"
],
[
"ZooKeeper",
"6.26",
"191.83",
"3.04",
"0.42",
"506.32",
"461.36"
],
[
"ZooKeeper Load",
"4.01",
"90.02",
"1.19",
"0.37",
"391.41",
"369.29"
],
[
"ZooKeeper System",
"4.84",
"131.32",
"2.62",
"0.39",
"382.56",
"332.70"
],
[
"Voldemort",
"40.17",
"301.54",
"5.02",
"0.54",
"528.32",
"569.79"
],
[
"Netty",
"1.00",
"129.00",
"2.38",
"0.54",
"863.39",
"765.36"
],
[
"Derby",
"3.31",
"29.45",
"2.22",
"0.72",
"717.70",
"734.12"
]
] | 0.927013 | null | null |
7 | 2303.03659v1 | 59 | [
72.15460872650146,
111.03120422363281,
539.8637542724609,
203.2928466796875
] | \begin{table}[tp]
\centering
%\vspace{-10pt}
\caption{The effectiveness of unsupervised learning ($k$-means) classification for %significant correlations between IPC and
dynamic predictable quality metrics}
% \vspace{-10pt}
%bagging model for all quality metrics}
\resizebox{\columnwidth}{!}{%
\begin{tabular}{|lr||r|r|r||r|r|r|}
\hline
\multicolumn{2}{|c||}{\textbf{Model}} & \multicolumn{3}{c||}{\textbf{Hold-out Validation}} & \multicolumn{3}{c|}{\textbf{10-fold Cross-validation}} \\
\hline
\multicolumn{1}{|c|}{\textbf{IPC Metric}} & \multicolumn{1}{c||}{\textbf{Quality Metric}} & \multicolumn{1}{c|}{\textbf{Precision}} & \multicolumn{1}{c|}{\textbf{Recall}} & \multicolumn{1}{c||}{\textbf{F1}} & \multicolumn{1}{c|}{\textbf{Precision}} & \multicolumn{1}{c|}{\textbf{Recall}} & \multicolumn{1}{c|}{\textbf{F1}} \\
\hline
\multicolumn{1}{|l|}{CCC} & \multicolumn{1}{l||}{Execution Time} & 100.00\% & 37.84\% & 54.90\% & 83.33\% & 41.27\% & 55.20\% \\
\hline
\multicolumn{1}{|l|}{RMC, CCC} & \multicolumn{1}{l||}{Cyclomatic Complexity} & 73.23\% & 84.91\% & 78.64\% & 99.68\% & 66.85\% & 80.03\% \\
\hline
\multicolumn{1}{|l|}{CCC} & \multicolumn{1}{l||}{Attack Surface} & 90.87\% & 83.22\% & 86.88\% & 98.10\% & 77.73\% & 86.73\% \\
\hline
\multicolumn{1}{|l|}{CCL, PLC} & \multicolumn{1}{l||}{Attack Surface} & 99.73\% & 61.47\% & 76.06\% & 71.70\% & 81.01\% & 76.07\% \\
\hline
\multicolumn{2}{|l||}{\textbf{Average:}} & \textbf{90.96\%} & \textbf{66.86\%} & \textbf{74.12\%} & \textbf{88.20\%} & \textbf{66.71\%} & \textbf{74.51\%} \\
\hline
\end{tabular}%
}
\label{tab:kmeanss}%
%\vspace{-10pt}
\end{table} | [
[
"Model",
null,
"Hold-out Validation",
null,
null,
"10-fold Cross-validation",
null,
null
],
[
"IPC Metric",
"Quality Metric",
"Precision",
"Recall",
"F1",
"Precision",
"Recall",
"F1"
],
[
"CCC",
"Execution Time",
"100.00%",
"37.84%",
"54.90%",
"83.33%",
"41.27%",
"55.20%"
],
[
"RMC, CCC",
"Cyclomatic Complexity",
"73.23%",
"84.91%",
"78.64%",
"99.68%",
"66.85%",
"80.03%"
],
[
"CCC",
"Attack Surface",
"90.87%",
"83.22%",
"86.88%",
"98.10%",
"77.73%",
"86.73%"
],
[
"CCL, PLC",
"Attack Surface",
"99.73%",
"61.47%",
"76.06%",
"71.70%",
"81.01%",
"76.07%"
],
[
"Average:",
null,
"90.96%",
"66.86%",
"74.12%",
"88.20%",
"66.71%",
"74.51%"
]
] | 0.537815 | null | null |
8 | 2303.03659v1 | 60 | [
72.15460872650146,
197.0412139892578,
539.8637542724609,
289.3038330078125
] | \begin{table}[htbp]
\centering
%\vspace{-5pt}
\caption{The effectiveness of supervised learning (bagging) classification for dynamic predictable quality metrics}
%\vspace{-10pt}
%bagging model for all quality metrics}
\resizebox{\columnwidth}{!}{%
\begin{tabular}{|lr||r|r|r||r|r|r|}
\hline
\multicolumn{2}{|c||}{\textbf{Model}} & \multicolumn{3}{c||}{\textbf{Hold-out Validation}} & \multicolumn{3}{c|}{\textbf{10-fold Cross-validation}} \\
\hline
\multicolumn{1}{|c|}{\textbf{IPC Metric}} & \multicolumn{1}{c||}{\textbf{Quality Metric}} & \multicolumn{1}{c|}{\textbf{Precision}} & \multicolumn{1}{c|}{\textbf{Recall}} & \multicolumn{1}{c||}{\textbf{F1}} & \multicolumn{1}{c|}{\textbf{Precision}} & \multicolumn{1}{c|}{\textbf{Recall}} & \multicolumn{1}{c|}{\textbf{F1}} \\
\hline
\multicolumn{1}{|l|}{CCC} & \multicolumn{1}{l||}{Execution Time} & 99.80\% & 99.80\% & 99.80\% & 99.70\% & 99.70\% & 99.70\% \\
\hline
\multicolumn{1}{|l|}{RMC, CCC} & \multicolumn{1}{l||}{Cyclomatic Complexity} & 99.10\% & 99.10\% & 99.10\% & 99.70\% & 99.70\% & 99.70\% \\
\hline
\multicolumn{1}{|l|}{CCC} & \multicolumn{1}{l||}{Attack Surface} & 96.50\% & 96.50\% & 96.50\% & 95.20\% & 95.20\% & 95.20\% \\
\hline
\multicolumn{1}{|l|}{CCL, PLC} & \multicolumn{1}{l||}{Attack Surface} & 97.50\% & 97.50\% & 97.50\% & 96.80\% & 96.80\% & 96.80\% \\
\hline
\multicolumn{2}{|l||}{\textbf{Average:}} & \textbf{98.23\%} & \textbf{98.23\%} & \textbf{98.23\%} & \textbf{97.85\%} & \textbf{97.85\%} & \textbf{97.85\%} \\
\hline
\end{tabular}%
}
\label{tab:baggings}%
%\vspace{-10pt}
\end{table} | [
[
"Model",
null,
"Hold-out Validation",
null,
null,
"10-fold Cross-validation",
null,
null
],
[
"IPC Metric",
"Quality Metric",
"Precision",
"Recall",
"F1",
"Precision",
"Recall",
"F1"
],
[
"CCC",
"Execution Time",
"99.80%",
"99.80%",
"99.80%",
"99.70%",
"99.70%",
"99.70%"
],
[
"RMC, CCC",
"Cyclomatic Complexity",
"99.10%",
"99.10%",
"99.10%",
"99.70%",
"99.70%",
"99.70%"
],
[
"CCC",
"Attack Surface",
"96.50%",
"96.50%",
"96.50%",
"95.20%",
"95.20%",
"95.20%"
],
[
"CCL, PLC",
"Attack Surface",
"97.50%",
"97.50%",
"97.50%",
"96.80%",
"96.80%",
"96.80%"
],
[
"Average:",
null,
"98.23%",
"98.23%",
"98.23%",
"97.85%",
"97.85%",
"97.85%"
]
] | 0.521556 | null | null |
0 | 1703.06212v1 | 4 | [
176.9239959716797,
118.77899169921875,
431.9389953613281,
354.9429931640625
] | \begin{table}[t] \tabcolsep 1pt \caption{Important Notations} \vspace*{4pt} \centering \tabcolsep 0.5mm
%\vspace*{-12pt}
\begin{tabular}{c||l}
\hline Symbol & Definition\\ \hline
$G$ & the network graph\\
$x_i(0)$ & node $i$'s initial state\\
$x(0)$ & the initial state vector of all nodes\\
$f_i(\cdot)$ & the distributed iteration algorithm\\
$\Theta_i$ & the domain of random variable $\theta_i$\\
$f_{\theta_i}(\cdot)$ & the PDF of random variable $\theta_i$\\
$\mathcal{I}_{i}^{in}(k)$ & the noise input of node $i$ until iteration $k$\\
$\mathcal{I}_{i}^{out}(k)$ & the information output of node $i$ until iteration $k$\\
$\hat{x}_i^*(k)$ & the optimal distributed estimation of $x_i(0)$ until iteration $k$ \\
$\epsilon$ & the measure on estimation accuracy\\
$\delta$ & the disclosure probability\\
$\mathcal{I}_{\nu}^{out} $ & the possible output when the initial input is $\nu$\\
$\mathcal{I}_{j}^{i}(k)$ & the information available to node $j$ to estimate \\ &$x_i(0)$ until iteration $k$\\
\hline
\end{tabular}
\vspace*{-4pt}
\label{table:definitions}
\end{table} | [
[
"Symbol",
"Definition"
],
[
"G\nx (0)\ni\nx(0)\nf i(·)\nΘ\ni\nf θi(·)\nIii n(k)\nIiout(k)\nxˆ∗ (k)\ni\nϵ\nδ\nout\nIν\nIji(k)",
"the network graph\nnode i’s initial state\nthe initial state vector of all nodes\nthe distributed iteration algorithm\nthe domain of random variable θ\ni\nthe PDF of random variable θ\ni\nthe noise input of node i until iteration k\nthe information output of node i until iteration k\nthe optimal distributed estimation of x (0) until iteration k\ni\nthe measure on estimation accuracy\nthe disclosure probability\nthe possible output when the initial input is ν\nthe information available to node j to estimate\nx (0) until iteration k\ni"
]
] | 0.529503 | null | null |
0 | 2405.14233v1 | 100 | [
72.18952142624627,
245.84851837158203,
526.5937181555706,
519.322998046875
] | \begin{table}%[!ht]
\begin{center}
\begin{tabular}{c||c|c|c|}
\cline{2-4}
& Pizza Margherita & Meat White Pizza & Hawaiian Pizza \\
\hline
\hline
\multicolumn{1}{|c||}{flour} & 490 & 490 & 490 \\
\hline
\multicolumn{1}{|c||}{yeast} & 5 & 5 & 5 \\
\hline
\multicolumn{1}{|c||}{water} & 355 & 355 & 355 \\
\hline
\multicolumn{1}{|c||}{salt} & 8 & 8 & 8 \\
\hline
\multicolumn{1}{|c||}{oil} & 3 & 3 & 3 \\
\hline
\multicolumn{1}{|c||}{tomato sauce} & 80 & 0 & 70 \\
\hline
\multicolumn{1}{|c||}{alfredo sauce} & 0 & 70 & 0 \\
\hline
\multicolumn{1}{|c||}{mozzarella} & 90 & 0 &0 \\
\hline
\multicolumn{1}{|c||}{fontina} & 20 & 40 & 70 \\
\hline
\multicolumn{1}{|c||}{parmesan} & 0 & 20 & 30 \\
\hline
\multicolumn{1}{|c||}{mushrooms} & 0 & 0 & 30 \\
\hline
\multicolumn{1}{|c||}{onions} & 0 & 20 & 0 \\
\hline
\multicolumn{1}{|c||}{peppers} &0& 0 & 20 \\
\hline
\multicolumn{1}{|c||}{olives} & 20 & 10 & 0 \\
\hline
\multicolumn{1}{|c||}{basil} & 20 & 0 & 10 \\
\hline
\multicolumn{1}{|c||}{pineapple} & 0& 0 & 90 \\
\hline
\multicolumn{1}{|c||}{sausage} & 0 & 60 & 0 \\
\hline
\multicolumn{1}{|c||}{ham} & 0& 30 & 60 \\
\hline
\multicolumn{1}{|c||}{chicken} & 0 & 40 & 0 \\
\hline
\multicolumn{1}{|c||}{meatballs} & 0 & 40 &0 \\
\hline
%anchovies & a & b & 0 & 450 & a & b & 0 & 450 & a & b & 0 & 450 \\
%\hline
\end{tabular}
\end{center}
\caption{Pizzas as vectors of their ingredients}
\label{Table:pizzavec}
\end{table} | [
[
"",
"Pizza Margherita",
null,
null,
null,
"Meat White Pizza",
null,
null,
null,
"Hawaiian Pizza",
null,
null,
null
],
[
null,
"weight",
"crust",
"top",
"bake",
"weight",
"crust",
"top",
"bake",
"weight",
"crust",
"top",
"bake"
],
[
"flour",
"490",
"1",
"0",
"450",
"490",
"1",
"0",
"450",
"490",
"1",
"0",
"450"
],
[
"yeast",
"5",
"1",
"0",
"1",
"5",
"1",
"0",
"450",
"5",
"1",
"0",
"450"
],
[
"water",
"355",
"1",
"0",
"1",
"355",
"1",
"0",
"450",
"355",
"1",
"0",
"450"
],
[
"salt",
"8",
"1",
"0",
"450",
"8",
"1",
"0",
"450",
"8",
"1",
"0",
"450"
],
[
"oil",
"3",
"1",
"0",
"450",
"3",
"1",
"0",
"450",
"3",
"1",
"0",
"450"
],
[
"tomato sauce",
"80",
"0",
"1",
"450",
"0",
"0",
"0",
"0",
"70",
"0",
"1",
"450"
],
[
"alfredo sauce",
"0",
"0",
"0",
"0",
"70",
"0",
"1",
"450",
"0",
"0",
"0",
"0"
],
[
"mozzarella",
"90",
"0",
"1",
"300",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0"
],
[
"fontina",
"20",
"0",
"1",
"450",
"40",
"0",
"1",
"450",
"70",
"0",
"1",
"450"
],
[
"parmesan",
"0",
"0",
"0",
"0",
"20",
"0",
"1",
"450",
"30",
"0",
"1",
"450"
],
[
"mushrooms",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"30",
"0",
"1",
"450"
],
[
"onions",
"0",
"0",
"0",
"0",
"20",
"0",
"1",
"450",
"0",
"0",
"0",
"0"
],
[
"peppers",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"20",
"0",
"0",
"450"
],
[
"olives",
"20",
"0",
"1",
"450",
"10",
"0",
"1",
"450",
"0",
"0",
"0",
"0"
],
[
"basil",
"20",
"0",
"1",
"25",
"0",
"0",
"0",
"0",
"10",
"0",
"1",
"25"
],
[
"pineapple",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"90",
"0",
"1",
"125"
],
[
"sausage",
"0",
"0",
"0",
"0",
"60",
"0",
"1",
"450",
"0",
"0",
"0",
"0"
],
[
"ham",
"0",
"0",
"0",
"0",
"30",
"0",
"0",
"450",
"60",
"0",
"0",
"450"
],
[
"chicken",
"0",
"0",
"0",
"0",
"40",
"0",
"1",
"450",
"0",
"0",
"0",
"0"
],
[
"meatballs",
"0",
"0",
"0",
"0",
"40",
"0",
"1",
"450",
"0",
"0",
"0",
"0"
]
] | 0.413305 | null | null |
1 | 2405.14233v1 | 41 | [
121.8401008605957,
163.00799560546875,
473.435009765625,
290.92803955078125
] | \begin{table}[!ht]
\begin{center}
%\hspace{-.25cm}{\footnotesize
\begin{tabular}{|c||c|c|c|c|}
\hline
domain & $\JJJ$ & $\UUU$ & $\sf Val$ & $C_{iu}$\\
\hline \hline
text analysis & documents & terms & $\NNn$ & occurrence \\
\hline
concept analysis & objects & attributes & $\{0,1\}$ & property \\
\hline
recommender system & items & users & $\{0,1,2,3, 4\}$ & rating \\
\hline
topic search & authorities & hubs & $\NNn$ & hyperlinks \\
\hline
measurement & instances & quantities & $\RRr$ & outcome \\
\hline
elections & candidates & voters & $\{1,\ldots, n\}$ & preference \\
\hline
market & producers & consumers & $\ZZz$ & deliveries \\
\hline
digital images & positions & pixels & $[0,1]$ & intensity \\
\hline
\end{tabular}
\caption{Domains of information retrieval}
\label{Table:domains}
\end{center}
\end{table} | [
[
"domain",
"J",
"U",
"Val",
"C\niu"
],
[
"text analysis",
"documents",
"terms",
"N",
"occurrence"
],
[
"concept analysis",
"objects",
"attributes",
"0, 1\n{ }",
"property"
],
[
"recommender system",
"items",
"users",
"0, 1, 2, 3, 4\n{ }",
"rating"
],
[
"topic search",
"authorities",
"hubs",
"N",
"hyperlinks"
],
[
"measurement",
"instances",
"quantities",
"R",
"outcome"
],
[
"elections",
"candidates",
"voters",
"1, . . . , n\n{ }",
"preference"
],
[
"market",
"producers",
"consumers",
"Z",
"deliveries"
],
[
"digital images",
"positions",
"pixels",
"[0, 1]",
"intensity"
]
] | 0.884434 | null | null |
2 | 2405.14233v1 | 80 | [
101.78799819946289,
570.4605407714844,
493.4779907226563,
628.343017578125
] | \begin{table}[ht]
\begin{center}
\begin{tabular}{c||c|c|}
\cline{2-3}
& SVD & neural network
\\
\hline\hline
\multicolumn{1}{|l||}{(1): what is mined}
& data matrix $M$ & continuous vector function $F$
\\
\hline
\multicolumn{1}{|l||}{(2): construction} & finitary & infinitary\\
\hline
\multicolumn{1}{|l||}{(3): separate components} &
multiplied by different $\lambda_{j}$s
& mapped by the same $\sigma$
\\
\hline
\end{tabular}
\end{center}\caption{Differences between concept mining by SVD and by wide neural networks}
\label{Table:differences}
\end{table} | [
[
"",
"SVD",
"neural network"
],
[
"(1): what is mined",
"data matrix M",
"continuous vector function F"
],
[
"(2): construction",
"finitary",
"infinitary"
],
[
"(3): separate components",
"multiplied by different λ js",
"mapped by the same σ"
]
] | 0.719665 | null | null |
3 | 2405.14233v1 | 23 | [
78.35583368937175,
575.4920043945312,
516.9268188476562,
647.6210327148438
] | \begin{table}%[htdp]
%\caption{We say that}
\begin{center}
\begin{tabular}{|c|c|c|c}
\hline
the grammar is of & and call it & if all of its rules are in the form & \multicolumn{1}{c|}{i.e. \eqref{eq:rule} is restricted to} \\
\hline
\hline
Type-0 & unrestricted & $\alpha \beta \gamma ::= \alpha \delta\gamma$ & \\
\hline
Type-1 & context-sensitive & $\alpha X \gamma ::= \alpha \delta\gamma$ & \multicolumn{1}{c|}{$\beta\in \Type$} \\
\hline
Type-2 & context-free & $X ::= \delta$ & \multicolumn{1}{c|}{\ldots and also $\alpha = \gamma = <>$} \\
\hline
Type-3 & regular & $X ::= aX$ or $X ::= a$ & \multicolumn{1}{c|}{\ldots and $\delta \in (\Term\times\Type)\cup \Term$}%\{ aX, a\}$}
\\
\hline
\end{tabular}
\end{center}
%\label{Table:hierarchy}
%\end{table} | [
[
"the grammar is of",
"and call it",
"if all of its rules are in the form",
"i.e. (2.1) is restricted to"
],
[
"Type-0",
"unrestricted",
"αβγ ::= αδγ",
""
],
[
"Type-1",
"context-sensitive",
"αXγ ::= αδγ",
"β Ξ\n∈"
],
[
"Type-2",
"context-free",
"X ::= δ",
"...and also α = γ =\n⟨⟩"
],
[
"Type-3",
"regular",
"X ::= aX or X ::= a",
"...and δ (Σ Ξ) Σ\n∈ × ∪"
]
] | 0.470588 | null | null |
0 | 1811.02659v2 | 3 | [
79.85700225830078,
116.10302734375,
266.33978881835935,
152.7650146484375
] | \begin{table}[htbp]
\caption{Data Splits}
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
& \textbf{Number of} &\textbf{Number of} \\
\textbf{Label} & \textbf{training frames} & \textbf{validation frames} \\
\hline
Septic & 8191 & 2410 \\
Non-septic & 14026 & 2613 \\
\hline
%\hline
\end{tabular}
\label{tab1}
\end{center}
\end{table} | [
[
"Label",
"Number of\ntraining frames",
"Number of\nvalidation frames"
],
[
"Septic\nNon-septic",
"8191\n14026",
"2410\n2613"
]
] | 0.746269 | null | null |
0 | 1809.07430v3 | 20 | [
214.0540008544922,
135.3820037841797,
401.302001953125,
203.2490234375
] | \begin{table}[!t]
\begin{center}
\begin{tabular}{l | c | c}
\toprule
\HighlightCell{Program} & \HighlightCell{\#Species} & \HighlightCell{\#Reactions} \\
\midrule
Discrete Counter & $25$ & $31$ \\
Factorial & $26$ & $33$ \\
Integer Division & $32$ & $39$ \\
Integer Square Root & $26$ & $32$ \\
Euler & $24$ & $20$ \\
$\pi$ & $29$ & $29$ \\
\bottomrule
\end{tabular}
\end{center}
\caption{Size of CRNs.}
\label{table:crn-size}
\end{table} | [
[
"Discrete Counter\nFactorial\nInteger Division\nInteger Square Root\nEuler\nπ",
"25\n26\n32\n26\n24\n29",
"31\n33\n39\n32\n20\n29"
]
] | 0.474474 | null | null |
0 | 1911.00776v1 | 8 | [
75.36470031738281,
567.03125,
300.65277099609375,
636.4069213867188
] | \begin{table}[htbp!]
\centering\small\resizebox{\columnwidth}{!}{
\begin{tabular}{l||c|c}
\multicolumn{1}{c|}{\bf Model} & \multicolumn{1}{c|}{\bf Clinical} & \multicolumn{1}{c}{\bf Genomic} \\
\hline\hline
Baseline & 71.43 & \textbf{65.00} \\
Self-Training & 71.43 & 63.57 \\
Co-Training & \textbf{72.14} & - \\
\end{tabular}}
\caption{Results on testset (last 10\% of whole dataset).}
\label{tbl:semi}
\end{table} | [
[
"Model",
"Clinical",
"Genomic"
],
[
"Baseline\nSelf-Training\nCo-Training",
"71.43\n71.43\n72.14",
"65.00\n63.57\n-"
]
] | 0.379147 | null | null |
1 | 1911.00776v1 | 6 | [
348.20001220703125,
516.76904296875,
501.65313720703125,
603.2440185546875
] | \begin{table}[htbp!]
\centering
\caption{\textbf{Summary of Baseline Algorithms on Clinical Data.}}
\begin{tabular}{|l|r|r|} \hline
\textbf{Model}&\textbf{Val}&\textbf{Test} \\ \hline
K-nearest Neighbors & 59.7 & 55.8 \\ \hline
Logistic Regression & 66.5 & 60.1 \\ \hline
Linear SVC & 67.1 & \textbf{65.9} \\ \hline
Radial SVC & 67.2 & 64.8 \\ \hline
MLP Classifier & \textbf{68.3} & 65.4 \\ \hline
Random Forest & 66.3 & 59.5 \\ \hline
\end{tabular}
\end{table} | [
[
"Model",
"Val",
"Test"
],
[
"K-nearest Neighbors",
"59.7",
"55.8"
],
[
"Logistic Regression",
"66.5",
"60.1"
],
[
"Linear SVC",
"67.1",
"65.9"
],
[
"Radial SVC",
"67.2",
"64.8"
],
[
"MLP Classifier",
"68.3",
"65.4"
],
[
"Random Forest",
"66.3",
"59.5"
]
] | 1 | null | null |
2 | 1911.00776v1 | 7 | [
109.59400177001953,
158.8740234375,
263.0480041503906,
245.3499755859375
] | \begin{table}[htbp!]
\centering
\caption{\textbf{Summary of Baseline Algorithms on Genomic Data.}}
\begin{tabular}{|l|r|r|} \hline
\textbf{Model}&\textbf{Val}&\textbf{Test} \\ \hline
K-nearest Neighbors & 50.7 & 52.1 \\ \hline
Logistic Regression & 60.1 & \textbf{61.9} \\ \hline
Linear SVC & 60.1 & 60.5 \\ \hline
Radial SVC & 60.5 & 56.8 \\ \hline
MLP Classifier & \textbf{62.6} & 57.8 \\ \hline
Random Forest & N/A & 52.0 \\ \hline
\end{tabular}
\end{table} | [
[
"Model",
"Val",
"Test"
],
[
"K-nearest Neighbors",
"50.7",
"52.1"
],
[
"Logistic Regression",
"60.1",
"61.9"
],
[
"Linear SVC",
"60.1",
"60.5"
],
[
"Radial SVC",
"60.5",
"56.8"
],
[
"MLP Classifier",
"62.6",
"57.8"
],
[
"Random Forest",
"N/A",
"52.0"
]
] | 1 | null | null |
3 | 1911.00776v1 | 10 | [
313.6142272949219,
241.37838745117188,
539.2561645507812,
288.7158203125
] | \begin{table}[htbp!]
\centering\small\resizebox{\columnwidth}{!}{
\begin{tabular}{l||c|c}
\multicolumn{1}{c|}{\bf Model} & \multicolumn{1}{c|}{\bf Clinical} & \multicolumn{1}{c}{\bf Genomic} \\
\hline\hline
MLP Baseline & 72.82 & \textbf{68.45} \\
Grasshopper MLP & \textbf{74.11} & \textbf{68.45} \\
\end{tabular}}
\caption{Results on val set}
\label{tbl:goamlpdev}
\end{table} | [
[
"Model",
"Clinical",
"Genomic"
],
[
"MLP Baseline\nGrasshopper MLP",
"72.82\n74.11",
"68.45\n68.45"
]
] | 0.5125 | null | null |
4 | 1911.00776v1 | 10 | [
313.6142272949219,
333.8204040527344,
539.2561645507812,
381.1578369140625
] | \begin{table}[htbp!]
\centering\small\resizebox{\columnwidth}{!}{
\begin{tabular}{l||c|c}
\multicolumn{1}{c|}{\bf Model} & \multicolumn{1}{c|}{\bf Clinical} & \multicolumn{1}{c}{\bf Genomic} \\
\hline\hline
MLP Baseline & \textbf{70.70} & \textbf{62.60} \\
Grasshopper MLP & 68.03 & 56.74 \\
\end{tabular}}
\caption{Results on test set}
\label{tbl:goamlptest}
\end{table} | [
[
"Model",
"Clinical",
"Genomic"
],
[
"MLP Baseline\nGrasshopper MLP",
"70.70\n68.03",
"62.60\n56.74"
]
] | 0.493827 | null | null |
5 | 1911.00776v1 | 12 | [
75.23638916015625,
269.34039306640625,
300.6565856933594,
320.25079345703125
] | \begin{table}[htbp!]
\centering\small\resizebox{\columnwidth}{!}{
\begin{tabular}{l||c|c}
\multicolumn{1}{c|}{\bf Model} & \multicolumn{1}{c|}{\bf Clinical} & \multicolumn{1}{c}{\bf Genomic} \\
\hline\hline
Sklearn GBDT & 68.62 & 60.53 \\
Xgboost & \textbf{74.74} & \textbf{73.38} \\
\end{tabular}}
\caption{AUC scores on val set}
\label{tbl:Xgb dev set}
\end{table} | [
[
"Model",
"Clinical",
"Genomic"
],
[
"Sklearn GBDT\nXgboost",
"68.62\n74.74",
"60.53\n73.38"
]
] | 0.42953 | null | null |
6 | 1911.00776v1 | 12 | [
75.23638916015625,
368.40435791015625,
300.6565856933594,
419.3148193359375
] | \begin{table}[htbp!]
\centering\small\resizebox{\columnwidth}{!}{
\begin{tabular}{l||c|c}
\multicolumn{1}{c|}{\bf Model} & \multicolumn{1}{c|}{\bf Clinical} & \multicolumn{1}{c}{\bf Genomic} \\
\hline\hline
Sklearn GBDT & 60.57 & 53.10 \\
Xgboost & \textbf{70.84} & \textbf{67.12} \\
\end{tabular}}
\caption{AUC scores on test set}
\label{tbl:Xgb test set}
\end{table} | [
[
"Model",
"Clinical",
"Genomic"
],
[
"Sklearn GBDT\nXgboost",
"60.57\n70.84",
"53.10\n67.12"
]
] | 0.423841 | null | null |
7 | 1911.00776v1 | 12 | [
75.23638916015625,
467.4683837890625,
300.6565856933594,
518.3787841796875
] | \begin{table}[htbp!]
\centering\small\resizebox{\columnwidth}{!}{
\begin{tabular}{l||c|c}
\multicolumn{1}{c|}{\bf Model} & \multicolumn{1}{c|}{\bf Clinical} & \multicolumn{1}{c}{\bf Genomic} \\
\hline\hline
Sklearn GBDT & 64.65 & 57.38 \\
Xgboost & \textbf{73.36} & \textbf{68.43} \\
\end{tabular}}
\caption{5 Folds CV avg AUC scores }
\label{tbl:Xgb 5 Folds CV}
\end{table} | [
[
"Model",
"Clinical",
"Genomic"
],
[
"Sklearn GBDT\nXgboost",
"64.65\n73.36",
"57.38\n68.43"
]
] | 0.410256 | null | null |
0 | 2312.06005v1 | 8 | [
107.31381711092862,
109.6400146484375,
511.8484409877232,
204.18499755859375
] | \begin{table}
\renewcommand\thetable{I}
\caption{\textit{Definition of Concepts}}
\label{definition}
\begin{tabular}{|c|L|}
\hline
Concepts & \multicolumn{1}{c|}{\textbf{Description}} \\
\hline
Issue ID & This concept refers to the identification number assigned to each issue report. \\
\hline
Issue state & This refers to the current state of the issue reported in an issue-tracking system that indicate whether an issue has been acknowledged, assigned to someone, resolved, or closed. \\
\hline
Issue title & This is a brief summary of the issue that gives an idea of what the issue or bug is, but not so long as it becomes difficult to read. \\
\hline
Issue body & This refers to the details of the problem being reported, steps to reproduce the issue, any error messages, and other relevant information. \\
\hline
Labels & This refers to keywords or tags used to categorize an issue or bug report. Labels can be used to indicate the type of issue or bug, its severity, or other relevant information. \\
\hline
\end{tabular}
\end{table} | [
[
"Concepts",
"Description"
],
[
"Issue ID",
"This concept refers to the identification number assigned to each issue report."
],
[
"Issue state",
"This refers to the current state of the issue reported in an issue-tracking system that indicate\nwhether an issue has been acknowledged, assigned to someone, resolved, or closed."
],
[
"Issue title",
"This is a brief summary of the issue that gives an idea of what the issue or bug is, but not\nso long as it becomes difficult to read."
],
[
"Issue body",
"This refers to the details of the problem being reported, steps to reproduce the issue, any\nerror messages, and other relevant information."
],
[
"Labels",
"This refers to keywords or tags used to categorize an issue or bug report. Labels can be used\nto indicate the type of issue or bug, its severity, or other relevant information."
]
] | 0.998083 | null | null |
1 | 2312.06005v1 | 10 | [
107.33190779252486,
109.6400146484375,
547.2551824396306,
344.0110168457031
] | \begin{table}
\renewcommand\thetable{III}
\caption{\textit{Keyword groups}}
\label{grouptable}
\begin{tabular}{|c|L|}
\hline
Group & \multicolumn{1}{c|}{\textbf{Description}} \\
\hline
Compilation Issues & These are related to problems in compiling the code. This can occur if there are missing dependencies, syntax errors, or other issues that prevent the code from being properly compiled. \\
\hline
Build Issues & These issues are similar to compilation issues, but occur during the process of building software. This can include linking, packaging, or other steps involved in creating a distributable version of the software. \\
\hline
Runtime Issues & These issues occur when software encounters problems while running. This can include crashes, errors, and unexpected behavior. \\
\hline
Performance Issues & These issues are related to the speed or efficiency of the software. This can include slow response times, high CPU usage, and other issues that affect the performance. \\
\hline
Testing Issues & This type of issue can occur during software testing. This can include issues with test cases, test data, or the testing environment. \\
\hline
Validation Issues & This type of issue is related to problems in ensuring that the software meets the desired specifications or requirements. This can include issues with the functionality, compatibility, or other aspects of the software that are important to the end user.\\
\hline
Algorithm Issues & Issues that can occur when there are problems with the underlying algorithms used in software. This can include issues with the accuracy, efficiency, or other aspects of the algorithm that impact its performance. \\
\hline
Functional Issues & These type of issues are related to software functionality problems. This can include issues with specific features, user interfaces, and other aspects of software that impact its functionality. \\
\hline
Miscellaneous Issues & These type of issues do not fit into any of the above mentioned categories. This can include issues with documentation, user experience, discussion, questions, or other aspects of the software that are important to the users. \\
\hline
\end{tabular}
\end{table} | [
[
"Group",
"Description"
],
[
"Compilation Issues",
"These are related to problems in compiling the code. This can occur if there are missing\ndependencies, syntax errors, or other issues that prevent the code from being properly com-\npiled."
],
[
"Build Issues",
"These issues are similar to compilation issues, but occur during the process of building soft-\nware. This can include linking, packaging, or other steps involved in creating a distributable\nversion of the software."
],
[
"Runtime Issues",
"These issues occur when software encounters problems while running. This can include\ncrashes, errors, and unexpected behavior."
],
[
"Performance Issues",
"These issues are related to the speed or efficiency of the software. This can include slow\nresponse times, high CPU usage, and other issues that affect the performance."
],
[
"Testing Issues",
"This type of issue can occur during software testing. This can include issues with test cases,\ntest data, or the testing environment."
],
[
"Validation Issues",
"This type of issue is related to problems in ensuring that the software meets the desired\nspecifications or requirements. This can include issues with the functionality, compatibility,\nor other aspects of the software that are important to the end user."
],
[
"Algorithm Issues",
"Issues that can occur when there are problems with the underlying algorithms used in soft-\nware. This can include issues with the accuracy, efficiency, or other aspects of the algorithm\nthat impact its performance."
],
[
"Functional Issues",
"These type of issues are related to software functionality problems. This can include issues\nwith specific features, user interfaces, and other aspects of software that impact its function-\nality."
],
[
"Miscellaneous Issues",
"These type of issues do not fit into any of the above mentioned categories. This can include\nissues with documentation, user experience, discussion, questions, or other aspects of the\nsoftware that are important to the users."
]
] | 0.997097 | null | null |
0 | 2308.13176v1 | 4 | [
71.9219970703125,
205.89697265625,
277.0639953613281,
324.0539855957031
] | \begin{table}[ht]
\label{perf}
\centering
\caption{Performance Evaluation of CNC, JC, and AAI Metrics on Different Datasets}
\begin{tabular}{|l|l|l|l|}
\hline
Metric & Training Set & Testing Set & Validation Set \\
\hline
CNC & & & \\
AUC-ROC & 0.6469 & 0.6473 & 0.6832 \\
P@K=50 & 1 & 1 & 1 \\
AUPR & 0.7728 & 0.7703 & 0.8167 \\
\hline
JC & & & \\
AUC-ROC & 0.7478 & 0.8349 & 0.8323 \\
P@K=50 & 0.8 & 0.9 & 0.8 \\
AUPR & 0.7858 & 0.8472 & 0.8414 \\
\hline
AAI & & & \\
AUC-ROC & 0.8571 & 0.8897 & 0.8878 \\
P@K=50 & 1 & 1 & 0.9064 \\
AUPR & 0.9099 & 0.9107 & 0.9096 \\
\hline
\end{tabular}
\end{table} | [
[
"Metric",
"Training Set",
"Testing Set",
"Validation Set"
],
[
"CNC\nAUC-ROC\nP@K=50\nAUPR",
"0.6469\n1\n0.7728",
"0.6473\n1\n0.7703",
"0.6832\n1\n0.8167"
],
[
"JC\nAUC-ROC\nP@K=50\nAUPR",
"0.7478\n0.8\n0.7858",
"0.8349\n0.9\n0.8472",
"0.8323\n0.8\n0.8414"
],
[
"AAI\nAUC-ROC\nP@K=50\nAUPR",
"0.8571\n1\n0.9099",
"0.8897\n1\n0.9107",
"0.8878\n0.9064\n0.9096"
]
] | 0.4375 | null | null |
1 | 2308.13176v1 | 4 | [
351.9880065917969,
348.5379943847656,
523.0250244140625,
421.0660095214844
] | \begin{table}[ht]
\centering
\caption{Performance Comparison of SVM, GradientBoosting, and Random Forest Algorithms}
\begin{tabular}{|l|l|l|l|}
\hline
Metric & SVM & GradientBoosting & Random Forest \\
\hline
0-precision & 0.81 & 0.81 & 0.79 \\
0-recall & 0.74 & 0.76 & 0.84 \\
0-f1\_score & 0.78 & 0.78 & 0.81 \\
1-precision & 0.82 & 0.83 & 0.87 \\
1-recall & 0.87 & 0.86 & 0.84 \\
1-f1\_score & 0.84 & 0.85 & 0.85 \\
accuracy & 0.82 & 0.82 & 0.84 \\
\hline
\end{tabular}
\end{table} | [
[
"Metric",
"Test Dataset",
"Validation Dataset"
],
[
"0-precision\n0-recall\n0-f1 score\n1-precision\n1-recall\n1-f1 score\naccuracy",
"0.79\n0.84\n0.81\n0.87\n0.83\n0.85\n0.84",
"0.80\n0.84\n0.82\n0.87\n0.84\n0.85\n0.84"
]
] | 0.467337 | null | null |
0 | 2406.16131v1 | 17 | [
241.02200317382812,
528.386962890625,
383.8869934082031,
602.6080322265625
] | \begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
& $\Pi_0$& $\Pi_1$ & $\Pi_2$ \\ \hline
$\lambda$ & $0$ & $1$ & $2$ \\ \hline
$H$ & $0.10$ & $0.223$ & $0.302$ \\ \hline
$\nu$ & $0.40$ & $0.481$ & $0.647$ \\ \hline
$\rho$ & $-0.65$ & $-0.65$ & $-0.65$ \\ \hline
\end{tabular}
\caption{Parameter values for the different parameter sets.}
\label{tab:params}
\end{table} | [
[
"",
"Π\n0",
"Π\n1",
"Π\n2"
],
[
"λ",
"0",
"1",
"2"
],
[
"H",
"0.10",
"0.223",
"0.302"
],
[
"ν",
"0.40",
"0.481",
"0.647"
],
[
"ρ",
"0.65\n−",
"0.65\n−",
"0.65\n−"
]
] | 0.581498 | null | null |
0 | 1912.12186v2 | 12 | [
109.86824798583984,
225.98123168945312,
518.582275390625,
349.86700439453125
] | \begin{table}[htbp]
\caption{Datasets used in the anomaly detection task}
\label{ad-datasets}
\begin{center}
\scalebox{0.75}{
\begin{tabular}{l|cccl}
\hline
\textbf{Data} & \textbf{N} & \textbf{D} & \textbf{Anomaly (\%)} & \textbf{Link} \\ \hline
\textbf{DDoS} & 464,976 & 66 & 3.75\% & http://www.csmining.org/cdmc2018/index.php \\
\textbf{Donors} & 619,326 & 10 & 5.92\% & https://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose \\
\textbf{Backdoor} & 95,329 & 196 & 2.44\% & https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity \\
\textbf{Ad} & 3,279 & 1,555 & 13.99\% & https://archive.ics.uci.edu/ml/datasets/internet+advertisements \\
\textbf{Apascal} & 12,695 & 64 & 1.38\% & http://vision.cs.uiuc.edu/attributes/ \\
\textbf{Bank} & 41,188 & 62 & 11.26\% & https://archive.ics.uci.edu/ml/datasets/Bank+Marketing \\
\textbf{Celeba} & 202,599 & 39 & 2.24\% & http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html \\
\textbf{Census} & 299,285 & 500 & 6.20\% & https://archive.ics.uci.edu/ml/datasets/Census-Income+\%28KDD\%29 \\
\textbf{Creditcard} & 284,807 & 29 & 0.17\% & https://www.kaggle.com/mlg-ulb/creditcardfraud \\
\textbf{Lung} & 145 & 3,312 & 4.13\% & https://archive.ics.uci.edu/ml/datasets/Lung+Cancer \\
\textbf{Probe} & 64,759 & 34 & 6.43\% & http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html \\
\textbf{R8} & 3,974 & 9,467 & 1.28\% & http://csmining.org/tl\_files/Project\_Datasets/r8\_r52/r8-train-all-terms.txt \\
\textbf{Secom} & 1,567 & 590 & 6.63\% & https://archive.ics.uci.edu/ml/datasets/secom \\
\textbf{U2R} & 60,821 & 34 & 0.37\% & http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html \\\hline
\end{tabular}
}
\end{center}
\end{table} | [
[
"Data",
"N D Anomaly (%) Link"
],
[
"DDoS\nDonors\nBackdoor\nAd\nApascal\nBank\nCeleba\nCensus\nCreditcard\nLung\nProbe\nR8\nSecom\nU2R",
"464,976 66 3.75% http://www.csmining.org/cdmc2018/index.php\n619,326 10 5.92% https://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose\n95,329 196 2.44% https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity\n3,279 1,555 13.99% https://archive.ics.uci.edu/ml/datasets/internet+advertisements\n12,695 64 1.38% http://vision.cs.uiuc.edu/attributes/\n41,188 62 11.26% https://archive.ics.uci.edu/ml/datasets/Bank+Marketing\n202,599 39 2.24% http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html\n299,285 500 6.20% https://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29\n284,807 29 0.17% https://www.kaggle.com/mlg-ulb/creditcardfraud\n145 3,312 4.13% https://archive.ics.uci.edu/ml/datasets/Lung+Cancer\n64,759 34 6.43% http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html\n3,974 9,467 1.28% http://csmining.org/tl files/Project Datasets/r8 r52/r8-train-all-terms.txt\n1,567 590 6.63% https://archive.ics.uci.edu/ml/datasets/secom\n60,821 34 0.37% http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html"
]
] | 0.609431 | null | null |
1 | 1912.12186v2 | 15 | [
173.7887656471946,
455.6150207519531,
439.2572326660156,
596.845458984375
] | \begin{table}[h]
\caption{Testing runtime (in seconds) on 14 anomaly detection datasets.}
\label{tab:runtime_ad}
\begin{center}
% \resizebox{\textwidth}{25mm}{
\scalebox{0.80}{
\setlength{\tabcolsep}{1mm}{
\begin{tabular}{lcc|ccccc|c}
\hline
\multicolumn{3}{c|}{\textbf{Data Characteristics}} & \multicolumn{6}{c}{ \textbf{RDP and Its Five Competing Methods}} \\ \hline
\textbf{Data} & \textbf{N} & \textbf{D} & \textbf{iForest} & \textbf{AE} & \textbf{REPEN} & \textbf{DAGMM} & \textbf{RND} & \textbf{RDP} \\ \hline
\textbf{DDoS} & 464,976 & 66 & 54.06 & 86.86 & 172.47 & 197.85 & 31.86 & 28.93 \\
\textbf{Donors} & 619,326 & 10 & 28.17 & 52.31 & 226.14 & 194.45 & 44.31 & 36.84 \\
\textbf{Backdoor} & 95,329 & 196 & 26.51 & 51.66 & 36.43 & 187.61 & 12.26 & 29.95 \\
\textbf{Ad} & 3,279 & 1,555 & 6.71 & 14.71 & 3.24 & 31.54 & 8.12 & 30.83 \\
\textbf{Apascal} & 12,695 & 64 & 6.53 & 4.27 & 6.30 & 69.35 & 3.62 & 22.88 \\
\textbf{Bank} & 41,188 & 62 & 9.72 & 6.87 & 17.25 & 170.56 & 9.31 & 28.47 \\
\textbf{Celeba} & 202,599 & 39 & 20.54 & 26.70 & 71.60 & 223.70 & 18.05 & 33.91 \\
\textbf{Census} & 299,285 & 500 & 155.77 & 225.29 & 121.08 & 236.21 & 42.83 & 57.74 \\
\textbf{Creditcard} & 284,807 & 29 & 22.45 & 29.38 & 103.18 & 235.93 & 20.97 & 30.84 \\
\textbf{Lung} & 145 & 3,312 & 6.20 & 13.11 & 2.16 & 39.75 & 1.44 & 24.29 \\
\textbf{Probe} & 64,759 & 34 & 9.55 & 10.06 & 28.14 & 131.40 & 9.90 & 29.61 \\
\textbf{R8} & 3,974 & 9,467 & 59.70 & 45.48 & 7.81 & 31.99 & 8.26 & 14.33 \\
\textbf{Secom} & 1,567 & 590 & 7.32 & 5.78 & 2.83 & 18.22 & 3.23 & 22.52 \\
\textbf{U2R} & 60,821 & 34 & 8.95 & 9.38 & 26.55 & 185.88 & 9.90 & 28.10 \\ \hline
\end{tabular}}}
% }
\end{center}
\end{table} | [
[
"Data Characteristics",
"RDP and Its Five Competing Methods",
null
],
[
"Data N D",
"iForest AE REPEN DAGMM RND",
"RDP"
],
[
"DDoS 464,976 66\nDonors 619,326 10\nBackdoor 95,329 196\nAd 3,279 1,555\nApascal 12,695 64\nBank 41,188 62\nCeleba 202,599 39\nCensus 299,285 500\nCreditcard 284,807 29\nLung 145 3,312\nProbe 64,759 34\nR8 3,974 9,467\nSecom 1,567 590\nU2R 60,821 34",
"54.06 86.86 172.47 197.85 31.86\n28.17 52.31 226.14 194.45 44.31\n26.51 51.66 36.43 187.61 12.26\n6.71 14.71 3.24 31.54 8.12\n6.53 4.27 6.30 69.35 3.62\n9.72 6.87 17.25 170.56 9.31\n20.54 26.70 71.60 223.70 18.05\n155.77 225.29 121.08 236.21 42.83\n22.45 29.38 103.18 235.93 20.97\n6.20 13.11 2.16 39.75 1.44\n9.55 10.06 28.14 131.40 9.90\n59.70 45.48 7.81 31.99 8.26\n7.32 5.78 2.83 18.22 3.23\n8.95 9.38 26.55 185.88 9.90",
"28.93\n36.84\n29.95\n30.83\n22.88\n28.47\n33.91\n57.74\n30.84\n24.29\n29.61\n14.33\n22.52\n28.10"
]
] | 0.4 | null | null |
2 | 1912.12186v2 | 16 | [
196.2667999267578,
106.91279602050781,
419.7171936035156,
169.23916625976562
] | \begin{table}[h]
\caption{Testing runtime (in seconds) on five clustering datasets.}
\label{tab:runtime_clu}
\begin{center}
% \resizebox{\textwidth}{23mm}{
\scalebox{0.80}{
\setlength{\tabcolsep}{1mm}{
\begin{tabular}{lcc|cccc|c}
\hline
\multicolumn{3}{c|}{\textbf{Data Characteristics}} & \multicolumn{5}{c}{\textbf{RDP and Its Four Competing Methods}} \\ \hline
\textbf{Data} & \textbf{N} & \textbf{D} & \textbf{Org} & \textbf{HLLE} & \textbf{SRP} & \textbf{AE} & \textbf{RDP} \\ \hline
\textbf{R8} & 7,674 & 17,387 & - & 9,658.85 & 1.16 & 1.08 & 0.89 \\
\textbf{20news} & 18,846 & 130,107 & - & 94,349.20 & 2.26 & 11.49 & 6.85 \\
\textbf{Olivetti} & 400 & 4,096 & - & 166.02 & 0.73 & 0.03 & 0.03 \\
\textbf{Sector} & 9,619 & 55,197 & - & 24,477.80 & 1.40 & 4.28 & 2.87 \\
\textbf{RCV1} & 20,242 & 47,236 & - & 47,584.79 & 2.80 & 8.91 & 5.04 \\ \hline
\end{tabular}}}
\end{center}
\end{table} | [
[
"Data Characteristics",
"RDP and Its Four Competing Methods",
null
],
[
"Data N D",
"Org HLLE SRP AE",
"RDP"
],
[
"R8 7,674 17,387\n20news 18,846 130,107\nOlivetti 400 4,096\nSector 9,619 55,197\nRCV1 20,242 47,236",
"- 9,658.85 1.16 1.08\n- 94,349.20 2.26 11.49\n- 166.02 0.73 0.03\n- 24,477.80 1.40 4.28\n- 47,584.79 2.80 8.91",
"0.89\n6.85\n0.03\n2.87\n5.04"
]
] | 0.577287 | null | null |
3 | 1912.12186v2 | 17 | [
186.91879272460938,
117.87137603759766,
429.0652160644531,
189.92181396484375
] | \begin{table}[htbp]
\caption{NMI and F-score performance of K-means clustering using RDP, Doc2Vec, and Doc2Vec+RDP based feature representations of the text datasets R8 and news20.}
\label{tab:raw_clu_txt}
\begin{center}
% \resizebox{\textwidth}{23mm}{
\scalebox{0.80}{
\setlength{\tabcolsep}{1mm}{
\begin{tabular}{lcc|ccc}
\hline
\multicolumn{3}{c|}{Data Characteristics} & \multicolumn{3}{c}{\textbf{NMI Performance}} \\ \hline
\textbf{Data} & \textbf{N} & \textbf{D} & \textbf{Doc2Vec} & \textbf{RDP} & \textbf{Doc2Vec+RDP} \\ \hline
\textbf{R8} & 7,674 & 17,387 & 0.241 $\pm$ 0.022 & \textbf{0.539 $\pm$ 0.040} & 0.250 $\pm$ 0.003 \\
\textbf{20news} & 18,846 & 130,107 & 0.080 $\pm$ 0.003 & 0.084 $\pm$ 0.005 & \textbf{0.198 $\pm$ 0.009} \\ \hline
\multicolumn{3}{c|}{Data Characteristics} & \multicolumn{3}{c}{\textbf{F-score Performance}} \\ \hline
\textbf{Data} & \textbf{N} & \textbf{D} & \textbf{Doc2Vec} & \textbf{RDP} & \textbf{Doc2Vec+RDP} \\ \hline
\textbf{R8} & 7,674 & 17,387 & 0.317 $\pm$ 0.014 & \textbf{0.360 $\pm$ 0.055} & 0.316 $\pm$ 0.007 \\
\textbf{20news} & 18,846 & 130,107 & 0.115 $\pm$ 0.006 & 0.119 $\pm$ 0.006 & \textbf{0.126 $\pm$ 0.009}\\ \hline
\end{tabular}}}
\end{center}
\end{table} | [
[
"Data Characteristics",
"NMI Performance"
],
[
"Data N D",
"Doc2Vec RDP Doc2Vec+RDP"
],
[
"R8 7,674 17,387\n20news 18,846 130,107",
"0.241 ± 0.022 0.539 ± 0.040 0.250 ± 0.003\n0.080 ± 0.003 0.084 ± 0.005 0.198 ± 0.009"
],
[
"Data Characteristics",
"F-score Performance"
],
[
"Data N D",
"Doc2Vec RDP Doc2Vec+RDP"
],
[
"R8 7,674 17,387\n20news 18,846 130,107",
"0.317 ± 0.014 0.360 ± 0.055 0.316 ± 0.007\n0.115 ± 0.006 0.119 ± 0.006 0.126 ± 0.009"
]
] | 0.562814 | null | null |
0 | 2302.04386v1 | 3 | [
314.802001953125,
74.26202392578125,
561.1980356069712,
300.78900146484375
] | \begin{table}[ht]
\caption{MIMIC Variables - Based on SAPSII}
\label{table_example}
\centering
\begin{tabular}{|c||c|}
\hline
Feature & Healthy normal = 0\\
\hline
AIDS & Absent = 0, Present = 1\\
Heme Malignancy & Absent = 0, Present = 1\\
Metastatic Cancer & Absent = 0, Present = 1\\
Glasgow coma scale (1-15) & 15 = 0, $\leq$ 14 = 1\\
WBC Minimum ($*10^9$/L) & 4-10 = 0\\
WBC Maximum ($*10^9$/L) & 4-10 = 0\\
Na Minimum (mmol/L)& 135-145 = 0\\
Na Maximum (mmol/L)& 135-145 = 0\\
K Minimum (mmol/L)& 3.5-5 = 0\\
K Maximum (mmol/L) & 3.5-5 = 0\\
Bili Maximum (mg/dL)& $\leq$ 1.52 = 0\\
HCO$_3$ Minimum (mmol/L) & 24-30 = 0\\
HCO$_3$ Maximum (mmol/L)& 24-30 = 0\\
BUN Minimum (mg/dL)& 7-22 = 0\\
BUN Maximum (mg/dL)& 7-22 = 0\\
PO$_2$ (mmHg)& 85-105 = 0\\
FiO$_2$ (\%) & 21 = 0, $\leq$ 21 = 1\\
Mean heart rate (bpm) & 60-100 = 0\\
Mean systolic blood pressure (mmHg) & 95-145 = 0\\
Maximum temperature ($^{\circ}$C) & 36.5-37.5 = 0\\
Urine Output (mL/24h)& 800-2000 = 0\\
Sex (M/F) & M=1, F=0\\
Age (yrs) & $\leq$ 65 = 0, $>$ 65 = 1\\
Admission type & Emergency = 1, else = 0 \\
\hline
\end{tabular}
\end{table} | [
[
"Feature",
"Healthy normal = 0"
],
[
"AIDS\nHeme Malignancy\nMetastatic Cancer\nGlasgow coma scale (1-15)\nWBC Minimum (∗109/L)\nWBC Maximum (∗109/L)\nNa Minimum (mmol/L)\nNa Maximum (mmol/L)\nK Minimum (mmol/L)\nK Maximum (mmol/L)\nBili Maximum (mg/dL)\nHCO3 Minimum (mmol/L)\nHCO3 Maximum (mmol/L)\nBUN Minimum (mg/dL)\nBUN Maximum (mg/dL)\nPO2 (mmHg)\nFiO2 (%)\nMean heart rate (bpm)\nMean systolic blood pressure (mmHg)\nMaximum temperature (◦C)\nUrine Output (mL/24h)\nSex (M/F)\nAge (yrs)\nAdmission type",
"Absent = 0, Present = 1\nAbsent = 0, Present = 1\nAbsent = 0, Present = 1\n15 = 0, ≤14 = 1\n4-10 = 0\n4-10 = 0\n135-145 = 0\n135-145 = 0\n3.5-5 = 0\n3.5-5 = 0\n≤1.52 = 0\n24-30 = 0\n24-30 = 0\n7-22 = 0\n7-22 = 0\n85-105 = 0\n21 = 0, ≤21 = 1\n60-100 = 0\n95-145 = 0\n36.5-37.5 = 0\n800-2000 = 0\nM=1, F=0\n≤65 = 0, > 65 = 1\nEmergency = 1, else = 0"
]
] | 0.571782 | null | null |
1 | 2302.04386v1 | 6 | [
55.858001708984375,
595.5809936523438,
292.1419982910156,
678.572998046875
] | \begin{table}[!h]
\caption{Summary of CAT Information}
\centering
\begin{tabular}{ |p{2cm}||p{3cm}|p{2cm}| }
\hline
Component & Parameters & Returns\\
\hline
Initializer & 25th percentile item & CDI$_0$ \\
\hline
Selector & Item bank, administered items, CDI$_t$, & Index of next item\\
\hline
Estimator & item bank, CDI$_t$, administered items, response vector & CDI$_{t+1}$\\
\hline
Stopper & administered items, SE$_M$ & True or False\\
\hline
\end{tabular}
\end{table} | [
[
"Component",
"Parameters",
"Returns"
],
[
"Initializer",
"25th percentile item",
"CDI0"
],
[
"Selector",
"Item bank, adminis-\ntered items, CDIt,",
"Index of next\nitem"
],
[
"Estimator",
"item bank, CDIt, ad-\nministered items, re-\nsponse vector",
"CDIt+1"
],
[
"Stopper",
"administered items,\nSE\nM",
"True or False"
]
] | 0.906188 | null | null |
0 | 2007.03606v1 | 3 | [
103.89299774169922,
105.906005859375,
508.1889953613281,
369.16900634765625
] | \begin{table}%
\tbl{Some key terms in data science.\label{tab:keyterms}}{%
\begin{tabular}{|l|l|}
\hline
Key terms & Description \\
\hline
Advanced analytics & Refers to theories, technologies, tools and processes that enable an in-depth\\
& understanding and discovery of actionable insights in big data, which \\
& cannot be achieved by traditional data analysis and processing theories, \\
& technologies, tools and processes. \\
\hline
Big data & Refers to data that are too large and/or complex to be effectively and/or \\
& efficiently handled by traditional data-related theories, technologies and tools. \\
\hline
Data analysis & Refers to the processing of data by traditional (e.g., classic statistical,\\
& mathematical or logical) theories, technologies and tools for obtaining \\
& useful information and for practical purposes. \\
\hline
Data analytics & Refers to the theories, technologies, tools and processes that enable an \\
& in-depth understanding and discovery of actionable insight into data. \\
& Data analytics consists of descriptive analytics, predictive analytics, \\
& and prescriptive analytics. \\
\hline
Data science & Is the science of data. \\
\hline
Data scientist & Refers to those people whose roles very much center on data. \\
\hline
Descriptive analytics & Refers to the type of data analytics that typically uses statistics to \\
& describe the data used to gain information, or for other useful purposes.\\
\hline
Predictive analytics & Refers to the type of data analytics that makes predictions about unknown future \\ & events and discloses the reasons behind them, typically by advanced analytics. \\
\hline
Prescriptive analytics & Refers to the type of data analytics that optimizes indications and recommends \\ & actions for smart decision-making. \\
\hline
Explicit analytics & Focuses on descriptive analytics typically by reporting, descriptive\\
& analysis, alerting and forecasting. \\
\hline
Implicit analytics & Focuses on deep analytics, typically by predictive modeling, optimization,\\ & prescriptive analytics, and actionable knowledge delivery. \\
\hline
Deep analytics & Refers to data analytics that can acquire an in-depth understanding of why \\
& and how things have happened, are happening or will happen, which cannot \\
& be addressed by descriptive analytics. \\
\hline
\end{tabular}}
\end{table} | [
[
"Key terms",
"Description"
],
[
"Advanced analytics",
"Refers to theories, technologies, tools and processes that enable an in-depth\nunderstanding and discovery of actionable insights in big data, which\ncannot be achieved by traditional data analysis and processing theories,\ntechnologies, tools and processes."
],
[
"Big data",
"Refers to data that are too large and/or complex to be effectively and/or\nefficiently handled by traditional data-related theories, technologies and tools."
],
[
"Data analysis",
"Refers to the processing of data by traditional (e.g., classic statistical,\nmathematical or logical) theories, technologies and tools for obtaining\nuseful information and for practical purposes."
],
[
"Data analytics",
"Refers to the theories, technologies, tools and processes that enable an\nin-depth understanding and discovery of actionable insight into data.\nData analytics consists of descriptive analytics, predictive analytics,\nand prescriptive analytics."
],
[
"Data science",
"Is the science of data."
],
[
"Data scientist",
"Refers to those people whose roles very much center on data."
],
[
"Descriptive analytics",
"Refers to the type of data analytics that typically uses statistics to\ndescribe the data used to gain information, or for other useful purposes."
],
[
"Predictive analytics",
"Refers to the type of data analytics that makes predictions about unknown future\nevents and discloses the reasons behind them, typically by advanced analytics."
],
[
"Prescriptive analytics",
"Refers to the type of data analytics that optimizes indications and recommends\nactions for smart decision-making."
],
[
"Explicit analytics",
"Focuses on descriptive analytics typically by reporting, descriptive\nanalysis, alerting and forecasting."
],
[
"Implicit analytics",
"Focuses on deep analytics, typically by predictive modeling, optimization,\nprescriptive analytics, and actionable knowledge delivery."
],
[
"Deep analytics",
"Refers to data analytics that can acquire an in-depth understanding of why\nand how things have happened, are happening or will happen, which cannot\nbe addressed by descriptive analytics."
]
] | 1 | null | null |
1 | 2007.03606v1 | 20 | [
124.5719985961914,
413.47900390625,
490.468994140625,
459.5559997558594
] | \begin{table}%
\tbl{Explicit-to-implicit analytics.\label{tab:one}}{%
\begin{tabular}{|l|l|l|}
\hline
Categories & Explicit analytics & Implicit analytics \\\hline
Nature & Sighted people recognize an elephant & Blind people do not recognize an elephant\\\hline
Goal & We know what we know & We do not know what we do not know\\\hline
Approach & Hypothesis + data & Data + environment (incl. domain)\\\hline
Outcome & Description of data & In-depth representation of data\\\hline
\end{tabular}}
%\begin{tabnote}%
%\Note{Source:}{This is a table
%sourcenote. This is a table sourcenote. This is a table
%sourcenote.}
%\vskip2pt
%\Note{Note:}{This is a table footnote.}
%\tabnoteentry{$^a$}{This is a table footnote. This is a
%table footnote. This is a table footnote.}
%\end{tabnote}%
\end{table} | [
[
"Categories",
"Explicit analytics",
"Implicit analytics"
],
[
"Nature",
"Sighted people recognize an elephant",
"Blind people do not recognize an elephant"
],
[
"Goal",
"We know what we know",
"We do not know what we do not know"
],
[
"Approach",
"Hypothesis + data",
"Data + environment (incl. domain)"
],
[
"Outcome",
"Description of data",
"In-depth representation of data"
]
] | 0.743529 | null | null |
0 | 1606.07345v1 | 10 | [
110.85399627685547,
363.8970031738281,
546.4920043945312,
452.56500244140625
] | \begin{table}[ht]
\label{}
\centering
{\begin{tabular}{|c|c|c|}
\hline
No. of Local PCs from $G_{S0}$ & No. of Local PCs from $G_{S1}$ & No. of Global PCs taken for\\
&& the reconstruction of data\\
\hline
2 (4) & 2 (3) & 4 \\
\hline
2 (4) & 3 (3) & 5 \\
\hline
3(4) & 3 (3) & 6 \\
\hline
4 (4) & 3 (3) & 7 \\
\hline
\end{tabular}}
\caption{Global PCs from the different combinations of local PCs.}
\end{table} | [
[
"No. of Local PCs from G\nS0",
"No. of Local PCs from G\nS1",
"No. of Global PCs taken for\nthe reconstruction of data"
],
[
"2 (4)",
"2 (3)",
"4"
],
[
"2 (4)",
"3 (3)",
"5"
],
[
"3(4)",
"3 (3)",
"6"
],
[
"4 (4)",
"3 (3)",
"7"
]
] | 0.845144 | null | null |
1 | 1606.07345v1 | 13 | [
126.4209976196289,
125.99700927734375,
483.8299865722656,
244.75201416015625
] | \begin{table}[ht]
\label{}
\centering
{\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
fac& fou & kar & mor & pix & zer & Transmission Cost Among the Nodes \\
\hline
1 & 1 & 1 &1 &1 &1 & 3.0$\times 10^4$\\
\hline
4 &1 & 1 & 1 & 4 & 1 & 6.0$\times 10^4$\\
\hline
6 & 2 & 2 & 1 & 6 & 2 & 9.6$\times 10^4$\\
\hline
10 & 4 & 4 & 1 & 10 & 4 & 1.46$\times 10^5$\\
\hline
10 & 4 & 4 & 1 & 13 & 6 & 1.84$\times 10^5$\\
\hline
14 & 5 & 7 & 1 & 14 & 8 & 2.46$\times 10^5$\\
\hline
15 & 6 & 10 & 1 & 20 & 10 & 3.08$\times 10^5$\\
\hline
\end{tabular}}
\caption{mfeat transmission cost}
\end{table} | [
[
"fac",
"fou",
"kar",
"mor",
"pix",
"zer",
"Transmission Cost Among the Nodes"
],
[
"1",
"1",
"1",
"1",
"1",
"1",
"3.0 104\n×"
],
[
"4",
"1",
"1",
"1",
"4",
"1",
"6.0 104\n×"
],
[
"6",
"2",
"2",
"1",
"6",
"2",
"9.6 104\n×"
],
[
"10",
"4",
"4",
"1",
"10",
"4",
"1.46 105\n×"
],
[
"10",
"4",
"4",
"1",
"13",
"6",
"1.84 105\n×"
],
[
"14",
"5",
"7",
"1",
"14",
"8",
"2.46 105\n×"
],
[
"15",
"6",
"10",
"1",
"20",
"10",
"3.08 105\n×"
]
] | 0.59798 | null | null |
0 | 1803.10205v1 | 30 | [
47.98853352864583,
75.68803405761719,
537.483329264323,
640.8890380859375
] | \begin{table}[t]
\begin{raggedright}
\begin{tabular}{|@{\hspace*{1mm}}p{0.2\linewidth}@{}|@{\hspace*{1mm}}p{0.75\linewidth}|}
\hline
\multicolumn{2}{|>{\color{white}\columncolor{black}}l|}{\textbf{A: Model summary}}\tabularnewline
\hline
\textbf{Populations} & Three: excitatory $\mathrm{EX}$, inhibitory $\mathrm{IN}$, external
stimulus $\mathrm{STIM}$\tabularnewline
\hline
\textbf{Topology} & $\mathrm{EX}$/$\mathrm{IN}$: random neuron positions on square domain
of size $L\times L$; $\mathrm{STIM}$: random neuron positions inside
a circle with radius $R_{\mathrm{STIM}}$ at the center of the domain;
periodic boundary conditions\tabularnewline
\hline
\textbf{Connectivity} & Random ($\mathrm{EX}$/$\mathrm{IN}$: convergent, fixed in-degree;
$\mathrm{STIM}$: divergent, fixed out-degree) connections described
by distance-dependent probability kernels and cut-off masks\tabularnewline
\hline
\textbf{Neuron model} & $\mathrm{EX}$/$\mathrm{IN}$: leaky integrate-and-fire (LIF), fixed
threshold, absolute refractory time; $\mathrm{STIM}$: parrot\tabularnewline
\hline
\textbf{Synapse model} & Static weights, $\mathrm{EX}$/$\mathrm{IN}$: alpha-shaped postsynaptic
currents, distance-dependent delays\tabularnewline
\hline
\textbf{Input} & Independent fixed-rate Poisson spike trains to all neurons\tabularnewline
\hline
\textbf{Measurement} & Spike activity\tabularnewline
\hline
\end{tabular}
\par\end{raggedright}
\begin{raggedright}
\begin{tabular}{|@{\hspace*{1mm}}p{0.2\linewidth}@{}|@{\hspace*{1mm}}p{0.75\linewidth}|}
\hline
\multicolumn{2}{|>{\color{white}\columncolor{black}}l|}{\textbf{B: Network model}}\tabularnewline
\hline
\textbf{Subthreshold dynamics} & $\mathrm{EX}$/$\mathrm{IN}$:\newline If $t>t^{*}+\tau_{\mathrm{ref}}$\begin{itemize}\item[]$\frac{\mathrm{d}V}{\mathrm{d}t}=-\frac{V-E_{L}}{\tau_{\mathrm{m}}}+\frac{I_{\mathrm{syn}}\left(t\right)}{C_{\mathrm{m}}}$\item[]$I_{\mathrm{syn}}\left(t\right)=\sum_{j}J_{j}\alpha\left(t-t_{j}^{*}-d_{j}\right)$\item[]
with connection strength $J_{j}$, presynaptic spike time $t_{j}^{*}$
and conduction delay $d_{j}$ \item[]$\alpha\left(t\right)=\mathrm{\frac{t}{\tau_{\mathrm{s}}}e}^{1-t/\tau_{\mathrm{s}}}\Theta\left(t\right)$
with Heaviside function $\Theta$\end{itemize} else \begin{itemize}
\item[] $V\left(t\right)=V_{\mathrm{reset}}$\end{itemize}\tabularnewline
\hline
\textbf{Spiking} & If $V\left(t-\right)<V_{\theta}\wedge V\left(t+\right)\geq V_{\theta}$\begin{enumerate}\item
set $t^{*}=t$ \item emit spike with timestamp $t^{*}$ \item reset
$V\left(t\right)=V_{\mathrm{reset}}$\end{enumerate}\tabularnewline
\hline
\textbf{Distance-dependent connectivity} & Neuronal units $j\in X$ at location $\left(x_{j},y_{j}\right)$ and
$i\in Y$ at $\left(x_{i},y_{i}\right)$ in pre- and postsynaptic
populations $X$ and $Y$, respectively.\newline Distance between
units $i$ and $j$:\begin{itemize} \item[]$r_{ij}=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}$\end{itemize}
Gaussian kernel for connection probability: \begin{itemize} \item[]
$p_{YX}(r_{ij})=\mathrm{e}^{-r_{ij}^{2}/2\sigma_{YX}^{2}}$ \end{itemize}
$R$ is the radius of a cut-off mask.\newline Transmission delay
function: \begin{itemize} \item[] $d_{YX}(r_{ij})=d_{YX}^{0}+r_{ij}/v_{YX}$\end{itemize}\tabularnewline
\hline
\end{tabular}
\par\end{raggedright}
\caption{Description of the network model following the guidelines of \citet{Nordlie2009}.
\label{tab:netwdescription}}
\end{table} | [
[
"A: Model summary",
null
],
[
"Populations",
"Three: excitatory EX, inhibitory IN, external stimulus STIM"
],
[
"Topology",
"EX/IN: random neuron positions on square domain of size L L; STIM:\n×\nrandom neuron positions inside a circle with radius R at the center of the\nSTIM\ndomain; periodic boundary conditions"
],
[
"Connectivity",
"Random (EX/IN: convergent, fixed in-degree; STIM: divergent, fixed out-\ndegree) connections described by distance-dependent probability kernels and\ncut-off masks"
],
[
"Neuron model",
"EX/IN: leaky integrate-and-fire (LIF), fixed threshold, absolute refractory time;\nSTIM: parrot"
],
[
"Synapse model",
"Static weights, EX/IN: alpha-shaped postsynaptic currents, distance-dependent\ndelays"
],
[
"Input",
"Independent fixed-rate Poisson spike trains to all neurons"
],
[
"Measurement",
"Spike activity"
],
[
"B: Network model",
null
],
[
"Subthreshold\ndynamics",
"EX/IN:\nIf t > t∗ + τ\nref\nd dV = −V − τmE L + Is Cyn m(t)\nt\n\u0010 \u0011\nI (t) = P J jα t −t∗ −d\nsyn j j j\nwith connection strength J j, presynaptic spike time t∗ and conduction delay\nj\nd\nj\nα (t) = t e1−t/τsΘ (t) with Heaviside function Θ\nτs\nelse\nV (t) = V\nreset"
],
[
"Spiking",
"If V (t ) < V V (t+) V\n− θ ∧ ≥ θ\n1. set t∗ = t\n2. emit spike with timestamp t∗\n3. reset V (t) = V\nreset"
],
[
"Distance-\ndependent\nconnectivity",
"Neuronal units j X at location (x , y ) and i Y at (x , y ) in pre- and\n∈ j j ∈ i i\npostsynaptic populations X and Y , respectively.\nDistance between units i and j:\nq\n2 2\nr = (x −x j) + (y −y j)\nij i i\nGaussian kernel for connection probability:\np X(r ij) = e−r i2 j/2σ Y2 X\nY\nR is the radius of a cut-off mask.\nTransmission delay function:\nd (r ) = d0 + r /v\nY X ij Y X ij Y X"
]
] | 0.632937 | null | null |
0 | 1508.07416v1 | 17 | [
89.73899841308594,
298.5580139160156,
264.28399658203125,
358.5329895019531
] | \begin{table}
\renewcommand{\arraystretch}{1.1}
\caption{\small The performance of MRI completion evaluated by PSNR and RRSE under missing ratios of 50\% and 80\%. }
\label{tab:MRIresults}
\centering
%\resizebox{1\textwidth}{!}
%{
\begin{tabular}{ c |c | c | c | c }
\hline
& \multicolumn{2}{c|}{50\% missing} & \multicolumn{2}{c}{80\% missing} \\
\cline{2-5}
Methods & PSNR & RRSE & PSNR & RRSE \\
\hline
BTC & {\bf 26.40} & {\bf 0.12} & {\bf22.33} & {\bf 0.19} \\
WTucker & 23.18 & 0.18 & 21.53 & 0.21 \\
gHOOI & 21.57 & 0.21 & 19.77 & 0.26 \\
HaLRTC & 23.12 & 0.18 & 17.06 & 0.36 \\
\hline
\end{tabular}
%}
\end{table} | [
[
"Methods",
"50% missing",
null,
"80% missing",
null
],
[
null,
"PSNR",
"RRSE",
"PSNR",
"RRSE"
],
[
"BTC\nWTucker\ngHOOI\nHaLRTC",
"26.40\n23.18\n21.57\n23.12",
"0.12\n0.18\n0.21\n0.18",
"22.33\n21.53\n19.77\n17.06",
"0.19\n0.21\n0.26\n0.36"
]
] | 0.498615 | null | null |
0 | 2304.02539v2 | 14 | [
74.01453196207682,
567.5413208007812,
537.9856160481771,
647.9210205078125
] | \begin{table}[!h]
\caption{Simulated annotator sets for each RQ.}
\label{tab:annotator-simulation}
\setlength{\tabcolsep}{9.2pt}
\footnotesize
\centering
\begin{tabular}{|c|c|c|c|c||c|}
\toprule
\textbf{Adversarial} & \textbf{Common} & \textbf{Cluster-specialized} & \textbf{Class-specialized} & \textbf{Random} & \textbf{Annotation Ratio} \\
\midrule
\hline
\multicolumn{6}{|c|}{\cellcolor{datasetcolor!10} \textsc{independent} (RQ1)}\\
\hline
1 & 6 & 2 & 1 & 0 & 0.2\\
\hline
\multicolumn{6}{|c|}{\cellcolor{datasetcolor!10} \textsc{correlated} (RQ2)}\\
\hline
11 copies & 6 & 1 + 11 copies & 11 copies & 0 & 0.2\\
\hline
\multicolumn{6}{|c|}{\cellcolor{datasetcolor!10} \textsc{random-correlated} (RQ2)}\\
\hline
1 & 6 & 2 & 1 & 90 copies & 0.2 \\
\hline
\multicolumn{6}{|c|}{\cellcolor{datasetcolor!10} \textsc{inductive} (RQ3)}\\
\hline
10 & 60 & 20 & 10 & 0 & 0.02\\
\hline
\bottomrule
\end{tabular}
\end{table} | [
[
"independent (RQ1)",
null,
null,
null,
null,
null
],
[
"1",
"6",
"2",
"1",
"0",
"0.2"
],
[
"correlated (RQ2)",
null,
null,
null,
null,
null
],
[
"11 copies",
"6",
"1 + 11 copies",
"11 copies",
"0",
"0.2"
],
[
"random-correlated (RQ2)",
null,
null,
null,
null,
null
],
[
"1",
"6",
"2",
"1",
"90 copies",
"0.2"
],
[
"inductive (RQ3)",
null,
null,
null,
null,
null
],
[
"10",
"60",
"20",
"10",
"0",
"0.02"
]
] | 0.457786 | null | null |
0 | 2104.01395v1 | 15 | [
134.76499938964844,
137.9530029296875,
476.375,
174.01702880859375
] | \begin{table}[tb]
\caption{Classification Results (mAP).}
\label{tab:class_results}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l||l|}
\hline
& \texttt{agric.} & \texttt{cloud} & \texttt{desert} & \texttt{dense-urban} & \texttt{forest} & \texttt{mountain} & \texttt{ocean} & \texttt{snow} & \texttt{wetland} & All\\
\hline \hline
\cite{ben2019toward} & 0.48 & 0.66 & 0.5 & 0.86 & 0.57 & 0.64 & 0.83 & 0.57 & 0.23 & 0.59 \\
\hline
Ours & 1.0 & 0.95 & 1.0 & 1.0 & 0.99 & 1.0 & 1.0 & 1.0 & 0.82 & 0.98\\
\hline
\end{tabular}
\end{table} | [
[
"",
"agric.",
"cloud",
"desert",
"dense-urban",
"forest",
"mountain",
"ocean",
"snow",
"wetland",
"All"
],
[
"[3]",
"0.48",
"0.66",
"0.5",
"0.86",
"0.57",
"0.64",
"0.83",
"0.57",
"0.23",
"0.59"
],
[
"Ours",
"1.0",
"0.95",
"1.0",
"1.0",
"0.99",
"1.0",
"1.0",
"1.0",
"0.82",
"0.98"
]
] | 0.954802 | null | null |
0 | 1901.03802v1 | 2 | [
90,
205.9580078125,
524.7139892578125,
468.53566487630206
] | \begin{table}[h]
\centering
\caption{Implemented active learning strategies in different settings.} \label{table:strategies}
\begin{tabular}{p{0.35\columnwidth}| p{0.6\columnwidth}}
\toprule
\hline
\textbf{AL with Instance Selection} & Uncertainty (\cite{LewisG94}), Query By Committee (\cite{AbeM98}), Expected Error Reduction (\cite{RoyM01}), Random, Graph Density (\cite{EbertFS12}), BMDR (\cite{WangY13})), QUIRE (\cite{HuangJZ10}), LAL (\cite{KonyushkovaSF17}), SPAL (\cite{TH2019})\\
\hline
\textbf{AL for Multi-Label Data} & AUDI (\cite{HuangZ13}), QUIRE (\cite{HuangJZ14}), MMC (\cite{YangSWC09}), Adaptive (\cite{LiG13}), Random\\
\hline
\textbf{AL by Querying Features}& AFASMC (\cite{HuangXXSNC18}), Stability (\cite{ChakrabortyZBPDY13}), Random \\
\hline
\textbf{AL with Different Costs}& HALC (\cite{YanH18}), Random, Cost performance \\
\hline
\textbf{AL with Noisy Oracles}& CEAL (\cite{HuangCMZ17}), IEthresh (\cite{DonmezCS09}), Repeated (\cite{ShengPI08}), Random \\
\hline
\textbf{AL with Novel Query Types}& AURO (\cite{HuangCZ15}) \\
\hline
\textbf{AL for Large Scale Tasks}& Subsampling \\
\hline
\bottomrule
\end{tabular}
\end{table} | [
[
"AL with Instance Selection",
"Uncertainty (Lewis and Gale (1994)), Query By Com-\nmittee (Abe and Mamitsuka (1998)), Expected Er-\nror Reduction (Roy and McCallum (2001)), Random,\nGraph Density (Ebert et al. (2012)), BMDR (Wang\nand Ye (2013))), QUIRE (Huang et al. (2010)), LAL\n(Konyushkova et al. (2017)), SPAL (Tang and Huang\n(2019))"
],
[
"AL for Multi-Label Data",
"AUDI (Huang and Zhou (2013)), QUIRE (Huang et al.\n(2014)), MMC (Yang et al. (2009)), Adaptive (Li and\nGuo (2013)), Random"
],
[
"AL by Querying Features",
"AFASMC (Huang et al. (2018)), Stability\n(Chakraborty et al. (2013)), Random"
],
[
"AL with Different Costs",
"HALC (Yan and Huang (2018)), Random, Cost perfor-\nmance"
],
[
"AL with Noisy Oracles",
"CEAL (Huang et al. (2017)), IEthresh (Donmez et al.\n(2009)), Repeated (Sheng et al. (2008)), Random"
],
[
"AL with Novel Query Types",
"AURO (Huang et al. (2015))"
],
[
"AL for Large Scale Tasks",
"Subsampling"
]
] | 0.70118 | null | null |
0 | 2407.14335v1 | 8 | [
317.1199951171875,
474.36692199707034,
569.0160747327303,
691.1573311941964
] | \begin{table}[h]
\caption{ On-chain data for Algorand from January 2019 to September 2023 via BitQuery’s open APIs, and for Ethereum 2.0 from June 2019 to September 2023 through Beacon Explorer using the SPIDER framework.}
\label{table:5}
\begin{minipage}[t]{0.5\textwidth}
\vspace{0pt} % Ensures alignment at the top
\flushright
\small
\resizebox{0.98\textwidth}{!}{% Resize to fit within minipage
\begin{tabular}{%
>{\columncolor{col1}}p{1.4cm}
>{\columncolor{col2}}p{1.9cm}
>{\columncolor{col3}}p{2cm}
>{\columncolor{col4}}p{0.5cm}
>{\columncolor{col5}}p{0.9cm}
>{\columncolor{col6}}p{1.3cm}
>{\columncolor{col7}\color{black}}p{3.3cm}
>{\columncolor{col8}\color{black}}p{5.0cm}
}
\toprule
\textbf{Data Type} & \textbf{Data Frame} & \textbf{Description} & \textbf{Unit} & \textbf{Type} & \textbf{Frequency} & \textbf{Range} & \textbf{File Name} \\
\midrule
Block & Daily Block Count & Numbers of blocks produced per day & NA & Integer & Daily & 0\textasciitilde{}7180 & daily\_block\_count.csv \\
& Average Block Time & Average consensus time per block & S & Float & Daily & 4.46\textasciitilde{}30.57 & avg\_blk\_time.csv \\
& Average Gas Used by Blocks & Average gas used per block & NA & Float & Daily Sum & 0\textasciitilde{}15511762.25 & gas\_used\_avg\_by\_blk.csv \\
Transaction & Transaction Count & Transaction count per day & NA & Integer & Daily & 0\textasciitilde{}1932226 & daily\_transactions.csv \\
& Gas Limit & Gas limit amount per day & Eth & Integer & Daily Sum & 5000\textasciitilde{}30076713.92 & gas\_limit.csv \\
& Burned Fees & Used tokens for transactions per day & Eth & Float & Daily & 0\textasciitilde{}71718.88 & burned\_fees.csv \\
Account & Validator Count & Validator counts per day & NA & Integer & Daily & 21063\textasciitilde{}771738 & validator\_data.csv \\
& Average Validator Balance & Average account balance of validators per day & Eth & Float & Daily & 32.00953203\textasciitilde{}34.00950871 & validator\_avg\_balance.csv \\
& Participation Rate & Overall participation rate per day & NA & Float & Daily(\%) & 0.941524213\textasciitilde{}0.99728444 & participation\_rate.csv \\
Network & Network Liveness & Block count for confirmation & NA & Integer & Daily & 2\textasciitilde{}12 & network\_Liveness.csv \\
Block & Block Info & Block timestamp, address, height & NA & String & Daily & NA & al\_block\_data.csv \\
& Proposer Count & Proposer count per day & NA & Integer & Daily & 31\textasciitilde{}130 & al\_block\_data\_proposercount\_reward.csv \\
Transaction & Transaction Count & Transaction count per day & NA & Float & Daily & 913\textasciitilde{}9271981 & al\_transac\_data\_count\_fee.csv \\
& Burned Fees & Tokens used for transactions & Algo & Float & Daily & 1.47588\textasciitilde{}33113.44687 & al\_transac\_data\_count\_fee.csv \\
Account & Block Reward & Reward for block proposal per day & Algo & Float & Daily & 141.059024\textasciitilde{}5184.994864 & al\_block\_data\_reward.csv \\
Contract & Contract Calls & Overall contract calls per day & NA & Integer & Daily & 1\textasciitilde{}197459 & al\_contracts\_calls\_unique\_calls.csv \\
& Unique Calls & Unique contract calls & NA & Integer & Daily & 1\textasciitilde{}10149 & al\_contracts\_calls\_unique\_calls.csv \\
\bottomrule
\end{tabular}%
}
\end{minipage}
\label{tab: dictionary}
\end{table} | [
[
"Data Type",
"Data Frame",
"Description",
"Unit",
"Type",
"Frequency",
"Range",
"File Name"
],
[
"Block",
"Daily Block\nCount",
"Numbers\nof blocks\nproduced per\nday",
"NA",
"Integer",
"Daily",
"0˜7180",
"daily block count.csv"
],
[
"",
"Average Block\nTime",
"Average\nconsensus\ntime per block",
"S",
"Float",
"Daily",
"4.46˜30.57",
"avg blk time.csv"
],
[
"",
"Average Gas\nUsed by\nBlocks",
"Average gas\nused per block",
"NA",
"Float",
"Daily\nSum",
"0˜15511762.25",
"gas used avg by blk.csv"
],
[
"Transaction",
"Transaction\nCount",
"Transaction\ncount per day",
"NA",
"Integer",
"Daily",
"0˜1932226",
"daily transactions.csv"
],
[
"",
"Gas Limit",
"Gas limit\namount per day",
"Eth",
"Integer",
"Daily\nSum",
"5000˜30076713.92",
"gas limit.csv"
],
[
"",
"Burned Fees",
"Used tokens for\ntransactions per\nday",
"Eth",
"Float",
"Daily",
"0˜71718.88",
"burned fees.csv"
],
[
"Account",
"Validator\nCount",
"Validator\ncounts per day",
"NA",
"Integer",
"Daily",
"21063˜771738",
"validator data.csv"
],
[
"",
"Average\nValidator\nBalance",
"Average\naccount\nbalance of\nvalidators per\nday",
"Eth",
"Float",
"Daily",
"32.00953203˜34.00950871",
"validator avg balance.csv"
],
[
"",
"Participation\nRate",
"Overall partici-\npation rate per\nday",
"NA",
"Float",
"Daily(%)",
"0.941524213˜0.99728444",
"participation rate.csv"
],
[
"Network",
"Network Live-\nness",
"Block count for\nconfirmation",
"NA",
"Integer",
"Daily",
"2˜12",
"network Liveness.csv"
],
[
"Block",
"Block Info",
"Block\ntimestamp,\naddress, height",
"NA",
"String",
"Daily",
"NA",
"al block data.csv"
],
[
"",
"Proposer\nCount",
"Proposer count\nper day",
"NA",
"Integer",
"Daily",
"31˜130",
"al block data proposercount reward.csv"
],
[
"Transaction",
"Transaction\nCount",
"Transaction\ncount per day",
"NA",
"Float",
"Daily",
"913˜9271981",
"al transac data count fee.csv"
],
[
"",
"Burned Fees",
"Tokens used for\ntransactions",
"Algo",
"Float",
"Daily",
"1.47588˜33113.44687",
"al transac data count fee.csv"
],
[
"Account",
"Block Reward",
"Reward for\nblock proposal\nper day",
"Algo",
"Float",
"Daily",
"141.059024˜5184.994864",
"al block data reward.csv"
],
[
"Contract",
"Contract Calls",
"Overall\ncontract calls\nper day",
"NA",
"Integer",
"Daily",
"1˜197459",
"al contracts calls unique calls.csv"
],
[
"",
"Unique Calls",
"Unique\ncontract calls",
"NA",
"Integer",
"Daily",
"1˜10149",
"al contracts calls unique calls.csv"
]
] | 0.745297 | null | null |
0 | 2005.05537v1 | 6 | [
66.68299865722656,
89.1150131225586,
281.82598876953125,
202.96099853515625
] | \begin{table}[tb]
\centering
\begin{tabular}{c|cccc}
\toprule[1pt]
& \multicolumn{2}{c}{\bf CCI900}&\multicolumn{2}{c}{\bf CCI950}\\
\midrule
&AUC&AP&AUC&AP\\
\midrule
DeepCCI & 0.925&0.918&0.957&0.957\\
DeepDDI & 0.891 & 0.886&0.916&0.915\\
MR-GNN & 0.927 & 0.921 & 0.934 & 0.924\\
MLRDA & 0.922&0.907&0.959&0.948\\
SEAL & 0.894 & 0.886 &0.941 & 0.937\\
{\bf GoGNN}& {\bf 0.937} & {\bf 0.932} & {\bf 0.963} & {\bf 0.962}\\
\midrule
GoGNN-M &0.914 & 0.909 &0.938&0.931\\
GoGNN-I &0.921&0.898&0.929&0.912\\
GoGNN-noPool &0.931&0.930&0.958&0.954\\
GoGNN-noAttn &0.909&0.905&0.956&0.948\\
\bottomrule[1pt]
\end{tabular}
\vspace{-2mm}
\caption{Result of chemical-chemical interaction prediction task. }
\vspace{-1mm}
\label{tab:cci}
\end{table} | [
[
"DeepCCI 0.925 0.918 0.957 0.957\nDeepDDI 0.891 0.886 0.916 0.915\nMR-GNN 0.927 0.921 0.934 0.924\nMLRDA 0.922 0.907 0.959 0.948\nSEAL 0.894 0.886 0.941 0.937\nGoGNN 0.937 0.932 0.963 0.962",
null
],
[
"GoGNN-M\nGoGNN-I\nGoGNN-noPool\nGoGNN-noAttn",
"0.914 0.909 0.938 0.931\n0.921 0.898 0.929 0.912\n0.931 0.930 0.958 0.954\n0.909 0.905 0.956 0.948"
]
] | 0.399072 | null | null |
0 | 2210.02631v3 | 11 | [
309.5929870605469,
410.2890319824219,
532.8259887695312,
554.1500244140625
] | \begin{table}[h!]
% \begin{center}
\begin{tabular}{c|c|c|r|c} % <-- Alignments: 1st column left, 2nd middle and 3rd right, with vertical lines in between
\textbf{Experiment } & \textbf{Description } \\
\textbf{No.} & \\
\hline
& \\
\textbf{E5.1} & Transfer learning with all \\
& augmentation datasets added\\
& to training set as per E2.4\\
& \\
\textbf{E5.2} & As per E5.1 but with the custom loss \\
& function defined by (\ref{AdjustedLoss}) \\
& \\
\textbf{E5.3} & As per E5.2 but with \\
& $\alpha$ coefficient of 2 \\
\end{tabular}
\caption{Summary of the Experiment 5. For each of our pre-trained models (M1 to M5 in Table~\ref{tab:paper1results}), we perform further training. We begin by enlarging the training set with all augmented datasets. We then combine this approach with the use of our custom loss function. Finally, we modify the loss function to use and $\alpha$ of 2. Each part of the experiment is repeated six times to account for randomness in the way dropout nodes are assigned.}
\label{tab:Experiment5}
% \end{center}
\end{table} | [
[
"Experiment\nNo.",
"Description"
],
[
"E5.1\nE5.2\nE5.3",
"Transfer learning with all\naugmentation datasets added\nto training set as per E2.4\nAs per E5.1 but with the custom loss\nfunction defined by (1)\nAs per E5.2 but with\nα coefficient of 2"
]
] | 0.369469 | null | null |
0 | 2006.11325v1 | 5 | [
117.35299682617188,
162.0670166015625,
492.156005859375,
262.2130126953125
] | \begin{table}
\caption{Accuracy (\%) of unsupervised pre-training methods on $N$-way $K$-shot classification tasks on Omniglot and mini-Imagenet on a Conv-4 architecture. For detailed results, see Tables \ref{tab:omni_full} and \ref{tab:mini_full} in the Appendix. Results style: \textbf{best} and \underline{second best}.}
%\begin{adjustbox}{width=\columnwidth,center}
\centering
\begin{tabular}{l c c c c|c c c c}
\toprule
{\bf Method \quad (N,K)} & {\bf (5,1)} & {\bf (5,5)} & \bf{(20,1)} & \bf{(20,5)} & {\bf (5,1)} & {\bf (5,5)} & \bf{(5,20)} & \bf{(5,50)}\\
\midrule
&\multicolumn{4}{c}{\bf Omniglot} & \multicolumn{4}{c}{\bf mini-ImageNet} \\
\midrule
{\em Training (scratch)} & 52.50 & 74.78 & 24.91 & 47.62 & 27.59 & 38.48 & 51.53 & 59.63\\
\midrule
%\hline
CACTUs-MAML & 68.84 & 87.78 & 48.09 & 73.36 & 39.90 & 53.97 & \underline{63.84} & \underline{69.64} \\
CACTUs-ProtoNet & 68.12 & 83.58 & 47.75 & 66.27 & 39.18 & 53.36 & 61.54 & 63.55 \\
UMTRA & 83.80 & 95.43 & \underline{74.25} & \underline{92.12} & 39.93 & 50.73 & 61.11 & 67.15\\
AAL-ProtoNet & 84.66 & 89.14 & 68.79 & 74.28 & 37.67 & 40.29 & - & - \\
AAL-MAML++ & \underline{88.40} & \underline{97.96} & 70.21 & 88.32 & 34.57 & 49.18 & - & - \\
UFLST & \textbf{97.03} & \textbf{99.19} & \textbf{91.28} & \textbf{97.37} & 33.77 & 45.03 & 53.35 & 56.72 \\
ULDA-ProtoNet & - & - & - & - & 40.63 & \underline{55.41} & 63.16 & 65.20 \\
ULDA-MetaOptNet & - & - & - & - & \underline{40.71} & 54.49 & 63.58 & 67.65 \\
ProtoTransfer (ours) & 88.00 & 96.48 & 72.27 & 89.08 & \textbf{45.67} & \textbf{62.99} & \textbf{72.34} & \textbf{77.22} \\
\midrule
{\small \em Supervised training} & & & & & & & & \\
{\em MAML} & 94.46 & 98.83 & 84.60 & 96.29 & 46.81 & 62.13 & 71.03 & 75.54\\
{\em ProtoNet} & 97.70 & 99.28 & 94.40 & 98.39 & 46.44 & 66.33 & 76.73 & 78.91 \\
{\em Pre+Linear} & 94.30 & 99.08 & 86.05 & 97.11 & 43.87 & 63.01 & 75.46 & 80.17 \\
\bottomrule
\end{tabular}
%\end{adjustbox}
\label{tab:ResultsOmniglotMini}
\end{table} | [
[
"CACTUs-MAML 68.84 87.78 48.09 73.36\nCACTUs-ProtoNet 68.12 83.58 47.75 66.27\nUMTRA 83.80 95.43 74.25 92.12\nAAL-ProtoNet 84.66 89.14 68.79 74.28\nAAL-MAML++ 88.40 97.96 70.21 88.32\nUFLST 97.03 99.19 91.28 97.37\nULDA-ProtoNet - - - -\nULDA-MetaOptNet - - - -\nProtoTransfer (ours) 88.00 96.48 72.27 89.08",
"39.90 53.97 63.84 69.64\n39.18 53.36 61.54 63.55\n39.93 50.73 61.11 67.15\n37.67 40.29 - -\n34.57 49.18 - -\n33.77 45.03 53.35 56.72\n40.63 55.41 63.16 65.20\n40.71 54.49 63.58 67.65\n45.67 62.99 72.34 77.22"
]
] | 0.479936 | null | null |
1 | 2006.11325v1 | 6 | [
130.0260040283203,
417.8730163574219,
479.48399658203124,
485.4410095214844
] | \begin{table}
\centering
\caption{Accuracy (\%) of methods on $N$-way $K$-shot $(N,K)$ classification tasks on mini-ImageNet with a Conv-4 architecture for different training image batch sizes, number of training queries ($Q$) and optional finetuning on target tasks (FT). UMTRA-MAML results are taken from \cite{khodadadeh2019unsupervised}, where UMTRA uses AutoAugment \citep{cubuk2019autoaugment} augmentations. For detailed results see Table \ref{tab:ResultsAblation_full} in the Appendix. Results style: \textbf{best} and \underline{second best}.}
\begin{tabular}{l l c c c|c c c c}
\toprule
{\bf Training} & {\bf Testing} & {\bf batch size} & {\bf Q} & {\bf FT} & {\bf (5,1)} & {\bf (5,5)} & \bf{(5,20)} & \bf{(5,50)}\\
\midrule
%\hline
n.a. & ProtoNet & n.a. & n.a. & no & 27.05 & 34.12 & 39.68 & 41.40 \\
UMTRA & MAML & $N(=5)$ & 1 & yes & 39.93 & 50.73 & 61.11 & 67.15\\
UMTRA & ProtoNet & $N(=5)$ & 1 & no & 39.17 & 53.78 & 62.41 & 64.40 \\
ProtoCLR & ProtoNet & 50 & 1 & no & 44.53 & 62.88 & 70.86 & 73.93 \\
ProtoCLR & ProtoNet & 50 & 3 & no & 44.89 & \textbf{63.35} & \underline{72.27} & \underline{74.31} \\
ProtoCLR & ProtoTune & 50 & 3 & yes & \textbf{45.67} & \underline{62.99} & \textbf{72.34} & \textbf{77.22} \\
\bottomrule
\end{tabular}
%\end{adjustbox}
\label{tab:ResultsAblation}
\end{table} | [
[
"n.a. ProtoNet n.a. n.a. no\nUMTRA MAML N(= 5) 1 yes\nUMTRA ProtoNet N(= 5) 1 no\nProtoCLR ProtoNet 50 1 no\nProtoCLR ProtoNet 50 3 no\nProtoCLR ProtoTune 50 3 yes",
"27.05 34.12 39.68 41.40\n39.93 50.73 61.11 67.15\n39.17 53.78 62.41 64.40\n44.53 62.88 70.86 73.93\n44.89 63.35 72.27 74.31\n45.67 62.99 72.34 77.22"
]
] | 0.494453 | null | null |
2 | 2006.11325v1 | 13 | [
125.31800079345703,
119.28497314453125,
484.19097900390625,
230.34002685546875
] | \begin{table}
\centering
\caption{ProtoTransfer hyperparameter summary.}
\begin{tabular}{l r r | r r}
\toprule
&\multicolumn{2}{c}{in-domain} & \multicolumn{2}{c}{cross-domain} \\
Hyperparameter & Omniglot & mini-ImageNet & mini-ImageNet & CUB \\
\midrule
Model architecture & Conv-4 & Conv-4 & ResNet-10 & Conv-4\\
Image input size & $28\times28$ & $84\times84$ & $224\times224$ & $84\times84$\\
Optimizer & Adam & Adam & Adam & Adam\\
Learning rate & 0.001 & 0.001 & 0.001 & 0.001\\
Learning rate decay factor & 0.5 & 0.5 & / & 0.5 \\
Learning rate decay period & 25,000 & 25,000 & / & 25,000\\
Support examples & 1 & 1 & 1 & 1\\
Augmented queries ($Q$) & 3 & 3 & 3 & 3\\
Training batch size ($N$) & 50 & 50 & 50 & 50\\
Augmentation appendix & \ref{app:OmniTransforms} & \ref{app:MiniTransforms} & \ref{app:CDFSLTransforms} & \ref{app:MiniTransforms}\\
\midrule
Fine-tuning optimizer & Adam & Adam & Adam & Adam\\
Fine-tuning learning rate & 0.001 & 0.001 & 0.001 & 0.001\\
Fine-tuning batch size & 5 & 5 & 5 & 5\\
Fine-tuning epochs & 15 & 15 & 15 & 15\\
Fine-tune last layer & \checkmark & \checkmark & \checkmark & \checkmark \\
Fine-tune backbone & & & \checkmark & \\
\bottomrule
\end{tabular}
\label{tab:hyperparameters}
\end{table} | [
[
"Model architecture Conv-4 Conv-4\nImage input size 28 28 84 84\n× ×\nOptimizer Adam Adam\nLearning rate 0.001 0.001\nLearning rate decay factor 0.5 0.5\nLearning rate decay period 25,000 25,000\nSupport examples 1 1\nAugmented queries (Q) 3 3\nTraining batch size (N) 50 50\nAugmentation appendix A.3.3 A.3.2",
"ResNet-10 Conv-4\n224 224 84 84\n× ×\nAdam Adam\n0.001 0.001\n/ 0.5\n/ 25,000\n1 1\n3 3\n50 50\nA.3.1 A.3.2"
]
] | 0.422018 | null | null |
0 | 2105.11410v1 | 24 | [
72.17412281036377,
289.4110107421875,
408.75115458170575,
393.4210205078125
] | \begin{table}[h]
\renewcommand{\arraystretch}{1.3}
%%\begin{table}[h]
\centering
\scriptsize
%\vspace{-20pt}
\begin{tabular}{|m{1cm}|m{1.34cm}|m{2.2cm}|m{1.5cm}|m{1.7cm}|m{1.5cm}|}
%\begin{tabular}{|m{0.5cm}|m{2.8cm}|m{2.6cm}|m{0.8cm}|}
\hline
\textbf{L1} & Community & Degree Centrality & Closeness Centrality & Substructure Discovery & Complement (NOT)\\
\hline
\textbf{L2} & Community & Degree Centrality & Closeness Centrality & Substructure Discovery & Complement (NOT) \\
\hline
... & & & & & \\
\hline
%%\hline
%%\textbf{L3} & Community & Degree Centrality & Closeness Centrality & Substructure Discovery & Complement (NOT) \\
%%\hline
%%\textbf{L4} & Community & Degree Centrality & Closeness Centrality & Substructure Discovery & Complement (NOT) \\
%%\hline
%%\textbf{L5} & Community & Degree Centrality & Closeness Centrality & Substructure Discovery & Complement (NOT) \\
%%\hline
%%\textbf{L6} & Community & Degree Centrality & Closeness Centrality & Substructure Discovery & Complement (NOT) \\
%%\hline
\textbf{L7} & Community & Degree Centrality & Closeness Centrality & Substructure Discovery & Complement (NOT) \\
\hline
\hline
\textbf{Layer IDs} & \multicolumn{5}{m{10cm}|}{ \textbf{L1:}AUTHOR-Collaborates-With, \textbf{L2:}AUTHOR-Collaborates-in-VLDB, \textbf{L3:}AUTHOR-Collaborates-in-SIGMOD, \textbf{L4:}AUTHOR-Collaborates-in-DASFAA, \textbf{L5:}AUTHOR-Collaborates-in-DaWaK, \textbf{L6:}PAPER-Same-Conference, \textbf{L7:}YEAR-Same-Interval} \\
\hline
\end{tabular}
%\vspace{-10pt}
\caption{$\Psi$ Lookup Table for DBLP MLN Layers}
\vspace{-10pt}
\label{table:PsiLookUp-DBLP}
%%\end{table} | [
[
"L1",
"Community",
"Degree Centrality",
"Closeness\nCentrality",
"Substructure\nDiscovery",
"Complement\n(NOT)"
],
[
"L2",
"Community",
"Degree Centrality",
"Closeness\nCentrality",
"Substructure\nDiscovery",
"Complement\n(NOT)"
],
[
"...",
"",
"",
"",
"",
""
],
[
"L7",
"Community",
"Degree Centrality",
"Closeness\nCentrality",
"Substructure\nDiscovery",
"Complement\n(NOT)"
],
[
"Layer\nIDs",
"L1:AUTHOR-Collaborates-With, L2:AUTHOR-Collaborates-in-VLDB,\nL3:AUTHOR-Collaborates-in-SIGMOD, L4:AUTHOR-Collaborates-in-DASFAA,\nL5:AUTHOR-Collaborates-in-DaWaK, L6:PAPER-Same-Conference, L7:YEAR-\nSame-Interval",
null,
null,
null,
null
]
] | 0.681229 | null | null |
1 | 2105.11410v1 | 24 | [
72.17412281036377,
426.44752502441406,
419.1417541503906,
546.89599609375
] | \begin{table}[h]
\renewcommand{\arraystretch}{1.3}
%%\begin{table}[h]
\centering
\scriptsize
\vspace{-20pt}
\begin{tabular}{|*{8}{c|}}
\cline{1-2}
\textbf{L1} & \\ \cline{1-3}
\textbf{L2} & AND, OR & \\ \cline{1-4}
\textbf{L3} & AND, OR & AND, OR & \\ \cline{1-5}
\textbf{L4} & AND, OR & AND, OR & AND, OR & \\ \cline{1-6}
\textbf{L5} & AND, OR & AND, OR & AND, OR & AND, OR & \\ \cline{1-7}
\textbf{L6} & MWM & MWM & MWM & MWM & MWM & \\
\cline{1-8}
\textbf{L7} & MWM & MWM & MWM & MWM & MWM & MWM & \\
\cline{1-8}
\hline
& \textbf{L1} & \textbf{L2} & \textbf{L3} & \textbf{L4} & \textbf{L5} & \textbf{L6} & \textbf{L7} \\
\hline
\hline
\textbf{Layer IDs} & \multicolumn{7}{m{10cm}|}{ \textbf{L1:}AUTHOR-Collaborates-With, \textbf{L2:}AUTHOR-Collaborates-in-VLDB, \textbf{L3:}AUTHOR-Collaborates-in-SIGMOD, \textbf{L4:}AUTHOR-Collaborates-in-DASFAA, \textbf{L5:}AUTHOR-Collaborates-in-DaWaK, \textbf{L6:}PAPER-Same-Conference, \textbf{L7:}YEAR-Same-Interval} \\
\hline
\end{tabular}
%\vspace{-10pt}
\caption{$\Theta$ Lookup Table for DBLP MLN Layer Pairs}
\vspace{-20pt}
\label{table:ThetaLookUp-DBLP}
%%\end{table} | [
[
"L1",
"",
"AND, OR\nAND, OR AND, OR\nAND, OR AND, OR AND, OR\nMWM MWM MWM MWM",
null,
null,
null,
null,
null
],
[
"L2",
"AND, OR",
"",
null,
null,
null,
null,
null
],
[
"L3",
"AND, OR",
"AND, OR",
"",
null,
null,
null,
null
],
[
"L4",
"AND, OR",
"AND, OR",
"AND, OR",
"",
null,
null,
null
],
[
"L5",
"AND, OR",
"AND, OR",
"AND, OR",
"AND, OR",
"",
null,
null
],
[
"L6",
"MWM",
"MWM",
"MWM",
"MWM",
"MWM",
"",
null
],
[
"L7",
"MWM",
"MWM",
"MWM",
"MWM",
"MWM",
"MWM",
""
],
[
"",
"L1",
"L2",
"L3",
"L4",
"L5",
"L6",
"L7"
],
[
"Layer IDs",
"L1:AUTHOR-Collaborates-With, L2:AUTHOR-Collaborates-in-VLDB,\nL3:AUTHOR-Collaborates-in-SIGMOD, L4:AUTHOR-Collaborates-in-DASFAA,\nL5:AUTHOR-Collaborates-in-DaWaK, L6:PAPER-Same-Conference, L7:YEAR-\nSame-Interval",
null,
null,
null,
null,
null,
null
]
] | 0.531422 | null | null |
2 | 2105.11410v1 | 25 | [
103.27100067138672,
348.5670166015625,
377.4668914794922,
437.3340148925781
] | \begin{table}[h]
\centering
\begin{tabular}{|m{4.8cm}|m{4cm}|}
\hline
\textbf{Keywords/Phrases} & \textbf{Mapped to $\Psi$/$\Theta$} \\
\hline
\textit{group}, \textit{cluster}, \textit{strong/dense group} & $\Psi$ = Community \\
\hline
\textit{coverage} & $\Psi$ = Closeness Centrality \\
\hline
\textit{direct neighbors, hubs} & $\Psi$ = Degree Centrality \\
\hline
\textit{frequent/interesting patterns} & $\Psi$ = Substructure Discovery \\
\hline
\textit{never}, \textit{not} & $\Psi$ = Complement (NOT) \\
\hline
% Conjunctions = \textbf{and}, \textbf{but}, \textbf{yet}, \textbf{who} & $\Theta$ = AND for HoMLN layers\\
\textbf{and}, \textbf{but}, \textbf{yet} & $\Theta$ = AND for HoMLN layers\\
\hline
\textbf{or}, \textbf{either} & $\Theta$ = OR for HoMLN layers\\
\hline
% Conjunctions = \textbf{who}, \textbf{when}, \textbf{and}, \textbf{but}, \textbf{yet}; Adverbs = \textbf{for each}, \textbf{-wise} & $\Theta$ = MWM for HeMLN layers\\
\textbf{and}, \textbf{but}, \textbf{yet}, \textbf{for each, for every} & $\Theta$ = MWM for HeMLN layers\\
\hline
\end{tabular}
\caption{Keyword-based Lookup for Operators}
\vspace{-20pt}
\label{table:keyword-map}
\end{table} | [
[
"Keywords/Phrases",
"Mapped to Ψ/Θ"
],
[
"group, cluster, strong/dense group",
"Ψ = Community"
],
[
"coverage",
"Ψ = Closeness Centrality"
],
[
"direct neighbors, hubs",
"Ψ = Degree Centrality"
],
[
"frequent/interesting patterns",
"Ψ = Substructure Discovery"
],
[
"never, not",
"Ψ = Complement (NOT)"
],
[
"and, but, yet",
"Θ = AND for HoMLN layers"
],
[
"or, either",
"Θ = OR for HoMLN layers"
],
[
"and, but, yet, for each, for every",
"Θ = MWM for HeMLN layers"
]
] | 0.529762 | null | null |
3 | 2105.11410v1 | 30 | [
102.32200050354004,
306.47698974609375,
378.41586685180664,
375.51800537109375
] | \begin{table}[h]
\renewcommand{\arraystretch}{1}
%\vspace{-20pt}
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{Layer} & \textbf{Number of Nodes} & \textbf{Number of Edges} \\
\hline
American-Direct-Flight & 270 & 746 \\
\hline
Southwest-Direct-Flight & 270 & 717 \\
\hline
Delta-Direct-Flight & 270 & 688 \\
\hline
Frontier-Direct-Flight & 270 & 346 \\
\hline
Spirit-Direct-Flight & 270 & 189 \\
\hline
Allegiant-Direct-Flight & 270 & 379 \\
\hline
\end{tabular}
%\vspace{-10pt}
\caption{US-Airlines HoMLN Layer Statistics}
\label{tab:USAirlineHoMLNStats}
%\vspace{-10pt}
\end{table} | [
[
"Layer",
"Number of Nodes",
"Number of Edges"
],
[
"American-Direct-Flight",
"270",
"746"
],
[
"Southwest-Direct-Flight",
"270",
"717"
],
[
"Delta-Direct-Flight",
"270",
"688"
],
[
"Frontier-Direct-Flight",
"270",
"346"
],
[
"Spirit-Direct-Flight",
"270",
"189"
],
[
"Allegiant-Direct-Flight",
"270",
"379"
]
] | 0.861057 | null | null |
4 | 2105.11410v1 | 31 | [
79.14588843451605,
402.68902587890625,
401.5911119249132,
481.593017578125
] | \begin{table}[h!t]
\renewcommand{\arraystretch}{1}
\centering
%\vspace{-10pt}
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{Layer} & \textbf{Number of Nodes} & \textbf{Number of Edges} \\
\hline
AUTHOR-Collaborates-With & 16,918 & 2,483 \\
\hline
PAPER-Same-Conference & 10,326 & 12,044,080 \\
\hline
YEAR-Same-Interval & 18 & 18 \\
\hline
AUTHOR-Collaborates-in-VLDB & 5116 & 3912 \\
\hline
AUTHOR-Collaborates-in-SIGMOD & 5116 & 3303 \\
\hline
AUTHOR-Collaborates-in-DASFAA & 5116 & 1519 \\
\hline
AUTHOR-Collaborates-in-DaWaK & 5116 & 679 \\
\hline
\end{tabular}
\caption{DBLP MLN Statistics}
\label{table:DBLPMLNStats}
%\vspace{-15pt}
\end{table} | [
[
"Layer",
"Number of Nodes",
"Number of Edges"
],
[
"AUTHOR-Collaborates-With",
"16,918",
"2,483"
],
[
"PAPER-Same-Conference",
"10,326",
"12,044,080"
],
[
"YEAR-Same-Interval",
"18",
"18"
],
[
"AUTHOR-Collaborates-in-VLDB",
"5116",
"3912"
],
[
"AUTHOR-Collaborates-in-SIGMOD",
"5116",
"3303"
],
[
"AUTHOR-Collaborates-in-DASFAA",
"5116",
"1519"
],
[
"AUTHOR-Collaborates-in-DaWaK",
"5116",
"679"
]
] | 0.929356 | null | null |
5 | 2105.11410v1 | 34 | [
88.93843078613281,
409.2010192871094,
391.79928152901783,
468.3790283203125
] | \begin{table}[h!t]
\renewcommand{\arraystretch}{1}
\centering
%\vspace{-10pt}
\begin{tabular}{|c|c|c|}
\hline
\textbf{Layer} & \textbf{Number of Nodes} & \textbf{Number of Edges} \\
\hline
ACTOR-Acts-with & 9485 & 45,581\\
\hline
ACTOR-SimilarAverageRating & 9485 & 13,945,912\\
\hline
ACTOR-Similar-Genre & 9485 & 996,527\\
\hline
DIRECTOR-Similar-Genre & 4510 & 250,845\\
\hline
MOVIE-Similar-Rating & 7951 & 8,777,618 \\
\hline
\end{tabular}
\caption{IMDb MLN Statistics}
\label{table:IMDbMLNStats}
%\vspace{-10pt}
\end{table} | [
[
"Layer",
"Number of Nodes",
"Number of Edges"
],
[
"ACTOR-Acts-with",
"9485",
"45,581"
],
[
"ACTOR-SimilarAverageRating",
"9485",
"13,945,912"
],
[
"ACTOR-Similar-Genre",
"9485",
"996,527"
],
[
"DIRECTOR-Similar-Genre",
"4510",
"250,845"
],
[
"MOVIE-Similar-Rating",
"7951",
"8,777,618"
]
] | 0.904459 | null | null |
6 | 2105.11410v1 | 35 | [
100.43389044867621,
316.17901611328125,
380.303229437934,
395.0830078125
] | \begin{table}[h!t]
\vspace{-20pt}
\renewcommand{\arraystretch}{1}
\centering
\begin{tabular}{|p{5cm}|p{2.8cm}|}
\hline
\textbf{Actors/Actresses} & \textbf{Common Prominent Genres} \\
\hline
Willem Dafoe, Russell Crowe & Action, Crime\\%, Drama \\
\hline
Hilary Swank, Kate Winslet & Drama \\
\hline
Tom Hanks, Reese Witherspoon, Cameron Diaz & Comedy, Romance\\%, Drama\\
\hline
% Anne Hathaway, Salma Hayek & \\
% \hline
\textcolor{blue}{Johnny Depp, Tom Cruise} & \textcolor{blue}{Adventure, Action}\\%, Drama \\
\hline
% Brad Pitt, Will Smith & \\
% \hline
Leonardo DiCaprio, Ryan Gosling & Crime, Romance\\%, Drama\\
\hline
Nicolas Cage, Antonio Banderas & Action, Thriller \\%, Drama
\hline
Hugh Grant, Kate Hudson, Emma Stone & Comedy, Romance \\%Drama
\hline
\end{tabular}
\caption{{\bf (A5)}: Highly rated genre actors who have \textbf{not co-acted}}
\label{table:actorcollab}
\vspace{-30pt}
%\end{table} | [
[
"Actors",
"Common Prominent Genres"
],
[
"Dafoe, Crowe",
"Action, Crime"
],
[
"Swank, Winslet",
"Drama"
],
[
"Hanks, Witherspoon, Diaz",
"Comedy, Romance"
],
[
"Depp, Cruise",
"Adventure, Action"
],
[
"DiCaprio, Gosling",
"Crime, Romance"
],
[
"Cage, Banderas",
"Action, Thriller"
],
[
"Grant, Hudson, Stone",
"Comedy, Romance"
]
] | 0.375469 | null | null |
0 | 1402.4442v1 | 4 | [
68.06900024414062,
346.64300537109375,
278.6310119628906,
380.5159912109375
] | \begin{table}[h!]
\begin{center}
\scriptsize
\begin{tabular}{| c | c | c | c | c | }
\hline
\textbf{} & \textbf{NSGAII} & \textbf{$\epsilon$-NSGA II } & \textbf{$\epsilon$-MOEA} & \textbf{Hyper-MOEA} \\\hline
\textbf{Elitist} & \textbf{0.72} & \textbf{ 0.75} & \textbf{0.51} & \textbf{0.47} \\ \hline
\textbf{Caste} & \textbf{0.70} & \textbf{0.73} & \textbf{0.52} & \textbf{0.47} \\ \hline
\textbf{Random } & \textbf{0.67} & \textbf{0.66 } & \textbf{0.43} &\textbf{0.44} \\ \hline
\end{tabular}
\caption{Sputnik (Elitist \& Caste) hypervolume on MOEA}
\label{tableresult1}
\end{center}
\end{table} | [
[
"",
"NSGAII ε-NSGA II",
"ε-MOEA Hyper-MOEA"
],
[
"Elitist",
"0.72 0.75",
"0.51 0.47"
],
[
"Caste",
"0.70 0.73",
"0.52 0.47"
],
[
"Random",
"0.67 0.66",
"0.43 0.44"
]
] | 0.755853 | null | null |
0 | 2308.13983v2 | 3 | [
66.1719970703125,
488.0830078125,
268.17498779296875,
575.5880126953125
] | \begin{table}[h]
\centering
\caption{RMSE of forecast services and observational data. Upper columns represent surrounding points and lower columns represent mountain points. Tenki (3775m) is the weighted average of ``Tenki to Kurasu'' from 3100m and from 4400m, the others are from ``Weathernews''.}
\label{tab:RMSETest}
\footnotesize
\begin{tabular}{c|cc|cc}\hline\hline
& \multicolumn{2}{c|}{Temperature} &
\multicolumn{2}{c}{Precipitation} \\
&2 hours &8 hours &2 hours &8 hours \\ \hline
Fuji&0.867 &1.595 &1.033 &0.614 \\
Gotenba&1.247 &1.294 &0.685 & 0.303 \\
Odawara&1.363 &1.387 &0.393 &0.315 \\
Yanamaka&1.467 &1.193 &0.973 &0.349 \\ \hline
Mt. Fuji&7.133 &4.852 &- &- \\
Hakone& -&- &1.457 &0.443 \\
Tenki (3775m)&4.296&3.627&&\\
\end{tabular}
\end{table} | [
[
"",
"Temperature\n2 hours 8 hours",
"Precipitation\n2 hours 8 hours"
],
[
"Fuji\nGotenba\nOdawara\nYanamaka",
"0.867 1.595\n1.247 1.294\n1.363 1.387\n1.467 1.193",
"1.033 0.614\n0.685 0.303\n0.393 0.315\n0.973 0.349"
],
[
"Mt. Fuji\nHakone\nTenki (3775m)",
"7.133 4.852\n- -\n4.296 3.627",
"- -\n1.457 0.443"
]
] | 0.435453 | null | null |
1 | 2308.13983v2 | 4 | [
60.50899887084961,
502.71300252278644,
273.8370056152344,
629.27197265625
] | \begin{table}[h]
\centering
\caption{RMSE and training times (iterations) of the models. The upper and lower numbers are the averages of the RMSE on the three validation data in Fold 1 to 3, and training times on the training data in test set respectively. The unit of training time is seconds. Iterations are gained by early stopping on Fold 3.}
\label{tab:models}
\footnotesize
\begin{tabular}{c|cc|cc} \hline\hline
& \multicolumn{2}{c|}{\begin{tabular}[c|]{@{}c@{}}Temperature \\ at Mt. Fuji \end{tabular}} &
\multicolumn{2}{c}{\begin{tabular}[c]{@{}c@{}}Precipitation \\ at Hakone \end{tabular}} \\
&2 hours &8 hours &2 hours &8 hours \\ \hline
\multirow{2}{*}{Elastic Net} &1.178 &2.188 &1.063 &1.093 \\
&3.2 & 6.2 &\textbf{0.1} & \textbf{0.1} \\ \hline
\multirow{2}{*}{LightGBM} &\textbf{1.109} & \textbf{2.006} &\textbf{0.951}& 0.999 \\
&3.2 (124) & 8.2 (174) & 0.8 (27) & 0.9 (16) \\ \hline
\multirow{2}{*}{XGBoost} &1.133 & 2.069 &0.971&\textbf{0.995} \\
&\textbf{1.1} (43) & \textbf{3.0} (39) &0.8 (24) & 0.7 (6) \\ \hline
\multirow{2}{*}{Extra Trees} &1.140 & 2.101 &1.024 & 1.085 \\
&79.1 & 170.8 &76.0 &81.5 \\ \hline
\multirow{2}{*}{Neural Net} & 1.260& 2.187 & 1.014 & 1.086 \\
&84.6 (74) & 36.3 (31) &49.0 (42) & 45.7 (39)
\end{tabular}
\end{table} | [
[
"",
"Temperature\nat Mt. Fuji\n2 hours 8 hours",
"Precipitation\nat Hakone\n2 hours 8 hours"
],
[
"Elastic Net",
"1.178 2.188\n3.2 6.2",
"1.063 1.093\n0.1 0.1"
],
[
"LightGBM",
"1.109 2.006\n3.2 (124) 8.2 (174)",
"0.951 0.999\n0.8 (27) 0.9 (16)"
],
[
"XGBoost",
"1.133 2.069\n1.1 (43) 3.0 (39)",
"0.971 0.995\n0.8 (24) 0.7 (6)"
],
[
"Extra Trees",
"1.140 2.101\n79.1 170.8",
"1.024 1.085\n76.0 81.5"
],
[
"Neural Net",
"1.260 2.187\n84.6 (74) 36.3 (31)",
"1.014 1.086\n49.0 (42) 45.7 (39)"
]
] | 0.486413 | null | null |
2 | 2308.13983v2 | 4 | [
336.1300048828125,
478.8030090332031,
553.5230102539062,
528.051025390625
] | \begin{table}[h]
\centering
\caption{RMSE losses of precipitation prediction at Hakone. The values are calculated as the average of the RMSE of the three validation data.}
\label{tab:binary_val}
\footnotesize
\begin{tabular}{l|cccc} \hline\hline
Model & 2 hours & 7 hours & 8 hours & 9 hours \\ \hline
LGBM (all) & \textbf{0.946} & 0.994 & 0.998 & \textbf{0.997} \\
LGBM (top) & 0.958 & 0.999 & \textbf{0.987} & 0.998 \\
LGBM binary (all) & 0.965 & 0.996 & 0.998 & 1.002 \\
LGBM binary (top) & 0.960 & \textbf{0.990} & 1.001 & 1.001 \\
\end{tabular}
\end{table} | [
[
"Model",
"2 hours 7 hours 8 hours 9 hours"
],
[
"LGBM (all)\nLGBM (top)\nLGBM binary (all)\nLGBM binary (top)",
"0.946 0.994 0.998 0.997\n0.958 0.999 0.987 0.998\n0.965 0.996 0.998 1.002\n0.960 0.990 1.001 1.001"
]
] | 0.753927 | null | null |
0 | 1802.09225v1 | 6 | [
72.18241437276204,
469.8909912109375,
252.1196632385254,
590.0490112304688
] | \begin{table}[h]
% \small
% \begin{center}
% \begin{tabular}{ | p{4.2cm} | l | l}
% \hline
% \toprule
% GBDT Features & Score \\ \hline
% \midrule
% ReadNum\_stdDevVal & 154 \\ \hline
% ReadNum\_meanVal & 151 \\ \hline
% ReadNum\_meanVal\_CUSUM\_ARL & 150 \\ \hline
% ReadNum\_meanVal\_FC\_ERROR & 111 \\ \hline
% ReadNum\_meanVal\_FC\_PREDICTION & 88 \\ \hline
% UserSeen\_FC\_ALPHA & 85 \\ \hline
% UserFeature\_bcookieAge\_max & 84 \\ \hline
% UserSeen\_FC\_ERROR & 80 \\ \hline
% UserAge & 79 \\ \hline
% ReadNum\_meanVal\_FC\_ALPHA & 77 \\
% \bottomrule
% \end{tabular}
% \caption{Feature Importance - GBDT \label{tab:mailfeatures1}}
% \end{center}
% \end{table} | [
[
"Feature",
"Importance"
],
[
"ReadNum_stdDevVal 154",
null
],
[
"ReadNum_meanVal",
"151"
],
[
"ReadNum_meanVal_CUSUM_ARL",
"150"
],
[
"ReadNum_meanVal_FC_ERROR",
"111"
],
[
"ReadNum_meanVal_FC_PREDICTION",
"88"
],
[
"UserSeen_FC_ALPHA",
"85"
],
[
"UserFeature_bcookieAge_max",
"84"
],
[
"UserSeen_FC_ERROR",
"80"
],
[
"UserAge",
"79"
],
[
"ReadNum_meanVal_FC_ALPHA",
"77"
]
] | 0.472789 | null | null |
1 | 1802.09225v1 | 6 | [
306.1824213663737,
469.8909912109375,
555.4605560302734,
590.0490112304688
] | \begin{table}[h]
% \small
% \begin{center}
% \begin{tabular}{ | p{4.0cm} | l | l | l | l }
% \hline
% \toprule
% Interpretation Features & Interval & T-Test & GBDT Score\\ \hline
% \midrule
% ReadNum\_meanVal\_CUSUM\_ARL & [0,102] & -3030.06 & 150 \\ \hline
% ReadNum\_meanVal\_CUSUM\_ARL & [103,999] & 3030.06 & 150\\ \hline
% UserSeen & [213,958] & -2404.71 & --- \\ \hline
% MailActionsCount & [213,958] & -2404.71 & 73 \\ \hline
% MailActionsCount & [0,190] & 2276.71 & 73 \\ \hline
% UserSeen & [0,190] & 2276.71 & --- \\ \hline
% ReadNum\_meanVal & [532,941] & -2170.19 & 151\\ \hline
% CityId\_totalValue & [191,962] & -2099.33 & 23 \\ \hline
% ReadNum\_totalVal & [514,919] & -1958.32 & 72\\ \hline
% ReadNum\_meanVal\_FC\_ERROR & [553,919] & -1736.10 & 111 \\
% \bottomrule
% \end{tabular}
% \caption{Feature Importance - Interpretation \label{tab:mailfeatures2}}
% \end{center}
% \end{table} | [
[
"Feature",
"Segment",
"Student’s t",
"Importance"
],
[
"ReadNum_meanVal_CUSUM_ARL [0,102] -3030.06 150",
null,
null,
null
],
[
"ReadNum_meanVal_CUSUM_ARL",
"[103,999]",
"3030.06",
"150"
],
[
"UserSeen",
"[213,958]",
"-2404.71",
"—"
],
[
"MailActionsCount",
"[213,958]",
"-2404.71",
"73"
],
[
"MailActionsCount",
"[0,190]",
"2276.71",
"73"
],
[
"UserSeen",
"[0,190]",
"2276.71",
"—"
],
[
"ReadNum_meanVal",
"[532,941]",
"-2170.19",
"151"
],
[
"CityId_totalValue",
"[191,962]",
"-2099.33",
"23"
],
[
"CityId_totalValue",
"[0,171]",
"1989.84",
"23"
],
[
"ReadNum_totalVal",
"[514,919]",
"-1958.32",
"72"
]
] | 0.41841 | null | null |
0 | 2008.11327v1 | 4 | [
142.61399841308594,
159.6714630126953,
450.37078857421875,
224.7666015625
] | \begin{table}
\centering
\caption{\bf Abbreviation and the description of the five kinds of time-series}
\scalebox{0.9}{
\begin{tabular}{c|l}
Abbreviation&Description\\
\hline
P&Price per unit quantity (yen/m$\ell$)\\
Q&Quantity purchased (m$\ell$)\\
Visit&Visit to related web sites via mobile device or PC (seconds) \\
TVAd&Exposure to TV advertising (seconds) \\
Search&Search frequency via mobile device or PC (times) \\
\hline
\end{tabular}}
% \caption{Abbreviation and the description of the five kinds of time-series}
\label{tab:abbs}
\end{table} | [
[
"Abbreviation",
"Description"
],
[
"P\nQ\nVisit\nTVAd\nSearch",
"Price per unit quantity (yen/mℓ)\nQuantity purchased (mℓ)\nVisit to related web sites via mobile device or PC (seconds)\nExposure to TV advertising (seconds)\nSearch frequency via mobile device or PC (times)"
]
] | 0.519856 | null | null |
0 | 2307.01390v1 | 4 | [
55.7435417175293,
100.79548645019531,
294.0470886230469,
219.06295776367188
] | \begin{table}[]
\centering
% \caption{Taxonomy of the most notable evasion attacks in adversarial machine learning literature. White box attacks do not require any input from the model, as the assumption is that they already know everything about it }
\caption{Taxonomy of evasion attacks in AML} %adversarial machine learning}%; note that white box attacks do not require any input from the model, as the assumption is that they already know everything about it }
\vspace{-6pt}
\resizebox{\columnwidth}{!}{
\begin{tabular}{|l|l|l|l|}
\hline
Attack & Attacker's knowledge & Norm & Required input \\ \hline
L-BFGS & White box & $ L_2$ & / \\ \hline
FSGM & White box & $L_1$, & / \\ \hline
DeepFool & White box & $L_1$, $L_2$, $L_\infty$, & / \\ \hline
JSMA & White box & $L_1$, & / \\ \hline
C\&W & White box & $L_0$, $L_1$,$L_\infty$, & / \\ \hline
Elastic-Nets & White box & $L_1$, & / \\ \hline
ZOO & Black box & $L_0$, $L_1$, $L_\infty$, & Logits \\ \hline
Decision-Based & Black box & $L_2$ & Decisions \\ \hline
OPT attack & Black box & $L_2$, $L_\infty$, & Decisions \\ \hline
Substitute model & Black box & / & Decisions \\ \hline
Mimicry & Black/Gray box & / & / \\ \hline
\end{tabular}}
\label{tab:Taxonom}
\end{table} | [
[
"Attack",
"Attacker’s knowledge",
"Norm",
"Required input"
],
[
"L-BFGS",
"White box",
"𝐿2",
"/"
],
[
"FSGM",
"White box",
"𝐿1,",
"/"
],
[
"DeepFool",
"White box",
"𝐿1, 𝐿2, 𝐿 ∞,",
"/"
],
[
"JSMA",
"White box",
"𝐿1,",
"/"
],
[
"C&W",
"White box",
"𝐿0, 𝐿1,𝐿 ∞,",
"/"
],
[
"Elastic-Nets",
"White box",
"𝐿1,",
"/"
],
[
"ZOO",
"Black box",
"𝐿0, 𝐿1, 𝐿 ∞,",
"Logits"
],
[
"Decision-Based",
"Black box",
"𝐿2",
"Decisions"
],
[
"OPT attack",
"Black box",
"𝐿2, 𝐿 ∞,",
"Decisions"
],
[
"Substitute model",
"Black box",
"/",
"Decisions"
],
[
"Mimicry",
"Black/Gray box",
"/",
"/"
]
] | 0.839286 | null | null |
0 | 2004.01504v1 | 6 | [
81.44599914550781,
412.9859924316406,
530.5540161132812,
713.0609741210938
] | \begin{table}[htp!]
\centering
\small
\caption{Regulatory constraints relevant to ML for financial asset price forecasting}
\label{table:investor_constraints}
\begin{tabular}{ |p{5cm}|p{10cm}| }
\hline
\textbf{Regulatory constraints} & \textbf{Relevant literature solutions} \\ \hline
Transparency and \newline Explainability \cite{goodman_2016, kush_2016,kou_2019, Johnson_2019, Citron_2014}.
&
Finance practitioners and academics have focussed on modifying ML algorithm loss functions to incorporate traditional finance theory to allow for greater transparency. \cite{chen_2019, pelger_2019} for example demonstrate an improvement of algorithm performance when they incorporate no-arbitrage pricing theory constraints from traditional finance \cite{ross_1976}. Additionally \cite{Feng_2017, kelly_2017} systematically utilise modern ML and statistical algorithms to reduce the number of features or ``factors" used in asset pricing - this ultimately serves to improve model transparency in the face of high dimensionality and large unstructured data.
\newline \newline
In the ML literature there has been a drive to develop domain agnostic software packages and tools to explain trained ML models \cite{2018_Adadi}. Most notably techniques such as LIME \cite{ribeiro_2016} and SHAP \cite{Lundberg_2017} have been implemented in multiple popular programming languages to allow for detailed explanations of any supervised learning model.
\\ \hline
Risk Management \cite{Schmaltz_2013, Johnson_2018, Ang_2011, Shredian_2017}.
& There have been a broad array of solutions relating to risk management for ML in the finance literature: \cite{Chandrinos_2018, Aziz_2018} explore how we can develop and incorporate supplementary ML models to statistically account for financial risk in our investment and trading systems. Recent papers such as \cite{kou_2019, Coulombe2019HowIM, Berge_2013} explore how ML can be used to directly forecast macroeconomic variables to identify systematic risk and economic recessions. \cite{Alberg_2017} also demonstrates how transparent models can be built by forecasting company fundamentals (cash flow, and balance sheet line items) rather than asset prices directly.
\newline \newline
In the ML literature there has also been a movement away from the development of point forecasts models to Bayesian techniques which allow for probabilistic forecasts \cite{gal_2015, Zhu_2017,Duan2019NGBoostNG, Ghahramani_2015}. These Bayesian algorithms inherently allow the end user to account for risk through posteriori probability distributions: \cite{Spiegeleer_2018,Ruf_2019} review how these Bayesian techniques have been utilized for option pricing and derivatives hedging strategies.
\\ \hline
\end{tabular}
\end{table} | [
[
"Regulatory constraints",
"Relevant literature solutions"
],
[
"Transparency and\nExplainability [78]–[82].",
"Finance practitioners and academics have focussed on modifying ML algorithm\nloss functions to incorporate traditional finance theory to allow for greater\ntransparency. [22], [83] for example demonstrate an improvement of algorithm\nperformance when they incorporate no-arbitrage pricing theory constraints from\ntraditional finance [84]. Additionally [85], [86] systematically utilise modern\nML and statistical algorithms to reduce the number of features or “factors\" used\nin asset pricing - this ultimately serves to improve model transparency in the\nface of high dimensionality and large unstructured data.\nIn the ML literature there has been a drive to develop domain agnostic\nsoftware packages and tools to explain trained ML models [87]. Most notably\ntechniques such as LIME [88] and SHAP [89] have been implemented in\nmultiple popular programming languages to allow for detailed explanations of\nany supervised learning model."
],
[
"Risk Management [77], [90]–[92].",
"There have been a broad array of solutions relating to risk management for ML\nin the finance literature: [93], [94] explore how we can develop and incorporate\nsupplementary ML models to statistically account for financial risk in our\ninvestment and trading systems. Recent papers such as [80], [95], [96] explore\nhow ML can be used to directly forecast macroeconomic variables to identify\nsystematic risk and economic recessions. [97] also demonstrates how transparent\nmodels can be built by forecasting company fundamentals (cash flow, and\nbalance sheet line items) rather than asset prices directly.\nIn the ML literature there has also been a movement away from the de-\nvelopment of point forecasts models to Bayesian techniques which allow for\nprobabilistic forecasts [98]–[101]. These Bayesian algorithms inherently allow\nthe end user to account for risk through posteriori probability distributions:\n[102], [103] review how these Bayesian techniques have been utilized for option\npricing and derivatives hedging strategies."
]
] | 0.385085 | null | null |
1 | 2004.01504v1 | 7 | [
72.63400268554688,
444.3489990234375,
539.3660278320312,
699.1929931640625
] | \begin{table}[htp!]
\renewcommand{\arraystretch}{1.3}
\caption{Overview of the implemented Machine Learning models and optimized hyperparameters}
\label{tab:example}
\centering
\small
\begin{tabular}{|p{4cm}|p{4.2cm}| p{7cm} |}
\hline
ML Algorithm & Optimization Algorithms & Optimized Hyperparameters \\
\hline
\hline
NGBoost \cite{Duan2019NGBoostNG}. & Grid Search. & Number of tree estimators (weak base learners).
\\
\hline
XGBoost. & HyperOpt implementation of the Tree of Parzen Algorithm for $n=50$ trials \cite{Bergstra_2013}.
& Number of tree estimators, maximum depth for each tree, learning rate, regularization parameters, data sampling parameters.
\\
\hline
Catboost \cite{Prokhorenkova_2018}. & HyperOpt implementation of the Tree of Parzen Algorithm for $n=50$ trials \cite{Bergstra_2013}.
& Number of tree estimators, maximum depth for each tree, learning rate, regularization parameters, data sampling parameters.
\\
\hline
LightGBM \cite{XGboost_2016}.
& HyperOpt implementation of the Tree of Parzen Algorithm for $n=50$ trials \cite{Bergstra_2013}.
& Number of tree estimators, maximum depth for each tree, learning rate, regularization parameters, data sampling parameters.
\\
\hline
Shallow Feed-Forward \newline Neural Network (Shallow FNN). \cite{chollet2015keras} & HyperOpt implementation of the Tree of Parzen Algorithm for $n=100$ trials \cite{Bergstra_2013}.
&
Number of hidden layers where $n \in [1,2]$, number of nodes per hidden layer where $n \in [256, 1024]$,
Batch normalization configurations for each hidden layer, regularization parameters, activation function configurations for each hidden layer. \newline
\\
\hline
Deep Feed-Forward Neural Network (Deep FNN) \cite{chollet2015keras}. & HyperOpt implementation of Tree Parzen Algorithm for $n=100$ trials \cite{Bergstra_2013}.
& Number of hidden layers where $n \in [3,5]$, number of nodes per hidden layer where $n \in [256, 1024]$,
Batch normalization configurations for each hidden layer, regularization parameters, activation function configurations for each hidden layer. \newline
\\
\hline
\end{tabular}
\label{table:ml_model_parameters}
\end{table} | [
[
"ML Algorithm",
"Optimization Algorithms",
"Optimized Hyperparameters"
],
[
"NGBoost [100].",
"Grid Search.",
"Number of tree estimators (weak base learners)."
],
[
"XGBoost.",
"HyperOpt implementation of the\nTree of Parzen Algorithm for n =\n50 trials [110].",
"Number of tree estimators, maximum depth for each tree,\nlearning rate, regularization parameters, data sampling\nparameters."
],
[
"Catboost [111].",
"HyperOpt implementation of the\nTree of Parzen Algorithm for n =\n50 trials [110].",
"Number of tree estimators, maximum depth for each tree,\nlearning rate, regularization parameters, data sampling\nparameters."
],
[
"LightGBM [112].",
"HyperOpt implementation of the\nTree of Parzen Algorithm for n =\n50 trials [110].",
"Number of tree estimators, maximum depth for each tree,\nlearning rate, regularization parameters, data sampling\nparameters."
],
[
"Shallow Feed-Forward\nNeural Network (Shallow FNN).\n[109]",
"HyperOpt implementation of the\nTree of Parzen Algorithm for n =\n100 trials [110].",
"Number of hidden layers where n ∈ [1, 2], number of\nnodes per hidden layer where n ∈ [256, 1024], Batch\nnormalization configurations for each hidden layer, regu-\nlarization parameters, activation function configurations\nfor each hidden layer."
],
[
"Deep Feed-Forward Neural Net-\nwork (Deep FNN) [109].",
"HyperOpt implementation of Tree\nParzen Algorithm for n = 100\ntrials [110].",
"Number of hidden layers where n ∈ [3, 5], number of\nnodes per hidden layer where n ∈ [256, 1024], Batch\nnormalization configurations for each hidden layer, regu-\nlarization parameters, activation function configurations\nfor each hidden layer."
]
] | 0.90451 | null | null |
2 | 2004.01504v1 | 9 | [
152.31300354003906,
427.68499755859375,
459.68712022569446,
546.3200073242188
] | \begin{table}[htp!]
\renewcommand{\arraystretch}{1.3}
\caption{Model Results}
\label{tab:example}
\centering
\begin{tabular}{|p{5cm}|p{5cm}| }
\hline
Optimized Model & Mean Squared Error (MSE)\\
\hline
\hline
CAPM & $1.6001$\\
\hline
NGBoost & $0.3572$\\
\hline
XGBoost & $0.3280$\\
\hline
Catboost & $0.3125$\\
\hline
LightGBM & $0.3131$\\
\hline
Shallow FNN & $0.3628$\\
\hline
Deep FNN & $0.3531$\\
\hline
\end{tabular}
\figuredesc{}
\end{table} | [
[
"Optimized Model",
"Mean Squared Error (MSE)"
],
[
"CAPM",
"1.6001"
],
[
"NGBoost",
"0.3572"
],
[
"XGBoost",
"0.3280"
],
[
"Catboost",
"0.3125"
],
[
"LightGBM",
"0.3131"
],
[
"Shallow FNN",
"0.3628"
],
[
"Deep FNN",
"0.3531"
]
] | 1 | null | null |
0 | 2311.03309v2 | 22 | [
245.81199645996094,
620.6710205078125,
366.56298828125,
697.9810180664062
] | \begin{table}[]
\centering
{
\begin{tabular}{l|l}
\hline
\textbf{Method} & \textbf{AUROC} \\ \hline
PCMCI+ & 0.530 $\pm$ 0.002 \\
NGM & 0.611 $\pm$ 0.002 \\
CUTS & 0.543 $\pm$ 0.003 \\
Rhino & 0.685 $\pm$ 0.003 \\
SCOTCH & \textbf{0.752 $\pm$ 0.008} \\
LSDE & 0.496 $\pm$ 0.021 \\
\end{tabular}}
\caption{Performance comparison between methods on DREAM3 Ecoli1 dataset. LSDE refers to latent SDE + extracting first layer weights.}
\label{tab: latent sde graph}
\end{table} | [
[
"Method AU",
"ROC"
],
[
"PCMCI+ 0.5\nNGM 0.6\nCUTS 0.5\nRhino 0.6\nSCOTCH 0.7\nLSDE 0.4",
"30 0.002\n±\n11 0.002\n±\n43 0.003\n±\n85 0.003\n±\n52 ± 0.008\n96 0.021\n±"
]
] | 0.37619 | null | null |
1 | 2311.03309v2 | 25 | [
175.3780059814453,
457.10699462890625,
434.1309814453125,
490.7799987792969
] | \begin{table}[!h]
\caption{Performance comparison with original Glycolysis data}
\centering
\begin{tabular}{l|lll}
\hline
& \multicolumn{1}{c}{AUROC} & \multicolumn{1}{c}{TPR $\uparrow$} & \multicolumn{1}{c}{FDR $\downarrow$} \\ \hline
\ModelName{} & \textbf{0.7352$\pm$0.019} & \textbf{0.3623$\pm$0.007} & \textbf{0.1575$\pm$0.05} \\
NGM & 0.5248$\pm$0.057 & 0.3478$\pm$0.035 & 0.4559$\pm$0.094 \\ \hline
\end{tabular}
\label{tab: glycolysis unnormalized results}
\end{table} | [
[
"",
"AUROC TPR FDR\n↑ ↓"
],
[
"SCOTCH\nNGM",
"0.7352±0.019 0.3623±0.007 0.1575±0.05\n0.5248 0.057 0.3478 0.035 0.4559 0.094\n± ± ±"
]
] | 0.647059 | null | null |
0 | 2207.02960v1 | 10 | [
75.3865727015904,
339.21002197265625,
519.8894478934152,
628.5250244140625
] | \begin{table}[htbp]
\centering
\footnotesize
\begin{tabular}{ | p{4cm} | p{2.5cm} | p{2.2cm} | p{2.3cm} | p{2.5cm} | }
\hline
\textbf{Project} & \textbf{Collection Medium} & \textbf{ML Task} & \textbf{Audience} & \textbf{Deliverable Form} \\ \hline
\textbf{The Real Face of White Australia} & Document Scans (Gov't Documents) & Facial Recognition & Public & ``Wall of Faces'' Online Interface \\ \hline
\textbf{Citizen DJ} & Audio (Music, Field Recordings, etc.) & Audio Extraction \& Similarity & Public & Online Hip Hop Sampler \& Exploratory Interface \\ \hline
\textbf{The Distant Viewing project} & Video (TV Sitcoms) & Facial Recognition \& Image Classification (at frame level) & Scholars \& ML Researchers & The Distant Viewing Toolkit \& Scholarly Output \\
\hline
\textbf{The Transkribus platform} & Document Scans (Handwritten \& Typewritten) & OCR \& Handwriting Recognition & Scholars, Librarians \& Archivists, ML Researchers & Online Platform \\ \hline
\textbf{Newspaper Navigator} & Document Scans (Newspapers) & Visual Content Extraction \& Similarity & Scholars, ML Researchers \& Public & The Newspaper Navigator Dataset \& Search Interface + Scholarly Output \\ \hline
\end{tabular}
\caption{A table categorizing the selected projects as case studies for the ``Collections as ML Data'' checklist developed in this paper.}\label{tab:projects}
\end{table} | [
[
"Project",
"Collection\nMedium",
"ML Task",
"Audience",
"Deliverable\nForm"
],
[
"The Real Face of\nWhite Australia",
"Document\nScans (Gov’t\nDocuments)",
"Facial Recog-\nnition",
"Public",
"“Wall of Faces”\nOnline Interface"
],
[
"Citizen DJ",
"Audio (Music,\nField Record-\nings, etc.)",
"Audio Extrac-\ntion & Simi-\nlarity",
"Public",
"Online Hip Hop\nSampler & Ex-\nploratory Inter-\nface"
],
[
"The Distant Viewing\nproject",
"Video (TV Sit-\ncoms)",
"Facial Recog-\nnition & Im-\nage Classifica-\ntion (at frame\nlevel)",
"Scholars & ML\nResearchers",
"The Distant\nViewing Toolkit\n& Scholarly\nOutput"
],
[
"The Transkribus plat-\nform",
"Document\nScans (Hand-\nwritten &\nTypewritten)",
"OCR &\nHandwriting\nRecognition",
"Scholars, Li-\nbrarians &\nArchivists, ML\nResearchers",
"Online Platform"
],
[
"Newspaper Navigator",
"Document\nScans (Newspa-\npers)",
"Visual Con-\ntent Ex-\ntraction &\nSimilarity",
"Scholars, ML\nResearchers &\nPublic",
"The Newspa-\nper Navigator\nDataset &\nSearch Interface\n+ Scholarly\nOutput"
]
] | 0.864836 | null | null |
0 | 2111.06353v2 | 7 | [
351.7820129394531,
54.198974609375,
525.718994140625,
132.10699462890625
] | \begin{table}[ht]
% \centering
% \begin{tabular}{l|c}
% \toprule
% Model & Test Error(\%) \\
% \hline
% LFM-DARTS, L2 & 17.91$\pm$0.30 \\
% LFM-DARTS, cosine & 18.02$\pm$0.25 \\
% LFM-DARTS, dot production & \textbf{17.65$\pm$0.45} \\
% \hline
% LFM-PdARTS, L2 & 16.71$\pm$0.01 \\
% LFM-PdARTS, cosine & 16.67$\pm$0.09 \\
% LFM-PdARTS, dot production & \textbf{16.44$\pm$0.11} \\
% \bottomrule
% \end{tabular}
% \end{table} | [
[
"Method",
"Test error(%)"
],
[
"LFM+DARTS, no INP\nLFM+DARTS+INP\nDARTS",
"17.82 0.39\n±\n17.65 0.45\n±\n20.58 0.44\n±"
],
[
"LFM+PDARTS, no INP\nLFM+PDARTS+INP\nPDARTS",
"16.51 0.13\n±\n16.44 0.11\n±\n17.49"
]
] | 0.361186 | null | null |
0 | 2007.03018v1 | 21 | [
193.9325828552246,
92.72601318359375,
419.6646728515625,
163.8599853515625
] | \begin{table}[h]
\centering
\footnotesize
\caption{Evaluation metrics for T1 with 128 electrodes.}
\begin{tabular}{|c||r|r|r|r|}
\hline
& \multicolumn{1}{c|}{D-bar} & \multicolumn{1}{c|}{Calder\'on} & \multicolumn{1}{c|}{Smooth} & \multicolumn{1}{c|}{TV} \\
\hline
\hline
DR & 95.25\% & 116.89\% & 162.62\% & 143.16\% \\
\hline
MSE & 0.0305 & 0.0373 & 0.0141 & 0.0124 \\
\hline
MS-SSIM & 0.8126 & 0.8324 & 0.8984 & 0.8978 \\
\thickhline
LE & 0.0008 & 0.0008 & 0.0021 & 0.0007 \\
\hline
RVR & 0.4435 & 0.3734 & 0.5088 & 0.6255 \\
\hline
\end{tabular}%
\label{tab:T7}%
\end{table} | [
[
"",
"D-bar",
"Calder´on",
"Smooth",
"TV"
],
[
"DR",
"95.25%",
"116.89%",
"162.62%",
"143.16%"
],
[
"MSE",
"0.0305",
"0.0373",
"0.0141",
"0.0124"
],
[
"MS-SSIM",
"0.8126",
"0.8324",
"0.8984",
"0.8978"
],
[
"LE",
"0.0008",
"0.0008",
"0.0021",
"0.0007"
],
[
"RVR",
"0.4435",
"0.3734",
"0.5088",
"0.6255"
]
] | 0.91133 | null | null |
1 | 2007.03018v1 | 22 | [
164.72813415527344,
532.1319580078125,
447.3986775716146,
680.5759887695312
] | \begin{table}[h!]
\centering
\footnotesize
\caption{Evaluation metrics for the high-contrast example T3 across all electrode configurations considered.}
\begin{tabular}{|c|c|c||r|r|r|r|}
\hline
\multicolumn{1}{|r|}{} & & & \multicolumn{1}{c|}{D-bar} & \multicolumn{1}{c|}{Calderon} & \multicolumn{1}{c|}{Smooth} & \multicolumn{1}{c|}{TV} \\
\hline
\hline
\multirow{6}[0]{*}{LE} & \multirow{3}[0]{*}{ conductor} & L=128 & 0.1267 & 0.1181 & 0.0264 & 0.0191 \\
\cline{3-7} & & L=64 & 0.1522 & 0.1566 & 0.0085 & 0.0136 \\
\cline{3-7} & & L=32 & 0.1559 & 0.1548 & 0.0111 & 0.0093 \\
\clineB{2-7}{2.5} & \multirow{3}[6]{*}{ resistor} & L=128 & 0.0853 & 0.0861 & 0.0128 & 0.0074 \\
\cline{3-7} & & L=64 & 0.1072 & 0.1107 & 0.0050 & 0.0061 \\
\cline{3-7} & & L=32 & 0.1465 & 0.1062 & 0.0057 & 0.0109 \\
\hline
\hline
\multirow{6}[0]{*}{RVR} & \multirow{3}[0]{*}{ conductor} & L=128 & 0.4672 & 0.4690 & 0.4122 & 0.6124 \\
\cline{3-7} & & L=64 & 0.5357 & 0.4343 & 0.4456 & 0.5490 \\
\cline{3-7} & & L=32 & 0.5883 & 0.5580 & 0.5492 & 0.6912 \\
\clineB{2-7}{2.5} & \multirow{3}[0]{*}{ resistor} & L=128 & 1.6747 & 1.6273 & 0.9951 & 1.0290 \\
\cline{3-7} & & L=64 & 1.9706 & 1.6022 & 1.0895 & 1.0479 \\
\cline{3-7} & & L=32 & 2.1047 & 2.0931 & 1.4676 & 1.1714 \\
\hline
\end{tabular}%
\label{tab:T6}%
\end{table} | [
[
"",
"",
"",
"D-bar",
"Calderon",
"Smooth",
"TV"
],
[
"LE",
"conductor",
"L=128",
"0.1267",
"0.1181",
"0.0264",
"0.0191"
],
[
null,
null,
"L=64",
"0.1522",
"0.1566",
"0.0085",
"0.0136"
],
[
null,
null,
"L=32",
"0.1559",
"0.1548",
"0.0111",
"0.0093"
],
[
null,
"resistor",
"L=128",
"0.0853",
"0.0861",
"0.0128",
"0.0074"
],
[
null,
null,
"L=64",
"0.1072",
"0.1107",
"0.0050",
"0.0061"
],
[
null,
null,
"L=32",
"0.1465",
"0.1062",
"0.0057",
"0.0109"
],
[
"RVR",
"conductor",
"L=128",
"0.4672",
"0.4690",
"0.4122",
"0.6124"
],
[
null,
null,
"L=64",
"0.5357",
"0.4343",
"0.4456",
"0.5490"
],
[
null,
null,
"L=32",
"0.5883",
"0.5580",
"0.5492",
"0.6912"
],
[
null,
"resistor",
"L=128",
"1.6747",
"1.6273",
"0.9951",
"1.0290"
],
[
null,
null,
"L=64",
"1.9706",
"1.6022",
"1.0895",
"1.0479"
],
[
null,
null,
"L=32",
"2.1047",
"2.0931",
"1.4676",
"1.1714"
]
] | 0.367491 | null | null |
0 | 2012.03472v1 | 24 | [
170.45799255371094,
477.5039978027344,
448.2460021972656,
568.114501953125
] | \begin{table}[H]
\tiny
\begin{tabularx}{\textwidth}{c|l|l|X|X|X}
\textbf{Feature Dimension} & \textbf{Algorithm} & \textbf{Backend} & \textbf{Time (Seconds, rounded)} & \textbf{Accuracy (\%)} & \textbf{Only one Class Predicted?} \\ \hline
\multirow{4}{*}{2} & SVM, Linear Kernel, scaled & Local Processor & 0 & 100.0 & False \\
& SVM, RBF Kernel, scaled & Local Processor & 0 & 100.0 & False \\
& QSVM & qasm\_simulator & 6 & 100.0 & False \\
& VQC & qasm\_simulator & 32 & 71.43 & False \\ \hline
\multirow{4}{*}{3} & SVM, Linear Kernel, scaled & Local Processor & 0 & 100.0 & False \\
& SVM, RBF Kernel, scaled & Local Processor & 0 & 92.86 & False \\
& QSVM & qasm\_simulator & 14 & 64.29 & False \\
& VQC & qasm\_simulator & 58 & 42.86 & False \\ \hline
\multirow{6}{*}{4} & SVM, Linear Kernel & Local Processor & 0 & 92.86 & False \\
& SVM, Linear Kernel, scaled & Local Processor & 0 & 92.86 & False \\
& SVM, RBF Kernel & Local Processor & 0 & 100.0 & False \\
& SVM, RBF Kernel, scaled & Local Processor & 0 & 100.0 & False \\
& VQC & qasm\_simulator & 128 & 50.0 & False \\
\end{tabularx}
\caption{Results of trials of the Wine data set, with increasing feature dimension. Feature dimensions higher than 3 are not supported for QSVMs.}
\end{table} | [
[
"SVM, Linear Kernel, scaled\nSVM, RBF Kernel, scaled\nQSVM\nVQC\nQSVM",
"Local Processor\nLocal Processor\nqasm simulator\nqasm simulator\nibmq 16 melbourne",
"0\n0\n28505\n2825\n(X)",
"90.56\n90.99\n81.02\n61.29\n81.02"
],
[
"SVM, Linear Kernel, scaled\nSVM, RBF Kernel, scaled\nQSVM\nVQC",
"Local Processor\nLocal Processor\nqasm simulator\nqasm simulator",
"0\n0\n28562\n2845",
"81.02\n90.35\n81.02\n65.64"
],
[
"SVM, Linear Kernel, scaled\nSVM, RBF Kernel, scaled\nQSVM\nVQC",
"Local Processor\nLocal Processor\nqasm simulator\nqasm simulator",
"0\n0\n27485\n2709",
"92.14\n91.92\n84.61\n61.13"
]
] | 0.407319 | null | null |
0 | 1905.13672v2 | 3 | [
78.56099700927734,
162.81298828125,
272.43798828125,
208.24298095703125
] | \begin{table}[h!]
\begin{smallermathTable}
\centering
\begin{tabular}[t]{@{ }l@{ }|p{1.8cm}<{\centering}|p{1.8cm}<{\centering}}
\hline
\multirow{2}{*}{Ontology Variability} & \multicolumn{2}{|c}{$\nabla(\mathcal{D}_{S},\mathcal{D}_{T})$} \\%\cline{2-3}
& $variant$ & $invariant $ \\\hline
$Road(r_3)$ & & \checkmark \\
$Cleared(r_1)$ & \checkmark &\\
$Disrupted(r_0)$ & \checkmark &\\
\end{tabular}
\caption{\label{tab:streamSimilarity}
Examples for Entailment-based
%Ontology
Domain
Variability.
}
\end{smallermathTable}
\end{table} | [
[
"Ontology Variability",
"∇(DS, DT )\nvariant invariant",
null
],
[
"Road(r )\n3\nCleared(r )\n1\nDisrupted(r )\n0",
"✓\n✓",
"✓"
]
] | 0.540193 | null | null |
0 | 1605.08833v1 | 13 | [
72.17909774780273,
72.198974609375,
527.3079223632812,
210.3809814453125
] | \begin{table}[tp]%{l}{0.9\linewidth}
\begin{tabular}
{|
M{0.15\linewidth} || M{0.12\linewidth}
|| M{0.15\linewidth} || M{0.10\linewidth} || M{0.30\linewidth}
|} \hline
Dataset & \# labeled & \# unlabeled & Dim. & Comments \\ \hline \hline
\multirow{1}{*}{\texttt{kagg-prot}} & 3750 & & 1776 & Kaggle challenge \cite{kagg2} \\ \hline
\multirow{1}{*}{\texttt{ssl-text}} & 1500 & & 11960 & \cite{CSZ06} \\ \hline
%\multirow{1}{*}{\texttt{ssl-usps}} & 1500 & & 241 & \cite{CSZ06}; imbalanced \\ \hline
\multirow{1}{*}{\texttt{kagg-cred}} & 150K & & 10 & Kaggle challenge \cite{kagg1}; imbalanced (< 10\% positives) \\ \hline
\multirow{1}{*}{\texttt{adult}} & 32561 & & 123 & LibSVM \\ \hline
%\multirow{1}{*}{\texttt{w1a}} & 2477 train, 47272 test & & 300 & LibSVM \\ \hline
\multirow{1}{*}{\texttt{covtype}} & 581012 & & 54 & LibSVM \\ \hline
\multirow{1}{*}{\texttt{ssl-secstr}} & 83679 & 1189472 & 315 & \cite{CSZ06} \\ \hline
\multirow{1}{*}{\texttt{cod-rna}} & 59535 train, 271617 test & 157413 & 8 & LibSVM \\ \hline
\multirow{1}{*}{\texttt{SUSY}} & 5M & & 18 & UCI \\ \hline
\end{tabular}
\caption{Information about the datasets used. }
\label{tab:allauc}
\end{table} | [
[
"Dataset",
"# labeled",
"# unlabeled",
"Dim.",
"Comments"
],
[
"kagg-prot",
"3750",
"",
"1776",
"Kaggle challenge [22]"
],
[
"ssl-text",
"1500",
"",
"11960",
"[2]"
],
[
"kagg-cred",
"150K",
"",
"10",
"Kaggle challenge [23];\nimbalanced (< 10% positives)"
],
[
"adult",
"32561",
"",
"123",
"LibSVM"
],
[
"covtype",
"581012",
"",
"54",
"LibSVM"
],
[
"ssl-secstr",
"83679",
"1189472",
"315",
"[2]"
],
[
"cod-rna",
"59535 train,\n271617 test",
"157413",
"8",
"LibSVM"
],
[
"SUSY",
"5M",
"",
"18",
"UCI"
]
] | 0.50566 | null | null |
0 | 2403.13380v1 | 4 | [
328.11700439453125,
500.11500040690106,
548.75,
641.4779663085938
] | \begin{table}[hb]
\centering
\caption{Settings and results of the validation cases}
\begin{tabular}{l|c|c|c|c|c|c}
\toprule
Cases & (a) & (b) & (c) & (d) & (e) & (f) \\
\hline
Material & Si & Al & Fe & Be & C & Si \\
\hline
Sim. Method & MD & MD & MD & MULTI & MULTI & MD \\
\toprule
$\rho_0~(g/cm^3)$ & 2.318 & 2.698 & 8.014 & 1.84 & 3.16 & 2.318 \\
\hline
$P_H$~(GPa) & 73.4 & 116.9 & 117.5 & 128 & 334 & 56.5 \\
\hline
$U_H~(km/s)$ & 3.5 & 4.0 & 2.0 & 5.06 & 6.17 & 3.0 \\
\hline
$a_H~(km/s)$ & 2.86 & 4.46 & 2.33 & 6.112 & 6.105 & 2.40 \\
\hline
$\rho_H~(g/cm^3)$ & 3.871 & 4.278 & 10.98 & 2.91 & 4.94 & 3.681 \\
\hline
$\rho_R~(g/cm^3)$ & 2.55 & 2.305 & 6.52 & 1.45 & 3.10 & 2.63 \\
\toprule
err mode~1~(\%) & 22.96 & 7.40 & 6.53 & 28.92 & 30.05 & 16.37 \\
\hline
err mode~2~(\%) & 5.81 & 6.75 & 8.66 & 6.70 & 11.39 & 15.67 \\
\hline
err mode~3~(\%) & 1.64 & 0.55 & 0.97 & 1.08 & 2.42 & 11.23 \\
\toprule
\end{tabular}
\label{tab:1}
\end{table} | [
[
"Cases",
"(a)",
"(b)",
"(c)",
"(d)",
"(e)",
"(f)"
],
[
"Material",
"Si",
"Al",
"Fe",
"Be",
"C",
"Si"
],
[
"Sim. Method",
"MD",
"MD",
"MD",
"MULTI",
"MULTI",
"MD"
],
[
"ρ (g/cm3)\n0",
"2.318",
"2.698",
"8.014",
"1.84",
"3.16",
"2.318"
],
[
"PH (GPa)",
"73.4",
"116.9",
"117.5",
"128",
"334",
"56.5"
],
[
"UH (km/s)",
"3.5",
"4.0",
"2.0",
"5.06",
"6.17",
"3.0"
],
[
"aH (km/s)",
"2.86",
"4.46",
"2.33",
"6.112",
"6.105",
"2.40"
],
[
"ρH (g/cm3)",
"3.871",
"4.278",
"10.98",
"2.91",
"4.94",
"3.681"
],
[
"ρR (g/cm3)",
"2.55",
"2.305",
"6.52",
"1.45",
"3.10",
"2.63"
],
[
"err mode 1 (%)",
"22.96",
"7.40",
"6.53",
"28.92",
"30.05",
"16.37"
],
[
"err mode 2 (%)",
"5.81",
"6.75",
"8.66",
"6.70",
"11.39",
"15.67"
],
[
"err mode 3 (%) 1.64 0.55 0.97 1.08 2.42 11.23",
null,
null,
null,
null,
null,
null
]
] | 0.791583 | null | null |
0 | 2111.05714v1 | 25 | [
108.4530029296875,
712.3599853515625,
482.5952231667259,
760.8280029296875
] | \begin{table}[!htbp]
\centering
\caption{Distribution of the range of missing values over SNPs (e.g. There are 81 SNPs each having $m$
missing values with $1\leq m\leq 9$).} \vspace{8pt}
\begin{tabular}{c|ccccc}
\hline
Range of numbers &\multirow{2}{*}{0}&\multirow{2}{*}{1-9}&\multirow{2}{*}{10-19}&\multirow{2}{*}{20-29}&\multirow{2}{*}{30-32}\\
of missing values &&&&&\\\hline
Number of SNPs &50 & 81 & 44 & 30 &2\\
\hline
\end{tabular}
\label{Table3}
\end{table} | [
[
"Range of numbers\nof missing values",
"0 1 2 3 4 5 6 7 8 9"
],
[
"Number of individuals",
"83 107 132 79 59 44 31 30 15 16"
]
] | 0.528302 | null | null |
0 | 2008.03069v2 | 11 | [
72.05699920654297,
367.89501953125,
539.9439697265625,
474.19500732421875
] | \begin{table}[t]
\fontsize{9.5}{9.5}\selectfont
\centering
\caption{Evaluation of team sesc's approach, as additional steps were added and combinations tested.
Loss evaluations on the competition's public leaderboard included.
Risk values clipped at -6.00001 (-6.001 in LRP).}
\label{tab:manual_eng}
\begin{tabular}{lrrr|rrrr}
\toprule
{\textbf{Combinations of steps}} & \multicolumn{3}{c|}{\textbf{Train set}} & \multicolumn{4}{c}{\textbf{Test set}} \\
{} & \MSE & $F_2$ & loss & \MSE & $F_2$ & loss & leaderboard \\
\midrule
LRP baseline & 0.330 & 0.411 & 0.804 & 0.513 & 0.739 & 0.694 & 0.718 \\
steps: 0 (raise to -5.95) & 0.330 & 0.430 & 0.768 & 0.512 & 0.753 & 0.680 & 0.703 \\
steps: 0 + 1 (raise to -5.60) & 0.305 & 0.392 & 0.779 & 0.498 & 0.764 & 0.653 & 0.670 \\
steps: 0 + 1 + 2 (raise to -5.00) & 0.290 & 0.296 & 0.982 & 0.445 & 0.738 & 0.603 & 0.612 \\
steps: 0 + 1 + 2 + 3 (safe c\_object\_type) & 0.290 & 0.301 & 0.966 & 0.426 & 0.735 & 0.579 & 0.587 \\
steps: 0 + 1 + 2 + 4 (safe t\_span) & 0.290 & 0.298 & 0.974 & 0.447 & 0.735 & 0.608 & 0.611 \\
steps: 0 + 1 + 2 + 5 (safe miss\_distance) & 0.325 & 0.304 & 1.070 & 0.444 & 0.733 & 0.607 & 0.613 \\
steps: 0 + 1 + 2 + 6 (clip high risks) & 0.293 & 0.296 & 0.990 & 0.424 & 0.738 & 0.575 & 0.581 \\
steps: 0 + 1 + 2 + 3 + 4 + 5 + 6 & 0.327 & 0.311 & 1.050 & 0.414 & 0.728 & 0.569 & 0.564 \\
steps: 0 + 1 + 2 + 5 + 6 & 0.327 & 0.304 & 1.077 & 0.424 & 0.733 & 0.578 & 0.581 \\
steps: 0 + 1 + 2 + 5 + 6 + 7 (manual adjustment) & 0.327 & 0.304 & 1.077 & 0.407 & 0.733 & 0.555 & 0.555 \\
\bottomrule
\end{tabular}
\end{table} | [
[
"LRP baseline 0.330 0.411 0.804\nsteps: 0 (raise to -5.95) 0.330 0.430 0.768\nsteps: 0 + 1 (raise to -5.60) 0.305 0.392 0.779\nsteps: 0 + 1 + 2 (raise to -5.00) 0.290 0.296 0.982\nsteps: 0 + 1 + 2 + 3 (safe c_object_type) 0.290 0.301 0.966\nsteps: 0 + 1 + 2 + 4 (safe t_span) 0.290 0.298 0.974\nsteps: 0 + 1 + 2 + 5 (safe miss_distance) 0.325 0.304 1.070\nsteps: 0 + 1 + 2 + 6 (clip high risks) 0.293 0.296 0.990\nsteps: 0 + 1 + 2 + 3 + 4 + 5 + 6 0.327 0.311 1.050\nsteps: 0 + 1 + 2 + 5 + 6 0.327 0.304 1.077\nsteps: 0 + 1 + 2 + 5 + 6 + 7 (manual adjustment) 0.327 0.304 1.077",
"0.513 0.739 0.694 0.718\n0.512 0.753 0.680 0.703\n0.498 0.764 0.653 0.670\n0.445 0.738 0.603 0.612\n0.426 0.735 0.579 0.587\n0.447 0.735 0.608 0.611\n0.444 0.733 0.607 0.613\n0.424 0.738 0.575 0.581\n0.414 0.728 0.569 0.564\n0.424 0.733 0.578 0.581\n0.407 0.733 0.555 0.555"
]
] | 0.462218 | null | null |