--- license: mit tags: - dna - variant-effect-prediction - biology - genomics configs: - config_name: "mendelian_traits" data_files: - split: test path: "mendelian_traits_matched_9/test.parquet" - config_name: "complex_traits" data_files: - split: test path: "complex_traits_matched_9/test.parquet" - config_name: "mendelian_traits_full" data_files: - split: test path: "mendelian_traits_all/test.parquet" - config_name: "complex_traits_full" data_files: - split: test path: "complex_traits_all/test.parquet" --- # 🧬 TraitGym [Benchmarking DNA Sequence Models for Causal Regulatory Variant Prediction in Human Genetics](https://www.biorxiv.org/content/10.1101/2025.02.11.637758v1) 🏆 Leaderboard: https://huggingface.co/spaces/songlab/TraitGym-leaderboard ## ⚡️ Quick start - Load a dataset ```python from datasets import load_dataset dataset = load_dataset("songlab/TraitGym", "mendelian_traits", split="test") ``` - Example notebook to run variant effect prediction with a gLM, runs in 5 min on Google Colab: `TraitGym.ipynb` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/songlab-cal/TraitGym/blob/main/TraitGym.ipynb) ## 🤗 Resources (https://huggingface.co/datasets/songlab/TraitGym) - Datasets: `{dataset}/test.parquet` - Subsets: `{dataset}/subset/{subset}.parquet` - Features: `{dataset}/features/{features}.parquet` - Predictions: `{dataset}/preds/{subset}/{model}.parquet` - Metrics: `{dataset}/{metric}/{subset}/{model}.csv` `dataset` examples (`load_dataset` config name): - `mendelian_traits_matched_9` (`mendelian_traits`) - `complex_traits_matched_9` (`complex_traits`) - `mendelian_traits_all` (`mendelian_traits_full`) - `complex_traits_all` (`complex_traits_full`) `subset` examples: - `all` (default) - `3_prime_UTR_variant` - `disease` - `BMI` `features` examples: - `GPN-MSA_LLR` - `GPN-MSA_InnerProducts` - `Borzoi_L2` `model` examples: - `GPN-MSA_LLR.minus.score` - `GPN-MSA.LogisticRegression.chrom` - `CADD+GPN-MSA+Borzoi.LogisticRegression.chrom` `metric` examples: - `AUPRC_by_chrom_weighted_average` (main metric) - `AUPRC` ## 💻 Code (https://github.com/songlab-cal/TraitGym) - Tries to follow [recommended Snakemake structure](https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html) - GPN-Promoter code is in [the main GPN repo](https://github.com/songlab-cal/gpn) ### Installation First, clone the repo and `cd` into it. Second, install the dependencies: ```bash conda env create -f workflow/envs/general.yaml conda activate TraitGym ``` Optionally, download precomputed datasets and predictions (6.7G): ```bash mkdir -p results/dataset huggingface-cli download songlab/TraitGym --repo-type dataset --local-dir results/dataset/ ``` ### Running To compute a specific result, specify its path: ```bash snakemake --cores all ``` Example paths (these are already computed): ```bash # zero-shot LLR results/dataset/complex_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA_absLLR.plus.score.csv # logistic regression/linear probing results/dataset/complex_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA.LogisticRegression.chrom.csv ``` We recommend the following: ```bash # Snakemake sometimes gets confused about which files it needs to rerun and this forces # not to rerun any existing file snakemake --cores all --touch # to output an execution plan snakemake --cores all --dry-run ``` To evaluate your own set of model features, place a dataframe of shape `n_variants,n_features` in `results/dataset/{dataset}/features/{features}.parquet`. For zero-shot evaluation of column `{feature}` and sign `{sign}` (`plus` or `minus`), you would invoke: ```bash snakemake --cores all results/dataset/{dataset}/{metric}/all/{features}.{sign}.{feature}.csv ``` To train and evaluate a logistic regression model, you would invoke: ```bash snakemake --cores all results/dataset/{dataset}/{metric}/all/{feature_set}.LogisticRegression.chrom.csv ``` where `{feature_set}` should first be defined in `feature_sets` in `config/config.yaml` (this allows combining features defined in different files). ## Citation [Link to paper](https://www.biorxiv.org/content/10.1101/2025.02.11.637758v2) ```bibtex @article{traitgym, title={Benchmarking DNA Sequence Models for Causal Regulatory Variant Prediction in Human Genetics}, author={Benegas, Gonzalo and Eraslan, G{\"o}kcen and Song, Yun S}, journal={bioRxiv}, pages={2025--02}, year={2025}, publisher={Cold Spring Harbor Laboratory} } ```