# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Tokenization utilities.""" import torch from megatron import get_tokenizer from .communication import broadcast_int_list, broadcast_tensor def detokenize_generations(tokens_gpu_tensor, lengths_gpu_tensor, return_segments): """Detokenize the generated tokens.""" tokenizer = get_tokenizer() prompts_plus_generations = [] if return_segments: prompts_plus_generations_segments = [] tokens = tokens_gpu_tensor.cpu().numpy().tolist() lengths = lengths_gpu_tensor.cpu().numpy().tolist() for sequence_tokens, length in zip(tokens, lengths): sequence_tokens = sequence_tokens[:length] prompts_plus_generations.append( tokenizer.detokenize(sequence_tokens)) if return_segments: words = [] for token in sequence_tokens: word = tokenizer.tokenizer.decoder[token] word = bytearray( [tokenizer.tokenizer.byte_decoder[c] for c in word]).decode( 'utf-8', errors='replace') words.append(word) prompts_plus_generations_segments.append(words) if return_segments: return tokens, prompts_plus_generations, \ prompts_plus_generations_segments return tokens, prompts_plus_generations def tokenize_prompts(prompts=None, tokens_to_generate=None, add_BOS=None, rank=0): """Tokenize prompts and make them avaiable on all ranks.""" # On all ranks set to None so we can pass them to functions sizes_list = None prompts_tokens_cuda_long_tensor = None prompts_length_cuda_long_tensor = None # On the specified rank, build the above. if torch.distributed.get_rank() == rank: assert prompts is not None assert tokens_to_generate is not None # Tensor of tokens padded and their unpadded length. prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor = \ _tokenize_prompts_and_batch(prompts, tokens_to_generate, add_BOS) # We need the sizes of these tensors for the boradcast sizes_list = [prompts_tokens_cuda_long_tensor.size(0), # Batch size prompts_tokens_cuda_long_tensor.size(1)] # Sequence lenght # First, broadcast the sizes. sizes_tensor = broadcast_int_list(2, int_list=sizes_list, rank=rank) # Now that we have the sizes, we can boradcast the tokens # and length tensors. sizes = sizes_tensor.tolist() prompts_tokens_cuda_long_tensor = broadcast_tensor( sizes, torch.int64, tensor=prompts_tokens_cuda_long_tensor, rank=rank) prompts_length_cuda_long_tensor = broadcast_tensor( sizes[0], torch.int64, tensor=prompts_length_cuda_long_tensor, rank=rank) return prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor def _tokenize_prompts_and_batch(prompts, tokens_to_generate, add_BOS): """Given a set of prompts and number of tokens to generate: - tokenize prompts - set the sequence length to be the max of length of prompts plus the number of tokens we would like to generate - pad all the sequences to this length so we can convert them into a 2D tensor. """ # Tokenize all the prompts. tokenizer = get_tokenizer() if add_BOS: prompts_tokens = [[tokenizer.eod] + tokenizer.tokenize(prompt) for prompt in prompts] else: prompts_tokens = [tokenizer.tokenize(prompt) for prompt in prompts] # Now we have a list of list of tokens which each list has a different # size. We want to extend this list to: # - incorporate the tokens that need to be generated # - make all the sequences equal length. # Get the prompts length. prompts_length = [len(prompt_tokens) for prompt_tokens in prompts_tokens] # Get the max prompts length. max_prompt_len = max(prompts_length) # Number of tokens in the each sample of the batch. samples_length = max_prompt_len + tokens_to_generate # Now update the list of list to be of the same size: samples_length. for prompt_tokens, prompt_length in zip(prompts_tokens, prompts_length): padding_size = samples_length - prompt_length prompt_tokens.extend([tokenizer.eod] * padding_size) # Now we are in a structured format, we can convert to tensors. prompts_tokens_tensor = torch.cuda.LongTensor(prompts_tokens) prompts_length_tensor = torch.cuda.LongTensor(prompts_length) return prompts_tokens_tensor, prompts_length_tensor