#! /bin/bash # default arguments SIZE=7 TP=8 PP=1 GPUS_PER_NODE=8 MICRO_BATCH=1 GLOBAL_BATCH=12 RANK=0 N_NODES=1 ADDR=localhost WANDB=0 INSTRUCT=0 CHECKPOINT_PATH=none DATA=none WANDB_PROJ=none WANDB_ID=none WANDB_ENTITY=none ITERS=1000 SEQ_LEN=none DATA_PATH=none TRAINED_PATH=none VAL_PATH=none USR_LR=none USR_MIN_LR=none LOSS_MASK=0.0 HELP_STR="[--rank=$RANK] [--size=$SIZE] [--tp=$TP] [--pp=$PP] [--gpus=$GPUS_PER_NODE] \ [--micro-batch=$MICRO_BATCH] [--global-batch=$GLOBAL_BATCH] [--nodes=$N_NODES] \ [--addr=$ADDR] [--wandb] [--instruct] [--checkpoint=...] [--data=...] [--iters=$ITERS] \ [--wandb-proj=none] [--wandb-id=none] [--wandb-entity=none] [--seq-len=...] \ [--val-path=none] [--out=...] [--lr=lr minlr] [--loss-mask=$LOSS_MASK] --help]" # define help function help () { echo "Usage: $0 $HELP_STR" } # parse arguments, three modes # mode1 = -h or --help requested if [[ $# = 1 ]] && [[ $1 = "-h" ]] || [[ $1 = "--help" ]]; then help exit 0 # mode2 = not arguments given elif [[ $# = 0 ]]; then help exit 1 fi # mode3 = correct usage, read model MODEL=$1 shift while [[ $# -gt 0 ]]; do case $1 in --tp) TP="$2"; shift; shift;; --pp) PP="$2"; shift; shift;; --size) SIZE="$2"; shift; shift;; --gpus) GPUS_PER_NODE="$2"; shift; shift;; --micro-batch) MICRO_BATCH="$2"; shift; shift;; --global-batch) GLOBAL_BATCH="$2"; shift; shift;; --rank) RANK=$2; shift; shift;; --nodes) N_NODES=$2; shift; shift;; --addr) ADDR=$2; shift; shift;; --wandb) WANDB=1; shift;; --wandb-project) WANDB_PROJ=$2; shift; shift;; --wandb-id) WANDB_ID=$2; shift; shift;; --wandb-entity) WANDB_ENTITY=$2; shift; shift;; --instruct) INSTRUCT=1; shift;; --checkpoint) CHECKPOINT_PATH=$2; shift; shift;; --data) DATA_PATH=$2; shift; shift;; --iters) ITERS=$2; shift; shift;; --seq-len) SEQ_LEN=$2; shift; shift;; --out) TRAINED_PATH=$2; shift; shift;; --val-path) VAL_PATH=$2; shift; shift;; --lr) USR_LR=$2; USR_MIN_LR=$3; shift; shift; shift;; --loss-mask) LOSS_MASK=$2; shift; shift;; *) echo unknown argument $1; help; exit 1;; esac done # set args if [[ $CHECKPOINT_PATH = none ]]; then CHECKPOINT_PATH=/pure-mlo-scratch/alhernan/megatron-data/checkpoints/${MODEL}-${SIZE}b-tp$TP-pp$PP fi if [[ $INSTRUCT = 1 ]]; then LR="2e-5" MIN_LR="2e-6" if [[ $TRAINED_PATH = none ]]; then TRAINED_PATH=$CHECKPOINT_PATH-instructed fi else LR="3e-4" MIN_LR="3e-4" if [[ $TRAINED_PATH = none ]]; then TRAINED_PATH=$CHECKPOINT_PATH-pretrained fi fi TENSORBOARD_PATH=$TRAINED_PATH/logging DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $N_NODES --node_rank $RANK --master_addr $ADDR --master_port 6000" if [[ $MODEL = falcon ]]; then if [[ $DATA_PATH = none ]]; then DATA_PATH=/pure-mlo-scratch/pagliard/data/wikitext-falcon/wiki-train_text_document fi TOKENIZER=FalconTokenizer EXTRA_ARGS="--parallel_attn" if [[ $SEQ_LEN = none ]]; then SEQ_LEN=2048 fi elif [[ $MODEL = llama ]] || [[ $MODEL = llama2 ]] || [[ $MODEL = codellama ]]; then EXTRA_IDS="[bib_ref],[/bib_ref],[fig_ref],[/fig_ref],[bib],[/bib],[fig],[/fig],[table],[/table],[formula],[/formula]" EXTRA_ARGS="--vocab_file=/pure-mlo-scratch/llama/tokenizer.model --use_rms_norm --glu_activation swiglu --no_tie_embed_logits" if [[ $INSTRUCT = 1 ]]; then if [[ $DATA_PATH = none ]]; then DATA_PATH=/pure-mlo-scratch/alhernan/data/orca/orca fi EXTRA_IDS="$EXTRA_IDS,<|im_start|>,<|im_end|>" else if [[ $DATA_PATH = none ]]; then DATA_PATH=/pure-mlo-scratch/data/tokenized/pubmed-all/pubmed-all-llama_text_document fi fi TOKENIZER=SentencePieceTokenizer EXTRA_ARGS="$EXTRA_ARGS --vocab_extra_ids_list $EXTRA_IDS" if [[ $MODEL == llama ]]; then if [[ $SEQ_LEN = none ]]; then SEQ_LEN=2048 fi EXTRA_ARGS="$EXTRA_ARGS --vocab_file=/pure-mlo-scratch/llama2/Llama-2-7b-hf/tokenizer.model" EXTRA_ARGS="$EXTRA_ARGS --layernorm_epsilon 1e-6" elif [[ $MODEL == llama2 ]]; then if [[ $SEQ_LEN = none ]]; then SEQ_LEN=4096 fi EXTRA_ARGS="$EXTRA_ARGS --vocab_file=/pure-mlo-scratch/llama2/Llama-2-7b-hf/tokenizer.model" EXTRA_ARGS="$EXTRA_ARGS --layernorm_epsilon 1e-5" if (( $SIZE > 13 )); then # llama 2, 34B and 70B LR="1.5e-4" fi else # codellama if [[ $SEQ_LEN = none ]]; then SEQ_LEN=16384 fi EXTRA_ARGS="$EXTRA_ARGS --vocab_file=/pure-mlo-scratch/codellama/CodeLlama-7b/tokenizer.model --rope_theta 1e6" fi elif [[ $MODEL = gpt ]]; then if [[ $DATA_PATH = none ]]; then DATA_PATH=/scratch/wikitext-megatron/wikitext-train_text_document fi TOKENIZER=FalconTokenizer EXTRA_ARGS="--num_layers 4 --hidden_size 512 --num_attention_heads 8" if [[ $SEQ_LEN = none ]]; then SEQ_LEN=2048 fi else echo "Model should be either gpt, llama or falcon, not $MODEL" help exit 1 fi COMMON_ARGS="--use_flash_attn --no_bias_gelu_fusion --seq_length $SEQ_LEN --max_position_embeddings $SEQ_LEN --log_interval 1 --save_interval 800 --eval_interval 200 --eval_iters 10 --hidden_dropout 0.0 --position_embedding_type rotary --no_bias_dropout_fusion --use_checkpoint_args --attention_dropout 0.0 --adam_beta1 0.9 --adam_beta2 0.95 --adam_eps 1e-5 --lr_decay_style cosine --lr_warmup_fraction 0.1 --lr $LR --min_lr $MIN_LR --weight_decay 0.1 --sequence_parallel --recompute_granularity selective --log_timers_to_tensorboard --scalar_loss_mask=$LOSS_MASK --rope_scaling_factor 1.0" if [[ $INSTRUCT = 1 ]]; then COMMON_ARGS="$COMMON_ARGS --variable_seq_lengths --data_type instruction --metrics all" if [[ $CHECKPOINT_PATH != $TRAINED_PATH ]]; then COMMON_ARGS="$COMMON_ARGS --finetune" fi else COMMON_ARGS="$COMMON_ARGS --metrics perplexity accuracy count_loss_mask" fi if [[ $CHECKPOINT_PATH != $TRAINED_PATH ]]; then COMMON_ARGS="$COMMON_ARGS --train_iters $ITERS" fi if [[ $WANDB = 1 ]]; then COMMON_ARGS="$COMMON_ARGS --wandb_logger" if [[ $WANDB_PROJ != none ]]; then COMMON_ARGS="$COMMON_ARGS --wandb_project $WANDB_PROJ" fi if [[ $WANDB_ID != none ]]; then COMMON_ARGS="$COMMON_ARGS --wandb_id $WANDB_ID" fi if [[ $WANDB_ENTITY != none ]]; then COMMON_ARGS="$COMMON_ARGS --wandb_entity $WANDB_ENTITY" fi fi if [[ $VAL_PATH = none ]]; then DATA_ARGS="--data_path $DATA_PATH" else DATA_ARGS="--train_data_path $DATA_PATH --valid_data_path $VAL_PATH" fi # print some args echo echo Settings: echo RANK=$RANK echo ADDR=$ADDR echo N_NODES=$N_NODES echo DATA_ARGS=$DATA_ARGS echo CHECKPOINT_PATH=$CHECKPOINT_PATH echo TRAINED_PATH=$TRAINED_PATH echo MODEL=$MODEL echo TP=$TP echo PP=$PP echo MICRO_BATCH=$MICRO_BATCH echo GLOBAL_BATCH=$GLOBAL_BATCH echo INSTRUCT=$INSTRUCT echo COMMON_ARGS=$COMMON_ARGS echo EXTRA_ARGS=$EXTRA_ARGS echo # finally, call finetune.py CUDA_DEVICE_MAX_CONNECTIONS=1 OMP_NUM_THREADS=16 torchrun $DISTRIBUTED_ARGS finetune.py \ --tensor_model_parallel_size $TP \ --pipeline_model_parallel_size $PP \ --load $CHECKPOINT_PATH \ --save $TRAINED_PATH \ --tensorboard_dir $TENSORBOARD_PATH \ $DATA_ARGS \ --model_name $MODEL \ --tokenizer_type $TOKENIZER \ --bf16 \ --global_batch_size $GLOBAL_BATCH \ --micro_batch_size $MICRO_BATCH \ --num_workers=2 \ $EXTRA_ARGS \ $COMMON_ARGS