// #pragma GCC optimize("Ofast,unroll-loops") // #pragma GCC target("avx,avx2,fma") #include using namespace std; #define ll long long #define ull unsigned long long #define dd double #define ld long double #define sl(n) scanf("%lld", &n) #define si(n) scanf("%d", &n) #define sd(n) scanf("%lf", &n) #define pll pair #define pii pair #define mp make_pair #define pb push_back #define all(v) v.begin(), v.end() #define inf (1LL << 62) #define loop(i, start, stop, inc) for(ll i = start; i <= stop; i += inc) #define for1(i, stop) for(ll i = 1; i <= stop; ++i) #define for0(i, stop) for(ll i = 0; i < stop; ++i) #define rep1(i, start) for(ll i = start; i >= 1; --i) #define rep0(i, start) for(ll i = (start-1); i >= 0; --i) #define ms(n, i) memset(n, i, sizeof(n)) #define casep(n) printf("Case %lld:", ++n) #define pn printf("\n") #define pf printf #define EL '\n' #define fastio std::ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL); /*** * Multiply (7x^2 + 8x^1 + 9x^0) with (6x^1 + 5x^0) * ans = 42x^3 + 83x^2 + 94x^1 + 45x^0 * A = {9, 8, 7} * B = {5, 6} * V = multiply(A,B) * V = {45, 94, 83, 42} ***/ /*** Tricks * Use vector < bool > if you need to check only the status of the sum * Use bigmod if the power is over same polynomial && power is big * Use long double if you need more precision * Use long long for overflow ***/ typedef vector vi; const double PI = 2.0 * acos(0.0); using cd = complex; void fft(vector & a, bool invert = 0) { int n = a.size(); for (int i = 1, j = 0; i < n; i++) { int bit = n >> 1; for (; j & bit; bit >>= 1) j ^= bit; j ^= bit; if (i < j) swap(a[i], a[j]); } for (int len = 2; len <= n; len <<= 1) { double ang = 2 * PI / len * (invert ? -1 : 1); cd wlen(cos(ang), sin(ang)); for (int i = 0; i < n; i += len) { cd w(1); for (int j = 0; j < len / 2; j++) { cd u = a[i+j], v = a[i+j+len/2] * w; a[i+j] = u + v; a[i+j+len/2] = u - v; w *= wlen; } } } if (invert) { for (cd & x : a) x /= n; } } void ifft(vector & p) { fft(p, 1); } vi multiply(vi const& a, vi const& b) { vector fa(a.begin(), a.end()), fb(b.begin(), b.end()); int n = 1; while (n < a.size() + b.size()) n <<= 1; fa.resize(n); fb.resize(n); fft(fa); fft(fb); for (int i = 0; i < n; i++) fa[i] *= fb[i]; ifft(fa); vi result(n); for (int i = 0; i < n; i++) result[i] = round(fa[i].real()); return result; } const ll sz = 5e5 + 10, offset = 5e5; char s[sz], r[sz]; vi num1[4], num2[4], res[4]; int main() { scanf("%s %s", s, r); ll len1 = strlen(s), len2 = strlen(r); for0(i, 4) num1[i].resize(len1+1,0), num2[i].resize(len2+1+offset,0); for(ll i = 0; s[i] != '\0'; i++) { if(s[i] == 'A') num1[0][i]++; else if(s[i] == 'C') num1[1][i]++; else if(s[i] == 'T') num1[2][i]++; else num1[3][i]++; } for(ll i = 0; r[i] != '\0'; i++) { if(r[i] == 'A') num2[0][-i + offset]++; else if(r[i] == 'C') num2[1][-i + offset]++; else if(r[i] == 'T') num2[2][-i + offset]++; else num2[3][-i + offset]++; } for0(i, 4) res[i] = multiply(num1[i], num2[i]); ll ans = inf; for(ll i = 0; i <= len1 - len2; i++) { ll match = 0; for0(j, 4) match += res[j][i+offset]; ans = min(ans, len2-match); } cout << ans << EL; return 0; }