--- license: apache-2.0 task_categories: - text-classification language: - en task_ids: - natural-language-inference - multi-input-text-classification tags: - theory of mind - tom - Logical-Reasoning - Modal-Logic - Reasoning - Logics - Logic - nli - natural language inference dataset_info: features: - name: premise dtype: string - name: smcdel_problem dtype: string - name: n_announcements dtype: int64 - name: pbcheck dtype: string - name: hypothesis dtype: string - name: setup dtype: string - name: hypothesis_depth dtype: int64 - name: n_agents dtype: int64 - name: label dtype: int64 - name: names sequence: string - name: index dtype: int64 - name: s-l dtype: string - name: deberta_pred dtype: int64 - name: deberta_confidence dtype: float64 - name: difficulty dtype: float64 splits: - name: train num_bytes: 8619563.842139175 num_examples: 11174 - name: validation num_bytes: 2873445.0789304124 num_examples: 3725 - name: test num_bytes: 2873445.0789304124 num_examples: 3725 download_size: 2991434 dataset_size: 14366454 --- Mindgame dataset Code: https://github.com/sileod/llm-theory-of-mind Article: https://arxiv.org/abs/2305.03353 ``` @article{sileo2023mindgames, title={MindGames: Targeting Theory of Mind in Large Language Models with Dynamic Epistemic Modal Logic}, author={Sileo, Damien and Lernould, Antoine}, journal={arXiv preprint arXiv:2305.03353}, year={2023} } ```