--- dataset_info: - config_name: v1 features: - name: qid dtype: string - name: type dtype: string - name: question dtype: string - name: answer dtype: string - name: derivations sequence: - name: '0' dtype: string - name: '1' dtype: string - name: '2' sequence: string - name: page_ids sequence: string - name: time_dependent dtype: bool splits: - name: train num_bytes: 349587 num_examples: 1059 - name: validation num_bytes: 38528 num_examples: 120 download_size: 216443 dataset_size: 388115 - config_name: v1.1 features: - name: qid dtype: string - name: type dtype: string - name: question dtype: string - name: answer dtype: string - name: derivations sequence: - name: '0' dtype: string - name: '1' dtype: string - name: '2' sequence: string - name: page_ids sequence: string - name: time_dependent dtype: bool splits: - name: train num_bytes: 349673 num_examples: 1059 - name: validation num_bytes: 38590 num_examples: 120 download_size: 216429 dataset_size: 388263 configs: - config_name: v1 data_files: - split: train path: v1/train-* - split: validation path: v1/validation-* - config_name: v1.1 data_files: - split: train path: v1.1/train-* - split: validation path: v1.1/validation-* --- # JEMHopQA > JEMHopQA (Japanese Explainable Multi-hop Question Answering) is a Japanese multi-hop QA dataset that can evaluate internal reasoning. It is a task that takes a question as input and generates an answer and derivations. Derivations are a set of derivation steps and is a semi-structured representation of relationships between entities. This dataset contains both compositional (linking information from two Wikipedia articles) and comparison (comparing information from two Wikipedia articles) questions. Source: [JEMHopQA on GitHub](https://github.com/aiishii/JEMHopQA) ### Licensing Information [Creative Commons Attribution Share Alike 4.0 International](https://github.com/aiishii/JEMHopQA/blob/main/LICENSE) ### Citation Information ``` @inproceedings{ishii-etal-2024-jemhopqa-dataset, title = "{JEMH}op{QA}: Dataset for {J}apanese Explainable Multi-Hop Question Answering", author = "Ishii, Ai and Inoue, Naoya and Suzuki, Hisami and Sekine, Satoshi", editor = "Calzolari, Nicoletta and Kan, Min-Yen and Hoste, Veronique and Lenci, Alessandro and Sakti, Sakriani and Xue, Nianwen", booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)", month = may, year = "2024", address = "Torino, Italia", publisher = "ELRA and ICCL", url = "https://aclanthology.org/2024.lrec-main.831", pages = "9515--9525", } ```