|
|
import numpy as np |
|
|
import datasets |
|
|
|
|
|
class BreastMNIST(datasets.GeneratorBasedBuilder): |
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
|
|
def _info(self): |
|
|
return datasets.DatasetInfo( |
|
|
features=datasets.Features({ |
|
|
"image": datasets.Array3D(shape=(28, 28, 1), dtype="uint8"), |
|
|
"label": datasets.ClassLabel(names=["benign", "malignant"]) |
|
|
}), |
|
|
description="BreastMNIST dataset containing medical imaging data", |
|
|
supervised_keys=("image", "label"), |
|
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
downloaded_file = dl_manager.download_and_extract({ |
|
|
"dataset": "https://huggingface.co/datasets/sanaa13/breastmnist1/raw/main/breastmnist.npz" |
|
|
}) |
|
|
return [ |
|
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file["dataset"], "split": "train"}), |
|
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_file["dataset"], "split": "val"}), |
|
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_file["dataset"], "split": "test"}), |
|
|
] |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
|
|
|
|
data = np.load(filepath) |
|
|
|
|
|
if split == "train": |
|
|
images = data['train_images'] |
|
|
labels = data['train_labels'] |
|
|
elif split == "val": |
|
|
images = data['val_images'] |
|
|
labels = data['val_labels'] |
|
|
elif split == "test": |
|
|
images = data['test_images'] |
|
|
labels = data['test_labels'] |
|
|
|
|
|
|
|
|
for idx, (image, label) in enumerate(zip(images, labels)): |
|
|
yield idx, { |
|
|
"image": image, |
|
|
"label": int(label), |
|
|
} |
|
|
|