import pandas as pd import numpy as np from skmultilearn.model_selection import iterative_train_test_split from hatebr import process_row import json DATASET_URL = "https://raw.githubusercontent.com/franciellevargas/HateBR/2d18c5b9410c2dfdd6d5394caa54d608857dae7c/dataset/HateBR.csv" def generate_stratified_indexes(df, y_column="offensive_language"): """Generates stratified train, validation, and test indexes for given DataFrame. Args: df: A pandas DataFrame. y_column: A string indicating the name of the column representing the target variable (default: "offensive_language"). Returns: A tuple of numpy arrays containing the train, validation, and test indexes for the input DataFrame: X_train_indexes: An array of indexes representing the train data. X_dev_indexes: An array of indexes representing the validation data. X_test_indexes: An array of indexes representing the test data. y_train_indexes: An array of indexes representing the train target values. y_dev_indexes: An array of indexes representing the validation target values. y_test_indexes: An array of indexes representing the test target values. """ records = df.to_dict("records") processed_records = [ process_row(row, None) for row in records ] processed_df = pd.DataFrame(processed_records) y = processed_df[[y_column]].to_numpy().astype(np.int32) indices = np.arange(y.shape[0]) indices = indices.reshape(indices.shape[0], 1) y = np.append(y, indices, axis=1) processed_df.drop(columns=[y_column], inplace=True) X = processed_df.to_numpy().astype(np.int32) X = np.append(X, indices, axis=1) X_train_dev, y_train_dev, X_test, y_test = iterative_train_test_split(X, y, test_size = 0.2) X_train, y_train, X_dev, y_dev = iterative_train_test_split(X_train_dev, y_train_dev, test_size = 0.2) X_train_indexes = X_train[:, -1] X_dev_indexes = X_dev[:, -1] X_test_indexes = X_test[:, -1] y_train_indexes = y_train[:, -1] y_dev_indexes = y_dev[:, -1] y_test_indexes = y_test[:, -1] return X_train_indexes, X_dev_indexes, X_test_indexes, y_train_indexes, y_dev_indexes, y_test_indexes def main(): df = pd.read_csv(DATASET_URL) df.drop(columns=["instagram_comments"], inplace=True) X_train_indexes, X_dev_indexes, X_test_indexes, y_train_indexes, y_dev_indexes, y_test_indexes = generate_stratified_indexes(df) final_indexes = { "train": [int(x) for x in X_train_indexes], "validation": [int(x) for x in X_dev_indexes], "test": [int(x) for x in X_test_indexes] } with open("indexes.json", "w") as f: json.dump(final_indexes, f) if __name__ == "__main__": main()