raghavdw commited on
Commit
3614a5e
·
verified ·
1 Parent(s): 9a0175e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +153 -0
README.md ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - machine-generated
4
+ language:
5
+ - en
6
+ language_creators:
7
+ - found
8
+ license:
9
+ - unknown
10
+ multilinguality:
11
+ - monolingual
12
+ pretty_name: CCI Dataset V2
13
+ size_categories:
14
+ - 10K<n<100K
15
+ source_datasets:
16
+ - original
17
+ task_categories:
18
+ - text-classification
19
+ - feature-extraction
20
+ task_ids:
21
+ - intent-classification
22
+ - sentiment-classification
23
+ - topic-classification
24
+ - multi-class-classification
25
+ - sentiment-analysis
26
+ paperswithcode_id: null
27
+ ---
28
+
29
+ # CCI Dataset V2
30
+
31
+ ## Dataset Description
32
+
33
+ - **Repository:** raghavdw/cci-dataset-v2
34
+ - **Point of Contact:** [Please add your contact information]
35
+
36
+ ### Dataset Summary
37
+
38
+ The CCI (Customer Conversation Intelligence) Dataset V2 is a comprehensive collection of airline customer service interactions from Intelligent Virtual Assistant (IVA) conversations. The dataset contains 15,598 entries with rich annotations including intent prediction, sentiment analysis, empathy scoring, and conversation topic classification. Originally sourced from airline customer service interactions, this dataset provides valuable insights into how virtual assistants handle customer inquiries in the aviation sector.
39
+
40
+ ### Supported Tasks and Leaderboards
41
+
42
+ - **Conversation Intent Classification**: Predict the intent behind customer utterances
43
+ - **Sentiment Analysis**: Analyze the sentiment of customer messages
44
+ - **Empathy Detection**: Score conversations based on demonstrated empathy
45
+ - **Active Listening Assessment**: Evaluate the quality of listening in conversations
46
+ - **Topic Classification**: Categorize conversations into specific topics
47
+ - **RSIC (Response Style Intelligence Classification)**: Analyze and score conversation response styles
48
+
49
+ ### Languages
50
+
51
+ The dataset primarily contains conversations in English (to be confirmed).
52
+
53
+ ### Dataset Structure
54
+
55
+ The dataset is split into training (80%) and testing (20%) sets.
56
+
57
+ #### Data Instances
58
+
59
+ Each instance in the dataset represents a single utterance or conversation turn with the following features:
60
+
61
+ ```python
62
+ {
63
+ 'Index': int, # Unique identifier
64
+ 'Utterance': str, # The actual conversation text
65
+ 'Predicted_Intent': str, # Classified intent of the utterance
66
+ 'Intent_Score': float, # Confidence score of intent prediction
67
+ 'Sentiment': str, # Analyzed sentiment
68
+ 'empathy_score': int, # Numerical score for empathy
69
+ 'listening_score': int, # Numerical score for active listening
70
+ 'Topic': int, # Numerical topic identifier
71
+ 'Topic_Name': str, # Name/description of the topic
72
+ 'rsic_score': float, # Response Style Intelligence Classification score
73
+ 'RSICs': str, # Response Style Intelligence Classification categories
74
+ 'fallback_type': str # Type of fallback response if applicable
75
+ }
76
+ ```
77
+
78
+ #### Data Fields
79
+
80
+ | Field Name | Type | Description |
81
+ |------------|------|-------------|
82
+ | Index | Integer | Unique identifier for each entry |
83
+ | Utterance | String | The actual text of the conversation turn |
84
+ | Predicted_Intent | String | The predicted intent of the utterance |
85
+ | Intent_Score | Float | Confidence score for the intent prediction (0-1) |
86
+ | Sentiment | String | Sentiment classification of the utterance |
87
+ | empathy_score | Integer | Numerical score indicating level of empathy |
88
+ | listening_score | Integer | Numerical score indicating active listening quality |
89
+ | Topic | Integer | Numerical identifier for conversation topic |
90
+ | Topic_Name | String | Descriptive name of the conversation topic |
91
+ | rsic_score | Float | Response Style Intelligence Classification score |
92
+ | RSICs | String | RSIC categories/labels |
93
+ | fallback_type | String | Type of fallback response if applicable |
94
+
95
+ #### Data Splits
96
+
97
+ The dataset is divided into:
98
+ - Training set: 12,478 examples (80%)
99
+ - Test set: 3,120 examples (20%)
100
+
101
+ ### Dataset Creation
102
+
103
+ #### Curation Rationale
104
+
105
+ This dataset is created as part of a capstone project for a certification program in MLOps that is building a customer intelligence platform that can be used
106
+ customer service chatbots, BERT classifiers and analytics and insights platforms for ML training and customer service enhancements
107
+
108
+ #### Source Data
109
+
110
+ This dataset is derived from the "Relational Strategies in Customer Service (RSICS)" dataset originally published on Kaggle (https://www.kaggle.com/datasets/veeralakrishna/relational-strategies-in-customer-servicersics). The source data consists of airline IVA (Intelligent Virtual Assistant) conversations, providing a real-world context for customer service interactions in the aviation industry.
111
+
112
+ The original dataset was specifically designed to study relational strategies in customer service contexts, with a focus on how virtual assistants handle various types of customer inquiries and situations in the airline industry. This makes it particularly valuable for developing and improving customer service AI systems in high-stakes service environments.
113
+
114
+ #### Annotations
115
+
116
+ - Annotations are spot checked by human evaluators for sentiment and predicted_intent primarily
117
+
118
+ ### Considerations for Using the Data
119
+
120
+ #### Social Impact of Dataset
121
+
122
+ This dataset can be used to improve customer service interactions by:
123
+ - Enhancing empathy in automated responses
124
+ - Improving intent recognition accuracy
125
+ - Developing better conversation flow understanding
126
+ - Training more effective customer service systems
127
+
128
+ #### Discussion of Biases
129
+
130
+ - TBD
131
+
132
+ #### Other Known Limitations
133
+
134
+ - The dataset may contain specific patterns or biases based on the source of customer service interactions
135
+ - Intent and sentiment predictions are model-generated and may contain inherent biases or errors
136
+
137
+ ### Additional Information
138
+
139
+ #### Dataset Curators
140
+
141
+ [To be added: Information about the team or individuals who created and maintain this dataset]
142
+
143
+ #### Licensing Information
144
+
145
+ [To be added: License information for the dataset]
146
+
147
+ #### Citation Information
148
+
149
+ [To be added: How to cite this dataset in academic work]
150
+
151
+ #### Contributions
152
+
153
+ Thanks to [@raghavdw](https://huggingface.co/raghavdw) for adding this dataset.