{ "cells": [ { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import os\n", "import csv\n", "import random\n", "\n", "def generate_dataset_csv(images_dir, masks_dir, output_file, train_ratio=0.7):\n", " # Get list of images and sort them\n", " images = sorted([f for f in os.listdir(images_dir) if f.endswith('.png')])\n", " \n", " # Create pairs of image paths and corresponding mask paths\n", " data = []\n", " for img in images:\n", " # Get corresponding mask name by adding '_mask' before .png\n", " mask = img.replace('.png', '_mask.png')\n", " \n", " # Create full paths\n", " img_path = os.path.join(images_dir, img)\n", " mask_path = os.path.join(masks_dir, mask)\n", " \n", " # Verify both files exist before adding\n", " if os.path.exists(img_path) and os.path.exists(mask_path):\n", " data.append([img_path, mask_path])\n", " \n", " # Randomly split into training and validation sets\n", " random.seed(42) # for reproducibility\n", " random.shuffle(data)\n", " split_idx = int(len(data) * train_ratio)\n", " \n", " # Assign splits\n", " for i in range(len(data)):\n", " split = 'training' if i < split_idx else 'val'\n", " data[i].extend([split, 0]) # add split and fold (0 for all)\n", " \n", " # Write to CSV\n", " with open(output_file, 'w', newline='') as f:\n", " writer = csv.writer(f)\n", " writer.writerow(['imgs', 'labels', 'split', 'fold']) # header\n", " writer.writerows(data)\n", "\n", "# Example usage\n", "images_dir = '/l/users/sarim.hashmi/for_the_little_interns/the_experiments/drive_dataset/dataset_drive/images'\n", "masks_dir = '/l/users/sarim.hashmi/for_the_little_interns/the_experiments/drive_dataset/dataset_drive/masks'\n", "output_file = 'data_split.csv'\n", "\n", "generate_dataset_csv(images_dir, masks_dir, output_file)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "AI702", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.1" } }, "nbformat": 4, "nbformat_minor": 2 }