# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from enum import Enum from pathlib import Path import numpy as np from loguru import logger from nymeria.definitions import Subpaths, VrsFiles from projectaria_tools.core import data_provider, mps from projectaria_tools.core.data_provider import VrsDataProvider from projectaria_tools.core.mps import ( ClosedLoopTrajectoryPose, MpsDataPathsProvider, MpsDataProvider, ) from projectaria_tools.core.sensor_data import ( ImageData, ImageDataRecord, TimeDomain, TimeQueryOptions, ) from projectaria_tools.core.stream_id import StreamId class AriaStream(Enum): camera_slam_left = "1201-1" camera_slam_right = "1201-2" camera_rgb = "214-1" imu_right = "1202-1" imu_left = "1202-2" class RecordingPathProvider: """ \brief This class will not check of input recording path is valid """ def __init__(self, recording_path: Path): self.recording_path: Path = recording_path self.tag: str = recording_path.name @property def data_vrsfile(self) -> Path: return self.recording_path / VrsFiles.data @property def motion_vrsfile(self) -> Path: return self.recording_path / VrsFiles.motion @property def mps_path(self) -> MpsDataPathsProvider | None: mps_path = self.recording_path / Subpaths.mps if mps_path.is_dir(): return MpsDataPathsProvider(str(mps_path)) else: return None @property def points_npz_cache(self) -> Path: return self.recording_path / Subpaths.mps_slam / "semidense_points_cache.npz" class RecordingDataProvider(RecordingPathProvider): def __init__(self, recording_path: Path) -> None: super().__init__(recording_path) self._vrs_dp = None self._mps_dp = None if not self.recording_path.is_dir(): return # load vrs if self.data_vrsfile.is_file(): self._vrs_dp = data_provider.create_vrs_data_provider( str(self.data_vrsfile) ) elif self.motion_vrsfile.is_file(): self._vrs_dp = data_provider.create_vrs_data_provider( str(self.motion_vrsfile) ) # load mps if self.mps_path is not None: self._mps_dp = MpsDataProvider(self.mps_path.get_data_paths()) @property def vrs_dp(self) -> VrsDataProvider | None: return self._vrs_dp @property def mps_dp(self) -> MpsDataProvider | None: return self._mps_dp def get_global_timespan_ns(self) -> tuple[int, int]: if self.vrs_dp is None: raise RuntimeError( f"require {self.data_vrsfile=} or {self.motion_vrsfile=}" ) t_start = self.vrs_dp.get_first_time_ns_all_streams(TimeDomain.TIME_CODE) t_end = self.vrs_dp.get_last_time_ns_all_streams(TimeDomain.TIME_CODE) return t_start, t_end @property def has_pointcloud(self) -> bool: if self.mps_dp is None or not self.mps_dp.has_semidense_point_cloud(): return False else: return True def get_pointcloud( self, th_invdep: float = 0.0004, th_dep: float = 0.02, max_point_count: int = 50_000, cache_to_npz: bool = False, ) -> np.ndarray: assert self.has_pointcloud, "recording has no point cloud" points = self.mps_dp.get_semidense_point_cloud() points = mps.utils.filter_points_from_confidence( raw_points=points, threshold_dep=th_dep, threshold_invdep=th_invdep ) points = mps.utils.filter_points_from_count( raw_points=points, max_point_count=max_point_count ) points = np.array([x.position_world for x in points]) if cache_to_npz: np.savez( self.points_npz_cache, points=points, threshold_dep=th_dep, threshold_invdep=th_invdep, max_point_count=max_point_count, ) return points def get_pointcloud_cached( self, th_invdep: float = 0.0004, th_dep: float = 0.02, max_point_count: int = 50_000, ) -> np.ndarray: assert self.has_pointcloud, "recording has no point cloud" if self.points_npz_cache.is_file(): logger.info(f"load cached point cloud from {self.points_npz_cache}") return np.load(self.points_npz_cache)["points"] return self.get_pointcloud(cache_to_npz=True) @property def has_vrs(self) -> bool: return self.vrs_dp is not None @property def has_rgb(self) -> bool: return self.has_vrs and self.vrs_dp.check_stream_is_active(StreamId("214-1")) def get_rgb_image( self, t_ns: int, time_domain: TimeDomain = TimeDomain.TIME_CODE ) -> tuple[ImageData, ImageDataRecord, int]: assert self.has_rgb, "recording has no rgb video" assert time_domain in [ TimeDomain.DEVICE_TIME, TimeDomain.TIME_CODE, ], "unsupported time domain" if time_domain == TimeDomain.TIME_CODE: t_ns_device = self.vrs_dp.convert_from_timecode_to_device_time_ns( timecode_time_ns=t_ns ) else: t_ns_device = t_ns image_data, image_meta = self.vrs_dp.get_image_data_by_time_ns( StreamId("214-1"), time_ns=t_ns_device, time_domain=TimeDomain.DEVICE_TIME, time_query_options=TimeQueryOptions.CLOSEST, ) t_diff = t_ns_device - image_meta.capture_timestamp_ns return image_data, image_meta, t_diff @property def has_pose(self) -> bool: if self.mps_dp is None or not self.mps_dp.has_closed_loop_poses(): return False else: return True def get_pose( self, t_ns: int, time_domain: TimeDomain ) -> tuple[ClosedLoopTrajectoryPose, int]: t_ns = int(t_ns) assert self.has_pose, "recording has no closed loop trajectory" assert time_domain in [ TimeDomain.DEVICE_TIME, TimeDomain.TIME_CODE, ], "unsupported time domain" if time_domain == TimeDomain.TIME_CODE: assert self.vrs_dp, "require vrs for time domain mapping" t_ns_device = self.vrs_dp.convert_from_timecode_to_device_time_ns( timecode_time_ns=t_ns ) else: t_ns_device = t_ns pose = self.mps_dp.get_closed_loop_pose(t_ns_device, TimeQueryOptions.CLOSEST) t_diff = pose.tracking_timestamp.total_seconds() * 1e9 - t_ns_device return pose, t_diff def sample_trajectory_world_device(self, sample_fps: float = 1) -> np.ndarray: assert self.has_pose, "recording has no closed loop trajectory" assert self.has_vrs, "current implementation assume vrs is loaded." t_start, t_end = self.get_global_timespan_ns() t_start = self.vrs_dp.convert_from_timecode_to_device_time_ns(t_start) t_end = self.vrs_dp.convert_from_timecode_to_device_time_ns(t_end) dt = int(1e9 / sample_fps) traj_world_device = [] for t_ns in range(t_start, t_end, dt): pose = self.mps_dp.get_closed_loop_pose(t_ns, TimeQueryOptions.CLOSEST) traj_world_device.append( pose.transform_world_device.to_matrix().astype(np.float32) ) traj_world_device = np.stack(traj_world_device, axis=0) return traj_world_device def create_recording_data_provider( recording_path: Path, ) -> RecordingDataProvider | None: if not recording_path.is_dir(): return None dp = RecordingDataProvider(recording_path) if dp.vrs_dp is None and dp.mps_dp is None: return None else: return dp