# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """SQUAD: The Stanford Question Answering Dataset.""" import json import datasets from datasets.tasks import QuestionAnsweringExtractive logger = datasets.logging.get_logger(__name__) _CITATION = """\ @article{2016arXiv160605250R, author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev}, Konstantin and {Liang}, Percy}, title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}", journal = {arXiv e-prints}, year = 2016, eid = {arXiv:1606.05250}, pages = {arXiv:1606.05250}, archivePrefix = {arXiv}, eprint = {1606.05250}, } """ _DESCRIPTION = """\ Stanford Question Answering Dataset (SQuAD) is a reading comprehension \ dataset, consisting of questions posed by crowdworkers on a set of Wikipedia \ articles, where the answer to every question is a segment of text, or span, \ from the corresponding reading passage, or the question might be unanswerable. """ _URL = "https://huggingface.co/datasets/proan/fashion/resolve/main/images.tar.gz" class Fashion(datasets.GeneratorBasedBuilder): """SQUAD: The Stanford Question Answering Dataset. Version 1.1.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("int64"), "color": datasets.Value("string"), "description": datasets.Value("string"), "shop_id": datasets.Value("string"), "year": datasets.Value("float64"), "image": datasets.Image(), } ), # No default supervised_keys (as we have to pass both question # and context as input). supervised_keys=None, homepage="https://huggingface.co/datasets/proan/fashion", citation=_CITATION, ) def _split_generators(self, dl_manager): path = dl_manager.download_and_extract(_URL) image_iters = dl_manager.iter_archive(path) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"images": image_iters}), ] def _generate_examples(self, images): idx = 0 #iterate through images for filepath, image in images: yield idx, { "image": {"path": filepath, "bytes": image.read()}, "id": datasets.Value("int64"), "color": datasets.Value("string"), "description": datasets.Value("string"), "shop_id": datasets.Value("string"), "year": datasets.Value("float64"), "image": datasets.Image(), } idx +=1