pratyushmaini commited on
Commit
27bdb27
·
verified ·
1 Parent(s): 4d9a77b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -0
README.md CHANGED
@@ -622,3 +622,62 @@ configs:
622
  - split: val
623
  path: youtubesubtitles/val-*
624
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
622
  - split: val
623
  path: youtubesubtitles/val-*
624
  ---
625
+
626
+ # LLM Dataset Inference
627
+
628
+ This repository contains various subsets of the PILE dataset, divided into train and validation sets. The data is used to facilitate privacy research in language models, where perturbed data can be used as a reference to detect the presence of a particular dataset in the training data of a language model.
629
+
630
+ ## Data Used
631
+
632
+ The data is in the form of JSONL files, with each entry containing the raw text, as well as various kinds of perturbations applied to it.
633
+
634
+ ## Quick Links
635
+
636
+ - [**arXiv Paper**](): Detailed information about the Dataset Inference V2 project, including the dataset, results, and additional resources.
637
+ - [**GitHub Repository**](): Access the source code, evaluation scripts, and additional resources for Dataset Inference.
638
+ - [**Dataset on Hugging Face**](https://huggingface.co/datasets/pratyushmaini/llm_dataset_inference): Direct link to download the various versions of the PILE dataset.
639
+ - [**Summary on Twitter**](): A concise summary and key takeaways from the project.
640
+
641
+ ## Applicability 🚀
642
+
643
+ The dataset is in text format and can be loaded using the Hugging Face `datasets` library. It can be used to evaluate any causal or masked language model for the presence of specific datasets in its training pool. The dataset is *not* intended for direct use in training models, but rather for evaluating the privacy of language models. Please keep the validation sets, and the perturbed train sets private, and do not use them for training models.
644
+
645
+ ## Loading the Dataset
646
+
647
+ To load the dataset, use the following code:
648
+
649
+ ```python
650
+ from datasets import load_dataset
651
+
652
+ dataset = load_dataset("pratyushmaini/llm_dataset_inference", subset="wikipedia", split="train")
653
+ ```
654
+
655
+ Note: When loading the dataset, you must specify a subset. If you don't, you'll encounter the following error:
656
+
657
+ ```
658
+ ValueError: Config name is missing.
659
+ Please pick one among the available configs: ['arxiv', 'bookcorpus2', 'books3', 'cc', 'enron', 'europarl', 'freelaw', 'github', 'gutenberg', 'hackernews', 'math', 'nih', 'opensubtitles', 'openwebtext2', 'philpapers', 'stackexchange', 'ubuntu', 'uspto', 'wikipedia', 'youtubesubtitles']
660
+ Example of usage:
661
+ `load_dataset('llm_dataset_inference', 'arxiv')`
662
+ ```
663
+
664
+ Correct usage example:
665
+ ```python
666
+ ds = load_dataset("pratyushmaini/llm_dataset_inference", "arxiv")
667
+ ```
668
+
669
+ ## Available Perturbations
670
+
671
+ We use the NL-Augmenter library to apply the following perturbations to the data:
672
+
673
+ - `synonym_substitution`: Synonym substitution of words in the sentence.
674
+ - `butter_fingers`: Randomly changing characters from the sentence.
675
+ - `random_deletion`: Randomly deleting words from the sentence.
676
+ - `change_char_case`: Randomly changing the case of characters in the sentence.
677
+ - `whitespace_perturbation`: Randomly adding or removing whitespace from the sentence.
678
+ - `underscore_trick`: Adding underscores to the sentence.
679
+
680
+
681
+ ## Contact
682
+
683
+ Please email `[email protected]` in case of any queries regarding the dataset