{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Visualize the `supernova_explosion_64` dataset" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import glob\n", "\n", "import h5py\n", "import matplotlib.pyplot as plt\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['data/train/supernova_explosion_Msun_0.1_dim64_file_00.hdf5', 'data/train/supernova_explosion_Msun_0.1_dim64_file_01.hdf5', 'data/train/supernova_explosion_Msun_0.1_dim64_file_02.hdf5', 'data/train/supernova_explosion_Msun_0.1_dim64_file_03.hdf5', 'data/train/supernova_explosion_Msun_0.1_dim64_file_04.hdf5', 'data/train/supernova_explosion_Msun_0.1_dim64_file_05.hdf5', 'data/train/supernova_explosion_Msun_0.1_dim64_file_06.hdf5', 'data/train/supernova_explosion_Msun_0.1_dim64_file_07.hdf5', 'data/train/supernova_explosion_Msun_0.1_dim64_file_08.hdf5', 'data/train/supernova_explosion_Msun_0.1_dim64_file_09.hdf5', 'data/train/supernova_explosion_Msun_0.1_dim64_file_10.hdf5', 'data/train/supernova_explosion_Msun_0.1_dim64_file_11.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_00.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_01.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_02.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_03.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_04.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_05.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_06.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_07.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_08.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_09.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_10.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_11.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_12.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_13.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_14.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_15.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_16.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_17.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_18.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_19.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_20.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_21.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_22.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_23.hdf5', 'data/train/supernova_explosion_Msun_1_dim64_file_24.hdf5']\n" ] } ], "source": [ "# print the list of paths of files in the training set\n", "set_path = \"train\"\n", "paths = sorted(glob.glob(f\"data/{set_path}/*.hdf5\"))\n", "print(paths)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "# select the tenth path (more visual choice)\n", "p = paths[10]\n", "\n", "# print the first layer of keys\n", "with h5py.File(p, \"r\") as f:\n", " print(f.keys())" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "print bc available: \n", "print attributes of the bc: \n", "get the bc type: OPEN\n" ] } ], "source": [ "# In 'boundary_conditions' is stored the information about the boundary conditions:\n", "with h5py.File(p, \"r\") as f:\n", " print(\"print bc available:\", f[\"boundary_conditions\"].keys())\n", " print(\"print attributes of the bc:\", f[\"boundary_conditions\"][\"x_open\"].attrs.keys())\n", " print(\"get the bc type:\", f[\"boundary_conditions\"][\"x_open\"].attrs[\"bc_type\"])" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "t0_fields: \n", "t1_fields: \n", "t2_fields: \n" ] } ], "source": [ "# Reminder: 't0_fields', 't1_fields', 't2_fields' are respectively scalar fields, vector fields and tensor fields\n", "# print the different fields available in the dataset\n", "with h5py.File(p, \"r\") as f:\n", " print(\"t0_fields:\", f[\"t0_fields\"].keys())\n", " print(\"t1_fields:\", f[\"t1_fields\"].keys())\n", " print(\"t2_fields:\", f[\"t2_fields\"].keys())" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "shape of the selected t0_field: (59, 64, 64, 64)\n" ] } ], "source": [ "# The data is of shape (n_trajectories, n_timesteps, x, y, z)\n", "# Get the first t0_field and save it as a numpy array\n", "traj = 3 # select the trajectory as the data is quite big\n", "with h5py.File(p, \"r\") as f:\n", " temperature = f[\"t0_fields\"][\"temperature\"][traj, :]# HDF5 datasets can be sliced like a numpy array\n", " print(\"shape of the selected t0_field: \", temperature.shape)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB78AAAIDCAYAAAB8RtqiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD69ElEQVR4nOz9efwm11nfeV+nqu71t/be6m7tiy3LxtgYLGMMXgLYBgMOyTzwSsAJYcgT4gwQmxniZHicmLyGkJUHwuSBFwFmwmQSFscMEMAYG4yxsbxb3iRZUqulVqu3336vVXWePxopdvp3fY9Ud/9auu3P+/XKH+lL56q6q8451zmnuk2IMUYDAAAAAAAAAAAAAGCOZU/3DQAAAAAAAAAAAAAAMCs+fgMAAAAAAAAAAAAA5h4fvwEAAAAAAAAAAAAAc4+P3wAAAAAAAAAAAACAucfHbwAAAAAAAAAAAADA3OPjNwAAAAAAAAAAAABg7vHxGwAAAAAAAAAAAAAw9/j4DQAAAAAAAAAAAACYe3z8BgAAAAAAAAAAAADMPT5+A3Pkz/7sz+ytb32rra+vX7Gcf/iHf2gveclLrN/v28GDB+1v/I2/YWfPnr1i+QEA+HJypWv1b//2b9v3fu/32vOe9zxrtVoWQnD/23vuuce+8zu/0/bt22f9ft9e/OIX22/91m9dkfsAAOBL2ZWu3//wH/5De8ELXmD79++3brdrN910k/3AD/yAnTx58rL/lvoNAEAzV7p+v/zlL7cQwmX/79WvfvVl/+19991n3/M932PXXXed9Xo9u/nmm+3v//2/bxcuXLgi9wJgNnz8BubIn/3Zn9k//sf/+IoV9D/+4z+217zmNXbkyBF7xzveYT/90z9tf/iHf2ivetWrbDweX5FrAADw5eRK1+q3v/3t9oEPfMCe85zn2POf/3z3v3vwwQftJS95iX3uc5+zf/fv/p392q/9mh06dMi+4zu+w37jN37jitwLAABfqq50/V5fX7fv/u7vtl/5lV+x3/u937M3v/nN9tu//dv24he/+IsOxanfAAA0d6Xrt5nZTTfdZO9///u/6P/9m3/zb77ovzl37pzdeeed9r73vc/e9ra32e/+7u/a3/27f9d+4Rd+wf7SX/pLVtf1FbsfAM0UT/cNAHj6/OiP/qjddttt9uu//utWFJemgxtvvNFe+tKX2r//9//e/s7f+TtP8x0CAPDl7Rd+4Rcsyy79fdU3vvGN9uEPf3jX/+4nf/InbTAY2O///u/b8ePHzczs1a9+tT3vec+zH/mRH7HXv/71T+QBAAB769/+23/7Rf//l7/85XbjjTfaa1/7WnvHO95h3/d932dm1G8AAJ5per2e3XnnnfK/ecc73mEXLlyw//Sf/pO96lWvMjOzV7ziFTYej+0tb3mLffzjH7cXvOAFV+N2AThYQQNz4q1vfav96I/+qJld+kD9+P/synve855G+R555BG766677Hu+53ue+PBtZva1X/u1dtttt9nb3/72K3HbAAB82bjStdrMnvSB9/ve9z57/vOf/8TBuZlZnuf2mte8xk6dOmUf/OAHG98DAABfyvaifu/m0KFDZmZftP+mfgMA0MzVqt+7abVaZma2srLyRX++urpqZmbdbnfP7wGAxr/8BubE93//99vFixftZ37mZ+w3f/M37ZprrjEzs+c85zlW1/WT+p9TCSFYnudmZnb33XebmdlXfMVXXPbffcVXfIW9733vu4J3DwDAl74rXaufislkYvv377/szzudjpmZfeITn0j+7XUAAL4c7WX9LsvSptOpffazn7Uf/uEftttuu83+8l/+y0/Eqd8AADSzV/X785//vO3fv982Nzft+uuvt+/6ru+yf/SP/pH1er0n/pvv+I7vsOuuu87e9KY32c/93M/Z9ddfbx/5yEfsJ3/yJ+11r3ud3X777Vf2xwJ4yviX38CcOHHihF133XVmZvaCF7zA7rzzTrvzzjtteXnZvu/7vs9arVby/z3+P8NiZk/83xnbbaO9f//+L/q/QwYAANKudK1+Kp7znOfYJz7xCdve3v6iP//TP/1TMzPqOgAAjr2q32fOnLFWq2X9ft9e+MIXWlmW9u53v9sWFxef+G+o3wAANLMX9fvrvu7r7F/9q39lv/Ebv2G/9Vu/Za997Wvtp37qp+zVr371F31MX1lZsQ984AM2nU7tuc99ri0tLdk3fMM32Itf/GL7tV/7tav6HADsjn/5DXwJeOtb32pvfOMbk//d0tLSZX8WQtj1v/X+HAAAPHWz1Oon441vfKO94x3vsO/93u+1f/Ev/oUtLCzYz/7sz9qf/dmfmdmT/59PBwAA/80s9fvgwYN211132Xg8ts985jP2Uz/1U/aKV7zC3vOe9zzxr9Oo3wAAXHlN6/dP/MRPfNH//7Wvfa3dcMMN9uY3v9ne8Y532Otf/3ozM1tbW7Nv//Zvt8FgYL/6q79q1157rd199932tre9zb7t277Nfud3fueL/s+cALj6GIHAl4DrrrvOTpw4kfzvvvCD9oEDB8xs979JfvHixV3/RTgAAGimSa1+Kl71qlfZL/3SL9mb3vQmu/nmm83s0r8me9vb3mZvectbvuj/ligAAHhyZqnfRVHYi170IjMze+lLX2qvfvWr7cYbb7Sf/MmftJ/+6Z82M+o3AAB74Uruv//6X//r9uY3v9k+8IEPPPHx+5/9s39mH/vYx+zkyZNP/IW2l73sZfbsZz/bXvnKV9qv/uqv2hve8IbZfgSAmfBXSIEvAU3+p1ye+9znmpnZJz/5ycvyffKTn3wiDgAAZrfX/7PnZmZveMMb7MyZM/bpT3/a7r33XvvUpz5lZpc29C972cuu1E8BAODLxpWs3ydOnLBjx47ZPffc80V/Tv0GAODK2ov99xf+r7F87GMfs+PHjz/x4ftxX/3VX21mZnffffeV+SEAGuNffgNzpNPpmJnZcDj8oj9v8j/lcvz4cfuar/ka+w//4T/Ym9/8Zsvz3MzMPvCBD9jnPvc5++Ef/uErd+MAAHyZuJK1uomiKOz22283M7ONjQ37+Z//efv2b/92u/7662fKCwDAl7KrUb/vu+8+e/jhh+3bvu3bLotRvwEAeOquRv3+lV/5FTMzu/POO5/4s2PHjtm73vUue+SRR77of6Xl/e9/v5nZk/pX5wD2Vogxxqf7JgA8Oe95z3vsFa94hf3tv/237Q1veIO1Wi171rOe1fig/D3veY994zd+o73uda+zH/zBH7SzZ8/aj/3Yj9nKyop96EMfemIBAQAAnpwrXatPnjxpd911l5mZ/eIv/qL93u/9nv3ar/2amZndcMMNT/zPqZ49e9b+5b/8l/bSl77UlpaW7LOf/az91E/9lGVZZu9973vt2LFjV+YHAgDwJehK1u9PfOIT9iM/8iP2V/7KX7GbbrrJsiyzT37yk/av//W/tvF4bHfdddcTH7Wp3wAANHcl6/d73/te+6f/9J/a61//ervppptsNBrZf/2v/9V+/ud/3r7hG77B3vnOdz7xr78//OEP29d+7dfazTffbD/2Yz/2xP/N75/4iZ+wEILdfffddvDgwSv9cwE8BXz8BubMW97yFvuVX/kVO3PmjNV1be9+97vt5S9/eeN873znO+3Hf/zH7WMf+5j1+3371m/9Vvvn//yf2+HDh6/cTQMA8GXkStbqX/7lX7a/+Tf/5q6xN7zhDfbLv/zLZmZ28eJF++7v/m776Ec/auvr63bNNdfYt3/7t9uP//iPs+kGAOBJuFL1+7HHHrM3v/nN9v73v98effRRK8vSTpw4Yd/0Td9kb3nLW+zaa6994r+lfgMAMJsrVb/vu+8++6Ef+iH7+Mc/bufPn7cQgt166632Xd/1XfamN73psn8k9tGPftTe9ra32V133WXnzp2z48eP2ytf+Ur78R//8S+q9QCeHnz8BgAAAAAAAAAAAADMvezpvgEAAAAAAAAAAAAAAGbFx28AAAAAAAAAAAAAwNzj4zcAAAAAAAAAAAAAYO7x8RsAAAAAAAAAAAAAMPf4+A0AAAAAAAAAAAAAmHt8/AYAAAAAAAAAAAAAzL2iacO6ru306dO2tLRkIYQreU8AAHzZiTHa1taWHTt2zLJs7/5uGvUbAIArh/oNAMD8uVr124waDgDAlfRka3jjj9+nT5+2a6+9tmlzAACwi1OnTtmJEyf2LD/1GwCAK4/6DQDA/Nnr+m1GDQcAYC+kanjjj99LS0tmZra68DwLIX/K7cMe/S+uh+DnjbFu1M5M369qm4eWzFtYp1HeKpYybzT/t0ar3FgtnpGZWSbuaVoPZduqnsi4Z2PwoIznmf8MW/mCG+u2V2Xepv1FtUu1bdrPZm2rpH5PU02f4bQeyLxVPfZj1TR9Yw0UebNxfCnuz59Z8KfoIuvKvJ2w6MauiTfLtndt/oKM+1K1QPWl2DjvsZWXiSv67zwzPT9nYkwVwX/nTdVxag9t/MET9XWvPJ5/oXvTrv1P9TszsyLrNbruXs1Ds8yNSiFqi1nz+p2aUyvz6/vTVb9rseZQvydVv2PccWO9tn84lKrfiuoPau2Uatu0tqfazuLpqN+qr5T1SOZV9buuVd/Xtb2u/XvKMn++Sz0/uf4s+v41E3Os6i9lYqxuDj4nMzen+qj/nFYX7pBZ+8XBhvejqfqtnn+WXMfs7mrX7xBWGv2rsf0LtzW6bmpufDrMsu9pBX985qJ/pOaE0sQcNsN8rOp3KebNS9f15z8V2xqeknmDeE551nZj3fY+mTcPftu9ouaE9BrTnzPUmm2v6nOKGsvqrGaWOaCu/RpdiZiZWVn5NU/13yLX+2QlE+d3qrZfauv3pW6+Kts+uvEBEW12jmZmlmcrbqyOfh89uPQcmbeXrYq8Yt5J9KWm9TtP7Ou9Pny16reZfcE1Fnat4THq93x4+avdmFoLf6nV8CL447sQNSR1hl5GXU89aq43a14nzPS8rMbZzvgxmbephc4RGW+6p51lrzzLtyWdt/l7U+9G3k/it+xVDVfXnVb+eU1qTzspt92YOhdIrQXV/l29tzzXdaKd+3WgSszPGzufFlF1T8syr4n14lLPPy9bbem/aJWLs0xlYv47TVF1uuk4ruPUTm78XrKGN/74/XixDiFv9PFbLWpmoe5FTVCp39C0OKcmA/XxRR6ey6ypj9/qsKT54Xnqt9ZBFwhP6nBHFiwZS/Vb/7q6qDe/XzUu9qqPpuzVYln3b/WhK/EcRDw07IMp+prNP343/TB+Ke7PLeqj3V9cORFv2m5v8upn4c+WWaIEqkNw9Xxntdf/M2ip+p0aY1mDmv9k8ip7Vb+Vvavfek5V9f3pqt9R3pWqlbovx9iszs7Sl1SdrVNzTcMa/bR9/H4a6rduN0v99vvgTAcmMzz7pn00OcfOsBbU9XKW2tIsb7qeNN6K6ryyfl/5j9+Pu3r1OzS6VtPn/aV2cC77gFjfpZ5DJg9D9+bjd5bc2/hzp6rt6f3L3uy/m64xZ7F3H7/9Mfp0jSl1XX1W03xuC0Ht6xMfjfboHw00vuYM65jkX3wTc7paL6foZ+i/m1nOGnR/0e+8ef1u9vH7cVfjf4Y8WcMT77npmQc1/JLUGbqu4T69P29eJ8zMopgjZ6nhTaXnwIbnLsm9XPN9ts7b9OP33swXs3z8nqWG6/HYfE/bfK24N38ZYpY1aJ3cIzbdK8/Sf5ufV6f+wpibt2G7VNtZ/4F0qobv7f9REwAAAAAAAAAAAAAArgI+fgMAAAAAAAAAAAAA5h4fvwEAAAAAAAAAAAAAc4+P3wAAAAAAAAAAAACAuVfMmmBzeGrX/wPtqf9j5WW57saWF251Y+188Unf238v9X/wvWnbInQaxZLXNP//eP1uz/wLRavdWBWnfsMgYom2MVayrVKLvO1iWbYtq0GjvDH6z8hMP+NM9O86yLSy7SzUO7foh1LjIgS/H84iU31YPEP1Ts3MQubnzTN/PKb6r3oOrawn2yrqukXWd2P9bJ/MW5n/nN6//nPpG2uk+RygHFx6voz3g/8sHpt8yo2l+v5y65gby81vWyeewzQOd2+X6NtX2vbwpIVdBltM3H8Qde3g0vPcWBb0kkPNyWo+TtXDXNVv67qx1P2qGq3UIfF8RY2YpX7XiZqnqHejak+e+c/XzCzL2iLmP/86ljqveHe1uN/UukDV90zUWVXTLl04EffSJvp+Ku62S/RtVb/VeEuuExsuj0LUDdVcr/qZWjOY6bGqnn0/PyDzdoK/1/Hqx+M27DMi2rCjmVnT+t4v9G8t49iNqX7WFs/ITM/Pqn6rtZOZ2STuvudIzUlXWl2PLIRd6necyHbntj7uxo4sv8iNpdYFTc0y12TiPab233tVv1vmr9tL8/t66vmq+i33f6Zrnr6m7kt1teXGuv2b3FhqbdVU6neq/XfTPbSZyfredF07a1tFjQ21n51U2zJv1XAOTP0WWaOt+Tmbum6R+2vXTr4k826OTrmxi+OPJe/LE4K/Xk7N+2W13vi6e6Ed/HnSTNdoZV7qt9lfvLO42x5c38vFwT1ubH//Nv961HAzexLzjcir+lec4Xx3WvtrgxT1e6blpmyb5/447BQrja5ptodn3WIPOcs5kbymGDfJbwkNn0PqftXYUOuraa33j/Kaub82qBL9V+3Bg/m1K7W2Vc8/z8U6J1+QedX5+/mNj8i2mt+XyvJi46xr2+tubHmff5Ztlj6zbqot9kJKqoZ791sn2j2Of/kNAAAAAAAAAAAAAJh7fPwGAAAAAAAAAAAAAMw9Pn4DAAAAAAAAAAAAAOYeH78BAAAAAAAAAAAAAHOPj98AAAAAAAAAAAAAgLnHx28AAAAAAAAAAAAAwNzj4zcAAAAAAAAAAAAAYO4VsyaIsTKz+rI/r+qJbmelG9sePeLGrl3+Opl3Erdl3JNZKxHP/Vho/hjr6D+HqQ3dWEj8vQV1v7VN3VhZj2XeuMu7vhKy4D9/FTPT91TWo+b3JJ5xCP7zzcWzN0u/O0/q2VfRf6954hkqWXhm/R2ZPOvIeGF9Nxat8mNRP1/dR/1nVKfyZn5bNS9VYhybmS3aATf27H1/VbbNxXU/tfarsq3mj41gwY1d2PqEzHrePurGVhfvcGOzjKk6+H0p9W5qpx/WezS/eop8xcIufXdarsl2Mfp1Ym3nXjd2dOmrdN7g/341dmep30Xw5xPvPT2uFM9BtVX3Y2a7vpP/ltfvW6q/mqXnuKb3ZNEPFXlX5h1NzvppixX/fpJroIZ1K1HvVO2/tB5+6jGzRP8WtSck+tJe1e/UdT2p9VxLPF+11lZraTOzVtZzY7mYA9R7MdNjSv3WdvDXKWa6hjy0/i7ZNs+X/bzVpmyrBLVlFO/m9Mb7ZN4o5q1e57gbO9x/rsybmz/3qPkjNe97c3At9rV7odM6sOu8PJqclu3U8z6/82k3dmzxRTKv6rNqHKXmElWj1Vo19R7l/YpxLWuhNd/jpfYKqbloLyx0/fFnZjaebrgxOcYS87WaT2ah1tiZWMeknr3qw037g1nzfWcyrxg3al+Uqt9KyP37rRJnT0Xu1295zcSzV2NZrSG7mb82NTO7WPn7oFnEqM9WFVW/s9xfj2yOTsm86reWlX8me+3K18u8C7bqxgbBX8ek9t9e/96r802l1z62ax8cjB+S7SZTf9/02Kb/bK5ffaXMO43+ufNe1fDC1Po7cUaTeNee5P5R7jXEPi+15hBrr9Q9Na3//c41Mp5nbf+exPyYPE+Q5xh7NNbk892bs/nUelBfs9k+OtU2949T5TmbWfN5MIozUTNd/2UdzvRaUL23dr7gxo4Ut8u8n177TzK+F9Te3UyPuU5r1Y2tT07KvJNyy42Npxfd2Er/Fpn3WOt5bmxq/ppPna0qyX3FX3hmfdUCAAAAAAAAAAAAAKABPn4DAAAAAAAAAAAAAOYeH78BAAAAAAAAAAAAAHOPj98AAAAAAAAAAAAAgLnHx28AAAAAAAAAAAAAwNzj4zcAAAAAAAAAAAAAYO4Vsyao6x0zC5f9+f6l58l26zv3ubGq2nRjk7gt8wbLRcz/1p+HViJvs78nUMdSxiuburEyjtxYjHWj+0mJpvPGWDXOHYL/DKt63ChmZlbXEzfWa+9rdD9mZnnW8duKfhZNPyP17uro94dpPWycN8v935pl+jnM8lv3QhG6M7QW4/zyaey/C4tnqOadxPNV1DtNzQHToMeNMojn3NiRlZe4scc23i/zhiD6UvTH8Sw2du4R1/THm5nZdv6wG1vqXefHiqMybxl3fzepenGlVfXYQnjq9Xtt6243Vlbrfsz53Y8rgj/n5mLsZmHmpcyuUu+jFvOf+q3JeTOKkJoTEvV7FpmY/0rzn1NqnsrzRTc2rXbcWK/l13YzPdc0Xc+lZJnfD1P1W/W1lvgtWWIdo+r306EQ6yozs1r0l1zMD6kxpZ6DWv8H0/er1g1qPE7iQKZVa4rjq18v2z6y/m4Z3wu6ljZfJ47GZ9zYQ5Ozsu3Bpee7sX359W4sNe97Y/lq12/PysLtMr6x8xk3VpZrbkztV830vNq0ts8iVQ8r0WflWkXU5xQ1T+3Vvt5Mz3Hqt9Z14gyj9s8p1HjIE/OqWm8oqu7PQvUVM7NM9QlRI9S4uNR0vup3FcU+Wa1dg+77razX+J4Utd5Qa6vUWL1m8YVubLM8Lduq/czFrY/Jtoqae9Q52nD8SCKzGqv+NdcnJ2XWlfYRN6ZqxjTqtfak3v0c+ZlSv83Muu1rZHw08fuQWoulaqKq4a3gj0G1Xk3lVfeUWnOoebkWbVPzqhwrcg/e/Pw3RZ6fiTqdZ22Zd3t0yo0tdq8VNyTTSqq+13t0jpH8fiF+zyxnBnp/2by+N72nLPG9q+m5fqqGq7PwTrHst0v8TvUtZznz59H7B3+s84pxE+vUJqDZM1TfP83MgvhsO56uu7Hh+NFEXr/zR3G+tzXyz8jNzIriBW6sCv78nJr3p/Xu5ydPtobzL78BAAAAAAAAAAAAAHOPj98AAAAAAAAAAAAAgLnHx28AAAAAAAAAAAAAwNzj4zcAAAAAAAAAAAAAYO7x8RsAAAAAAAAAAAAAMPf4+A0AAAAAAAAAAAAAmHvF7ClaFkK47E8n5ZZsVdc7biyErhur4lTmreptN1ZkfTeWWS7z2uU/8QtC/t8hKG2k8zYUrd6TvOq3mJmF0PzvSwRxz5WN3Vivc1DmHU/PubE8b7uxbI/+7keM+t3Uog+PK3/cVNWk8T2184XGbZ9pUn10r6g5YrZxIdqKeaewTuNrzqIV/Hn0xOqrZNuH1991pW8nKUZ/3IRECawqv54cbN3ixiY2SNxTtfuf2+5/vldCyHat39uj07JdtNKNtVuH3Zia+8zMJiLekvW7+VKmMv+aKmbW/H2laoSq72q+2Mu5Uf1Wrz+bmbUKXXvGg7NurN+/2Y2FoNdsefDnx0zM16k1Zh39vl/W/jpmWvlrXjOzuvbzhsK/31bWk3lVn9irdaQSEmvtXLzXverfeWjtyTXV803NAd2w7MZSa9eb9r3OjU2iX5tS9VnN+3tFXjPqtue3Pu7GllaPurHUes6t34l3eqV519sZPdo4Z7t1yI2VUe9n1TjKzY/Nooz+nFsn6nPT+S+1jnk6pOYpdc+VqFvj6ZrOW4v1tRhHedBrtjy7+vsbNX7VMzIzK0XbIvdrdMua1++9Mss1c3VWJmq7Wt+nqPtVc9JfNHapteAse/7V1nUyvlP5Z1oh+GdaMTkv+QUzink0WWgb7oM2B5+T8ceKVTe2mPv7TLXGMfPfq9rH7JUsy3cdF5OpPkNXFns3uLFRvSHbFuL8XZ6BJeYMVWvlHjzRp1XeWszJMbG3nzeqPm2PTsm2+Qxzr5Lao3vyxB5R9TW5zhF790t5/f6i6kghzhrMzLI9Wvsqar2dql1qTd3KxBo/8RzUGZJ6vrM8v0H016+H+8+VbdVzSO2FLmx/xo31Ov4ea2twr8wr98O1f09BLXRSeYV2viTjG8FfyygT8S3XbPYazr/8BgAAAAAAAAAAAADMPT5+AwAAAAAAAAAAAADmHh+/AQAAAAAAAAAAAABzj4/fAAAAAAAAAAAAAIC5x8dvAAAAAAAAAAAAAMDc4+M3AAAAAAAAAAAAAGDu8fEbAAAAAAAAAAAAADD3ilkTLPaOWwj5ZX8ekt/Vox+JIzc2nF6UWbOs5Qdr0S7X99uzfX5bu/z3P25qQ5m3ilM3FqO44RlkYebXvqsgnoOZWRE6biwXse3Jo4krV/41s16irU89/yg6Uy3eqZlZrdrWZfrGHCH4fXi3Mfq4zMSYMf1b90qqLzWlxqp6fnup6fOdRj23dELfjdVizMxiffzgnuTdK1HUITOzhe51buzs5DNubLF1VOb1+ndI3M+V1ilWd+33cYb+UdcTNzauNmXbLOi5yJOrum9mrdCsDpQ2btTObLZnqNZPezVPpebcVubPJ3km6vf4jMyrnlMdm9dDnVe0S6y71JptWu3415yhts9Sg5+O+q2k9gaqRs90XbU+2qO/ByzzBt22SKzLmmqLdcGRlZfItmqOOLPxp43vqakQujLe71zjxrYqf17qZf5+z8yf78IM81UTraK/69q+mvo1OEXtmSZifrvU1q8DciiERZm3Zf57roM/z6u52kzXiFnqt6LnIT33qXtK7r/Fu1F70lah30053hLX9PuS2pOameViLah+a+qdl/XAjU1rf09ViXWtmV43yHOpp0nTdUGqVqr401Hb8xnqqOqDqT20+q2pe1rK/f3j8uoxN5bar5xc+30Rvbp7z0t0f1BnaZX5sSyxR/Lea51alO2BELJd+29ZbsyU06PmODOzPPf7Zhn9/pXaYxfm1x+Vdxayvs9wvt70nMLM5Lp/r849Q+LMvxTnMnnmzzdyvWdmrYbn78l1W8N3Vyb6vrym+C3tTK+Rng6znPHqtZc/txSJNV1TqW9We7WuUGO1H/QecWH5oBtbm550Y8dXXyHzPrL+bjcW7eruP83MJok6pb5TdMS+L31OtHu8fpLrGP7lNwAAAAAAAAAAAABg7vHxGwAAAAAAAAAAAAAw9/j4DQAAAAAAAAAAAACYe3z8BgAAAAAAAAAAAADMPT5+AwAAAAAAAAAAAADmHh+/AQAAAAAAAAAAAABzr5g1QadYsSxcnmY5Pybbrbavd2MPrf+BG8uzjsxbx6kbK23ixkI9lHm7+Yobm5p/zb0SnoF/byEPLRlvh36jvDHWOm/rsBvbHp12Y6v9G2XeVubf77QeuLHa9P3WsXRjWeYPybr226Xa5kGPG+WZ2NeUzHI3FkLz37JXzyGK/pLq+8qOrbmxni3LtvvthBs7XX/KjR3o3irztoslN3Zx62Oy7V7oto/I+JHec93YKG64sUrUITOzaNVT+vO9stg9umv9XsmOy3ax7/fLe9d+042F4PcrM7OqHou2/vgbxy2Ztxv8/j4xfy5PqcX4nGXszjJPybxibiwSNSIV96Sfg/9bu4W/7pplPlbjTK0hzfTvmeWdq/pdhLbfzvS6S9XD6mlYu87imVi/FVXbUzViw864saVwSLZtW8+N3bf1h27s4MJzZN7N0SkZv9raxaqML3aOurEidN1YaSOZ15tHg0XZ7kpb7ly7a/1OrcM2pg+7sfXtu93YYufFMu+oXPeD4rQhZP4cZWbWDYtubJLYbylN6/ds85D+rU3bpvbX6p6rzJ+LBomaFiy4MVVLs7Ag86p3Y+Kdp+q32p+rvXnKXq3Z5s287b+bUrXdzKwUfSm1llb7837tz4Wfm75H5tX/3unq7j3NzPYvPU/G27n/W9X6Sc8dtmvNfLrs69xo2S5np/s7N8t2J9d+z41tDe51Y8v9Z8m8A9FvO7l/fpPcPyb2KZ7UOEutoz2puWiWOq2oc/LC/DVpSlX4c8Z46p9VmZlNKv8MRD2nWcaRfr76nZbRPyeaVjtuLHWG3rQ+pc7tnmm1KyUXY3XvzqZEP0uMxafj+daJd67iKy3/HPSxwSdk3n7H/3Y6GJ+UbffCgcXbZVy9G3X+tFtN/KK8Tj8MT3INP18jEgAAAAAAAAAAAACAXfDxGwAAAAAAAAAAAAAw9/j4DQAAAAAAAAAAAACYe3z8BgAAAAAAAAAAAADMPT5+AwAAAAAAAAAAAADmHh+/AQAAAAAAAAAAAABzr5g1QbDMwi7f0LeqM41zHlr+ajd2bvMu2Xaxd7Mb67cOurEstGTeSRzIeFPRqkbtQnh6/t5CnnhOym795HG9sOLGtvKuzDsuN9xYHtpurJX1ZF51v9FqPxb92CyyTA/XPOvsyXUV9Yy+nGSWN26reosa56lr5uaP1cP1NbLtn2z8rIiqO44yr8l7Do3zBjHOY5y6sdHkMZk3X/Cf4aTadmNVLGVeb+7Zq7nDEyy3sMs72ax1/a7i2I0dXHqhGzu/9RGZd3XxuW5M1Z4i6BpRmn+/deJdKap+P101WlHPcJb5pDb/GabWOEW+5MbWB/e7sQOLt8u8rdB3Y5PaH7uzyIJfo2PQY1u1DaF5fVH0O222Nk2ZpVYqs6xFZqvfzZ5TEfR6bRqHbuyhwZ/LtoPxyUb3dGbjfYn/QtVhVb+1IJ5FFLVmPNV1qhXu8NvWm/79JPqSN7c33c81Fa2yuMtzr8Sax8ysnS24sf1LX+nGzm5+UObtdY67sW6x6sZS9zsJ/ljYK6p+77ZmuhrUnJGaT9RcHzL/t+7kZ2XeSeavvTv5sn/NxDPMxPOvxTpZ7c3Nmq+xU+s5Vb9lbU89h4Z9LVWXmtbLL7X63VSqH7WCf750sfTXtWZmC8VhN/bpjf/k31Oy/qT253vBfzc7I12/Dy7e4sZSe1TFG3PhaXg+0zi0zC6vf2r/YmZ2ZOUlbmwwPe/GNgf3ybzd9hE3VnT8uX6zfkTmtcJfG8i5dY9eySz1ZxaF+WcV/bDaOG8nX3Rjo9a6bDue+udg6sxglnWQmqtSc6uKqzqSOkNXbWc5z9mrGt5U6n6a/tZ5q+HVLvPuFyrMX1OfGX5Ctr2+d6cbu2/7XW5sMtXr7adDka+6sU7wz+/M9Jy2Fc+5sfT8u3s8PMlziGfe6SwAAAAAAAAAAAAAAE8RH78BAAAAAAAAAAAAAHOPj98AAAAAAAAAAAAAgLnHx28AAAAAAAAAAAAAwNzj4zcAAAAAAAAAAAAAYO7x8RsAAAAAAAAAAAAAMPf4+A0AAAAAAAAAAAAAmHvFrAlCyCyEy7+h17GU7WKs3FiedRrfz/bw825sZ3jSv2axLPO28r4bO9b/KjdW2VTmLePIje32XJ+IWS7zZqJtK/i/JaWK/u/phRXZdinud2OjsNP4noL4OxxF3muctxbvTl2zFs/IzCzG2m9b++Mmy/RwLULbjeWh5edN9KXa/LGK2annr/pZyjhuu7E/2fjpxnlXFm53Y5uDB2Tblphny2rgxura/y1mZjFO3Fivc8KN7e/dKvOqZ6ioudvMLNruc4D353slC9mutaKsx41zFplfX4rCrwFmZuvbd7uxELoipp/3cv8mN3agdbMbyxJLJFW/lVnqd2H+c0jJgv97UnVgf3200TUH7fMyvln7Y1cpRH8w079HjbM6MQabjtHUXB5CszqQvh/9Xr9UpJ7DLLVUUf2sMH8u7ES9Nl2z025sOHksfWOu5v0hiHWkEhPzZC72V5VYfl678vUy7zhuubG96g9XU2atXWvUNPprqZR2tujGDi69QLY9v/VRNzaerrsxtX4zMytyf914fOlrZNumVI1W9TnVdpZ+1wn+u0lR++9O9M9cBq0LMu9wcs6NXRzc68YOLDxL5lVz59j8ca3OllLU+ihF1e9shneeWtu614w6vlf7+qb3+3RRz2GW/dhKPOTGHhq+T7Y9X35EREPDO0q1TXSYhnnVmuGgOEswMxvENTdW1n6N6+T6LNKbg+unYa1cWMcyu/wZpWq4qjHLbf/Mo5Mvybzntz7uxibluhuLiTP/89HP++x93+nGtsyvLynqGakz0Utt/XlMtVXnu2a6hqf2nmrP0Dd/jbTZOijz7mSP+rHxWTe22rte5lXPX31LmGXe1d9NdG3K5Dl58+8x6p5Uf0mdySjPxHP7WX6PkvrO5kl9p1yyA25sZ/SgbPtpEc8ytfdPPaOr/17Lyl9vXxz731zNzKzjn6/KOXaXmviFvHcenuQ6Zr5WqQAAAAAAAAAAAAAA7IKP3wAAAAAAAAAAAACAucfHbwAAAAAAAAAAAADA3OPjNwAAAAAAAAAAAABg7vHxGwAAAAAAAAAAAAAw9/j4DQAAAAAAAAAAAACYe8WsCWKsLVp9Je7lCVU9dmOHlr9att0cnnJj/c5hNzatdmTe7eH9fqx7rRtbzq6ReUeWy7gnDy0Zr+LUjYXg/52HtvVl3jL47+ax8adk2277a9zYSr3fjV0sDsi8O6NH/bzi3YTEsy/jSMT851DHUuethm4sRn8sqfdmZpaJPlGEjp839Xdgoh+qrdJtn2Fmeb7z5qH1d7qxELqN8w7G59zYUu962TbL/D7azhbc2MWdz8m8VT1wY+Ppuhs7PXm/zHts5SVuLM/8MbWY7ZN5zw0/s+ufq/65F+pYm13p+i3mxn39m2Xb4dR/bkXec2PqHZuZrW/7tWl133VurG8rMu80+HP5LFT97mSLzfOan/fc+LOybd7xx+7x2n+G1+R3yLyb9rAb67T081dK8+u3qnlq/Wmm63td+7FUfcnNn09UbZ/FvNXvZ6Lk+skxFWtpM7OH1/5IRMWizHR9L3J//siC3hKqOXgw9tfhZkHmrSq/fkdRTx5a/wOZt9c54cZWuje4seXsqMy7UT8i40+31N5G7dlV/Q5B511d9Of6GP25JjW/re/4tUn9ln7Q67BJ8Pud2uOlxvw0+nlXsuNuTNVnM/1bz44+LduOOn6NPhL8dVkvsZZtiflErWeLGfYgs7jS51VPhho3kRr8tMqt2drqgU1/f21m9pBcR+p3rup3r33EjQ0nj8m8TakabGa2f+n5buzi1sfc2On198q8i/0b3VgnX3Jj6rzLzD/nTM2/eyGEbNe9QYips2F/HpuK85BUrd0narjaG3WKZZn3wvbuZx5mZo+MP+rGjndeIPMObN2NNd0Dmukangd/X5paQ6vrnhl/UrZVZ07XFf5z2pf55+BmZmv5591YWftnHGVir9zN/Oc0y1hTe+nU2ld5OtYGqr+k7ketr7IZnsNeUecNe3W/cq+T6IOf2nx74+u2xHerXtuPLYr6bmZ2ev1PRFQ9Q73myDL/218t6sn20J87zMwm5ZYba+X+mf/1vTtlXm8erWxi6iTicV9aX3sAAAAAAAAAAAAAAF+W+PgNAAAAAAAAAAAAAJh7fPwGAAAAAAAAAAAAAMw9Pn4DAAAAAAAAAAAAAOYeH78BAAAAAAAAAAAAAHOPj98AAAAAAAAAAAAAgLlXzJoghMxCuPwbeox145y1+W1zy2Xbpe4xN5aFlhsr66HMG0LHjZ3b+rgbO7x8i8w7yRbd2E551o3FzL8fM7ON4Um/7QzvZrd3/biyHsm2D4UPubFr2s9zYx3zn5GZWSWue3r9vW7s0PKLZN4YKxHzn2FI/J2SIPpwnvvvtd86KPP28n1uTD3D0sYyrwURi36oNv/5PV1U/53FXv1Wdbepa55YfaUbm8aBbDucXnRj7XzBjZVxIvOqsXF2889lW+Xw8ovd2ObolBtLzYWPrL+78T01IwbUHshCZtkuY6JO3IaaG5UQdP3uFivN2vql3czMJuWmGzu5/odu7KbV18i8qj+PqjU3ptYiZrrPrsX73FgUayczsyLrubFptSPbPlx90I0d7F4j2yp1LN3YQuuIG4uJ+a8WY3sq1ntVreewsvLbqvqinr2Z2UJxyI11gl+/80Tnr2zqxsZxW7ZFWmrMNZWJ/pKqW61i2Y11W/46Mct0X2qJe8qzthvbHNwj86pxE6NfjLKsL/MOxw+7sbFY45yp9fooOFvneJXrtyc1N6o+q2p7qn6r/tF0zWBm1u8cd2MPrb/HjR1c8veVZmZL+VE3Nqz9+l1Hf041M9sanXZjG6H53rzX8feAk3JLtj1ffsaNrSz6z6Fn/lxiptcynba/nkvVraZ7KlXbzXR9n+VspNMSv1WcH6WoNaYax6m9brZHU5U8G1HzfKKOps5VrnQ7M7OW+e/ttpVvlW0/t/5fRFTPo0Uu1nu5X2dXF27TecW54VjskbaGD8i8F7c+JuOeaP7a38xsa3CvGxsV/ly4f+kmmXezPrPrn6u9yNVWJWqMqkFyXkiMB9VH8uB/MkjlXe7f4MZGE7EWyz4t8x5r+TX+Qv2gf83a7+9mZjuj3fuImVkunlFqbbDa8/vmeLoh26r3utUSZ3am954tcaanfk8rsf7ORH/JRH8p69Te3h+nTc/tzfT+R619U2O1FfznvxQPyLbKVrjgxp5Jc9msUnNLLuLq/OOxbf/bnZlZFM9QfRO8FPfvSc0f25PHZN6l/q1urK79+90ZPSTz1ok9r099IDKbTP3vmJOp33aje4PM6425J9vv+ZffAAAAAAAAAAAAAIC5x8dvAAAAAAAAAAAAAMDc4+M3AAAAAAAAAAAAAGDu8fEbAAAAAAAAAAAAADD3+PgNAAAAAAAAAAAAAJh7fPwGAAAAAAAAAAAAAMw9Pn4DAAAAAAAAAAAAAOZe8XTfwFM1rYcyXoS2G4tWu7FOviTzdhaf48ZG5YYbOzn5oMy71D7mxqpYurHt4RmZtxZt80w8o+g/IzOzshrIuNLKem5sO15wY9fEW2TeuPL1bmxt8oDfLlYyr+prIeQipv9OSae10qhtO1uUedW7u1jd78ZWimtl3v3xiBv7xNavu7GjS18l8zaVmf/szdLPvyk1f4Q9+ntElU3dWGqsqufUzfw+aGbWavfdWB5asq2Sm992zT4lWurfenbzzxveUWgcz0XNqKrNhvdzddWxtt2ererryZyibaz9umSmx24u+rOq+2Zm+xee5cbGpf+uHtp6n8x7ZPH5bkzVj0l5VuZV9bsQdTRlItYq6ppmZt32Pjd2PnvUjS3F/ekbc5zZ+FM3dsO+18q225VeI3myoJfFedZxY0XedWOdfFnmbQd/zm2Zf82Rbeu85ud9eP1dbuy61W+SeZXa9NrqmUbdb2q9oZQ2dmOqtpuZnVj+Ojc2ic3X4ap+T2rdl/Lg98PNwT2iZZR567rp79HrrnbrsBubTPUcrETz5kr9O6+0aPWutTq1NmyqirrPKrOsGxfa/ntU+9nzWx+XeXsrfk0blhfdWJ1YxyiqfqRsDx92Y3WcyLYtUX/U/rsV9HojirlT7fm7QdfDQVxzY+Nqy41VtX4OZeWvy9S7yTK9LlgqjroxVYP7UZ899Wt/3//+jZ9zY9fv+2aZV73XadTnbPNklr3MVNTvftT99/jKy9zY+vhB2baVL7ixXKxP1d7LTJ9T9Fr+Oj21N9gZnXJjUcxLWeaPCzO9LpiW593YPWv+uZR2deu32aVz3qt51TpRw1UfUjU8Nc7amd+ni45fwy9sfULm7a/6/XYw9ftIqoarswgVS+3Pz+982o1VifP1PPP3l3JPkDjmOtjzz0fUnHGi1mfzp4N//l6LNeqk2pF5VY1Xa9/U2XBbzrv+2qCTOJtX9X8r+Guvm2r/vZiZ7RNnKw+Gz8i2yizP8JlGnTnfsfg62fbR+rNubFSuy7ZT0YcLsc5Ua2YzPc+q/VmruF3mXd++W8b3hl/5Hln/E9my0zq0e8Ynufedr14MAAAAAAAAAAAAAMAu+PgNAAAAAAAAAAAAAJh7fPwGAAAAAAAAAAAAAMw9Pn4DAAAAAAAAAAAAAOYeH78BAAAAAAAAAAAAAHOPj98AAAAAAAAAAAAAgLlX7FXikPiuXtnUjdWxdGMxVjJvHWo3llsu2yoh+G27xYob2xg+JPN2imU3VtZDN9YqFmTeLPivtpX1/GvGicy7vn1aRINsq57FVvDzPjL9Y5m33Troxjot/92c3/qIzKt+TxB96cDSV8is7Xwxcd3dRfP7tpnZoFpzY+q9juO2zPuxzXe6sboeuLGH198l855YfZUby8TzDeGZ93d2Uu9mL9Sm58J26Lux3Fqy7ST477WwjhtLPQdVF27d9+2N2pmZ3bP26zLuyTI9j9b1joiNRMtUrdHv7umWet5R3H+Mfh+oo1/3zcwy1S9FeVH1+VJT//csto+4sZ3xozLvTnnOjal1TJ75Y8jMrJX7/bItYqnnMBjr9YgynFxwY6frj7qxcbkh83Zb+9zYdnnRje1U/rM3MxtXW26sEGugLNNzo3r+Sivz52Mzs0n059yL5QNubKV1QuZdjv7zVQbVeRnv5/66S9XvlGdafU/V2b2insNCOCDbljZudM1+rvtKLraM+/d9lxs7U35G5w3+mDu3eZcbi4n9ymTq76FCaIu8uk6ZxUT86ZUaQ7JGizWcqmlmiXWD3h42ttz257/t0SnZdmOq457U8223ltyYqu1qb25mNhC/J5p+N5Xo7+o5LLWOybx17V/37OYH3dhk0V9bm5kV4n5VrDR/zJuZFbn/jGVMXNMsvWb2nDe9Jjtmt4moPw89tP5HMu+tq9/mxsrg1w81d5g9PfVb1ehZ1iJqP7sV/PWwmd4nH+jeKtuW0X/+RdB7h6bUNXut/bKtmgMG45OinR6rmiooz+z6vNfUOXmVqOGqz6t1Wmr+U/NCJ/PPaUPWlXmH5bqMN7kfM7N24ddwVSdSNXxn9Igbi1GdKZmZ+c9iUvvnuIu53i/ct/U+N1ZV/r70wfi7Mu/zV9/gxi5W/p62qvW6Xp0jqbMV9V3ETO9pu8H/VlMkzlOnYj/24Jr/DB80/XxftPo/ujHVv1M1/JlmlvN1NS+VQc+FK/lxN9ZL7JVVPVXU2aqZWUuc6ytrY3+8mZm1Cr/vT0t9FrQ39DsfTx9zIk+u9j+zTpkAAAAAAAAAAAAAAGiAj98AAAAAAAAAAAAAgLnHx28AAAAAAAAAAAAAwNzj4zcAAAAAAAAAAAAAYO7x8RsAAAAAAAAAAAAAMPf4+A0AAAAAAAAAAAAAmHvFrAlirC1afSXu5UkJIZfxPLT2JG8Qf0+glfdEbEHmHUzOu7E6Tt1YIa55qW3pxioRWygOybzrIhZMP8N2seTGptWOSKy76Xj6mBubTP3nm9bs74ZsjU7L+KGFO9xYL6y4samNZN6i6Lixji26sXvW3i7zmlWJ+O7u2PfXZHzbLrgxNd72Smoei9GPh7A395ubP59tVWdk2/Pjz7ixxc5R2VbNh71snxubxIHM28n8frhoB9zYueo+mbepWOsxpec0/50Xhf87zczKck3Gr5ZolUULT7ld3bDmp+v3zEsS57riXVnXjeWZHzMzG0833FgU82aqfqu5SNXvfu7Xj8cze0JiOdjO/fqt5sYo7tfMbHt4v4j6/eXc5l0yrzXo12ZmB5deIOMd8YxV3UrVl0Hl18MitN3YQ+vvkXlPRj3Hec5vfVTGr9/3zY3yzlLbZ9lr7NU+penvmSZqZVmP3djB/CbZtjJ/76DWFCmV+WNZ5V3f0fW7rrcb35Om3rk/t+RirjMzq6qthvfzzBBjszV9iqqzs4z7rOG+fqV/i4wPxf5bXTO13s/EOkbVytT5RRTjT/VnM7OWWJNW9cSNnd78c5m3roci6q83BuOzMm+VWJt7lnrXybh6N+r5tzK9ZptG/zlsi71aai1919b/T8Y9UZwfpaixuld73at5jng1qN+jzmPMzDrBj5fmrwtStV291yL450ePbP6JzNv0jCik5jvRhzutI26srPXaqqo29Y1dRXkodq01tVjDmZlVoo6oOSU1zuTYn6GGq7lV7ZWvWf5qmffC4HNurOm6wcwsy/06oc7XVX2/FFd1TdfwLPP3gcPyohu7f/iAzFuL+q/u98jKS2Tez4//1I11C38fXQa1pjArRC3uiLV7qj+otcFaddKNqTNRM7OH1v9Axn3NzjDMzNrWd2PT0GxtNY/UfDe05nWgML9emul1kpo/sqDXmYr6rTvjR2XbpjVxlhqu9gc6ZjbL2DDjX34DAAAAAAAAAAAAAL4E8PEbAAAAAAAAAAAAADD3+PgNAAAAAAAAAAAAAJh7fPwGAAAAAAAAAAAAAMw9Pn4DAAAAAAAAAAAAAOYeH78BAAAAAAAAAAAAAHOPj98AAAAAAAAAAAAAgLlXzJoghMxCuPwbeh3LWVPvfr3E9/oYq2Z5Q56I+9etY+3GVnvXy7yjatONRZG3yDoyr3oOuWhbBJ13sXezyNuWbat6ImIj2VbpdY67sVt6r2ic97H6Hje2Nvi8G5uU6zJvL6y4sa36rB8bPyLz7owe9K8pnpFZszFjZtZuHXZjExvqttYXsZ4bq2wq805t7Mai+WOqEjEzPQcoahynTGzgxoaT87LttNp2Yxd3PivbZlnXja2LOTg1B6yI+TDPWm7sSHabzHvW/tyNZZnfz+Ie1alU3nbrkNOutmn52F7c0q6C5Rbs8tqnxkmKapuq30+HSfTH2P6+7neT2h9jVe3PQ63Mn9/M9HpEPcNW0Hn7HX/8tQp/nJjpNd1wcsFvV/nP18wsiDVHnvv3VIn5LSUEf57aGD4k2x5efJ4bWwwH3Nip4V0ybx39unZt/043dj5+ROZVFro3urGbul8n226Z/85z8+dyFTNL1Wj/GaXWBXul6Xy327z7hdaHD7ixteivP83MDiw8241tjk7595RY4/Ra+9zYSnGtG7tl5dUy7z1rvy6i+jk1peaATMTMzCxf2vWPY4xW1+sz3NVTEyy74jV1lvVqJu5ltjWFv0epxbjvFasybx78I5Bp7e9f1B7aTO+j1RgrzF93m5l128fcWKtYkG1VPxlPN9xYTOzN5dlJDG5oMvX3un+RWcSiGxlNLsqsRxa+wo2V0V+zVaI+m5ntTB91YwutI27szMafyrya/4wWezfJlmpvmc0w56p+NkuNbjp/NJ919HNI3c/FsV+jMzHvXIr7a6Tllj8HqP5rpucetS67Yd83y7wPrv2ujHuanteamU2m/vlHu3VQtu21vf13ZTsjvba60rwars6V95LqI7PUcDV/FkHXPWWxc9SNqRqeOvNXe/Rc1PcssYZe7j/LjU2rHdm2Xey+7jQzKyu/Tk9L/zuDmVkU80YQn4nObX1S5q3F8x/m/npl/4L/jMz081c62aLOq/at4pqDSp/FNtUq/PMEM7Op+d9UDtd+nUhZy/y9/cj8c5d6hm8Jqu0s65FZpOqpos7iYmg+j6bOTzxLvetkfH377kZ5UzU8d/bKZmaVmO+Kwv9OZmaWO3v0GGublP5a/HHPvJNoAAAAAAAAAAAAAACeIj5+AwAAAAAAAAAAAADmHh+/AQAAAAAAAAAAAABzj4/fAAAAAAAAAAAAAIC5x8dvAAAAAAAAAAAAAMDc4+M3AAAAAAAAAAAAAGDuFbMmCJZbsHyXSCnbxVg3u15o/r2+Nv+ahbX0dXf9jZdkM9xTK+u5saoei/vR11TPKQ/+b90pzzbOm3qn6vdU1Y5/TQsy77QauLEz9Wf9a8apzKvkWdu/n9L/nWZm963/rhtb6B53Y4PRKZk3iPc6HD8s2vm/xcwsiuc0mZ5zYw9u/YnMe3zpa9zYZv2oG1Nj0cxsITsg2opxkZgDKmvWX2qrEnHxfKttN5ZnHZm3lS+6sVKMGTOzLPilITX3KNvjM37ejv9eq6z5WI31xI3lxbJsW4nnpMZFVen79ebKGKNsd6VlIdu1ftV7dBuz1O8Y/XEUgp4Tmtbv1FzTzf3+Mw1D2VZR468IXTc2rNd03szPm6rfKl6WG6KlztttHXZjB/u3uzG1jjHT8/kj23e5sbGoaWZm53c+48YmPX++3hk9JPOq53TP+DdEO70+MvMH86Tc8u8m6PdWR3+Nv2pH/WsmxkUp6qF6p6k6GxP9sCm1jlS1fXvymMyr6mxZ6/r92MYH3FiW92VbRc0BmRiP42qz8TW11D7IXyPF6K8Lqlr3lSDm53mg9sLKLGu/varfOqbvt5OvuDHVn+vE3rEQa3N5v4n1UbtYcmOp+U3lnpTrIq+eV/ttf89a5P5aJfVbVZ/YHp12Y1OxZzIzO7Xh70u7rUNubDjx96Rmej7Ztgdk26ba4n5vb/8l2XbDLrgx1ZfyxLFhJc7+MtH3pzaSeZvW71nqfiXaps6PVK3cSdR+te/czB6UbRV1JrC/f4sbS61VlDDTMbOuC57U+qia7N7Xmp5LzyJavWsfTZ0rl7U/L6vfkaqJ2R79m7jUXtqTOpfr5wfdWJn7c0opzqPNdP0vxLoytS/NMj+eR32mJ9fYpRijYq9mZlaIdZCJfliWF2VeNX6ryt97rg0+L7PevvgtbmwnrLux1XhE5v3oxv8h457Z9gP+/v3VS39LtpyKcT5qeF5tZra/9tcVD2f+WU9yDdpwbknt7RW15khRa9QLo3tlW3W2cmjhDje2Nrxf5m0V/v59X/tGN3Z98VUy72bmXzeK+UOdg5vpcS6lanHq2CuBf/kNAAAAAAAAAAAAAJh7fPwGAAAAAAAAAAAAAMw9Pn4DAAAAAAAAAAAAAOYeH78BAAAAAAAAAAAAAHOPj98AAAAAAAAAAAAAgLnHx28AAAAAAAAAAAAAwNwrnq4L58G/dG21G8tm+F5fhI6fN7Rk2yz4183Mb5sn8hbit1q+JNsqkzhwY+p+O/mKzKvezdr2p/VNRb9tsODHsrbOKwwm593YtNqRbaflphuLceTGsmxR5j2weLsbU/d7075vkXk/v/ZbIpr7IfFe/uI/cCO9zgk3NhqfkVkf3vqAGwszjPPu0te4sUw8h8qmja+pjGu/H5mZVdG/7lD0h/Sc5ceDmH/NzHIx5jqtVTc2nq7LvMqk3nZjtXhGZmZBlLKQdd1YjKXMm4u2ZeXPASm1+1v9sXY1RVWXLFGHRd9K1e8QxDwl5KK2m+n6XZj/joNoZ2aWi1paiL6j1iJmZoN6TcY9naDXDLHlv9eLg3tl20rUwyDnGv0Mq3rixtZG97ux1JzQLvxnoe5JrUXMzCbluhs7t+nXvEPLXy3znt/8qBuLVrmxLOvJvHXtrwWnpV9fPrX2f8m8+5ee78Yulp93Y0Wu7/dw69luLBfzfKp6qzWFmu9icn3km9bDxm3Vc0qNKbNlN5Jn/txT1WOZVcWH5UU3ttA6IvNuqq2oqCep55AFfx1TVltuLEZ/TtKubv2OVu/ad1N9Vu1L1Tp4lvqtxt8s+29Vg2ep3zHz59zlcL3MuxXP+XnFXK72AmZmi21/HK0PT8q22+MHZNyTZQsyrvbR6vmrPcaltn5f6hT+OcXOSP/Oxd7Nfqx9jRv7/iNvkHnXxv57/T8f+6du7KZ9r5N5H1j/fTc2mZ51Y5+d/pHMu699oxtbCofc2NR0jVDjvBP9mlYH//mZ6XkptV9R1FyprjkoL8i8qu9nif13LdqqPWtq3i/NXwtujE65sV5rn8zbaR11Y+OpPxem9nuZ3LuL91bpMxff1d9/x7h7DU/VAvXs1FNVZ7ipvE9HDU/tlcvoz0dBPInV/FqdV8xzan+emov6xX7/mpmeW89tiT1i9OfPPNc1PBO1eLF7zM8b/FqauqediV+79vVuknlvCP49/c7G293YXzv0QzLvy679MTf20w/9Ezf2g8f/F5l3UPrzyi+d+Qk3VkU9H1ViDjxU9N3YqNa19qw4s16KB9zYVtA1ca+oMVeKelmaPsMtxX63rvXZcVX7uU9vvM+NqTFjZlaU/rmWOpMuu3puUbW26dnfpbha6/g1oRLnVmZmZbXuRJ5cDedffgMAAAAAAAAAAAAA5h4fvwEAAAAAAAAAAAAAc4+P3wAAAAAAAAAAAACAucfHbwAAAAAAAAAAAADA3OPjNwAAAAAAAAAAAABg7vHxGwAAAAAAAAAAAAAw9/j4DQAAAAAAAAAAAACYe8WsCaJVFi085XYh5G4si3672mqZNxPf80PwY9EqmVf9PYHM/N/Str7MWoWpHzM/ljIuN/17Ko66Mf10zZaLY27sYvy4bFvkK26sqgduLATdTWMs3dik3PLbJX7t6sJtbmx/60Y3Nor+szczq6L/Xg90b3Vj47gt85r5AyeIMbqy+GyZdXv4sH/F6D/DaP57MTOrRB9V47HTOiLzjmo/7870MTfWK/bLvN3M77/KtB7K+HB8vlHeLG/JeC36WZYcU+K9RvVuVvU91f491WIct/J9Mu/B5Re4sZ3xWTdW1WOZN8v851RWG6KlKGLPIHWsbbdZPyT+XpyqpUHMq6rvpOJ51pFt90Jh+prbtd+3FrKDbqxOrDfU/BfFu6kT703NYaqOmpmZeOdq5ZBliTVQPXJj00qs2cQcZWa21DnuxjZ27nFjN+17rcw7iv64z8yfk8eiLpml66Xn4OLzZHww9evLzuiUG0utu4YTP++09Ncqqbwb+ZIbm1Q7bqyV9WTefn7Avycxbgb1BZlXrefUM0rJgt+X1Pxrlh4bTa5pZpbl/rtT83M76DngwNJXuLFx5a/hx1NVg83qeqKisu08S/UPtTwpgv8eU3smJXlPDala2jE9J2yU/vxXiXq40PJr+6W2/pywKebc5e61Mu/25FE3lpwT1P5QjPssa8u8dfTHmFpfq725md6jjMU+7keu/3GZd1X8nOKpH2U94WMbouaJo7bXi72LmZmJ+KDy3+mhrv4xf3Ru3Y0tinXvJ+zPZd6F4I+NcfD3wqXpvVgu1lZqVipjYo8nzu+m4lxqKtYiZmZ17c8fRWKtotYjRe63TY2pvZqDDy3c4cYuDD/nxqaV/3zNzEysY2rxbtJmGOhXSRD98lLcfzbqPc/SA2TeGfqWOutuJWr4oPLX2Fuj025sp6NruLI5eNCNrfRvkm3VGmp9+zNNb8kysf7OQqKGi3XyLHuY/T3/PLts+df8e0deLvPWYv36tYf/vhs7o49i7eLYX0t+48qb/PvRaW1/xx8bb7z2f3Vj/cSC5IMX/TOFe6pH3Nhx02foq7bgxsaiTresK/OqtboaF7N8C1PXnFT6m4o6b1Dn62a6hreKVT+v3LPqc3K179+c+N9xzMwOLjzHja0P73dj4+lFmTfL/D5Riecfxb7iSuBffgMAAAAAAAAAAAAA5h4fvwEAAAAAAAAAAAAAc4+P3wAAAAAAAAAAAACAucfHbwAAAAAAAAAAAADA3OPjNwAAAAAAAAAAAABg7vHxGwAAAAAAAAAAAAAw94pZE8RYW7T6StzLk5IlvteHkLuxGP37DKH53wOorWoUMzMr49iNnRt+2o218gWZd2vweTd2cN8tbuzetbfLvGbRjYTQlS3Lal1EgxupE92ryJfd2ErvOjc2rrZk3vF0w41tZqfdWB46Mm8l3vlEtGuHvsz7kpW/68Y+W73XjU2rHZnXxNhQ4+bw8otl2nG16d9TOfBjifvdnjzqxuq6dGNb1SMy7yhfd2NlNXJjVe2/bzOT82cW/Cm6jlOZt47+bw0z/L2n0WTNjXVaK7JtlrXcWDdfdWOPrL87cVf+/NHrHHdjqftti3l2OPb7y4nVV8m8D6+/S8avlmiVRfHs/HZ7U/NV/VZios6qv+dXmT+OWtbT1xVritM7H3Zj48lZnVfU2YNLz3dj57c+KvNq/jXT/D5UVduyZbd92I3lmV9L86wt805qv04cX/16N6b6g5nZbfGFbuxo258vTk7WZd6ttj+fPKv/jW5sGtSqwWwj89cNqjYFazYWL+X166El5o7h9KIbm5T+mm0c/NpiZtbt+XO9WqeXifo9Ever1htFrucWtbaKqUWxoNZPqTGVi77Uyvzfs1n662Uzs83Bg25ssevX74XOUZm3rIdurJPf5MbWB/frvHIvc/VUcSprhUfV71nWhs80pemxuz580I11Cn++uHf7HU1vSa5xhmLvYmYWo1rnpNZAKq8fq2tdX1r5ohs7uvCVbmxj+rDMe03rDv+a0Z+nDujtt+ViuTsR0+rAn8rNzOyz8QNu7NDyV7mxkFh+q/s92vaDqVX9C1dW3dj62H8QZ859SOZdEPO1Wi+rva6Z2Wr7ejemauWk1utPdQZXVn79SO3rM7EeSe3d1bpXtU2dC6q27WLJjS0X/js1M1svT7mxXvugG+uK/mCm36tax2wN7pV5/b3OLHugZiorG1216bmRGoOpvLOsDdR+Ijd/rGzXeq+s1mqd1j43ptacZma1WDsGMbbXtj8l8wY5Mzev4bXayyXm1kKs6w/0nuXGUudAf/PAy9zYXef9M96zavtoZjtTf8Tkoov+3+t63bY18tckC50jbuya6XfKvGrU5JnfH9qJ4fb8Ff/bR7/wY/9xTdfwixP/+1Gvtd+NtUx/o+gEf62o5oBJ9PuKma7h6mww9Q1I1f/UN8Mi95+Fapvag08r/SyaysWc1u/4Z3RqjW9mtlOdc2PnN2c5r5zNl84uFwAAAAAAAAAAAADwZYuP3wAAAAAAAAAAAACAucfHbwAAAAAAAAAAAADA3OPjNwAAAAAAAAAAAABg7vHxGwAAAAAAAAAAAAAw9/j4DQAAAAAAAAAAAACYe3z8BgAAAAAAAAAAAADMvWLWBFloWRYuT1PWA9luWg/dWFVP3FgrX5B5g9Uy7oo6nOctPxb8WGVTmbcVem7s+v7XurHPrv2azKt+0L1rv+nGQmjLrEW+7Mam5VrinpqJUT/DaXnejZ3f8u8pT/Sl5d4NMu6p4ljGg/g7J9EqP2+iLz0UPu1fM/jXnJY7Mm+MpRsbTc6KmP9ezMx67SNurNve58bySvfRrcH9bqzIl9zYav8mmXdcbbmxqvbfeS2en5l+NzH685maJ1N5q6jbFqHbKG9sOv+aWSbypvnz3XD8sB+b4YrKw+vv2qPMV1bu1O9JvS3bVaJPTyt/PskzPXZbmV8Pq+jPjXWq34mu1c36uq2wkh93Y+3+oht7ePJYIrP/W89vfcSNZZl/TTOzVu7Hx9PUPSUWSV6rRP1W41PJxVrEzGypd50bK+PIja2EozLv7Ut+DenmwY09b98BmfcV5fe7MfXkq8Rr2Zne4saK5Zc1uqaZ2Wc2/HH+4bY//01Kv46amW2PTrmxQvTfbnu/zLsx9fOqOltWfl9JybOOG1NrhktxXaOVpmuKTOxlzPTvWc2vdWP3bvp7jpTNwecat1V0L5wPWch2XTeVtZ5zKzEnq/G521rhC3UKf07W62C9Rq6j35/bmd9n26Zr+41LL3djU/PH/c7oQZlXiWJiVfsTM7Mgnv+0vJC6soj5c0ItzmrMzMZirfjg2u+6sXbrsMz70uVvd2PH+n6d9SOXDP2lldXiEal2ZnotuBP9vXCqfk/E0lY1XUyc7i2I+ELhj7dXjP7fMu8Hxm93Y2pvkNS+3g2p+WxUrsu0qs6qOpqqlarOBstl21KMOZU3tf/utf01qGq7XvprJzOzraG/hi+rTTd27crLZd6H1v9Axr8URKss7jJrqbNAM7Mo9sODRJ9XusWqG1M1XPXLJLEHX8n8edXMbGXZj6sz0/tHv5O+L0ee+/erznfNzGpx9laJsWKmz+dVf6jE2WXqug+vn3Fjy/1nybzrE79CHez4e4kLI92XhqUf7xb+CuAV7W+ReX9z+3/zrynWXv91+Psy7/+y/9Vu7Luf9ZAb+6VP+2cYZmZbYpl/YeQ/+wXzz9fNzEatQ25sMD3nxrZrv6+YmR3o3urGFoNfm9Yq/W1JnUeqfXZV6T222u+mqPmwFuuV1L4/F3NAkfvn9ovie4uZ2U7pv1fl7OBTMj4Yn2yUd6/xL78BAAAAAAAAAAAAAHOPj98AAAAAAAAAAAAAgLnHx28AAAAAAAAAAAAAwNzj4zcAAAAAAAAAAAAAYO7x8RsAAAAAAAAAAAAAMPf4+A0AAAAAAAAAAAAAmHvFrAmiVRYtXPbnk2pHtqvqiZ8z1m5sajpvFvyfFIL/rT8LLZm3FvcUzY+pa5qZVTZ1Y7n597Sy8GyZd2Pns25ssXeTf82sLfPujB4V0Uq2bRUH3VhZbbuxGP1nlBJC7sbyrNs4r+pnswjm329MPF+lCB031mmtyLbVxB+rs/z9mdH0ghtT91RV6n7MTIzHVrHoxi5s3y2z5rnfNsayUczMrNs65MaKvHkfbTrHpqg5ra71b1XjZnvymBvrdU7IvKPxGTcWTd+TEkSJVOOx1zku846n67vnjNFi3HxS97aXpvVQxstq5MZm6VuKmstDYh6q5fj077cKuvao+j2u/fd4875vlXnvX/sdN9bvXuvGUvV7MDknolG27bSOurGprN96/MXo96UQ/Plvlvqdi/VeNy7Itgc6l693H9fzu6hlfjMzM1vSS1BXN9fvbdBKXLihw13/OU0fe7kb+3j+R42vOZme9a9Z6nnz8PIL3JiaH/SYMStEP1R7g9SeQ01p6n7N9HxY5D19XaGqx27s/PQ+N9ZtH5N5R5PTje9JUfU7iPfW7xyRebeH9ze+p6shWb9FXNbDqNfeE1EHZqnfecP91sQGjdqZma1PTrqx6/d9s2z70Lo/x3Xbh91Yak4YT9dEVNeBfud6NzYpN9xYVfv12cwsRrUO9tftqb3C+tjPe6jr94dUnd0RS7qpeIR/6xZ/v2pm9mMrS37e6T7R8hGZ9+6zB2Tc8+6zen00qvwfmwf/IX7Vfn8fbGbWX/8f3Nj/s/bP/Haif5qZtYJft3Zq/92oGmzWfL8yKbd0XnUumJjvqtqft4KYC1NrYnXdVuY/31LUfbPU+YdfMx5a/wOZtzmxEDez1Fnl1bQzObtrbewWq7KdqvGpuVVRNVzVp9RZd9bwrHBs/v2YmZXR75sXh/e6sdXF58i8a9ufcmN58PfZWabXKpMydX7pU2sHdXaszlrNzF6y9Dfc2A0d/yz2g9PPyLwnt/3fWkW//vRyPX53Kr9/b4mhvZDrd/OX9/8DN/aOjX/rxj7z2mfJvJPxQzLu+b47/DWomdnb7rrOjbXEcLvJ9Hnqcwq/Fn8s878tXSj1vqgfVt1YK+qzK6Vu+I0o9U2lFksDtYe61Fb0fbGmzhJneJ3CX0vmmf+dZ1BelHnVOv5w+3Y3du/222XeprKsL+O1WCM9qfwztQYAAAAAAAAAAAAA4BmAj98AAAAAAAAAAAAAgLnHx28AAAAAAAAAAAAAwNzj4zcAAAAAAAAAAAAAYO7x8RsAAAAAAAAAAAAAMPf4+A0AAAAAAAAAAAAAmHvFrAmC5RYsf8rtYqz9nMH/Jp8FfcuqbQj+feaJvHloyXhTO9U5NzbNFt3Y1vCkzKveSZH33NhkuiXz9jtH3NjmQLdd6B51Y+vbd8u2SlHsd2NVNXBjdT2ReXfGZ9zYtFhyYwe7z5J561jKuNvOqkR86sbUuOgWqzKvaqt+S2qs7owedWOj6UX/mrV+flm20Khtr32NzDuc+Pcbo9+Xsqwv807KDTdW1kPZVikyf5znebtxW/VuUrLgj5sqjt3YYke/G1VPxuJ+YxzJvHnuz8FV7c8tIzF3mJmZMzZijLrdVaJqZbqtqsH679s1vW66fnca5c0Sa5tJ9PtAEH+38P71/yrzRvP7QVX746SOfg2YVbvlj93xNNHfhSJfdWNV7Y/Pabkp8w7F8x9P193Y0d5tMu+meMQLM6yoazH0b1n0L3rr8rbM+96zq27s9DC4saXEklfdbz/49WVa7ci8mWibF34tTc0tZzfu8vM2nOfN9DiP5telPPgxM71OL4IfMzNr5f4aSD2n4eS8zFtHv4NXYj3daa3IvBMxluta929lsX+jGxuMH3Njaj1hZlbku/+eGGur6rUnd3NXgLf/To2F1O/zZFlq/7039TtruP9WYzMlz/w1w6mNP5Vto6jDTc5LHpeai5TFjr//vlj5e/dbVl8r837Twh1u7JGB/xzesfavZN5u4demUtSeod7W28602Rr70R29jzu47Ne1EPxrFoXe13/NDf6+U7fT8Z/+sD83DsUWu0pMHbct++PmB3r/qxs72PXft5nZ71z0z7ymwd8nr5d6vVGKM6Ii99956nxDzR+peTQLBxrlHU/9swQzXaPHqgYnzqxahb9+Kqt12VZZ7N3sxvT6SJ9v1M66LMbK1rY/9qTu7UpZbF+za1+aJNY9Tc8RU2uDvaJq+Cx1uhuW3dhS57gbO7v5QZk3z/397jWLL/TbmV6rbFan3di5TX+PYmZ2S+8Vbuy+4bvd2LetvlHmPbHg3/PJbX/OOFjrc7nz5vfhfcHfozxcrsu8oyDO9cWe687ODTLvd5zwz1b+p+L73VhZ6n3TXtnX9mtmIYZUFfX8OK789cpr2s91Y3dt6P7wqD3gxo7HE27slHinZs33HelvCeKaiTkrz7purNc55MZSNTyK70DqbDDL9Lyk1hX3rr3DjaX2M/3utW5M7UlSe1TvrLOOlV3c/ohsa8a//AYAAAAAAAAAAAAAfAng4zcAAAAAAAAAAAAAYO7x8RsAAAAAAAAAAAAAMPf4+A0AAAAAAAAAAAAAmHt8/AYAAAAAAAAAAAAAzD0+fgMAAAAAAAAAAAAA5h4fvwEAAAAAAAAAAAAAc6+YNUEdp2YWn/qF826j6+VZR+cV8SC+9YfQ/O8BzNL2QH6jG7tn43fdWF0PZd4iX3Fjk+mWG6vqscx76X3vbrF3g2zbL/a7seXVb3JjZ3Y+JvO2iyU3tlMN3FhVbcu8ZotuZDg558ZG7Wtk1jy03Fgr9PyGiWEWrfZjUb9XRY253PxYjP79mJm1Cv/5ptoqajyqZ5QaxwvdaxvdT2pMjafrbqyuJm6sXazKvNEqN6bmwkttmz3/qvbv18xsODnvxpa6x91YKxPjwsxWete7sU3xXkeTszJvHUs3FsVcmPx7ZXHkBXS7K6ysx5aFy/tJXavfZpZn7UbXyzJ/7jMzK4KfNxPzZmrsqjlXKRPzZj/sc2MXxp9rdE0zsyzR3z2pebOd+7Wy3z4k2/ZbfnyY+/XQEu/m8OJz3djO1M+7uXOvzFtFfy462LvdjV1j/jrFzCwPMuzKEu2++5ZH3Njyfn+9FxJ5799acGMP7vjjbUtPAbYshtTBjp/3W4r/l8x7vu3NjWYfrv7AjU3LHZm33znsxoZjvy512wdk3knpr6dj7dcPS7w3tdbOg94HKWo9kqrftfg93bY/F4aQy7z7F25zY2uD+0RevYXttw66MdVf1Ds1MysrL3516/ek3rZsl2cwnm7IdlnmPzdV21Pv8emo35n595Rax1ZijKlaWtd675hlfRn39Fr+GDIzW+wcdWPf1H2lbLs+8cfu7dd+s99urPv0StufyFbafn/4dPw2mffc2J+LuuL8KFWfN6f+ex1V/p7pgR09595e+v0wBP8ZFkXzve4sWmLItcTy/mLiKKEvpuSD4uWUianzOw/5e7w/OuuPm4cm/prBzKzd8tcFZe2vRXabd7+Qqt+p7XVe+C9A7YXHpuf9svLXkaompAQxByvHV18h49PaP7/bHp9xY1vlWqP7ifHq1m8zs0F5fte6qs6FzPS5XNPzdTPdv1T9T42Hpn0kZaM85cYKWYcTda1/kxu7pvbP7Xumz0ZuXHieG8sXXy3bqjv+K4e+z42l9nKPDvy690i84MbWs8dk3q44Qz+R+d8oBqWutSPz54Wt4N/vK480O8O9dE9+/273xD7PzFpd/82Nt/xxMR7pMZU6U/CkzgwKkXgkCvX17VWZ94Wdr3JjW1M/711b+nvX5sA/ayvEd6fUnKX2w6kzULXf6YhzuG7iXH9jeNKNqT1Lr+3vhc3Mtken3Zia9/sd/9zeTO9Z1L7u3M6nZd7KWZs92RrOv/wGAAAAAAAAAAAAAMw9Pn4DAAAAAAAAAAAAAOYeH78BAAAAAAAAAAAAAHOPj98AAAAAAAAAAAAAgLnHx28AAAAAAAAAAAAAwNzj4zcAAAAAAAAAAAAAYO4Vsyao4sRqqy7787IayXYh+N/ds8y/rTpOZd4Y/bZ51pFtlSD+nsCwWnNjO5OzMm+etd1YJmKx1s+3jqUbm1RbbqyV92XeLLT8a9b+Nc3M1ocnZdyz2rtRxss4dmNZ73o3tjm4T+at6oEbC8HvZ+vD+2XeIu+5sZXOdW5sKu7HLD023HZWJ/Lq99pUp7XqxiZTv4/Wpn9nK1/0Y8WCnzfRf1W8yLtuLMv1NKvmJTVPpqg5K8v8cWxmlon+3WsfdGMXtz6m82b+u6niYTd2fv2jMq8SrXn/jXHSsOXlNfGLhYZ5r6xxuWEh5Jf9+bTake1UHVA1LUb9XCrxropM1yZFjYVJ9OfV7cmjMq+aE4Jd/lwfl3oOWebfb1X7fbKV+/Pbpbz+uI6JOjCYnnNjR5Ze4MZe3XupzHug22yO+8/rH5Lxg/G4G/uWg9c0uqaZWdZw6O5r6edb5H48lv4zyru6L73qjof84Kf89cZ7z/nj2Mys63dvO7Hg32+/0O+7in6NuHXwejf2J4n13MnhB9xYt71PtlXaxZIbU3U0ta5SbVN7mVy0LUTbnTox34l6GKb+e13t3STzbowedGNVtSnbKmc3/XVDjHoPpXmTQJwh51O3OTzVaI3YMr9OBFF7dlsrfKFK9GnVZ3OxnjDTtbQS+4HN8cMy77T01zlqjRMSRyeF2IOo93Ui/0qZ99b8qBtbbul+cOuy//xL0W0Tae3cyG+82PKL5S1RzwmbYnyOK/+3VFGPwfWpP4eNxB76Ndf7e1IzM3XZGP3nkOXN54y62pt9RC1uqaOnANuc+I0nYgnUL/RvUeuN2xb8GvwZe4nMO5xedGOznH2ocZ5ap6v5UJ3zpM6A5LmgOHPptFZk3mHp7w3yfNmNPbL+bpl3oeuf/Q3Hj7ixmNx/+y2vtp3RY41quKpPMfoDLXX2o2p4S+37EzW8FvekbE5Py/hg7J+xT6ttNxaCf2ZnZnZr5s8bd64ecGPrY/071X5XzXFmutaORZfvJ770qD3Zmck9bmxS+s/XzOyl/df4bSv/t/SD3nuui/Wg0hF77JSX3nHKjXWPJeqwuGz7sB9cqv1vG2Zm9kk/pPpDyjV9//c8OvDf26jSFz079Ntev+R30heO/H5kZnZm3/Pd2MOjD8u2yiw1XFFz97Qeyrb6fNXvS2rfb2Y2mepvlZ7ByB8XZpfOmD3t3F+3qd9pZhadOhWtNjG1PIF/+Q0AAAAAAAAAAAAAmHt8/AYAAAAAAAAAAAAAzD0+fgMAAAAAAAAAAAAA5h4fvwEAAAAAAAAAAAAAc4+P3wAAAAAAAAAAAACAucfHbwAAAAAAAAAAAADA3CtmTZCHtmXh8jTD8SO6Xb7oxtrFit+u1XnyN/cU5KEl453g328Zxm6sqv2YmVlZDfWNOULWlvFMxHvtA26sqiYyb5F3/XsKuWxb11M3Nq123Ni42pR5M/HuotVurMiXZN6qHrixsEuff1xZ+e1S8RD8v4+y2zj74niz56Dei5lZHUs3pu43JfV7/HZ6rDZ9hiHTv6WsRm6sqv1xo8aM2aU51I1l/nyn3ktK6tmr+XBzeMqNhaB/q5qX1rY/7caiVTKvWRQxNS/pvEGUyE77sBsbTy/KvN32wV3/PMbaRhP/+V5pnWJl176wNXxAtpP1W8yrraKv8zacE1L1ux3869bmz3+p+hyjP69WtT9fZFlP5s0zfxx1Wv76KMzw9xn7rUMyfrN9pRu7oe3f0/EFfU89MTxrMay//9CLZN4zQ7/xxH9t8n5SbYNo98iw+bsZDf1x0a7UVc06S36deM2LH3RjL7+ox+LPfOgmN9YSP3Uqnp+ZWVu0Pdzzf2trR6+J1VhVtT1ZvxNrcbedqPspqXVXLdZ769uf9duJNa+ZWb9zvRtTc/tjmx+UeWPU+w6fHqwx+u9VrVVi1Gtib68TY7TUmuJKWuxes+u9qLWUmV47yvqd6HdFw7EQEu8xN7++lybW5Yn9rJoTRuUFNxZEfTbTNfrZrVe6sf1R70lvWfHn5O4MdUvNyQe7ur48sOU3HpRi3ynX7HrP+v6J37+/Mnu2zJuLKr0ww5ysLC7550BLt+qCGCf+c6q2/NgwUb9/4Hkn3dh0muhMwj/84DVuTPWH1No/iPdWRf859LJ9Mu8k88+eRBdMmuVsJEa/hqwN7nNjVbWVyuxGDi690I2VifrcLpbd2HD8cOKefMPJOTemzwT03OKvG65u/TYzaxdLu/aVQeIMPYoa3hVnvCHqfpllDc/lRI02M8tEGZlGf91Z1ok9uBikagwWud9nzcymwV8D7kz9/nVyKOYTM1tq+zVe7X3MzCoxH+2I48CFxCv9O7etu7EfKe5wY52WPoN860f8mNrbLxX6hhem/l7jQ//kqBsLHX0ut/Zuvx92T+h1kCbayneur/n9z/bniJ/91HF9S0JH3FNHLA26uV437JR+f9mY+G1vX9Lr4hvL29zYO6O/jt8p/fpiZlaLfWCWOGvr5P4e4OLwXjemzvzNzEbjM35QzHetYkHmDWLtq/bn0fQcUJb+mCvLDTfWbvk1zMysqrad+0nV/kv4l98AAAAAAAAAAAAAgLnHx28AAAAAAAAAAAAAwNzj4zcAAAAAAAAAAAAAYO7x8RsAAAAAAAAAAAAAMPf4+A0AAAAAAAAAAAAAmHt8/AYAAAAAAAAAAAAAzD0+fgMAAAAAAAAAAAAA5l4xa4LzW3dbCOGyP48WZbs6TtxYWQ/dWMdWZN4stESs+bf+afTvSQmJa8ZYi6Afk+3MrN8+5Lc1v22W6S6RZx03Nq12ZNvJdKvRddv5or6n4N+Tev5V4fdBM7PheNtvK35rni/IvDGWbkw9o1ah81amf49/P7ovlZXf9ysxjut6JPMW4r1mwe8PtXh+Zmadlj9HqPmhtqnMq6h+pq45i7CHf3dJ5e53Drux1LupEn3CvR8xxlNiVO81T1y4WT9UfdvMLLjXvbyW7iW3fsdKtquqgRubir5T5F2ZNwT/fcxSv3fq8/41RR9Ijd3mc4aec4us1yhW1WOZN8v833Ot3SHb3rm6340tt/12xQxdeiIe03bi0Zei7afX/Lp1TV+/8yM9/wettv1173ff8aDMO5kk5iJHyPRaW1GlP2vpPtoVt1uLWyqb367tiHe+EldlW7XGVGug1Bwg19OifqSkaqmymPs1ejM86MayXAxkMxuXa25sOHnMjekaPAtdp0Lw602e+bE66vdW5P1d/zzG2qZlszVOE+s79zeq33Xtz39T8/c2qf2h2qupOpsyqPz6XYvxl9p/q/2s2tuoPZyZHvc72aYbK2r9fDcnfu0PbV1oMxHORex7b31U5r2449/TL9zn78V+6mvPybzasht5/yldt/7P+/0+8T/foddPyi7D8AnLzxJFTzU0s9D140GsN7It/Rys4Xoj5Tmrft57NpovBlUfHVX+c9gfj8m8m+G0f00xP6TUM9Q8dV11rpJl+oxI1bz14YNuLDXfVZU/p82iFmfBRe7PLalzhr1bjzx14+narnUqVcOVaenX8JjreaEl9peKWgebmU1q/zx1VK67sarS55pqP6zW9aqdmV5XPLDjn3+0EuuciZirNhPnP6qG//Ub1t3YYkc/wxj9xEXu98Mi0Zf+5dc/5May3H8O+16x+/r6yWm+59r3DeJs5Yz/zqPa8O6hg9f64/zvhUfc2P9173GZdySmnvMjsd+VWc3WxHx+Y+HXvFZi2aCu+9r+17qx3x38mcy7Xfp72ipREzcnD7ux0fiM3zBxZpCLPVa3fcCNqe84ZrPVm+b8a06mZxNtvXn2yY1F/uU3AAAAAAAAAAAAAGDu8fEbAAAAAAAAAAAAADD3+PgNAAAAAAAAAAAAAJh7fPwGAAAAAAAAAAAAAMw9Pn4DAAAAAAAAAAAAAOYeH78BAAAAAAAAAAAAAHOvmD1FaRbD5YmLFdkqC80uHYL+Xh+tdmN19GN5yGXe2io3Npiec2Pd1n6Zdzg578ayrO3Gqnok8/bEdSfVjhtLPd/RZE3c01i27XcOu7Ei67ixVtaTeZXF3L9mq6vzjsR7jfXAjRVZX+ZVfVS913payrxKkXfdWBZaibb+c4qV/1tiYoxPpxfdWJ4vyrbKeLrhXzP4fb9dLMm8ee6Px8l0q3HeTPwdpFr0ldRYraPoL1E2tRj867bzBTeWiznLzKwS48bE/BzF/JuSi/utK3E/ZlaIfhjEe2u39Dv3xNj8dzaze/0OiTmhVSw3upqaS/ZSK/hz8ubkYTeW6ndyjInxGRJLr8XOUTc2rjbdWJbp96Zq9FKu61Yuppvi8i703+5JxMzM3vj197qxkPsT1S+/91aZ9+zYv/Dfutkf97fd7Nf9lPF28yV1q+X3td7+qRvrHNfXDJkfH3ze77+Toc77P9z0qBv7z/df48amqSlO9LOeuKWDif6r6uW09NcFnZbeyxTBX7tW0X9vKaoW+JXyklHtr4E6rX1ubDz11/ezCKb3V3qeVYsVnVftoVSsEPXCzCx39isx1jbDMv0pi3Hk1O/mz0WNk9T6Tl5T1kO9lu3mfp9V9Tu1J63qiR9U5wWZv5+6FPfnBPVb++a3MzNbG/v31Cv0O++LufNv3ubP5d2OnsMWS/+6b3ruWdl2L3ztdf5vMTN7/f/UdG+p37mN/OdU6VvSxPopiMXVwgldJcIj/v1O1/x3OpnqdcGjQz9WRn8uH0/0pvRIz7+nfuGPqWyiF6DLxTE3tl2ecWNqb25msmwlz8ryA26s2/bPtCalvzcwM4tiv6LOnmJyHaOeceKwQWUVdaxV+OM4r/VY9WpcjLWNp488uZu7Qqp6aCHsUsPlM9XUGWPq3Eg9c3VWmJvee+ZindwSZzTqbM3MrIrNangm9kVm+lxuf8v/LUdUoTWzrijTeeKVr7b9/+DIyrYbi7usEb/QYKzfXVNV5T/D5ZvEe3u6iHqarfjPqFqb4beIMhLUwYqZdU7493TshH9Pb77zAZn3b/3M9W6sJc+B9P2qeem+Tf1NS7mm5+9LumJQ3RFfIPN+OPyRG5vWYqFjZoc7z3Fj28NTbiy1t1AGY3+hqWr/JVf77Nms1znhxupa3683f8dY22jiP98n2if/CwAAAAAAAAAAAAAAnuH4+A0AAAAAAAAAAAAAmHt8/AYAAAAAAAAAAAAAzD0+fgMAAAAAAAAAAAAA5h4fvwEAAAAAAAAAAAAAc4+P3wAAAAAAAAAAAACAuVfMmqBdHLAQLv+GnmU69bQauLFW3ndjZTWUebPc/55f29Rvt8tv+EJB/D2B5fYJN7YxeUjmHU0edWPt1iE3VuSLMq9SR/851HUp20ar3FgVJ42vG6PfXyrRzswsDy3/muJ+Y6xlXvWMq+Dfb5H3ZN5ptSPjnhj1u8mzbqO8KbuN78ctdI66sdH0osw7Fr8nmv9u6nok85bVhhvL8yU/b+L51rXfvwsxZ2WJv2OUZx1x0bEbmtZ6LlS/JxP918ysiv49tzN/XLSKBZm31z7oxjYG97mxILOa1bVfT6pq042dWH2VzHt255NuTNW4Sbkl81ZOH44xynZXWp4t7Dq+28WKbKfmsDxru7FU/bbcD2WiRuSJDqLq92r7ejd2YXSvzDucPuLGuu1r3Fiq9qj5T7UtKz03qrbrbd1n79vw68tXH/JrcErI/T6vhsP33unPF2Zmv/j+W9zYbTefS96XRy1tFw75a5XBef2MFq/x27ZvELU9S3T+2n+Ivev9/jD+lJ6LVlb8sfyqI34N/p3Tem5RY/m+bX8991il++9wcsGNqfkhtS5Q9VBJ1W81VpNrleDPwSvda93YIFG/69rvo1vDk7Kt1qzu7Vu8Q8bVGlSt00eTNZl3PD2/659f7fodQtdCuHzAdFqrsp2qE2ospOqW2qvlUaxzg97jZebPnWr/vWkPy7ybg8+5sV7Hz9vK9ThRTk/9NeWw5a9VzcwOxuf59zTDP2X4P+711ypvuO20bJsFv88vdP09UxDtUnbp8k84/Krma5GZtP3Fa7bf7/v1uj43UfU7iJceFvQeb+mA/xAXS7++/Ktf9seFmd6rLYr73Z7queXsyH8Oas1wc+Gfo5mZDcVZpDoh3an0GrKMfn1X63szs3HtzwP7eje5sfVEDR5N/TWQJe5JazaWj658nYxvjB50Y6rG7YzOyLyVU/+udv02MwuhvWsNb7eWZbtKnEfNIkZ/ja0GdyXO183M2sE/I8tzf87Oe3o+P7d5lxtTNbzX2i/zbgR/fI9r/xzr/FA8PzM7tuDXidQ51yM7/hj9Zx897sZedECP7Rcd0Otdj+wrZhYyfzwVJ/z+8EwUOn4xyDr6OdSqT6h1W+pga4/84t/z68jf+99vcGNrY/0cbujovb9nWOr+K5ZI1hbPME999wtirIqYmdlm5a+bDy+/wG83OiXzTsttNxZFTYgNa3RKp+V/AzLT3zc6Lb8/7Ix1DR9P13f98ydbw/mX3wAAAAAAAAAAAACAucfHbwAAAAAAAAAAAADA3OPjNwAAAAAAAAAAAABg7vHxGwAAAAAAAAAAAAAw9/j4DQAAAAAAAAAAAACYe3z8BgAAAAAAAAAAAADMPT5+AwAAAAAAAAAAAADmXjFrgiwrLITLv6EHy2W7qho0ul6MdeJ+Wm5M/dgq6r8HUJt/3Xbou7GV9nUy79bgXjc2LTfd2EL3uMzbEvc0snU3NpluybyzaOeLbizM8PcwatEnyrgt2k1l3naxJKJ+LNVHW/mCG5uItruNsy+UZx3/nqxyY2U1bJy3CmM3lgV/LJqZdVuH/Ly1n7eaoa9EMY7rWMq2IfgziGo7mFyQefvtA26sStzTXsnFu9spz7mx7eEpmTfL2m6srlU/jDKvcsO+17qxjenDjfOq/l3ZJNF29+cQZaW58rKsnZxXdlPVfv2OM/RZVb/VnJCaEsrot+3l+9zYQvuwzLszesC/Zj1yY5mYS8zM8qDmclHvEnO58unB78r4tQvf68aGfnmxnl4K2qnPr7qxI0f9NZDVQeZ9wwvu1xd2ZIlVce+Ort/2uv1+u9SFS1GbHhPPoUrMGIU/OPJD/l3t/3o9504+v+PG/vMHVvxr6tdmmYg/a8XvTEVYlXk/OfXXG0NRo8fTdZm3nfnruUqsMWMUg8YSa5Vaz7F1rtY5fmw0uSjzptZ0njhD/Q5OrTQzK+WaQVPrdPXsL92TN0lEi81/6lNW5L1d63dqDyLrt3jek1IXWrWWKEWRLjJ/v2pmVptfv9Vadal9TObdHHzOjU1Lf++o9kRmZt182Y1tTx7z76d8ROZ9pL7RjV1br8q2qg5viq3wz3xKP8P/8VZ/P5AXzVeznQX/phZvEkWim6y0eyPz+3fo+X00m+hnFCeiTojaHlQhTQgi74981+dl2zf+/E1ubFT5k+OJBb1QVI9hUZSlcaXnrF7pzz0dsWorM7EfMX3OVlV6fzgJYu4Re4Nu29/LmJmt9q53Y2e373Zjda3vt679taA6C94a6/lOrTfU+qkSey8zVaeubv02u1RLrvQe3DtfMEvvEdWTW2irfan+DWq1O6423Fgn9/cSKaPJeTeWquGH8lvc2CPVmhu7rTgo84op0KaJcpkHf05Xbd99RteC/+eU/4z/wXP9sd1p6X3I6s3qjF1M2nViEM5Q2xoT1wxdXbuCejnip8xSw/fKqR1d9xT1VtUvPdDx5zMzs4E4O1lu+/PSQq4Pe5aDv/Zdiydl21G5Lu7phBtb6uhve3XbH1MXd+5xY3nizLHfOeLGtkf+uX5qHi1y/7xsNPXPG9Lfep0z9FhbpY9WLrVP/ycAAAAAAAAAAAAAADyz8fEbAAAAAAAAAAAAADD3+PgNAAAAAAAAAAAAAJh7fPwGAAAAAAAAAAAAAMw9Pn4DAAAAAAAAAAAAAOYeH78BAAAAAAAAAAAAAHOvmDVBWY0shMu/oddxkmhZN7zeQMZH4rKd1oobm9ZDmTdG/37LfMGNXdz5rMwbxCtY7F3rxvqtgzLv+vhBN1ZW/m/d7V0+Wa2sL+Nbo0fcWB1LN1ZkPZl3sXPUjanfk1lL5s2zthurar+jZVnzYVXk3cZt1W+tqrEfS4zVuvLfTVX7edU7NTOLYg7Ig//sQ9DPV723Wah3Lvtv4p1Woq16Ril51nFjrcSYWsgPubFTO3/qxmL0+4OZWVWNZLypoytf58bWpw+5sZ3RGZlX9SU5jyb+Xtm0vLjrn0eLst2VVsdy13udVFuyXVRjO/P7e1nr9z+a7P5czMzaxZJ/yeR6w6fG2Nrg87Ktqt+FeA5qPWFmtjk65cbUnLuXPmYfc2O3TL/GjXUSS4r/+MBhN/ZDB7fdWMj0WFl6vv9uQhH8hpmImVl21F9HzqTwH1RYFn1pU4+pIPLKayaeQ+d5q37wv/ihKjHF1SKuXtt1i7qjfeXw1W7sA9P/6MbKRM1S84ca5yHkMq+JOVbNhWZm7WzRjZ3b/oQbqxLzfnP6pfc6J9zYSvcGN3Yhsb9Sa69J6f/WOlGnMmd9Gq1O9u8rqarHFsLlgyKK9bNZ8/qdWtOrZ6pOG1JjIcbKjak72hj6az8zXb87rX1ubFruyLzr9UkZ96g1u5nZY9nDbuzUtj/mzcwOdv1n3M39iXVJb5PtF+/19wp//wX+888LvQZaukPVbzHXqwJiZlaL62ZPw78HaSeuKX5PqkbvhWwx0SGEjuhnmxP93lbazX7rJNEfnt874sbWxv68s1rpGvzJYtONDaO/zzEza+f+WM7EOc/W0J8fzMzqrn9Wps5cylrfr5n/btrirDJ1VqPWXjujR92YrG9mlrlnlc3PW5q6dK+Xv9MY9TmX+o1RnJGl9p5qf6nOyfNczwvDas3PW/n1dGdyVuZVfa/b9vte6qy7tKkb65hfp8+P9f78zNh//tf19Bl60+k+1a4W6/O3fsJfD/6X/9l/p5eIfjgUY7Sn+35oi/WiWhukHoSq/7uss5/U/ZhZmPh1JJZX98xvVkstf5ynVk/iEdpO6T+j7akfMzNbF3XiRPDr9IlF3c+mW7e7sQ/l/tmUmdmO+mYY/ftNnfkX4jvbdStf78ZOrv+RzLs1fMC/J3G+quZuM70HH4m5PfWdx4vH+OTGE//yGwAAAAAAAAAAAAAw9/j4DQAAAAAAAAAAAACYe3z8BgAAAAAAAAAAAADMPT5+AwAAAAAAAAAAAADmHh+/AQAAAAAAAAAAAABzj4/fAAAAAAAAAAAAAIC5V8yaoKzWzSxc9uchtGS7GCdurKq23ViWdWXeOpZubDRZc2Mh6L8HMBX3tFltubHl/m0yb7dYdWMXB/e6sS0RMzMLwX9OWdaWbZW6GoiLpv4uhR/PxXsdTi/qe4pTN9ZrH0zcky8TfXha+88hz/XzDeI5qGumqD6cZf5QD7H534FR460WYzylirUfTPYzX1R5E7LgP8Mi7zWKpai+0vyX6N9iZrZZnvavWzd/r4qas9pinjQzK0LHjU2m/vyc6qO5+WM5ijdQinphZn4fjlG3u8KqatOa1W9/zo1iTlDz/KW26pmO3Fg13ZB5Vf2u66Eb63dOyLytzhE3tjU8Ka4p6qiZmeVupChW3FhqXE8TtVR5aPoeN/Zn9c1u7OUHDsi8l/e+/+afvO8mN5YaKf/668/4wXKG2bNWbf33ls4rflHu14HQTlwzE09YxWbwdQf9eTUE/eYujP0+fGro/9Z2YlnwVav+uBna693Ygun6fSp7wI1txFNurEzUHrneyPx6Z2Y2qtbdmK7fqVHlP/9M3FMrX5ZZD/ef68bODz+XuCdfEPer1q6qhpmZVc4zjMnnd2XV9Y7tNoPGTN9/jJUbU2tOFbt0P/51Vf0ez1S//byp84KF3vVubDB+VFxzLPOqsZBayyqV+euuP5q8U7btlfvc2PPDC9zYiw7quWZBLBX/909e58be+vf8udHMdD1UJXji920zM2uLvXBrhvotRLVmUL/TzMIe1eimYuJ+xVJlJo8O/Ge42vEvenxBv9Nl0X8XW37ehbH+oQ9Ojrqx1DyqzoHObn3CjZXiLNLMbDz158Px1F8vh6DPtK5ZudONDUp/z6H25mZm02rHjVVqD5U45/HWQPEq77/NzKp6aCFcPsaT52fiN2bifaXOutUefFL672s4OS/zTsXZsTrzT1no3uDGxlP/zH80OSvzPiC+F9y48DfcWFectZqZna79vPcM9Tsvza9tq7bgxtqZngMzuQvfI2oPXiX2520xH7VEfU/V0qxh8SoS8/kB//fU5/zzp2eitniG3Vw/X/X4V8UG/sFtvd6eiHGh1iPLiS+gBzr+f3DTwN+zmpndV3zUjVXi/HRDnBuamVViv3PpPNej5wB15nt4+cVuTJ2Dm5ltDv11vtyHJtYclbs2eHI1nH/5DQAAAAAAAAAAAACYe3z8BgAAAAAAAAAAAADMPT5+AwAAAAAAAAAAAADmHh+/AQAAAAAAAAAAAABzj4/fAAAAAAAAAAAAAIC5x8dvAAAAAAAAAAAAAMDc4+M3AAAAAAAAAAAAAGDuFbMm6LQOWwiXf0MfT87KdkFcemXhNjcWYyXz7owf84OxdkNltSHzKq3iQOO22+Mzbmy5d50b2xm1Zd7x9Jwbi9H/Ow9Z1pV582LZjwV9T7v1k8eNp+fdWDT9zkeT026s1z7oxuo4lXmz0Gp0T5PplszbKhb8a2bNh2Sv2O/GpvXQjVX1WOaN5o+bqpq4sVbu/04z/fyr2s9bVgOdN/jPUN1TWfnPyEw/B9W3o5h3zMxycb/6fpr/3aVetk/GW6HvxjbFHFFWI5lXzftBPIdOa0XmPbP9Uf+eSn9u73WukXlHoo7l+aIbW+xeK/Nujx5xItFi1M/wSuq2j+7ad9XvNjPLMn8cHVn6Sjc2qbZl3uF0zY2p+WKayFvXO24sy3pubDnxHjdGD7ox1Z/brcMy70TU77r2+0ee+/XZzGyhd70bG4wflW2jmJNPhc+6sV9f02P3tniLG5uI9d5vfb9f983MJvf4seKIv1YJbT2vhiL3g7mI1VHmNbXOqXQNeaYJIfVbfQuF/1vr6D/fLFEOF0SZfXbXXyemHv2p0o+pNWQm1hNmur5niTXD/taNbmwn9/cc01KvBZf6N7mx4eSCn7falHkHld92MPZqpVmvrev3YPywGyvyJdlW8df/zft9E+7+W+ynzMyC6JeHFp/jxgblRZlX7SWC6M9q/WxmNpr4+/qi8OvLau8GmXdtcJ+Me/LE3qYS/b2s/NrTTuRdiKtu7Lpws2y7KtbtmQU39pvnTsq8ZfAnwEycNfzeW/VZwwfeKiZWMc5ios5mPXFOUczw70HUdUUstMSawcxiqZ7D1fes/03PAa9Z8M+tiszvZ4NSv7dKhLenfrBX+Nc0M1sUpVTcrk0T64Ke+WvxnaDn51zMzwcWb3djZzfuknnVuUqRr7qxOvrtzMx2xH5lZ+TvK8pKn5WpOqX+7VbqzDDW3n7x6tZvM7N2sW/X+jcp12U7df5wYOHZbmycWItNK3+vXOT+Xrkr6rCZ2cUdf4+o1nGpd6nWh6qPFIm9sjrvq0U/uWVZn4Pbpn/2VibOCo+K2nVh7NeJVmJ91RVz5GdH/pnM06YlzhHV/lxN6DNJrBvEewuL/rlWnCSKTCre0PGf8g9PRuUH3dhfXv6rMq96+qq+n436+9zh4M89YzF9qNpvZrbQar4eVGfowfx9Uup7gaJqeJH792Nmdrj/XDe2WfpnbRs7eg8Vo9gTho4bU2e2f5H5Kf75F+NffgMAAAAAAAAAAAAA5h4fvwEAAAAAAAAAAAAAc4+P3wAAAAAAAAAAAACAucfHbwAAAAAAAAAAAADA3OPjNwAAAAAAAAAAAABg7vHxGwAAAAAAAAAAAAAw94pZE+RZx0K4/Bt6XizLdkvdE25sNL0oryfvJ7Td2Lg8J9sqwXI3dnjxeW5sa3Ja5s2yZq+gVSzI+KRcd2Mx1m6sLNdk3izzr3tg6VmybSv03dg0DtzYpNqReXvFqhvbmfrvvKonMm8M/nNS/SGIdpeuO3ZjRd4T19R/V6WMft5O7o/HMvjP/lJe/zlVlX6GShZabiwv/HFeZP4zMjOLVjW6n2j6vWXBH6tqTKXyVrHUN+bIxf2kjOpNGS9rv0+U1bobC6Er864s3OLG1rc/48Y2B/fIvGYxEd/dcPywjGeZP2cdW3yRG9uYnpJ5V/o37frnMVa2vvMJ2fZq6LYPy3interG1ocn3Vi7tSTzqno4HPlzeV3rGqEcWnq+G9sc6feo5rDl3g1ubFJuybxlte3G1FwzKf21Uyp+ePmrZNsb7Cvd2DcfPOTGOom/YlmJoXttX8zldbMxb2ZWXfDrVusWvXa1BTHHZaHhHZnZqHlTSdxT2CfWkbm/xjEzG/7+Q27sB+75uBu777uul3mDeIQPvuc2N1bqMmu5yHvrsv9bTw90P+tP/f6yZWfcWJZYz1Vi3TCYnpdtQ8v/Pe3Cn4OnifV/K/f7y8j8trVYT5iZndu8S8Y9g7Ffa8zMDi690I1tj/13k2d6HeOJsbZJ+Wijtk1U9WTX/fdy/+ZkO4/aM6l6dynu1+9pKfZ45YbOK/b98iwhkbdT7HNjee6fJZTVUOZVu6JarPc3xNrJzKzq+Hu81x36Vtm2K6bzsyN/jptuH5V5z9Trbmw98/vSjvntLjmYiO8uLCfGbmvmY6/dZeK8oC32jm1dZ23qr4FCzx+PsrabyXXBdd/v1++dxDnaP3nZir6uoyr12ukfve8GN6YeYSuxJFPVfUF0lZOTdZk322Vefty01vOHWhqsZMfd2GP2AZm20/LfzWTq70lKETMz29jx9+6zOLDo783WBve5sbrSZypFsfvcEmNtZdX8nLiJKk52Pdtb7F3bOOe48s93isQZuoqrfjuYXJB5W+IMUp0LdHJ9ZqDWs2qfrc5wzWzXddXjBubX4fWJPp88tuDP2fvaerI6PfBrzEO1vye4EPQ512jkr5O2RuobxtfLvE2Fjq7RoRDvbpY9eFOpa8o9uH/GmIl9XMq1P/hJN1YEPQes5H6N+dXnvMyNPeeo7mfTqf97fuyD/jrzaLYq83YzP+/5kb9+Wk2svdSauS++NZqZVXHaKKbO/szMinxRxj2TUp/5P7T+ThH1V0kh8Rm5VRxwY6X4ThkSfdScfVS0aHoHdgn/8hsAAAAAAAAAAAAAMPf4+A0AAAAAAAAAAAAAmHt8/AYAAAAAAAAAAAAAzD0+fgMAAAAAAAAAAAAA5h4fvwEAAAAAAAAAAAAAc4+P3wAAAAAAAAAAAACAuVfMmqDfPmhZuDzNpNyS7ZZbx9zYxuB+N9Zprcq8hxbucGPt0HdjZRzLvKN6w41tTh52YzHWMm+R99xYJv5uQp61Zd5+5xo3VtX+by2rgcwbzf892+Mzsm2vtc+N1SJvys70nBtT/TD1bvKs48ZC8N9NWY1kXiULLXE/+p2r/qKo32lmFmLuxsps6N/PLvPCF6rqiZ+38vOmtIulRtdMUf2ljlM3NppclHnVHKD4V7xEPcPR5DHZNlhwYwvdG92YGuNmZlUs3VieL/jtqk2Z18zvo5no33Wt57trll/st7XKjYXg34+ZP4+q+XUv7O/duus4fWz747JdKxf9XczH43JN5t3Xv8WNLSwdcWOqtpuZFcHvA+fH9/jt8q7Mm2X+fK3eZZbpubHIF2W8qVrMfzuTs7LtdX1Rv2PjW7LXX3vejbULf4yN13S9C8G/qdaSHwsHEs++EGM78+fN5ENSeXPxW9U1zSz0xLphSYwbscYxM3vnB29wYy8I1/ppwymZV/nBl93rxv6/f3yrbKuefiWC08R7e7T6lBsbV/76M7U+UuvIwfhR2XYw9ut7Ve24sYNLz5d5Vf3W852en1N1uKl9xQ1uTK17R+W6zOu9mxhrm/iP6Ipb6V+/az+6sO33STOzhe5xN7Yz8vtWHfX6We07D/ae5ca2K117lgv/vGC7FPtOsaa8FPdDqj+n94563eA53H+ujL84f5EbKxPlRZWJ1bYffCDqxJPgz1P96O/F3v06vYPZ/LB/TtE94D//zsG9WTul6qzVqkaLZ1gk1jEdv06EfaJ/J/Iqi+GAG/vgN55ItPbXbEpe6H6mlkCqfofEa7sojv4+vLHuxu6LH5R5Nwf+Oid15jI0f028ZafdWLftz79mZi0xH06m/lql39HvfDjxa0ZM1Aylm/t7jpbYI4ViWeYdOXudmJjr9sJy79pdzwvWd/x9qZlZr+3vhwdTv55WtT6f7HUO+bFivxtrd3St7Yl3uSVquDqvNtNjqdPyC/y09NfBZvqMN8zw7wZVy1QNX277rcdj/7wvN/+cwkyvZ+5/3Te4sc1P6nXQ0u0iqPZVqVrbVLKG7834D+K6cY/+Deqpn3ueGzv2dz4i28bgv9fnHPVrU0qr5a8N/uVLH3Fjf+3dqzLvpPbXSAdzf354dKDf98MDf+45Yxdk20Hlx2uxj84S33kWukfdWCvzvyWsDx6Qeet6W8Y90fSGV51ztFp+PZmWqTP/2fAvvwEAAAAAAAAAAAAAc4+P3wAAAAAAAAAAAACAucfHbwAAAAAAAAAAAADA3OPjNwAAAAAAAAAAAABg7vHxGwAAAAAAAAAAAAAw9/j4DQAAAAAAAAAAAACYe3z8BgAAAAAAAAAAAADMvWLmBFnHsnB5mkOLz5Htyjh2Y0u9axvfz8XhfW5soXPYjcVYybxlnLixIuu5sRD03y+IsXZjVSxF3lzmbSrL2jKu7lfFzMwm1Y4bSz0npRbPSZnlmrl4TruNhy9U135fyjK/bZa1dF5Tfckfb6m+384X3Vivc7O4H533wvBzflvxTqt6JPO2iyU3pp5vHnXfn5bbfqzy32mKGjfj6WNuLIROIrOfNwTdlxa6x/1Y259Hx9WWzFvVfj/stQ/5eaf63RR5140Nxw+7sSMrL5F5p/VAxIZuLDWmKmcOSLW7Wo4sPl/Ga5u6sXa+4MbUMzMz2xg+5Mb29f25Zmy63w3rNTfWa+13Y6q/muk5V43rVI1Qawp1T1Hcj5mu76l6uF6KsZv7v2elFWXeQ/v9ebXd8+tAq69/azUObmyPlk9a5t9PKh4K/4ZjO7GM74q5foY10DvP+Hm7Im2sEs9B+O0P3ejG/uqNZ2TbX7r3qBvrif5w70DPLZsjv75My003llpr14l1jnJk6Sv965r/3nbKczJvKebvTrHixial7me1rAv+/HH9vlfLvGvlg25M7a9Se5my2v1+U+2utH6+37Jd1nKdZb2uUfVb1Z7h5PyTv7n/ziT6a6levk+2VfuBTu73O7V+S6mj/4wsUT+8/mFmu76vxy2GAzLvYTFRLSbKwFR0TVWabln219ZmZv/xG/29Ty3m+nqGpW655eft7Og1m/XFvJvv0cJAPeDUNZfEiy325t+vXKxOiuiz9+SaKcPSrwO1WGK2EuuuB7b8/nI6e8CN7QzOyryT8qIbC4n1f7tYdWN57u/7i6DHqpqXWoW/bxtNLsi8UZyPKoeWv1rGx7W/flL3Oy39s0Yzsyzb/TnFGGdadzXRy/fvuh9sLek9uNoHTsTacqQKgZm1xP5d7RFboS/zqrVRP/fr3qT294dmZrm4J7VuyFqJc1rV1vw5pdLbXesVYp+nm1pXlIrXrPjnI296oZrPzUKm11+e6VTXn9FJsc5c8h9UfujqrqNnpgqQmUURD6lzgT3w2OaHZPyA/H537MrezBWg5oDzY3+e/NPp3TLv6W3/OaXOy+Q3DHEu0O345xRm+oy4JfZu07L53k3pdU7sSd4ovjuZmU1L70w3MQH/Bf7lNwAAAAAAAAAAAABg7vHxGwAAAAAAAAAAAAAw9/j4DQAAAAAAAAAAAACYe3z8BgAAAAAAAAAAAADMPT5+AwAAAAAAAAAAAADmHh+/AQAAAAAAAAAAAABzr5g1QR1rM6sv+/NRtS7bxVi5sfF0w42t9K6XeVtZz40F8a2/lfvtzMyKePlvfFwW/Ly1aGdmVsWxG1PPqIqlzBvEPRXit07LHZnXgh+K5t/vpbj/LNS7qRO/ta79eBTPXz0jM7Ms84eH+i151pZ51W+tqokbS72bfuewG1N9qYz+Nc3MhqNT/jXbB91YL9sn8+7v3erGLgw+58bKxJgaTdfc2ELnqBsrxNxhZjYan3Fj0fw+GEJX5h1P/bxKVzx7M933D/SfJdu2gv8sdqpzbiwLiZIihpzqo9227ktq3CyL3zoq12Xedr7oxtQcUNV6TJXVcPecib59pY3rzV3f2XB6UbbrFitubFSK+t25TuZVz1sJlst4J+u7sVLU4EK0S1H1sEjMCZvxYTdWx6m6aOKeRJ8VY8jMbLXXcWM7okRnQSwazOwXP3GDjHt+6JX3yHg19a+bDf0HFS9sy7xBPAfLRD+sEy9HxWsxLySebxz47zV0xDvv6HXM5tS/p/Vq5MZ+9k/8up9y1k9rn9/xa7uZWVe8mg+f95/Dycxfi5iZTctNNxbFWM1CYq4TtbJT6Ho4qfw+nIWWG8sT9Ttmft9Xtb+q/TnWzKzdvcGN7Ywe9POqudDMajHfTSt/PZ26X29PcrXr96n1P7TdNmVHV75OtpvUfv9QNWJRrJ/NmtfvaT2Q8Ym4p1n2yb1i1Y3VUYwTEzXAzIbxvB8U03U76j1InomapsuATUTXrETp6c98SnR11RdEkTCzfEU8494M9VuN/ZGYp8Z6DrNCnVPoGt3Ut/S/0Y399Mf0uck3HPKf/4uuf9SN/X/ef4PMu9z2O3gl3s19m7o/LOR+B39w7V2iZerfDvnxtph3zPQ5p9rryL2BmU3r3fedZmYh+vcbUvt6MakFsd5InRGdH/prr4nYZ1ribC+69TsxxvfA6Y0/tt2e37HVl8l2dfBrWztfcGOlWJub6TN0tW9Vawozs8HUr4neeYhZek2lzoZ2xo/51yz1GYfyyUW/fx2rXifbim2TxUQNV6VA7W+KQj9D1e3r1E0J5UiNQ/FN5SF91t1a8vth6PrzzV7twWOqhg/8eFS/Rdb+5r7v6Jsbt/39+/1n9Mpr9Vl2q+Wv1X/4vcfc2P5cv7fHqi031jG/Pzy0/kcyr7KycJuMq+81iwv+mXTqLFPNs8PEeXZTKwu3u7HNwQMzZG62rzMzK/Ilp11tVe1/A3oc//IbAAAAAAAAAAAAADD3+PgNAAAAAAAAAAAAAJh7fPwGAAAAAAAAAAAAAMw9Pn4DAAAAAAAAAAAAAOYeH78BAAAAAAAAAAAAAHOPj98AAAAAAAAAAAAAgLlXzJrg7Ob7zSw0aNmkjdmRha+Q8WkYiCvmbmxcbci8VSz9WD12Y91iVeYdletuLM86biwk/t5CK19wY+p+1TXNzMp6KONKXfvPsIx+XtXOzCxa7cay4HfxLLR03ujnTd1TU+r5pt65eq9R/NZU3rLy7+nC9mfc2IHF22Xefn7AjS13r3Vj57c/KfOq97YxuM+N1Ym+vdS/xY1tDe4VN6T7Sp4v+03Fb1loH5Z52/miG0u986kYj6ptlvr7VGI8qljLejqvP7Xb9viMGxtNTsu0J1Zf5cYm1bYbU/OOmf9e1fveCxe2PmK712Jdn3fEA4/m9/dea7/M28n8sTCNfm0fVesy7/bIf895aLuxEHR/VjWkyLtubHPwOZk3iKXZQu96N5bqP3WcyrjyJ+W73djq6C+5sSLTfanT8K9gTnYSDWv/uuMN//lO/mRLpl35ZtFf9vlzbtLUfzexjs3zirbxgv9bb/6h+2XaP37pNW6s1RJrvXJT5v2lz55wYwfE8nSamDr/9Jw/X79r41+7sRD0mtjE+jOIeVSt0c3M9vWe58aKxD2peWBU+3udEEQhNbPC/L5fB/+a/Y5eq6g1Zpb5zylPrOFrsfbKM/+3jKZrOm892fXPY5xhnF5B57Y/IeOdYp8bG44fcWOqtpuZHV5+sRtTtWeYeN5jEVfvWI1NM7OBWHtPxfqurv3YLD6fv1fGb9j+Tjd2sOP3ZzNZBpJzp/JP3nWrG/sHL9E1RAmZf8N15bebnNZrnM6yWLcfFmuKxDomTkQ/HIt7KhMPX9XvtR03Fvbp+rL43b/uxg7373Bj391/kcz7kXV/3fvOx250Y5NKP4dR6T+HD41OurGX9G+Qed819OfKIPZxK/2bZF51HrPUOibbKhMx96izMDOzPLEv9fQ7h/Q9ib3OcPywG1ubPCDzTiu/fytVYo1pzr7u6anfu1/z9LquBeo8amfk1/C69vfRl+7Gn1zbxZIbG010Da/i7mumS/fkx2Li/GwiztDjDPtdZU2sr/7v/397/x1zW5be953PTie8+Ya6lUPnXM3QTBKpYCVD8kiQR7JhyDZMUzBsGTMwYPgPGTKM8cxIBgx54AHGMwIkCPZoYBj0H5ZkkRIpSiLd7CbZZJPsJjtUV4433zeetNP8cbvsFu/7+63iPvVW9aG+H4AQUE+vtffZe631PGvt90KJ88n/4Im/ImOpU+WV+TmdGbtN4/fKLtf2Zh+dmi6rpd5P5JVuXB/6day8a9aFq2vswV0OMvm9nyfGmSu+Ds18vOxzeGZqkp0f/7sy9pnJn7T9/sHLer1/a6Hb/Q/PP277/fJt/QzPWh37Rqa/M0REPBN6Lfz0vl6zvpn9ftvvvNVrmvt+ERH26+o6OdydsZupGntbH7P9HptvI0dn35Cxsti3/TatP08bqhX7s17k09+Jf/kNAAAAAAAAAAAAANh4fPwGAAAAAAAAAAAAAGw8Pn4DAAAAAAAAAAAAADYeH78BAAAAAAAAAAAAABuPj98AAAAAAAAAAAAAgI3Hx28AAAAAAAAAAAAAwMbj4zcAAAAAAAAAAAAAYOOV79+l+0Gtbs2+buN7kydlrMwqGZvX92y/q+ZExrJM/w2BaxcRsaxvy1jfr2zbocbVIzK2rK8nWmcyMqoe8i3zItH3+bq+sfE8GzaM2245qF1ERN93MubGQ0rqtzpNuzBRHSuLie13Or4qY1txTcZuHX/J9nt593tkbKfQ/U5HD9t+p9UlGTtZvCljq8Szzwb+rVAfvt/d6VO6bd/K2Ko9G3Q/ERHjYt/G+9DXdeM7D73G3u+49nGhCz3fIvx8XKz0O085bW7IWJVPZazu5rbf7cn5a3Dft7E6feud3dwFKopdG2/b40H9ptaEj1/612Tsdqtz9LI+HHQ/ERFtp9fG1Hrc2ffsx6zj1ozT+Yu25VBlednGT5e6Nvip7PMy9rn5D9l+v//qyN+Y8MIrOi9FRHz0Q7dkrF3pNaxvEuv8kXnnu3pNiDzRr1lXs1zXXX03/J3/+H9yIGOnja8FP/cL+vn+5h/5pIyVpc4tERELE56aEvLO0j+H5/Ovmahpm1gDtqdPy1hZ6PEwKQ5sv67ecPkuIqINnWdtfZoaSnoYRhH65aRqp6rSz+l49k0Ze+XeP7T9PrL/ozJ2VuvcfjB9xvar6si+72LVDMuN76au83vH+UrXGL5e9Xu4w/lLMjaudM1ZJ2rZPDc5wkyFLrGHrttTGXPzJMv8nqnv3V5MO5k9b+P/8+y/krFrk//Utn10S0/elXmGfWJNGJshkWrrdLV+/o15rZ1PL1Hd0fv+rNDjIUaJ8wuXh9fI0bbtSv/Yx378l2237qzs5Xv/SMb+v70/N/nz+79fxtxPqRPl8q+uXpCxrx3+DzL2/PwJ2+/Q9XqruGLjRZnYCxut2Sfn5hyzS+yv7d7d9Bth6tqImC11LehyRmq9cwVJnm/J2N72R2yvJ/NX5PXWWbOGyeK8wirLxrbVbKnrl66bDb6butFroDtjTJ3DlrnOmZ1pm6plCtNvb4qDVA1dN+6bgDsf8/P+fzz6+zL245f/tG1bmDL6ZKUH7l/5ol7rIyL+888NPyOzTCnZd7oeOfiAf+fZ1DzjpVkDTb6MiOhrE38f8nt/038/evg//4qMuRr/1tbrtt+bc53bSpNDdhMp76fOdJ4+W+i9w8HOp22/f+bK98rYq6d6PGxnPodXpc97jlt7XK51Z+8R/ozd7bL73K93e1sfljG3B29aP0bdWulkmT8X1N9G3tlc5F9+AwAAAAAAAAAAAAA2Hh+/AQAAAAAAAAAAAAAbj4/fAAAAAAAAAAAAAICNx8dvAAAAAAAAAAAAAMDG4+M3AAAAAAAAAAAAAGDj8fEbAAAAAAAAAAAAALDxyvf7Bs5XyMhs+YptuWzuydjO5HEZ6/vO9lsV2zYu+43WxvN8ImNtWw+65ttXVpb19Qvpt26ObctiNJKxzLzz1LPPcz2M80zH6vbM9tu0CxuX10xMqyzTf3NShH5Gffgx6sawe0Ztt7L9umfo2u5ufcT2e/fkN/Q1d79PxrZH12y/eVbJ2NXtT8jYzdOv2n5PF2/I2N7Wxwa1ux9/U8bs+E3Mt8y0vbz9Udu2zLd0v2auRma79W2dxPq8ak5k7JH9H5Wx60eft/0env6Wv693nV5f30tt68fWRXn5TL+PspjKWGpcjYrdQfeTyt9Nq/N31+u1Mc/0Oh8RUTe37V1dhLad2fjSxI5Xr+vg+Idsv2eNju3ppTx+5vqB7fd/eVPHf+TKXMY+94G3bL+xZW4qX+PvSXOzeJZmfNd+jPZH+rc+e/mSjP29M18X9J2+7p/5J3pePJIf2H4/vKdjO6a0enTqk8+HjnXufyX+oYz1YQZoRBS5nssuf99eI7dc3tb1xv3rmjH6Pmh6t3pEnMz0+pG5etrU0hERN45/Vcb6Xtf3upq4Lxf1Ud9/d+Rv99vW49eaSaXXE7dXKHOd2yN8Hh66N4/weya3T2tavaZGRCzrG+6q5ppj2++oPJCxn5n/mm37ydmndexAr9fTNU6JXnrzsow9djm1fzFnDbXZF50kasFtfd3x1NRsu75ms/n7fTDJTSKNiNzUzE8c/CEZe+Pof7X9Hk5+RMZaszzuVv75/bGxPk94Y6Vz+9HZ122/bu8+LvUzXLT6rDEiYmXOl3ZGD9u27wd3vtT2/iyy7XS+2d36oIydzF5M3JVe97tO71dSZy5Vcf577fsuVs1p4p7ebedPilQObweeT6a4dzk147Yq9ZlRRETX6zo6df5u++18fa6kviUMtbf1IRvfKq7I2OcPb9m2z5j6aqfS9Ypbd98vda3zT5+64XLgPrtL9OviqbYXoL3n9+DLVu9UMnPG9NLhz9p+X+z/voz9+4//Z7rdiZ/Hn5j8URn71cXflLHj2cu2358sf1HGxtmOjLXh81rd6zo/S/zbYZdPc7O3aHu/x3L7EreOFuYsIiLi3uwr+ppmDz4d6++qEcPX2T7xHHRt8M7mKf/yGwAAAAAAAAAAAACw8fj4DQAAAAAAAAAAAADYeHz8BgAAAAAAAAAAAABsPD5+AwAAAAAAAAAAAAA2Hh+/AQAAAAAAAAAAAAAbj4/fAAAAAAAAAAAAAICNV67fRRER2Tn/vX0H7ZRUW+3qzqdk7HR5Xd9NMbL99n036H66RLNJdUXGivGjMrZqTmy/i9WbMpaZ195HY/tdx7K+K2OT6iEZq8ot22+eVYPup49h7zRl6P2kFHlijJrfk2fmnSfGdp7r39N2KxnL1vjbmjunvyVjW+PHbduDyTMy5u5pd/qE7Xe2vClj89UdGXt07wdsv28e/aKM7Wx/VMa66pLt93TxmoyNih3bdrjh77zr9dpTZmPbtjFz49g8h7K8nL4xdc3myESH57D31tD8fTGadiZjbl3t+tr268bWqNzV7RIpwrXNc73mzpe3fMeGG7OTxJowW74lY0Xu82zbLWRsVet6ZFH5muJopd/rwei8sXlf19turS/emcrYhy/557DztUMZG/0+s67m+rdERESr51x/Mpex7saZ7bY70/3+n/7VF2Tshf/uz9p+z2r9AtxPfWrH54ixCbtX/vqZHxCdaT2uHpGxuj21/Z4t9Jy6tP0RGdue6Po+ImKxuidjZe7zYWdqOlfvpfptuqW5pl6D6zYxRntdR1aVXu9StWtVbA+6p7rR9VxERNepPLXGovSucvvriIvK78ezb5qoXhSqUu+DI4bvbVwswtcFbuws6xu2XzcOLu9+j4yl9vXO3aVeyyMiivFnZGzR6vvdq3zeasyQ/7tvHMjYZ071842IeHSi15rLU12LTEe+Fpzd0fVG3+q2o0d8HVNcMWunS4hZoi4wVt/Sa9hu7+eUc3P5NRnbmT5t284aPVd3Kp3cr078c3CP8D969M/L2P/l+f/C9ns8e17G9s3+u0jkSrdmZcn12fWrx2iW+drKrXcutx+ZZxQR0Zt+3V5nas44I/yez+X+2fJ122/bHqtebbuLkGVbkZ27BiTeZafr0izzZ4VO3+u1dbZ8Rcby2u+bUvtL2W8ih68afa58UQ52Pi1jdZOodSs9f58q/f790livGyaFh1l2IyLi//EVffb5H33mDX3NLlEbtPrCrx3vyVhR+Lr+SqXP3qoP6zOZpHUOFS7A1b/+pcFtXS7ou+Hfeb5xqmvUj2z7Z//J/GEZ+4NP/2cy9v9662/aft84/HkZu7L7rIxlmc/DdafPXXZK/VvWMfRbY0TEUuY1f04R4b8LFuZ7Qarm2N3SZyCuhjo034DeDfzLbwAAAAAAAAAAAADAxuPjNwAAAAAAAAAAAABg4/HxGwAAAAAAAAAAAACw8fj4DQAAAAAAAAAAAADYeHz8BgAAAAAAAAAAAABsPD5+AwAAAAAAAAAAAAA2Hh+/AQAAAAAAAAAAAAAbr1y3g3F1LbLswW/oi9WbiZbdupc+153Trw9q1/XN4GuOq4PBbdt2Oajdec/8n4ubV7u3/REZm6/u2H6b9lTG8nxi25Ym3kerY70fK1mun0Vu/r6jKHZtv2MTz7JCxtq+tv067n67xJxxbVs3vrPkbelr5nqctd3Ktr26+30ydufkKzK2ak5svzdPvypjk9ElGXto/HHb7yjfkbGz+oaMzRo/p9y8OTz9LdvW0y/2rcMv2JZ99DI2GT0sY5e3Ppy4Iz1vMjO++8TYd+uhW1vyzKdAv/bo2Nb4advvbPmKjb9XVP5erm7adn0My5e5mUMREU17OCiWZaPUlWXEveMi9/12nXkOethF0x7Zfp296VMyllobx9VlGXNzM8KvnXVzJmNfz/RaHhExP/2EjD22tS9jVeJPN128NtP6v3/+EdvvX/7Ese73V16XseKhse23X5gBU5of42IRkZVmXW30Ov/ciX6nEREv5y/I2B8Yf0bG7iz0NSMirkx03vr1O7pefjH0s4+IOMquy5gb25dKn9NuHP+KjN09+6Zt62QmNx0v37Btz+Y6v1zZfVbGur5K3JMea42p95p2bvvNzfpd5lNzTd9v2+nx4n7L/ravBY/OvmHj75W9rY+duxc5Okvtg/UcyzK9TuXJfKjHQN8vZKxO1Mg2NxWmpkjkiKadmXs6NC39GuYcz16Wscnoim3r6o0+8zXyW/1dGftA9qiMFWvsD1fmMf3moV9rbm/p9e97c/1br132NVBR6ptanepxVp76mjcfm7gbh4mjsPZkWK39y/+2P4e49P/+ZzJ2ZfujMlZlW7bfl+t7MpbX5qwm07VpRMRDpi5ws/GhvR+w/d4+/nUZW9a6Tp+M/P26veXh4mXbdmbye1UeyNje5AnbrztDqltX7/mFtCz2ZMztoVJne2Wpz0bcXqdMnO213fnrft/3EaHz1EWYjs7fg58tXkq01PPBvY+m1fuX+9w+UO9ROlNr3Y/rWq0qdd5re3+O2Pdm32T5/a77racL/X1jXOo9a0TEWX1Lxu70vp4tVnrtfWpH/54uUa60Jv53nntcxvJEbeD22a+c6uBf3vd15skr+t1Ut/Q3ipSdZ1PnSAOZ59CaPe31f+f7bbdX/uYvyNi41HvaReJ716i4KmP75rx6lKi3SzNgzFFEPLL9Pbbf17tfkrHTpd73T0f6d0ZETIoDGat7vXeIiLh1or9D+KLPP8Td6ZP6nhp9T6kz9MqcDbocntrbT0v9jN25YWXaRejf0/ddtK3fT0bwL78BAAAAAAAAAAAAAL8H8PEbAAAAAAAAAAAAALDx+PgNAAAAAAAAAAAAANh4fPwGAAAAAAAAAAAAAGw8Pn4DAAAAAAAAAAAAADYeH78BAAAAAAAAAAAAABuvXLeDZf1WRGQDWvaDrjeuHrHxVX3bXLGRsTzfsf2WxZaMtd1Kxop8ZPvto5Oxuj2TsVV90/Y71Ljat/E800Om7/Vvud+2krFRtStjbbe0/Q6VZcXgtkU2lrFxvmfbdlHre4rh9+Q0/ULGul7Pi4iIttf368ZDXvjlxT3/3a0PyVjT6t8SEbFqT2TsZPa8jBW5fqcREaN8W8aqQseadm77vbL9CRlbdXoNODz9bduv49bC+/Sa3nT6+buxcr/XYeN71Z7auFtbFiu9Vk5Hj9p+3RpcFHrNmi/fsP1+t1Brdnp8aFmmc96o9Gvjsta5NEx+6fvW9jsdXzNtfd5yWjMXOhMbWv9E+DHp1uOIiDaG59K60dfNMv13lLfn37T9Xps+LWP3VroeuTax3dqqtDWPP0+Us71pa0rB6N9KPHvzp6jFvn6v2civqX1hftBKj/2f/NPXbb//9Rc+K2PuGXaJof/WTP8P/tHp35axVX3L9vvw/g/LWJVPZWzRHtp+90ytcnT2DdPSP4jMbM9OmyPbNsy+4s7p12RsXF22ve6buerqo7bwY9/VT6cLnUtT+cSt7S52dPZ12+/u1kdEn22czr9l276bjmffjCH777K8JGOFyd9NN7P9jsoDGVua+Znci5l35fbmKZ2pr73UM9dzOzdnAm4eREQsOz3vXQ6OiPjq2d+XsbvZD8jYn8m+1/br8nBjlrhJ4pUf1/oZ/+Mbet5/8sMXczayFlNi9k2i/hxenlr/5tW/OKhdnbifO0tdBH1oTw+WOlEYzE2JPzJD/8fKP2r7/V+qV2RssXpLxpbmrDHC7y3nqxu2rdvP1PVdGZuZOiYiYnfymIw1mT6nKPJEsW0szf3umnoixe3520SeysXv6fs+sW97982WL8eQHO7OH8pCv6+mObT95mYMdZ0+h8kSv8HNbndOnsprTXPPxrXUv/0zv8fUI6kz/2Wtc/g3ql+zbZuVzsX9ia4dLieSrXsSba+fQ2qvfGT2w8dm73l35texyw/pcdj5oyCrO/Lnl1LiOXRz/Vvbk+FnQXf+4h+Qsd3/z9+Tsa2xP/f88PgPytjNTp+v3z7xD2I/07V6Zeb5/3Hvc7bf5+NZGfupk78pY7NlolY0nwTOlv58pDd5pDer4fbkKduv2yvluT4zSOXwzKwC7tx+VPm56s4k3beROrGuV2YP+07wL78BAAAAAAAAAAAAABuPj98AAAAAAAAAAAAAgI3Hx28AAAAAAAAAAAAAwMbj4zcAAAAAAAAAAAAAYOPx8RsAAAAAAAAAAAAAsPH4+A0AAAAAAAAAAAAA2Hjl+l1k3/6/36kf3GOe78hYH13idsz3/P68+/x2qF/Zbov8wF93oLo5lrG+X1zINaflFRk7Wb4xuN/MPfuE2fKmjLWdfw5VocdLnlWD76ksJjK2VT0kY3U/s/1mUcjYKNPXTHHPPzN/51KHv98808tEvsbfz9w5/bqMuflYFnu236rYkrGmuSdjbbe0/Ua+7eNC1zc2vurOZGyrvKxjBz9m+33z8BdMVI/BiIjMzJu21eNlXt+1/Y5L/e5uHf+qaTk8n5TFgYwtzXiIiOjc2tPrXJSbMRgR0bZ63X8vrZqbcX7+9lyOLs1vT63H+9sflbGT+asy1rYntt+m1e/RrfO9ecfp67ox6+dfRCsjdWPWi/E126t7Dl1f+zvq9JrcmzWuSbyb346flrHj7Idl7M/mn7T97pmhNlrnzz7NkOjNO8/yxDwz/Ta39LvJJz6/tHN9T67srbb8mjtJDWFhlSjhn97Rz+nf6v89Gftbb/3fbb+puax0nZ8XRT6WsScO/iUZe/P4i4nrzmUsy/Q178fdANexUbnr78nM877Xa9Z8dcf22zS6bhhXjwy6n4iIpj3Vbc3zTTmZfUtEhtcpwwzbf7v9gBvPZTG1/e6OH5exe2ab0XR+D+LyrLvf9Jx3z0mvQ2Wxb3tt2iMZq02NvCqG7TEi3sH+xThsXpOxzx8+Ztv+K9celrHGPP47Cz9Gtyvz/H/3Jevalvd80VBcGjj3E8365mLWlL/+J16Usb/28x8e3O+Via6np6ZmOGv8S/0nR6/I2FOZzhFHifOja9uf0W1Xes+hc8B9bm+ZPivTDypz5zH58CNdt46mzuC6TufZwpzXuD1FRMSy1s/Q7ytS+zZ13fc6f0fcf9cD9uDZyMT05mdr8qTtd3uk95Du/P3u2Tdtvy6HN+ZMaXvyqO13sRp2xjsyZ2sREbU5o3F152x5Y9D9RETcnT1v4+30WRm7Xes5+mKtzwwiIr53W7/zl070O7+38vV3Zda5Vaf7/cgzt2y/33Xej2Uj4eTf/9My9u/9Tx+ybUfmrOJopfd5J3JdTdsudc7bTkzxx8z/oL7n9p7+xbm8l/wWaWRmvU/V8fulXr/Pej1vUnshtwdrzUHRdqnr/4iIxUrn8GU9fK2sG/Ve39lk5F9+AwAAAAAAAAAAAAA2Hh+/AQAAAAAAAAAAAAAbj4/fAAAAAAAAAAAAAICNx8dvAAAAAAAAAAAAAMDG4+M3AAAAAAAAAAAAAGDj8fEbAAAAAAAAAAAAALDx+PgNAAAAAAAAAAAAANh45fpdVJFl2QP/te9r2yrLxjK2O31Sxrq+sf027UzG+r419+MfRRaFjOW5blvkI9vvsj6Usb5/8Lm+rSwv2X6b5q6MzepbMrY7ftz2e7x4Tcbabmnb9pl+/uvo+07G2l7fUx+6XUTEsrknY027kLGd8SO23yzTY6mL4c8o73WsyCoZuzPX7zQioiymMta2KxnrE78ly/Tf3nSdXj+a9tT225s1Ymv8lIwVuV6TIvz9tq0ZZ2Z8RkSs6hPTVj/D3eox2+/O9EMytqyPbNtRuWva6nmxMLGIiOPZcyZqBnDotTDVtjXjJTlGzbqfmbU925C/K9uePHPuenQ6f3lwn27sTMp923bVnsmYm9d+7Pg8XBXbMubW+Qg/Ppzx6JqNL1ZvmthbMlaV+rdE+DUsNWbd83e5NM91/oiIaDudQ149+4KM/WLn178/8tCBjI3MT80TS83xm76mU/Ye078zIsKUBTG/rW94es2Pfcs8h8ynLcs9wt+66/cGX+tfkLEb9TdkbHfrw/6ezNhvzBhM1Ym1WbOWpqa4tvt9tt+7Jle2nV+XtsYPy9ipqfdSNZCzaHRN0ZhYStvrd9Oa/V6E34cWhc5TrXmn3/5fJOLvjf3tT5ybv13dGBGxanTN6fazO6NHbb9NZ/bfZh6lnrfLs2Ux0e3cohoRq+ZA35OZY2WxZft15wm12VfOlm/YfotiR18zkb/dvumjxR+TsaeKy7bf2iyPrUlN5xwb/fNtTb8nruP3yek39T2VE/1jTFq6HzdDOHG8ZP21n9f5sjHP/utHPvcc9XoN+N49fW51beIHxJ+6/LSMfeNQr/PPZ79u+503h/qexp+Usb3RE7bft45/2UT9S5+adXZu1ojUWcO81ueCk/JAxtyZbETE0dnXZWw6ekjGUucQTavjo0r3m7Kqbw5u+247EDnc1ZURqfMzvVdLnUnn5qxw0R7KmN+fR7gxv7f1jGnl58rOVK8LTTuXsVStO6rcGZipdRPnkyMzz9y+PyLi5raOfyr7qIw9ZM5wIyJuzPX66fL0XfN8IyKeGOl6JU8lvgvwPlwyfV0XW2MPvjrVHZ81fn8wNzt4Nx6ujXUtHhExKXTjPXMokzr9Pat17eXOn9xcjIhY1rf1PSW+GVpmQLjz0xSX/1PnGF2n162q0N+0Zkv9PTEiom7umKh7b36P1cm95jvbG2zGCT0AAAAAAAAAAAAAAAYfvwEAAAAAAAAAAAAAG4+P3wAAAAAAAAAAAACAjcfHbwAAAAAAAAAAAADAxuPjNwAAAAAAAAAAAABg4/HxGwAAAAAAAAAAAACw8cp1O3h0/4cjzx7sZpLt2XZ5FDJ20t2Usbuz52y/fd/YuLsjZ1Ttmmu2utes8v2W+jnVrbmnvrP9hnu+81fMNc9sr3U7k7FxuW/brpoTGWvaUxnL85HtN8v0c3KxPvEMGxNf1LdkLPUMtyePyNh5c+ltqfst87GMLZtjGWu7le23aRc2rtvpa0ZEZOa3Zpn+La5dRMTIjMOq3JKxrqttv10+bG1pu6Xv16xZXe3vyZmY51AWU9vW3XNr5mrT+mdUFgcy5t7bfPWW7bfv9RjuY2hOiCiKHRmbjK4M7vd0fji47bvp0vgD5+aondGjtt1ertcw58bqt218ttLrqs/tOt/db6vXzsKsmy5/RES03VUZazqdK1Nrbp7rcdd1Or+czl6y/faha5Wi0DVORETb6vydmTonzye23zL3a5HyrfiSjX9y9kdl7PHtTMa6RGn1t77yjIz9xLMvy9jinh9L5aiXsb/xKx+WsU43i4iIXP/UaE3bOvEc3GVLc83MxCIiXj37ZRlz+TtVH7k867Stn6s2V5rYztivsQfTD/gbM+bNXRnre11T3Dv9yuBrZnY7qdedlKY50tfM/LrvrpuZPd+lnU/ZXtd5Tu+m/eqJc/P3qtc1WkTEwehpGRuFnmNt+Hr0Vn1DxtzeJovEomC4PbbbE0VEbI0fljG3X01xtUpRbMtY1yX2WmaNq1s951PeanVd9sNbz9i2EzMFj81w6RN5y+WJRaMb/zt/7ynb71ahb/i//VO6fionPr/0lb7hZqlji1N/RjTUf/mreo5HRKxM4bBnfstB5e93ttLz/O5CP8PT2q8BLnrD1KZnjd5TRPh5ft3EtkfXbL+P7v2QjLncExFxvHpdxnpTeZ0tfP1vrzm4pTdb6pwQkTrH1GpzplWafft9w/PNu+2gevLcHNZWPtfWvd5fTjJ9ljIKv9+6Xn9NxtwZWVX4M/9Vr/OTm4OpeVaZMbTOeWrqHFdf059XL+vbg/qN8N9GtkafkLGrU18nP28S9bGpSXbMOW1ExLdW+reO4mLynpP8bHJR3IY4tYEf6D/4ab1/HOf+mrW5p19qf0nG/uT4R22/I5P23BCdJ7aP91Z6/O5v6bOT1P7gsmm7SHzfcHv/Y3NOt6jv2X6PZ9+0cS21V9ZWZs0qywPbNjfne26flDo3VN9s+76Pvk9XM/zLbwAAAAAAAAAAAADAxuPjNwAAAAAAAAAAAABg4/HxGwAAAAAAAAAAAACw8fj4DQAAAAAAAAAAAADYeHz8BgAAAAAAAAAAAABsPD5+AwAAAAAAAAAAAAA2XnlRHffR2Xhr4pN8T8a6bmX7zfORvqd++M9d1ScytjN+ZHC/bbkrY13fyFjdHNt+s6zSQdPvYnXT9tv3+vlnib+laFp9z1mm31uW+feWZfq6ZTGVsWV9ZPvNzXXbbiZjdXPP9nt4quPT8aMyVhXbtl835+arO7qdGQ8R/rdGb+Z54r3l5p1Hrt/pqNBzJiJie3xNxhbNoYz17rdERNMtZSzLChnL3VxMXLc1692q0WtSRESTLWSsMOtkhJ/Le9sfkbGz5Q1/T81dGbu682kZW7X+t7btqYz1fW1a+jWrM+vdwsyp3elTtt+ILBF/f43zHRtvQz9Ttw4tVn5tdIpC31PX6bEe4XPptDyQMTfnIyKysZ73i5Ue603ifp0813kgtZZH38pQa/JzRERmysU8n8hYYWIREUVhcr+Zn0fzV2y/P9n+XRnbnema7XP599t+P36g1/O//dVnZOyD224divjUJV2PrExqKtZYSly/o8Sfxt4zU+OtmR5nz7Wv234no0sy1pr5uE7+vihdp+fj6fIt27bIxyY2PH/vbn1Qxk5mL9p+w+3rTL1XFnpPFxHR2JpZj6XerGcpjakp5qvbidbfHfm76VeRn/NOqmzLtitCr2Gded4uFuH3ya4uKE0OjohoTb50dfB47Medm2Mjs32p2zPb71BuHxzh69xk3yZ/t6Zu6Pre9tv1ei5UZppkuZ9Di1Zf9/ZS59I6kQe+2n9dxn7sf9bj5f9w+cO237/8x56TsVIPs4jhr9Radf69HZvkf3uu205LXxhcNmcu11f6LOGV3Oees07vt1adfohNm9gbmBzdhcvf122/ZeFqYjcgIvJcr8/bE723PFu8ZPv13Hz0Y8mtW103Ny39XHX7877X9dy4etz2qs4M+76LuvFnGO+2WXd47lmjOwePiBhlej/s6r9VuPcR0XV6bXVzaVT5czm3B3dnsXtj/y5r83vc2VtnzjAi/Nlxak1xilzXZk3rv29cP/q8jO09/of1NRPl6naha4Nlo2NXRr5euRJXZey1pV6z/8Of/oDt9yfv/Q0Z++zOn5WxH9rx32oy85z+6383tTfSTr6l5+PZqR5nf+nzV2y/ByM9viuTpuvOD4g9s/l/dKHroERpEGeNziOm3LO1YETEr/VflDG3l3NzPCKiL/d128zn8KLQ78Z9p1zV/huc4/Kw+3YXEbG39TEZO128IWOp712ZqSt6t9dMfOudjh46v8++i9nSn2VG8C+/AQAAAAAAAAAAAAC/B/DxGwAAAAAAAAAAAACw8fj4DQAAAAAAAAAAAADYeHz8BgAAAAAAAAAAAABsPD5+AwAAAAAAAAAAAAA2Hh+/AQAAAAAAAAAAAAAbj4/fAAAAAAAAAAAAAICNV67bQdvX0Uf/wH+f9fdsuyKrZGze6rZ9dLbfvm9krCx2TDvfb9stbVz2m7hfJzN/m5Bl/tX1/UrG8mJLx7KR7bdpj3WsObRtJ+NHTL8LGSuLie23KrZtXHHPN8I/476vTcsH58PvvLKyWN2Usa687HvN9O9x47A04yEiIs/1mKjru/qa9hlFFPmBuaZ+9qnxMMr1PD9rzfNN3G+emHNKUfg55fSdfm9tp+d4REQXei1s2rlt23Z6Po7KfR0rdm2/zti8t93JE7ate3dubXdzJqXKpzJ2ZuZxRERZnP8M+76LtvO5893UxDLyaB/4750ZdxERdTaTsc48bzevIyLaRo87tw4VxZ7tt+n0/c5N3irzse3XKUzbztQpERFd6Llt1/lU6lnDeHRNxtzvKc08ifDrqpu7qfXvbHldxu6dfkXGXo2ftf3uLz8uY//GwZ/T99Pomjci4vnTqzJWm+nY6XLiPrPEFabtF27quRgR8Ur2hoyd9Ldk7N7qJdvv/ugpGTvtb8hY3Z7Zft3a48Zgqt5w89HdU2r8ZlHIWCp/Ny5/mxy9v/1R2+9sqd/rzuQxGUvl2bOFXtuXtX7nWZZYn826tLP1ARlLPd9R9dD5l+u7qBt9v++2up9Ffs42vgu/1rhK142749Xrtl+X8/pz6oy35eY8ICJiZdJl6l1dhNT9Op2b94m6oDc1fcql3U/LmDuPuTLxc9flkKkp96pE6V2bxLaamj1p54ugf3rnl2Xsz136CRlb6uEbERH/1c/ptfPOQt/T7YXv+K88eyhjf+2rl2RsOzFEi0w/38K8m4l74RGx6nTj4+5Uxt44+5Lt160tVanPgAqzb0hxa0vT+XXH5bxU7l82RzJW5roe2Ro/bfudLV+RMbfu7+/omjci4myha+26WWc/6/bueoB3nV8nVb23znntUHV3Fln24LPP1zibcO+yTZxzuWcwqnTt2HW+X1dHL1a3ZcztzyMiClO7t+a3pHK4m6PuO0Nyb2/WwJSPX/rXZOzaVK/Lt0z+iYjYG+mxtjfS58OjRC746olex2bmDOnNVWpTqzWmzly0/jm4nPj7/hv9HD5mzkYiIn7iQ34vrexXfoy68x73U99c+TFYmfXjWqZrjhdPfE68kenvBTu9Pv99MfsN2+/J6i0bV+rGnxk4qT2tqx1GpT6vLEbn7y3fdjp/wd/YQKcLfZ7j8nCY+Rbhv4Zl5nvj9uRR2696vqlvuW/jX34DAAAAAAAAAAAAADYeH78BAAAAAAAAAAAAABuPj98AAAAAAAAAAAAAgI3Hx28AAAAAAAAAAAAAwMbj4zcAAAAAAAAAAAAAYOPx8RsAAAAAAAAAAAAAsPHKdTvoo40+sgf/e98l2yltt9TtEv267/mZibX9wvY6KndlrOtrHYvU/Wp5rl9P0U9s277XbXtzT2038zdlnv+l3U/bpmeL6zKWZ+a35mPbb5YN+xuOVL/L5S0T7d0d2X6zTF+3N2Np1dxN9Duycdmu2PLxXj/fqrosY6m56t6bezdu/EZELNsjGZuMLsnY6eJN22/T6jWiLPR8dGM7IiIrho1ft07ej+v77fqVbduZdaBtT2Wsj8b267Rm7BepZzhwDWjauY13vf49y1qPs9TYz/Pz52rfd9EOTxm/a13fRZwzn1x+johoex+X7To/7jLznst8Ouia96+r54JbT1zNkFKIdxzha4aIiFV9c/B1h8oS5aCbY1W+LWNubYyIyLNKxtper3GpOb+qXf7WMnM/ERHHs5dk7G+c/TUZ+/6DH7f9/tj+ozL2+qleh65NC9vvdqXrkbNa1zG/0v5j2+9sdUfGXO2ayoeL9p6MjQtdh8/jtu3XrfVVocdvapy5ee7yQCp/r9oTGevMenY/rvt2+Xu29OvzRy79qzJ2q35OxkpT80ZEbI2vydh0fFXGUs+w6/S8ceMhlb9VLur7LvzK/u5qu1X02YO5OMv9muDye2byoZt/ERGnjdvj6XXVrRf32w47qkjVMfaaub7f1N7xbKFzxPulbs9krDO/58TkiPt0fpmYYfjckX83q1Zf9yfv/FUZe3j/R2y/V7c/MeiaMxOLiNgxefbqxJ0J+Ln6f/vKgYztj3RueuFMv++IiEXotf6jU33No5V/by80uu66m+n1IZVn3VpfdDoHp/r152x6XqRyj8svbl8Z4XO03X8n9hV2rJk1dq98zPbaj815brWv26XOiU18nbVdrd/p8+V337I+PneMjvKdNXod/jtczeSeTypHl4Xev6vzkAiftyIixiO9b+o6PVfyxN7+3vxFE03lxIvx+uLXTPTjg/udljo/ueX+9tzPwf1M7/1/8fC/lbEf2/8Pbb+P7X5OxqpO1203F359rEyucOfgP7vwe+WfiB+1ceWk8XniyOwD56Fju+HP/PcLk/d6PfZfzF62/b4y+4KMrbMHd4aeL0X4HO/WyYiIuj2WMbeOTkZ6v5uSzv/a7vRJGXPfPpJ78ESto6+ZOJsXz/+d5nD+5TcAAAAAAAAAAAAAYOPx8RsAAAAAAAAAAAAAsPH4+A0AAAAAAAAAAAAA2Hh8/AYAAAAAAAAAAAAAbDw+fgMAAAAAAAAAAAAANh4fvwEAAAAAAAAAAAAAG69ct4O+76KP7sH/fs5/+x3/A2nVnMhYno9st0Wm40U+lrG6PbX91u2ZjE2rS7atk2X67w/KYjooFhFxMvvW0DtKxPWLq3J/T+6eC/Ne87xK3NMwq+Yo8b9IjGHJDO6IiL6RoSxzv9XfT5FPTL/DxllERFHpedO0cxnLs+HLi5ur7rdERJT5loz10crYqNy1/daNXgOqUl8zywrbb98PHWdeZp5/16bGvtaHHr8pT1/6l2XsrLkpY6lnWGV6vDidmYsREcvlsOfkxm+EHi9930bd3Bh0zSH6aKM/Z81PPZfM/N2cy/1lIkd0fS1jRaFzRNuubL/OOuuU49apqti2bfWqui6d31Pzejq6qtuusYbZ8WJyU7e6Nfia9jn0fixlpmwuih0Z+7XDv237/a3ZNRm7tvVpGetOdU6LiLgWH5Cxo0w/wzaxBpSFrjdczZaab27tLEx9NK72bb+L+p6MufmYyj2OWwNSdUzutmdmnxMR0cVSB9eYq7fq52TM1f9978eobWvWh2V9aPttOz2X3Z6jKv36rPJf6ne+28p8eu58cnk0xT7vVu/NI/x67cb7OmtC2+mxnoWfu4W57srs+d24+m51efwhGZu1d2TsxRNfjTw61Xng63Pd7+vZN2y/bxz+MxtXbhx90caLYk/Gfqp6Wcbm93xd/pce/49l7O5Cz6mHpn6Munhrjho+vuvXsOtzPae+vHhNxprM1wUn4WoKvS6l9t/zlR5Lbr/izgQjEmuPeTWpNdbdU5M4b3R5xJ8R+bOnqtRnlQ/vfFbGlr1f90em7l2F/q3L2u+v3TN0e0m3V4xw+5XE2d0FmI4uD9qDurMsp+78ep7nw/bDqXq2MGc07uwytVd2z8HOwc7PXzfPfJ13cTXgTzz0F2SsNEf3k8Kf62+bV+5yzKsz/wxPej3W3HnDLxz9N7bfzxz8W7rfTOfanz7+G7bf79/5N2TskfxAxh7P/rDtd9XpMbHs9Lw5S9SZrRlrn54+JGNN79e51mwRX13pXHCcXbf9dp1+510+PIenzluV1Brq6vxkDh+4R5gvXx/ULiJie/KMjG2Z87sIX5u5M5BmOfy0cp0c3ohT0nd6Fsm//AYAAAAAAAAAAAAAbDw+fgMAAAAAAAAAAAAANh4fvwEAAAAAAAAAAAAAG4+P3wAAAAAAAAAAAACAjcfHbwAAAAAAAAAAAADAxuPjNwAAAAAAAAAAAABg4/HxGwAAAAAAAAAAAACw8cp1O+ijiz6633W7pl/KWJ5VMlZkI9tvlunv+Xk+/OeOq31zzUI37H/3z+Z/69f8bcLx7JvJ1lo/6H5StvOrNt6P9LOou7mMdX09+J76NZ6/f07Dn28fjYxNR4/IWN2c2n6dUbkrY26cRUSUZs5V1VTG+r61/bp5k2d6rmZh5ltElNlY35NZq9w1I/za4saZXR8S9+Sk1rO2XdmrDpWZtHGw80nbdt7eG3hNP0ZTY0JpO52HUtzzLwqfp7arh879713fxPHgO/rdy6IQz06vURF+zC4b/QvcHPp2xzpk5lgqR3S9/j0uFmYtSXH3m87fmpt/KX3oNfny7vfYto+Wn5Kxm+1zMrZqh+et2szPpjlKtB6av4criy1zST/23Ti8t3pJxlJ5a1mY+WjW1SLRb1nqufF+5O8Ud0/u2Rfh14Ch9anb56TuqV1jTrn6c1zp+jPC14KteQ55Kn8PrK3WYfeZuX/n6jl0iZr33VZk1bnjep09k9uLpQx9V12i3li5td6MHbeWRESsQs+jixqTLn+7/Hy/rV473byOiHjt6PMyNh2dX49GRPxS8Q9sv8WZfsZNq8fS8UzXDPddzP676/S+yN3vdPSw7ffrx2cy9vhE1wW7Pg1E2+vf2q1xlPNEri/8lZMTGVv2Pvd0Zgy7eiOVD4tc5x43H9N5Vq+Vrt+y0Gcf6XvytdVi9abpd3iOqZvbMjZr78hYOn+bdcnu2/yaZceL2X+XuX83yjrPdqhRvnPueEjlgqYz49bUyeuceTipnFh3en1046BJ1CPjYs/fmNCaPBARkecTGXPjsmn12nnf8Nrh//nqX5Wxv/zB/1TGLvnjqFiYoeZyzD8+/Vu2X79HH57Dv3H60zL2I9t/Qcb+0uP/Z9vvHfMgDld6vt01Yzsi4r/8hl6r9s04+8DWtu3XvZutUj/f49o/35NGz8fb+XUZa1q/tric6dalqvDPYei5QGqf52qHpp0l7kk/wyzT7zySOUivPdujazKW2te5/c6yPpSxVA53tY47J0+9G7UG930bC9vy2/f1Dv43AAAAAAAAAAAAAAB8V+PjNwAAAAAAAAAAAABg4/HxGwAAAAAAAAAAAACw8fj4DQAAAAAAAAAAAADYeHz8BgAAAAAAAAAAAABsPD5+AwAAAAAAAAAAAAA2XrluB223ii5rH/jvWea/qzftXMb6vpOxuj21/Rb5xMaVPPOPYlIeDOs38fcFfVbJ2LI5Mi2LxJUffCf/2z3lO/p+uoXv1jynNmrf1IyJMh/LWN3p8RARMV/e1v0WUxlr2kPbb0RmYn2irbY9+YCMtd1ycL9uDBf5SMaqXD+j+/3qMer0Zgwm25o1wL6WiOhDt3X3lOf+dxZmjHZ9oxv64ev77XS/q9qtDxFNe+IvPFBR6PUjNZa63q8RQ7n36t5NmbjfrNJrlhtnW9VV369Yv7M11pUhVu1JZNmD95LK325+uueyaoaPSXdPbbeybctiS8ZG+baMpdY+t+Y2va5xxtUjtt9lfV3GMlPj9L1/Dpkp+e6e/IZtezd0/OH9H9HXPGd8faezhf6tvi5L5ZdEohhoa/KkjF1c/tY5osx0bo+IyAb+jWvqvTkXlb/db3HPKCIiz3Rt6+43lbNc3eDWrNnylu23NbV4H6beSNiZfkjGUnnL6frhY9/mk17Pc1ffv5O4Mi52bbwQecHWgRdg1tw+d56m9rNuX+rGe2otcfv6PNf35OrciIjM/J5xtW/bOuo9RkS0ocdzam9TFHuD7qdrZzbe2/rQL6xdp89OmlbX9P4cIqI3Y97mgUStm2WuznFrjX8OW+NHZczl71Tt+qX8H8jYMv6EjB2MD2y/Bya9j8x0vJNYju8u9RiuQ+eexsQi9N7mfkzfcGrP4WrxdfK3q3Pcuckysf92v2exetO29f26es8/w0f3f1DGVomz1aHcc6gKvfdap22RyH+qVnyv83dExOnqrXPHYOrM2Y3rztXQibo+M3Opac260OncHzH82U7LyzY+yvTevsvNMzKxiIgy1/2m1iqnafW6kZuziIiIcXUgY3/1xf+rjD118Mdsv39+/4dl7NbCjIfmru23NO+ubY51w8T8HZW6Pn8h+4puePSs7fey2S8cjHT+2e19Deq+YbS9roOOV/7w+Kkd/ZxqU14tGl97LUw9Xpj9rvuOE+HnTdbrdWmdHO72QnWy3jbnyqaeTul7vY6WxYFt+/TeH5Sxe80rMrbOmpU6W3HcHtydv6fuN8vPj7vzgu/Ev/wGAAAAAAAAAAAAAGw8Pn4DAAAAAAAAAAAAADYeH78BAAAAAAAAAAAAABuPj98AAAAAAAAAAAAAgI3Hx28AAAAAAAAAAAAAwMbj4zcAAAAAAAAAAAAAYOPx8RsAAAAAAAAAAAAAsPHKdTs4W96ILHvwG3pVbNt2RT6SsfP6+9917/TWHtD3um1V7gzu18mywsZLE1+adlV5yfbbNIcmap5Dddn2u6rvyNgr9/6hbes8tPcDMjZf3rZtl/UNE+tNyyxxV7ptUezJWNctbK/z1S3dbz6RsdzMmYiIqtRzLs+qQbEIPx+7vjHt/Njv+1bHQsfy8PfbhH7+Weh7Ghe7tt/M/K1Q19cy5tadiIi20zO9aefmmvrZR0QUZg3e3/qgbXv35DfMPR2ae9LP4f3i3pvPNRFlMR14zcTYF+PbjfuLcDJ/7dxnMCr3bbuy0OvUOs/bjelVc2zbOtPqoUHtUu+jyvX4aLLhc7csdR5umiPb1nE5pO/9mA3zLG4cfVHGskSZ2Yd/FsqoumbjTXsqY7nJs207s/0u63umX/18i2x4/nZzap38ncpNzkXl7zZ0DsnNbxml9hyZHod1p+dqStfp+21aXYv0ib3MqNQ15mKVul/9/CdmbU+tz65WydcYo0Ol9plufLvxkNKJftV/vyjz5Z3kOzuPq2tcbk/lLWdZ35Wx9Dqk46NS1+1179fyIhvL2LTUsbpJ9Gvyi/utXfh+3Z5qZ+pr+pPZ8zK2rK+7q9p+3T7ZmYweG9QuIqIxOTo1RlfNiYzlZk1wZ1YpL2VflbHPdj9q284a/fyX5tW8cuL3Ym+Yfdwq07VTY3JAhF/rCxMb5f4MrhjptitT66W4OqbI9RrQdivbb9MO3684vdljP33pT9i2Z83NQddMneU47hmu1a+Zq6l6Q63B69TDQ7VdHVn24Bi8N3vBtnO1T1VuyVjqN7r1c9novU/q3DPcdc27bHq/3hzVr8nYpDwYFIvw9bl7hqnn27Q6/5SFfm8REXuTJ2Vsvnxdxl49/Bnb7183cbfPno6fsP26c7DVGnOtbs9k7N78RRn7zdLVOREfjz8kY9+3dVXGFo2vgdpOJ+qDsanpquH/PvX2XOe148bnrmNThy5ieK7dqtwzPBzcr+PO6Fah52JExHz5xrt9OxERkZmzoGd3/5xt+1r7mzLm6itX50REdGa9c/vFVF3scrzbu7rzhPuNz493yf3K2/0DAAAAAAAAAAAAALDh+PgNAAAAAAAAAAAAANh4fPwGAAAAAAAAAAAAAGw8Pn4DAAAAAAAAAAAAADYeH78BAAAAAAAAAAAAABuPj98AAAAAAAAAAAAAgI1XrttB3ZxElmUP/Pdsje/qy+ZIxrpuadv23UrGimJHxuq2sf1Oqss2rpT5eFC7iIgs08+w7/39ZvlExrruTLcr9my/u1sflLHT2Uu2bR/6nm8df8m0fHB8/c6eZctsJGNFvmV7HVeXZKxu9TNMvZuIztyTvt9RuWt7deOlyIZP9SwKGcvNq+mSz2GYrq9t3N1vmDGYWrPcXG70K40u/P3WjR5Lzrg6sHG3ZqXezXT8hIzNl6/reyr2bb+r7lTG3PPPs8r220dr47LfxDvPMjeWtDLz634uxmhqrLzb+ujjvPVo1Z4k2unn7d5V3Rwn7khPpL7X10y9JzfHulKP2Tz8uEuNS6UsdH6OiKjbmYy539on1sbC1AVb44dt29P5CzYu78msuRERWabvKTN5K7VeV4laRukyXUOmuBxdFlPb1o1vl3tc3o9I5ENXWumyKtnW/ZZU/u7NGtCae0qNBzdvCvN8+94k94ho+rmMtWa/kq9Rk21PnrLxs4WuxZdmbd9K7FfcM3TPPzVG7TXN+C1srRfprYPqN7Gud4kx8V7J8/LcZ7us79p27n3kuR6Xqbmwasx1TdtU/ebGwLjS+dvNvwg/753JSO8NIyK6XueBxUo/o9bs/yL8+cZ8ecu2TS/ow9qNq0dkzOW81Ltp3VmOqWP6TtdOKaPK5O88kb9N3mr6hYx9+cTP1au5PreqzDy+ac4oIiJu5XofV7c6p6W4/O7meWptcfmlMu+mM+8lIqIxv/Vscd22daajR2VstnxlcL9uPpYx/Lxx6F4m2a/d1/v1zrG1SKLeSI217wap+tDt0Yfm94iIrtP7tc6sya7mTynNeu7mZ0REnutxu84Z5K6bv6bOmSa+FRyZ9ahuDm3bG0dftHHN18lb5ryvKPQcTZ1dtr0eL25v73JpRCIXlPpcP1XvuVxRmL3Etalfb/ZGLnfpdluJLeKROapYtPq33MoObb83Qp/1tJ3O723vazr33salPq9pE2cGrpY8q2/KmDtni4goS13nN26vk9CbefHrR3/Htr26+xnT7/A12LFn84l84vL/0PP1iPV/K//yGwAAAAAAAAAAAACw8fj4DQAAAAAAAAAAAADYeHz8BgAAAAAAAAAAAABsPD5+AwAAAAAAAAAAAAA2Hh+/AQAAAAAAAAAAAAAbj4/fAAAAAAAAAAAAAICNV67bQZGPI8se/Ibe9ivbLuv0d/eq2JKxtjm2/fbRmFgnY1vjh22/TtfXMrZqdSwiIssKGZtWl2Rsvrrh76mbm2gvI6v6tu237RYylpv3FhHRtmc2rmRZZeNFPpGxMnFPzrK+N6jduLps422n50aRj2WsLKa239z8LYsbZ+fN33cqC91vnvm2ejZG9H1r2rmWEdHreJEYS06eueVyKSN1M7P9Nq2eU2Whx3ZVbNt+3XstMz3OIiKO65dtXJk1d2y8yv0YVvrQ4yEiojfv3K37bl6kZGa+Nb0eDxF6HHYmf12EcXlw7jhZNUe2nRuzo1LPMbdW3+/XXVc/7+noUdvvZKRzadvrZ+5iERFZpt+zW69Ta/ny7DkZ6xO1lVOb+bkzeWxwv1V5Vcbazq9/Ll/mZr12dVdExLI+lLGq2JGx6egh22/b6Xde5CMZKzMdi4iIRL7Uzfwalps80OlSMLk22udvfovL7an4Ouu1y9+t+S2pcTZf6Tnlrjkqd22/Uzsv/NbtbPGSjJ3OX5OxVE3h6gZXb7j8HOFztONycKpf17ZL3K+eU+/t35NXxda5c8Ll5wi/B+lqnfNSY9bV3r3ZdxaF7/fS1odlbG72aam9jRvvru0o1/kjZRF3B7d1zzC1152MrsjY6fwF3W/p97Nuz7rO3tLVDaVZG8e5rvVSSrM/Kc3vjPB5y61/bxb62UdEHIX+PbNe18t15s6AIhpzluPWxqFrdcTwfVrqnoZeMyJitvRnaUpV+jVgy8y37fE12/bW8ZcG3VOeqAXdXE09p6FcDf9+UevS0DG2jiKvzs3hqbWzrXUOXzUnMjau9m2/i9qc4Zj9cJ5YH4tc5yc3908Xul6NiNga+72/ktqP5aHH7SjXdUPq7KduDm3c2d/+hIx17hyj9WcGea73E25dcHXk/bjO4dOR/uaSWovc3HBnjKn941Gux/6q1Wv2OLFsbJvtWmv24NdnJhgRtdnA3211/n8zvmH7dXvei1rP11l7Fyu9B2jMGHTnQBF+rTwx9VNERJc491Ke3P8DNr7s9drer1G3lWa9s+c5a9SDTmo86DXgnR2k8S+/AQAAAAAAAAAAAAAbj4/fAAAAAAAAAAAAAICNx8dvAAAAAAAAAAAAAMDG4+M3AAAAAAAAAAAAAGDj8fEbAAAAAAAAAAAAALDx+PgNAAAAAAAAAAAAANh4fPwGAAAAAAAAAAAAAGy8ct0OdqdPRpYVD/z3s+V1267tVjLWR2di7Tu/ud9hVO6Z2K5t23ZLE9O/JSXLzN8fmNDB9kdtv3dPfsNdVUaKYsf2m2V6yEyqfdv2dH4iY1V5xVzT/41GmU9tXEmNpa43Y7TXY3SS698SEVHkYxMbDbpmRERr5k1mYrl5p/fjQ/9Gxrfr+mZgv6mr6utmJubWnW//D6RlfSRjq1aP+4iIqtiSMTdWymLYuI+IWDSHNt4PfDfT8sDG624+qN/U2L8obrz8XjAZHZybv1Nr7qrRY3q9d6UnWVFsy9jWyK+5q/ZMxmoTy+LBZ/PP35Ner8eFrinKXM/5iIg8n8hYb2snn9MKc0/J9c9o2lMZKxM1RZ5VMubGYdf6NcqtYXV7LGNVqcdZKn7eXHpbu0a+c6Owz1I1sX6Gw3N7RIR+b24ctn1ijLr6yIyVVG7Jzf269WxR37P9uhzhaitX60VEtH0tY33iGboR88GDPyFjZ92dxD3pfdD7laMd925SOc7RY0nvrS5CWUzPXXO2xg/ZdvOVf8+K2wevY1L5/L00NfR8dUvG8sQcc2M2z83cNetQRMQ0v6Tb2v2frwvc/abOIRart2xcmSZqq6FS9+vz90zGJpV+9hHp/a7i1uMk03bZ6dopIqLJ9Jzz+1mfI6rMjDWzjHXhn0Pn5pRZc5P528y5Vadr+NPFm7Zfe02zfqTODDtTT9em3lhHHQsbd2cua52NGOvsoYfm6NT6rPJ3FxdzJuVMqkvnrkku50VEVCYXN60eB13nf6Mb822n+3VnwxF+viwbfX6W6nfoWURf+PXR7eWc1Nhzv8ft7SMijs6+PuiextUjNu7OT9y+NbU38vWKHr+ps023d3L3687BIyJuN8/L2D+e6/v9A91nbb+TQifU3zrVY/+pkc8xP7v8GRnbLvQeYDeu2X7P+tsy5s7EukSN5NZzN1YWKz/Ohq5LqRzuavW9rQ/atoenv2XjyquH+p1GRDyy/6Mytk6edmweNt9FUm3dWEqdTam27/S70u/tk30AAAAAAAAAAAAAwL8Q+PgNAAAAAAAAAAAAANh4fPwGAAAAAAAAAAAAAGw8Pn4DAAAAAAAAAAAAADYeH78BAAAAAAAAAAAAABuPj98AAAAAAAAAAAAAgI1XrttBnpWRZ8UD/31U7tp2i/reoOtl8eC1vlMfzaB+V82J77fvZKztljLWdAvb77jcl7EiH8tYnvi7hen4CRlb1oe633xk+23aUxlru4ltG9HLSFVsm1at7TXL9LNwsbZL9aunR9/r99p1fgxW5ZaM5Vll2w5VmH7d2I6ImOaX3u3biYiIK/nTMnaje07Gul7Pt4iIZavn8rS8LGONmccRfp7PVzdkrCx2bL/7k2dkzI39rvfjrO7mMubmW0REVe7JWBYHMnZW37L9jsyz6Hs/H4fKzslP706/em1x8y0iIhPrt/rvF+V+/n5wnatKPz6aVo+tuj1b+77O05lc2qbmgrmnVXNsrrmy/bq53Vd6Xd0Z6RwQEXFl+2MydrJ4U8ZWzZHttyr1/W6ZtTEi4tDErux8UsbmiVovz4eVoX34vOXztx4vbl5HJOoye83U/Zr1xFwzZTu7KmNbva7Ti/Br2Ov9V2XsbHVT38/omu130RzqttVDMpbKH7NG56azxRsylszf06dsXEnlJfd70uNBj7W3Zr8hYzvjRxL9/t7hcnSeGPu53If6Of5uq/Ltc9ecNlF/NIXOpS5XpvY2qb2a4mrriIjC7EvdnjVVT7nfWoWugVZmH5y6rptj88T++2R2qK+ZyFuP7P9+Gbt58hu2rePWoroZXgtmmX4Wri5zOTjC32/qGQ5V5m7P76+5nV2RsSr0b3l1+Su239PZSzK2t/0RGdutHrP9vnn0czL2zKU/KWOLXtfhEX7OnZr8nVoDxpU+31inJnNndKl5kZmj2acv/XEZm3fDzlXfL6n55s573bxJnRN/t+TviIgym5y7ZvV54l5Miu/7uzqWyNFtO9NB88zdnioidV5i8p6Lhd8/umum9mOp80DZb2IMbY0flbH5yp+fubw3HT0sY7Plq7bfK9sflbHD+SsyllpbXW1Wm/V8XOnvIhHDv410iXfj2i56fbbyi8uv2X5dnj7KrsvY52/9U9uv0+w8K2Op711nC10bXNv7IRlzZ84Rfj6ezF+XsdTa4talUaHPOPLc75PcPdXNbX9Pxt6WPt/bMfM4IqIz61Zq7bkI63yzSp2T27YiAWbvsD3/8hsAAAAAAAAAAAAAsPH4+A0AAAAAAAAAAAAA2Hh8/AYAAAAAAAAAAAAAbDw+fgMAAAAAAAAAAAAANh4fvwEAAAAAAAAAAAAAG4+P3wAAAAAAAAAAAACAjVeu20GelZFnD3ZTFdu2XdPOTWwmY3007/zmfhfc/UREZJn+O4FlfXvwddt8ImNFN5KxrvCvblwdyFjfdzLmfmdERFU8LGNbo6u27bK+O+i62Rp/o5H6PU5h3o2zao5sfHt8Tcb6vpWxLCtsv3PzfMt8LGN158f+ne4FGdsqL8vYm4e/YPuNyGTk6u73ytjh2fO21/2tD8rYzeNflrGt8dO2X6fvlzLm5kxERG7GaNPV5pp6rEREdKZtlvt5sapvmWgvI1e2P2r7XbTHMpavNc/13HDrx1rrQ1bpWOhYREQX/t29V1T+LjOdeyIiqlLn92Wt17+207k9pe9XOhY6p0VEdJ2uG1w+LIot22+R6+fk+p03dxL96vV6VO3qaybGVdvpZ7hqT21b5/bJr8vYzlSvxxF+frr36p59hH/+bbeQMTdWIiLGhX7+Tpb7NeHO6ddl7MrOJ2Rs2eg1NSJiHrouGJd7Mnbr+Eu2X2cyekzGXA6OiCgKfU9HZ8/J2H4i93S9WwPMeOj9OBsVOzLW9joHu/tZn87Rbadrlc7cb0S6Br0I6+TvLPT95iZH56bdd5Miq87N36n36PK3e6aL+l7ijvS4s63MWh0RUbdnMlaYWiU5Pty+08RS97vq9P2us58dj/Te0dUMERE3jn9F31Oi3hvKPcNU/l6nVnSKc+bL29z6Nlv5c575Su+ZXP6e1T5/36l1zlvW123boVyePQpdp9yn9/WvH39BxnanT9lebT3XnshYWV6y/V6a6Pq07oePwTLT50e3V1+2bTPT9rTR7zw3e9J1XNQZnMvPEf5spIxh53MRev/dJfaRFyGL/Nzn687sInyOL4vp4PtxtXBmPhl05gwswtedea77TeU1t19b53zHPd9U/nfOq9fetj1+1LadlAcydtPk99S/c3T7FPtuEnujtnHr58X820uXw++d/JZtW+T6vOfAnCsvwufwQ5NPuwuqc+6dfmVwWzfPT5c6/4yrfduv2/PWjd5blKXv95Ed/b1g2el3U+V+nZxsH8jY9aPP27ajStfqbh6nzuFcjl8nTzt2H73GHnyd+103h/MvvwEAAAAAAAAAAAAAG4+P3wAAAAAAAAAAAACAjcfHbwAAAAAAAAAAAADAxuPjNwAAAAAAAAAAAABg4/HxGwAAAAAAAAAAAACw8fj4DQAAAAAAAAAAAADYeHz8BgAAAAAAAAAAAABsvHLdDvKsijx7sJsy72y7UbkrY023WPe2fte6vrHxvtO/J8tGMlbkE99vr/t199S0c9tvnlcyVpXbMta2K9uvc1A8aeN34rdl7GzxkoxtTz5g+63bMxnrG/18y8K/G6czY7QodmzbutPvLjN/j7Kq79l+zxYvy9iyPpKxPvxcbduZjJU7n7RtvV5Gbp98eXCv906/ImNlcSBjs+Xrtt+y0GtWnk9lbL58w/Z7MH1axrq+tm2dstD35NadiIiH939Yxm4cfVHGzupbtt+RmRt938pYlhW2Xzdv8kyvhYWJpbhrbroiH9v4pNyXsSzTz+VkdnvwPUVkMlI3OgdE+DXuvPrlbYXJ7RH+t7pYqt5wS7KbC27OR0Rkodum5phbO5v2UMZcrRcRcbp408bl/Zg1N8K/897k71VzYvtN/R7lXiKnZZmuR06Xb8nYqjm2/XYmf2fbH7Fth1qshr3TiIi29b9HOZ69YOOj8rKMlSbWJp7vqj2VMTenXL6LiGjdGuHTd+xMPyRjp3P9nPamvoYfKpUrXY7OzTpahq/hu9DPODdrYYrqt0u9mHdZ29fRn1NHu+cZETHK9R7Q5cNU3dg0d21cXjMffhTh1vl1ajT3W/sssWfqloPuydUMEcNzT0TEw3s/KGM3jn5Jxk7nr9h+t8aPy5h7Dqmx5P5tRt/rc4pFYp/saqTlSrd1ZxQRPoecLW/K2CKxZ+o6nb8vjs9Nnt7XN60+hziZv2p7HZk9h5PK3zfPvipj+2Zv7tbJiIil+a1Xd7/Ptr198usyduf0azJ2JXEek6rxdbvh62hp6tpkXWD3K259eG/z8Dqafhn5gPnm9ujTSq9F7vzxPr3P7s19ur1lKr5O/nfjwJ1nF4Xf2w8dQ8kxbc7my8R5w6I5lLFLO5+RMXcmGuF/qztbSZ0d9535nmDemzuvjoiYjPT4vnf6DX0/pm6IiMiyPRk7W5kcvvLnWn3/3n/TWsd5e4q3ufNsV+9FpM6n9NrivkFEDM/hqTVrZHLXdPyEbTt33xOm+ptWag85NBOncrh7FmXmz4Odoftst3eP0GtPak162+/d03sAAAAAAAAAAAAAwL8w+PgNAAAAAAAAAAAAANh4fPwGAAAAAAAAAAAAAGw8Pn4DAAAAAAAAAAAAADYeH78BAAAAAAAAAAAAABuPj98AAAAAAAAAAAAAgI1Xrt1BNo48e7CbPPPf1et8LmPn9ffOFTLSdqvB12y6mYz13UJf0/YaUVYHut++M/ejrxkRkfdN4srn6/ra/w96HXr55Bds0ys7n5KxplvKWJmPbb/3zu7poBmHTeufYR/6+fe9frNtc2z7nS9HMrY3fVLGFv1d2+9k9KiMubGUJeZq0+jr3j75sm17EYpiz8bbVj//pj0cfN22PZWx3sz0srxk++3su9HrmRuDKUVivTtb3ZSxsrwsY1U+tf1m7u+tsoHtwo9hl4vG2Y7ttzPvtRu4xn43KbPJubkv9bz7zIxZ0zbL9NoXEdH3OkePqodkLJW33PrXmWuaFPBtExnJs0rGUmvu0FolWceErrvOlnrOR0Rktm89eZ8pPmf7/WbxczK2qO/YtkO59bppDm3bZb0tY0Whx3cqb1WFXovc+B2Vvt+5yYdHZ1+3bYfT4yHLfD3X974u0+3MPI6I2jyHrtPzIuXu2XMydmXnEzLmcnuE28lEFIma+Gz+irmuHqOpdX8otxZG+PmYh/6tZWIstaHzgptTmy71XHrzPppW78Wadvg8cWtC1/laKjXeFZdHIxL50kyFfI2jE7evTM0TF2/NHjrCn2Fc2v20jN09+U3b78NT3faV45+XsTLfsv264qs39d4qUTPU1b6MzRavyVhZHNh+y1zXgu7d5KZdRERl6oZlfd22/e6jD5Ca9sS2dPut3Ow7U7ndrQEuH6b2f50Zv0Vinmcu+7vnkOjXXtPsSez9hM/fVabfTWX2TxERdeha0K2jm6SPNvpzcmNqjLi6qA691l9Ujde7w+FIjC8TS9UGQ6Xqv9Qe/SK0iTXFjflF7c+HHXfG7p5DmzhDD7O2un3eYnXDdtu0eny79bEqr9p+y8LlcFdL+rF0aedZGbt3+hXb9v2h13M3y5f1Ldtr0+mzkzzX5x9dp8/eIyLK/GEbV5btkY27HL49umbb1maM3jz+ZRl7aO8HbL9D83QqnzRmPk4zXTO7PXYq/n7uwfmX3wAAAAAAAAAAAACAjcfHbwAAAAAAAAAAAADAxuPjNwAAAAAAAAAAAABg4/HxGwAAAAAAAAAAAACw8fj4DQAAAAAAAAAAAADYeHz8BgAAAAAAAAAAAABsvHLdDvrooo/ugf9eZVu23UG1M+h6q/pW4n/RykhVbMtYkY9srzvjR2Ts3ux5Gev7B5/Nd6rbmYyNil3bdqgsG/43D+73jKt92/ah4sMydid7WcZOFm/afiejKzLm7ne+So0l9+50rI/e9tr2Kxk7W96UsSwK2++yuavvyTyHshg2FyMiru39kIwtmkPb9nj2zUHXHJV7Nj5vj2Vsb+tjg++nj8bfmNB1Cxuf5Pr31P1cxubtvUH3ExFxvHjdxmvz7qryQMayzI/R83LF29q+1rFuaftdNScyNh1dlbG8qGy/00yvaVU2lrFZHNl+u17nqfdSH230kT3w34vwz2Wr0GtumevncjJ/5Z3f3AP9TmWsKHz+zjP9e9pOt+16P+ddLrWx1N8dPvhK3lG/qXrDPYc89+Xg7uQxfU/xcRn79aO/Y/t9dv9fl7Hn+p+TsWWt8919w+qc1Dq/qO/IWNnpurdK5Fn3e9w7L3Jfa7vB9MTBvyRjd+e6ro2ImC31XL68+1nd78lXbb9leVnGxqVej88WL9l+ezuXXc1mJmNEXNv9HhnrTE5zsQifS5PzvNBjwtUjbn2IuJ8vFJejU7Xgstb5sir1vm1//JTtt8p0znBzqul9vfHdQuXvFJffd0u9162rM9vvsr5uonqOuT1RRMTe+El9zUbX+67ejIhoW33ddfK3rwvcvPZ1oVsz2s4/w1NTIzd2j+L3s68c/7yMuedUm31aSlnoPNC0h7bt2eINGRuPrslYqhZcrszePZ/Ytk6W62f41MEfl7HXj79g++2600H3kyfqjaow+9lWX7Pr/NrSuzXC5kM/fldm/VhH4WrtzNfaVaVroK2xHqNu7xUR0Zgc7WqKo8XwfdtZoefFlclHbNsy9O9pQv+WztQpERG5PEvz+eIi9P35Z+iptK5/Q8Q4M2fH/ogmRtVDMraq9btMPbuy0Gugqzv7PJHDB47p1Bx01jlDX9aHMpbK4e6eFyt/Tu68dWhyhdt7Jva0mbnfLNNtU7mpM7lga+JqRX8uN1++JWPlGt9jZuZc//GDPyxjbx1/yfbrnlNmPu+5OifCn0X0pgbNEouW34MP585k3Le71Dx20VTbxoy1SzvP6msm1iW3prnvBe6MPNVvMdHr83amz9cjEnuA0Pebovaw73Q3zL/8BgAAAAAAAAAAAABsPD5+AwAAAAAAAAAAAAA2Hh+/AQAAAAAAAAAAAAAbj4/fAAAAAAAAAAAAAICNx8dvAAAAAAAAAAAAAMDG4+M3AAAAAAAAAAAAAGDj8fEbAAAAAAAAAAAAALDxynU7WHWnkWcPdtNkC9tuml+Ssb3yMRk7jN+2/WbZSMb6vpOxUbFt+90pH5GxcmdLxk5Xb9l+6+bMxofKsmF/15BnlY33WStjTTu3bV+efUHGZstXZGx78gHbb9stZawy73V3+qTt92x5Q8a6bmbbOm1zLGOz5kjGstS76f2cU5qmsfHMLBNunG1VD9l+x3t7Mnb37JsyNl++YfvNcz0fm1Y/o+n4CdvvfPm6jStu3YmIqHs9b9q+lrGuT703/W5qMwYjIvp+JWNNq8d+3fk1wN1TH/o5pZ6hiy9W92RsHrdtv09s/aCNK0Wk1tHz7zcbdLXh6m5+fv4OvaZGRIzyHRmbZjq3V6We8xERq1rPz7nJpXtbH7L9TkYHMtb3Oqe1iTlWtzp/u7UxlZ/tPDFj3d1PRETb6Xkd+jEkncy+JWNuPY6I+NrpP5CxcbUvY6PywPa7WL1p40P1Zkys6jumpV/DInpzTb0ydKb+iYi4vPtZc0c6v1zb+pTt93au64K7J78pY3k+tf06ncmHo+qabbuqb5poISNZYlVue1N/mt+6aP17K8w93Tz+VdvWTeaqvCpjTaKu7cwYXta6dnU1esqqOZGx0/y6bfvo6DMy5n5LKhGrWuW9zt+qBqxj+P5kO9PjY1petm1P7f5b554yn9h+i2ys76nS95SqR8+rfd7m8mye+/puaJ3r9icREQuTX1I1cp7rd9M0d01LvQ5FRLSt3ktMRvosZ7k6tf32ofNst8b4dvl7Wevn0Jt1/tv/Cx0x4zCVDw+2/PmH0nX++do8YN5pVfga3hmZ+n9Z+1rbn2+4ldevytORPqdw52Eu70dEbBe631cO/4lt637r5a2PythJ4rzRndHZvUGCW+/cNc8aV5NF7Jf+jE7JE2uW2n+533FR2n4V3Xn1WmK70IkzhIiI3Owvd3JfJ9/t9V5uHdvmPLAMnf+Xva7/IiJWA3NtiqsNHFevRkTU5vysbRM50dRQ63C51qS1RN2wDj9/3Z53vrpl2g3/3uLeTZE419qdmG9ai5dlLJXDC5OLi0RN7UxGujbIzLuZr/Q3k4iI3uSY3h5A+RxeFfo80t5PYn1w55xvHP6zRO96XTpb6n1rW+nz0wh/xpfaPzhlocfLsfnmMp34+3XP+Ny8920XncP5l98AAAAAAAAAAAAAgI3Hx28AAAAAAAAAAAAAwMbj4zcAAAAAAAAAAAAAYOPx8RsAAAAAAAAAAAAAsPH4+A0AAAAAAAAAAAAA2Hh8/AYAAAAAAAAAAAAAbLxy3Q7q9iyyrHjgvxf52Lbr+kbG9orHZCzLfL99v5Cx2fJ13S5a2++42Jex0tzT9uia7bcu5zLWtC6mf2dERJ7pV9v3nYxlmf97iK6rZWw6umrbLusjGRtXj8jY2eIl26+zs/cDMtZ0S9u2bY4HXvXB+fCd+tBj3zfMbHhv62MydjLXzzAzYyUi4tG9H5Kxxsy3PDGWrh99SbfNd2SsNHMxIqLIJzLWmne+PdFj8H7blYyt6pumpZ5vEX7tWXWntq3TdHr9mI4etm3dWtl1ZzJ2dPZc4q70mBiVBzKWWpfcmtb2+p33iXdz1L4hYzuFXtvb0OtkhL5f9zsuQtMtzs3fLn9ERHSt/n1Nrp/3dHTF9ruqb8lY3+v5d95v+E6FydGjfEvGmvB5NjUulbXes0kDrq6KiOg6HU/9FjcmsmxkrqnXoQi/Frma4bHdz9l+X1ndMFH3/FNrjasbehnZmX7I9uue/2ypf0tunn1ERJVPZawMnSvfOv2y7XdZ63tyOdrl53VsjRO1dn1XxlxN1ifqucyMl1Wr83dqrtatzrM702ds29P5C+a6eh09mr9q+3X5sir0Oppnle830zVQ3c5kLLUPOuzelLGxqTHdO3XxVLt3W9utojv32fm9TWHW8pP+uoxN80u2X5ejncXqLRsfbX1axlytleV+7g672/W43F/kfi13e7VRqedfRGquuOfkz0acxUrPv6r05wV1c9tE3V44lb9dba7bTkaP2n6rcttcU7/zVXNi+x25vXDiPMxxa/nEnFul1nK3x3bngm7/FxGxrPW65OouV5tGROS5nlOdGSutHUcRR7XeQ6dq7enoaRk7NWulOzOM8O/OrT2pd+6ek1t3Uv2etPqdV2bfNsn2bL9K9z78e7C2W56/f03ditmHFOa51pEaI0M/C+g5GBFRm31gnptxmRgjrpZpEzW2M3SPnprbpdn/uBo6ImJuzuUuSm7mWfIccfGajPlvLsPPR/pOrzcHO5+ybd1e+Wj+iox15mw4IuJy+UEZOyvu6Fji24erByeVrtXd3jLFjW9/NhKRWiP0NYfncHe/qfrpjcNfMNfU9V5ExKTSZ51u7Kf2tJmp1ctCry3r1G11o8fLWafHb4T/hjEpdJ5OvZtcPAf/lew72wMAAAAAAAAAAAAAsOH4+A0AAAAAAAAAAAAA2Hh8/AYAAAAAAAAAAAAAbDw+fgMAAAAAAAAAAAAANh4fvwEAAAAAAAAAAAAAG4+P3wAAAAAAAAAAAACAjVeu20HXN5FF/8B/L2Js2/V9K2Nn3R3Trk7cUWYiOrZYXre9vlUfyti13e+RsSrbsv1meSFjufnbhCJPPN/oZGxZH+n7yfzfQzy8/ayM3Zp93badr96Ssd3pB2RsWft3c2lH39M435OxKvdj6amDv2DjylcO/382/uBseWcm40ds/NJYP8NHxp8x96PHSkTErL8nY25831u8aPt1inwiY2WhY/fjUxmrmzMZO128aftd1TdtfKhJti9jdTaXsa5vbL/jYlfGisqvH07T6XtKtm1nMrZq7spYbsZDRESejWSsTzwn53D+kowdZ68N7nc6unruf3d58SLUzezcNT81x/Jcz7Gm0+94XOj1+D63Our8fXT2vO311Iyfx3Z/UMZS+TsvKhmre/0c+t6vuU2/lLH56raMdZ0f67uTx2TsaP6qbXt09pyMZZmuY1IZb1pdkrFnpr9Pxg57v14/cfCHZGwvuyZj3zj6+7bfrtM5xI3Rg/Eztt9xtiNjxfizMrYKPc4ifH7PTI2Zqrscl7/Hlc53ET6vtZ2eF8czX2/0MSwPlKW/363iir6nRo9R9+wjfP7OM73uREScLd6QMfduXH6+T48lV03nmd9qunjXrWRs2ei9TIQfL24N3hrr9SEiYlRsn/vfUzXZu23VnJ6bv/M8sbU3+bs0a/m803uBdRRmrEdEnDR6LXLv+GD0tO23z3W9VWZ6nqy6U9+vq+PMWJ/XOrdHRExHeq2Zr/S5SUREY+rr9ejx8tTBH5GxMvN7kNT6qLxw7+8m/hfDzoie3P5h22thjtPqMPWc2V9H+LpgZWrMFDcetscPD+7XnSGtmhMdq/34Herqrq6dIvw4c3V4SmnP6PzY7kOvH3Wj7ymVf7pMx4tc76FTXC5tu4WMuf116p7cGWg5+YjttxXnyO91/n77muedobeNrnsifM2UF3p8+b1axKo5tHFNr50REcvmWMbWOY/qTE1aJOpOpx04FipRG75tb/SEjL15+L/attnATzZ9Yg8+Gen1/vHtH5Cx/f4h2+9iqvfKry+/LGPHs2/afi3zzq9UH7JNi9D7qtG2zsMuR0f4PXjT6/UxxZ1tuvUx9Z2nafU9LeuL2QM4VXlg43uTJ2XMremZqV2/3VpGUufKbg/WmeM/l/sjUu/VnYP7M8fW7LPdb70382ev7n4nU30enCfeTStOHDp7EvGd/QMAAAAAAAAAAAAAsOH4+A0AAAAAAAAAAAAA2Hh8/AYAAAAAAAAAAAAAbDw+fgMAAAAAAAAAAAAANh4fvwEAAAAAAAAAAAAAG4+P3wAAAAAAAAAAAACAjcfHbwAAAAAAAAAAAADAxivX7aDIx5FlxQP/PV/ju3ofrYw9dvD7bdvD+SsyNl++oRtm/n6rYkf329yRsYPR07bfpl/KWJ5VMtb2je33dP66jPXRydjW+GHb71unX5axur5r2z578Bdk7Fa8JGMPjz9l+132pzLWmbE0yvQ7jYi43b8qY0Xod7M99e/8U6M/LmNfXfyUjF2dfsz266xiJmNdYiwNdWnyQRs/W+h3Xje3ZWwy+ojtNzNrj5tTdavH0ds9a72O9Cvb65tnvyZjW+Nr5m6Gr7FZPLhmf6e9yZMy5ta71Fgq8pGMtZ1/TkP7bdqFuaaeFxERXat/T26uGb1eYyMiDs+eO79Zr8fRRcjz4vz8beZJRJzb5p0o87GNX9p5VsaOZi/KWNfNbb+teR2HK10z7I4es/26WqXtdG4f+vwiIupWj9nWxCIibp9cH3zdJw7+iIy9fvhzMvahS3/G9uvy92notWY3e8j2e9rrtt86+VkZ6zqfB77v4C/K2N3sTdvWaUKPlzZqGat7P/ZdreJS2lMHuk6JiHj18GdkrCym+pKJWrvMddum9b/VG5a/m8bXtfdWuo6ZlAcyVifWLLdGpJ7hwfZH9XXbMxlzzz4iojH3bOuu3G81u07nWfdb+0S9sWoOzT1NZOxkofdPEXqdfa/zt5KqDVPjR8kz/x4f3v8RGbt5/Osy1rYntt/j+csyNir3ZMzt/yIielOnLbsjGUvtv+01zf7bxSIiTmbfGnzdiallFiudt3a3/H7LjYmx2WOn3o3Lh68ff8G2dR4/+EMytp1dkTGXg1Nx91tzl58TClOnu7kYEXHj6Isy5vZx42LX9uvm1Pvh1vGXbHw6fkLGJtVlGUutoW4Nvrrjz7ROl7pOL3JdF5SZz99dr8eoOxNw7SKG7927RLvG7GcmlZ6rJ43f56ya8/NN3/s16SLcny8P1qapeZQXw9aNVA5/zKwbN05cDvf7puPZ+WceERH9lv6tqZq0MvFVp2tdtz+PSD8nZVrocRkR8cbhPx3U70Vy+7UX7/0DGXvq0h+1/bp5eLZ8y7T05yPT8aMy9sTWD8rYOmemrpZJ1QZOahzatqZuLsz4TeUutT7eb/ze/5vZVX3Txk+X2zI2rvYHX/fy7mdlLHUW4c6dnarQvyXC12YuZ6TGWWe+U7h50ya+b/Sdvid3BtJlPv8t2sPzr/cOczj/8hsAAAAAAAAAAAAAsPH4+A0AAAAAAAAAAAAA2Hh8/AYAAAAAAAAAAAAAbDw+fgMAAAAAAAAAAAAANh4fvwEAAAAAAAAAAAAAG68c2rDv+2//v+258S7O/+/vRNY3OhZZ4r46HYveNRzer3gGERFdX9t+O/NbXcxd83582HO4qH4jItp+JWNd6N/aRuoZ6ngX+n67xN9+uOfvRmHqGTbmObjnmxpLmfk9LuZ+Z4R/N67fND9eZKvE83X9+nmcuh8XH/Zb7l932Nri2kVEdGaUpt654+9pjfUj8Xsuot913rm938Rv0dftE/F3Ryp/p97j0PGTaufH1vD559r6/J24X1PndKbfLHm/w+b9emuY55+F7nedGsjl2XRd4OonNz/XqWP8PTm9qVXWyd/uGbp+0+vx0Dw7fG/w3Zm/h60fyTU2sdcZek/r1BRDc/Q6/a6TC/26v0698d2Sv8//Dek6zIzZNcadv+ZF5W+3Z0rsbez+e3id67h1fp01N3ndgTkvOZbMeGlN7ne1U4TPpeuMJffOXU2Ryu3uvbrzsPT+e9g9pWv0oTXx8LVlnbprnbFvex1cqyTGmTk3SVknNw3vV89jN7ZT/dq1O9nvxdSYet/bJa/7bknn8OF7RLfeuPP1+22H7ZtS579D15t1ziLWOqsaWAets+6+X+xzWmNvf3HnOXocuppjnfPqoXn4/nVNv2vkGMfWr2ut5793cnhqr3NRZ91Dr/lO4rrd8FwbifFi+3V1sT37K3y/ibPrVP7M+oFZ/vXXX48nn3xySFMAACC89tpr8cQTT1xY/+RvAADefeRvAAA2z0Xn7whyOAAAFyGVwwd//O66Lt58883Y3d2NLLuYvxQHAOBfFH3fx8nJSTz22GOR5xf3/ysJ+RsAgHcP+RsAgM3zXuXvCHI4AADvpneawwd//AYAAAAAAAAAAAAA4LvFxf5pGwAAAAAAAAAAAAAA7wE+fgMAAAAAAAAAAAAANh4fvwEAAAAAAAAAAAAAG4+P3wAAAAAAAAAAAACAjcfHbwAAAAAAAAAAAADAxuPjNwAAAAAAAAAAAABg4/HxGwAAAAAAAAAAAACw8fj4DQAAAAAAAAAAAADYeHz8BgAAAAAAAAAAAABsPD5+AwAAAAAAAAAAAAA2Hh+/AQAAAAAAAAAAAAAbj4/fAAAAAAAAAAAAAICN9/8H7I7b5Pq/kwsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from matplotlib.colors import LogNorm\n", "\n", "x_slice = 32 # select the middle slice\n", "traj_toplot = temperature[:, x_slice, :, :]\n", "\n", "# field is now of shape (n_timesteps, y, z).\n", "# Let's do a subplot to plot it at t= 0, t= T/3, t= 2T/3 and t= T:\n", "fig, axs = plt.subplots(1, 4, figsize=(20, 5))\n", "T = traj_toplot.shape[0]\n", "\n", "# fix colorbar for all subplots:\n", "normalize_plots = True\n", "cmap = \"magma\"\n", "\n", "if normalize_plots:\n", " vmin = np.min(traj_toplot)\n", " vmax = np.max(traj_toplot)\n", " norm = LogNorm(vmin=vmin, vmax=vmax)\n", " for i, t in enumerate([0, T // 3, (2 * T) // 3, T - 1]):\n", " axs[i].imshow(traj_toplot[t], cmap=cmap, norm=norm)\n", " axs[i].set_xticks([])\n", " axs[i].set_yticks([])\n", " axs[i].set_title(f\"t={t}\")\n", "else:\n", " for i, t in enumerate([0, T // 3, (2 * T) // 3, T - 1]):\n", " axs[i].imshow(np.log(traj_toplot[t]), cmap=cmap)\n", " axs[i].set_xticks([])\n", " axs[i].set_yticks([])\n", " axs[i].set_title(f\"t={t}\")\n", "plt.tight_layout()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "MLtest", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.11" } }, "nbformat": 4, "nbformat_minor": 2 }