Albert Villanova del Moral
commited on
Add dataset loading script
Browse files- open_access.py +210 -0
open_access.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PMC Open Access Subset."""
|
16 |
+
|
17 |
+
import datetime
|
18 |
+
|
19 |
+
import pandas as pd
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
from datasets.tasks import LanguageModeling
|
23 |
+
|
24 |
+
|
25 |
+
# TODO: Add BibTeX citation
|
26 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
27 |
+
_CITATION = """\
|
28 |
+
@InProceedings{huggingface:dataset,
|
29 |
+
title = {A great new dataset},
|
30 |
+
author={huggingface, Inc.
|
31 |
+
},
|
32 |
+
year={2020}
|
33 |
+
}
|
34 |
+
"""
|
35 |
+
|
36 |
+
_DESCRIPTION = """\
|
37 |
+
The PMC Open Access Subset includes more than 3.4 million journal articles and preprints that are made available under
|
38 |
+
license terms that allow reuse.
|
39 |
+
|
40 |
+
Not all articles in PMC are available for text mining and other reuse, many have copyright protection, however articles
|
41 |
+
in the PMC Open Access Subset are made available under Creative Commons or similar licenses that generally allow more
|
42 |
+
liberal redistribution and reuse than a traditional copyrighted work.
|
43 |
+
|
44 |
+
The PMC Open Access Subset is one part of the PMC Article Datasets
|
45 |
+
"""
|
46 |
+
|
47 |
+
_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/"
|
48 |
+
|
49 |
+
# TODO: Add the licence for the dataset here if you can find it
|
50 |
+
_LICENSE = ""
|
51 |
+
|
52 |
+
_URL = "https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/{subset}/txt/"
|
53 |
+
_SUBSETS = {
|
54 |
+
"commercial": "oa_comm",
|
55 |
+
"non_commercial": "oa_noncomm",
|
56 |
+
"other": "oa_other",
|
57 |
+
}
|
58 |
+
_BASELINE_DATE = "2021-12-17"
|
59 |
+
|
60 |
+
|
61 |
+
class OpenAccessConfig(datasets.BuilderConfig):
|
62 |
+
"""BuilderConfig for the PMC Open Access Subset."""
|
63 |
+
|
64 |
+
def __init__(self, subsets=None, **kwargs):
|
65 |
+
"""BuilderConfig for the PMC Open Access Subset.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
subsets (:obj:`List[str]`): List of subsets/groups to load.
|
69 |
+
**kwargs: Keyword arguments forwarded to super.
|
70 |
+
"""
|
71 |
+
subsets = [subsets] if isinstance(subsets, str) else subsets
|
72 |
+
super().__init__(
|
73 |
+
name="+".join(subsets), **kwargs,
|
74 |
+
)
|
75 |
+
self.subsets = subsets if self.name != "all" else list(_SUBSETS.keys())
|
76 |
+
|
77 |
+
|
78 |
+
class OpenAccess(datasets.GeneratorBasedBuilder):
|
79 |
+
"""PMC Open Access Subset."""
|
80 |
+
|
81 |
+
VERSION = datasets.Version("1.0.0")
|
82 |
+
BUILDER_CONFIG_CLASS = OpenAccessConfig
|
83 |
+
BUILDER_CONFIGS = [OpenAccessConfig(subsets="all")] + [OpenAccessConfig(subsets=subset) for subset in _SUBSETS]
|
84 |
+
DEFAULT_CONFIG_NAME = "all"
|
85 |
+
|
86 |
+
def _info(self):
|
87 |
+
return datasets.DatasetInfo(
|
88 |
+
description=_DESCRIPTION,
|
89 |
+
features=datasets.Features(
|
90 |
+
{
|
91 |
+
"text": datasets.Value("string"),
|
92 |
+
"pmid": datasets.Value("string"),
|
93 |
+
"accession_id": datasets.Value("string"),
|
94 |
+
"license": datasets.Value("string"),
|
95 |
+
"last_updated": datasets.Value("string"),
|
96 |
+
"retracted": datasets.Value("string"),
|
97 |
+
"citation": datasets.Value("string"),
|
98 |
+
}
|
99 |
+
),
|
100 |
+
homepage=_HOMEPAGE,
|
101 |
+
license=_LICENSE,
|
102 |
+
citation=_CITATION,
|
103 |
+
task_templates=[LanguageModeling(text_column="text")],
|
104 |
+
)
|
105 |
+
|
106 |
+
def _split_generators(self, dl_manager):
|
107 |
+
for subset in self.config.subsets:
|
108 |
+
url = _URL.format(subset=_SUBSETS[subset])
|
109 |
+
basename = f"{_SUBSETS[subset]}_txt."
|
110 |
+
# Baselines
|
111 |
+
baselines = [f"PMC00{i}xxxxxx.baseline.{_BASELINE_DATE}" for i in range(9)]
|
112 |
+
# baseline_urls = {
|
113 |
+
# "baseline_file_lists": [f"{url}{basename}{baseline}.filelist.csv" for baseline in baselines],
|
114 |
+
# "baseline_archives": [f"{url}{basename}{baseline}.tar.gz" for baseline in baselines],
|
115 |
+
# }
|
116 |
+
# baseline_paths = dl_manager.download(baseline_urls)
|
117 |
+
baseline_file_lists = []
|
118 |
+
baseline_archives = []
|
119 |
+
for baseline in baselines:
|
120 |
+
baseline_file_list_url = f"{url}{basename}{baseline}.filelist.csv"
|
121 |
+
try:
|
122 |
+
baseline_file_list = dl_manager.download(baseline_file_list_url)
|
123 |
+
except FileNotFoundError: # non-commercial PMC000xxxxxx baseline does not exist
|
124 |
+
continue
|
125 |
+
baseline_archive_url = f"{url}{basename}{baseline}.tar.gz"
|
126 |
+
try:
|
127 |
+
baseline_archive = dl_manager.download(baseline_archive_url)
|
128 |
+
except FileNotFoundError:
|
129 |
+
continue
|
130 |
+
baseline_file_lists.append(baseline_file_list)
|
131 |
+
baseline_archives.append(baseline_archive)
|
132 |
+
# Incremental
|
133 |
+
date_delta = datetime.date.today() - datetime.date.fromisoformat(_BASELINE_DATE)
|
134 |
+
incremental_dates = [
|
135 |
+
(datetime.date.fromisoformat(_BASELINE_DATE) + datetime.timedelta(days=i + 1)).isoformat()
|
136 |
+
for i in range(date_delta.days)
|
137 |
+
]
|
138 |
+
incrementals = [f"incr.{date}" for date in incremental_dates]
|
139 |
+
incremental_urls = {
|
140 |
+
"incremental_file_lists": [
|
141 |
+
f"{url}{basename}{incremental}.filelist.csv" for incremental in incrementals
|
142 |
+
],
|
143 |
+
"incremental_archives": [f"{url}{basename}{incremental}.tar.gz" for incremental in incrementals],
|
144 |
+
}
|
145 |
+
incremental_paths = dl_manager.download(incremental_urls)
|
146 |
+
return [
|
147 |
+
datasets.SplitGenerator(
|
148 |
+
name=datasets.Split.TRAIN,
|
149 |
+
gen_kwargs={
|
150 |
+
"baseline_file_lists": baseline_file_lists,
|
151 |
+
"baseline_archives": [dl_manager.iter_archive(archive) for archive in baseline_archives],
|
152 |
+
"incremental_file_lists": incremental_paths["incremental_file_lists"],
|
153 |
+
"incremental_archives": [
|
154 |
+
dl_manager.iter_archive(archive) for archive in incremental_paths["incremental_archives"]
|
155 |
+
],
|
156 |
+
},
|
157 |
+
),
|
158 |
+
]
|
159 |
+
|
160 |
+
def _generate_examples(self, baseline_file_lists, baseline_archives, incremental_file_lists, incremental_archives):
|
161 |
+
key = 0
|
162 |
+
# Baselines
|
163 |
+
for baseline_file_list, baseline_archive in zip(baseline_file_lists, baseline_archives):
|
164 |
+
try:
|
165 |
+
baselines = pd.read_csv(baseline_file_list, index_col="Article File").to_dict(orient="index")
|
166 |
+
for path, file in baseline_archive:
|
167 |
+
data = baselines.pop(path)
|
168 |
+
content = file.read()
|
169 |
+
try:
|
170 |
+
text = content.decode("utf-8").strip()
|
171 |
+
except UnicodeDecodeError as e:
|
172 |
+
text = content.decode("latin-1").strip()
|
173 |
+
data = {
|
174 |
+
"text": text,
|
175 |
+
"pmid": data["PMID"],
|
176 |
+
"accession_id": data["AccessionID"],
|
177 |
+
"license": data["License"],
|
178 |
+
"last_updated": data["LastUpdated (YYYY-MM-DD HH:MM:SS)"],
|
179 |
+
"retracted": data["Retracted"],
|
180 |
+
"citation": data["Article Citation"],
|
181 |
+
}
|
182 |
+
yield key, data
|
183 |
+
key += 1
|
184 |
+
except FileNotFoundError: # non-commercial PMC000xxxxxx baseline does not exist
|
185 |
+
continue
|
186 |
+
# Incrementals
|
187 |
+
if incremental_file_lists:
|
188 |
+
for incremental_file_list, incremental_archive in zip(incremental_file_lists, incremental_archives):
|
189 |
+
import pdb
|
190 |
+
|
191 |
+
pdb.set_trace()
|
192 |
+
incrementals = pd.read_csv(incremental_file_list, index_col="Article File").to_dict(orient="index")
|
193 |
+
for path, file in incremental_archive:
|
194 |
+
data = incrementals.pop(path)
|
195 |
+
content = file.read()
|
196 |
+
try:
|
197 |
+
text = content.decode("utf-8").strip()
|
198 |
+
except UnicodeDecodeError as e:
|
199 |
+
text = content.decode("latin-1").strip()
|
200 |
+
data = {
|
201 |
+
"text": text,
|
202 |
+
"pmid": data["PMID"],
|
203 |
+
"accession_id": data["AccessionID"],
|
204 |
+
"license": data["License"],
|
205 |
+
"last_updated": data["LastUpdated (YYYY-MM-DD HH:MM:SS)"],
|
206 |
+
"retracted": data["Retracted"],
|
207 |
+
"citation": data["Article Citation"],
|
208 |
+
}
|
209 |
+
yield key, data
|
210 |
+
key += 1
|