Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
Vietnamese
Size:
10K - 100K
ArXiv:
File size: 2,473 Bytes
0f74984 7569efc 0f74984 9c16c86 12f2fdc 9c16c86 12f2fdc 9c16c86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
dataset_info:
features:
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
- name: id
dtype: string
splits:
- name: train
num_bytes: 97291797
num_examples: 84816
- name: validation
num_bytes: 714691
num_examples: 511
- name: test
num_bytes: 7800838
num_examples: 5495
download_size: 19775204
dataset_size: 105807326
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
task_categories:
- question-answering
language:
- vi
size_categories:
- 10K<n<100K
---
Vietnamese portion of MLQA for monolingual QA
The train split is the machine translated train data from SQuAD v1.1.
The validation split and the test split are from MLQA.
We created this particular version with the following code:
```python
import datasets
# Machine translated train data from SQuAD v1.1.
mlqa_train_dev = datasets.load_dataset("facebook/mlqa", "mlqa-translate-train.vi")
# Original validation and test data from MLQA
mlqa_val_test = datasets.load_dataset("facebook/mlqa", "mlqa.vi.vi")
# Merge and create our version
mlqa = mlqa_train_dev
mlqa["validation"] = mlqa_val_test["validation"]
mlqa["test"] = mlqa_val_test["test"]
```
### Citation Information
```
@article{lewis2019mlqa,
title = {MLQA: Evaluating Cross-lingual Extractive Question Answering},
author = {Lewis, Patrick and Oguz, Barlas and Rinott, Ruty and Riedel, Sebastian and Schwenk, Holger},
journal = {arXiv preprint arXiv:1910.07475},
year = 2019,
eid = {arXiv: 1910.07475}
}
@inproceedings{rajpurkar-etal-2016-squad,
title = "{SQ}u{AD}: 100,000+ Questions for Machine Comprehension of Text",
author = "Rajpurkar, Pranav and
Zhang, Jian and
Lopyrev, Konstantin and
Liang, Percy",
editor = "Su, Jian and
Duh, Kevin and
Carreras, Xavier",
booktitle = "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2016",
address = "Austin, Texas",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D16-1264",
doi = "10.18653/v1/D16-1264",
pages = "2383--2392",
eprint={1606.05250},
archivePrefix={arXiv},
primaryClass={cs.CL},
}
``` |