File size: 2,473 Bytes
0f74984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7569efc
 
 
 
 
 
0f74984
9c16c86
12f2fdc
9c16c86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f2fdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c16c86
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
dataset_info:
  features:
  - name: context
    dtype: string
  - name: question
    dtype: string
  - name: answers
    sequence:
    - name: answer_start
      dtype: int32
    - name: text
      dtype: string
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 97291797
    num_examples: 84816
  - name: validation
    num_bytes: 714691
    num_examples: 511
  - name: test
    num_bytes: 7800838
    num_examples: 5495
  download_size: 19775204
  dataset_size: 105807326
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
task_categories:
- question-answering
language:
- vi
size_categories:
- 10K<n<100K
---

Vietnamese portion of MLQA for monolingual QA

The train split is the machine translated train data from SQuAD v1.1. 
The validation split and the test split are from MLQA.

We created this particular version with the following code:
```python
import datasets

# Machine translated train data from SQuAD v1.1.
mlqa_train_dev = datasets.load_dataset("facebook/mlqa", "mlqa-translate-train.vi")
# Original validation and test data from MLQA
mlqa_val_test = datasets.load_dataset("facebook/mlqa", "mlqa.vi.vi")

# Merge and create our version
mlqa = mlqa_train_dev
mlqa["validation"] = mlqa_val_test["validation"]
mlqa["test"] = mlqa_val_test["test"]
```

### Citation Information

```
@article{lewis2019mlqa,
  title = {MLQA: Evaluating Cross-lingual Extractive Question Answering},
  author = {Lewis, Patrick and Oguz, Barlas and Rinott, Ruty and Riedel, Sebastian and Schwenk, Holger},
  journal = {arXiv preprint arXiv:1910.07475},
  year = 2019,
  eid = {arXiv: 1910.07475}
}

@inproceedings{rajpurkar-etal-2016-squad,
    title = "{SQ}u{AD}: 100,000+ Questions for Machine Comprehension of Text",
    author = "Rajpurkar, Pranav  and
      Zhang, Jian  and
      Lopyrev, Konstantin  and
      Liang, Percy",
    editor = "Su, Jian  and
      Duh, Kevin  and
      Carreras, Xavier",
    booktitle = "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2016",
    address = "Austin, Texas",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D16-1264",
    doi = "10.18653/v1/D16-1264",
    pages = "2383--2392",
    eprint={1606.05250},
    archivePrefix={arXiv},
    primaryClass={cs.CL},
}

```