import datetime import re import subprocess from pathlib import Path import pandas as pd import typer from datasets import get_dataset_config_names, load_dataset CSV_SCHEMA = { "banking_77": (5000, 2), "overruling": (2350, 2), "semiconductor_org_types": (449, 2), "ade_corpus_v2": (5000, 2), "twitter_complaints": (3399, 2), "neurips_impact_statement_risks": (150, 2), "systematic_review_inclusion": (2244, 2), "terms_of_service": (5000, 2), "tai_safety_research": (1639, 2), "one_stop_english": (517, 2), "tweet_eval_hate": (2966, 2), } app = typer.Typer() def _update_submission_name(submission_name: str): replacement = "" with open("README.md", "r") as f: lines = f.readlines() for line in lines: if line.startswith("submission_name:"): changes = re.sub(r"submission_name:.+", f"submission_name: {submission_name}", line) replacement += changes else: replacement += line with open("README.md", "w") as f: f.write(replacement) @app.command() def validate(): # TODO(lewtun): Consider using great_expectations for the data validation tasks = get_dataset_config_names("ought/raft") # Check that all the expected files exist prediction_files = list(Path("data").rglob("predictions.csv")) mismatched_files = set(tasks).symmetric_difference(set([f.parent.name for f in prediction_files])) if mismatched_files: raise ValueError(f"Incorrect number of files! Expected {len(tasks)} files, but got {len(prediction_files)}.") # Check all files have the expected shape (number of rows, number of columns) # TODO(lewtun): Add a check for the specific IDs per file shape_errors = [] column_errors = [] for prediction_file in prediction_files: df = pd.read_csv(prediction_file) incorrect_shape = df.shape != CSV_SCHEMA[prediction_file.parent.name] if incorrect_shape: shape_errors.append(prediction_file) incorrect_columns = sorted(df.columns) != ["ID", "Label"] if incorrect_columns: column_errors.append(prediction_file) if shape_errors: raise ValueError(f"Incorrect CSV shapes in files: {shape_errors}") if column_errors: raise ValueError(f"Incorrect CSV columns in files: {column_errors}") # Check we can load the dataset for each task load_errors = [] for task in tasks: try: _ = load_dataset("../{{cookiecutter.repo_name}}", task) except Exception as e: load_errors.append(e) if load_errors: raise ValueError(f"Could not load predictions! Errors: {load_errors}") typer.echo("All submission files validated! ✨ 🚀 ✨") typer.echo("Now you can make a submission 🤗") @app.command() def submit(submission_name: str = typer.Option(..., prompt="Please provide a name for your submission, e.g. GPT-4 😁")): subprocess.call("git pull origin main".split()) _update_submission_name(submission_name) subprocess.call(["git", "add", "data/*predictions.csv", "README.md"]) subprocess.call(["git", "commit", "-m", f"Submission: {submission_name} "]) subprocess.call(["git", "push"]) today = datetime.date.today() # MON = 0, SUN = 6 -> SUN = 0 .. SAT = 6 idx = (today.weekday() + 1) % 7 sun = today + datetime.timedelta(7 - idx) typer.echo("Submission successful! 🎉 🥳 🎉") typer.echo(f"Your submission will be evaulated on {sun:%A %d %B %Y} ⏳") if __name__ == "__main__": app()