config.name,config.backend.name,config.backend.version,config.backend._target_,config.backend.task,config.backend.library,config.backend.model_type,config.backend.model,config.backend.processor,config.backend.device,config.backend.device_ids,config.backend.seed,config.backend.inter_op_num_threads,config.backend.intra_op_num_threads,config.backend.model_kwargs.trust_remote_code,config.backend.no_weights,config.backend.device_map,config.backend.torch_dtype,config.backend.eval_mode,config.backend.to_bettertransformer,config.backend.low_cpu_mem_usage,config.backend.attn_implementation,config.backend.cache_implementation,config.backend.autocast_enabled,config.backend.autocast_dtype,config.backend.torch_compile,config.backend.torch_compile_target,config.backend.quantization_scheme,config.backend.deepspeed_inference,config.backend.peft_type,config.scenario.name,config.scenario._target_,config.scenario.iterations,config.scenario.duration,config.scenario.warmup_runs,config.scenario.input_shapes.batch_size,config.scenario.input_shapes.num_choices,config.scenario.input_shapes.sequence_length,config.scenario.new_tokens,config.scenario.memory,config.scenario.latency,config.scenario.energy,config.scenario.generate_kwargs.max_new_tokens,config.scenario.generate_kwargs.min_new_tokens,config.launcher.name,config.launcher._target_,config.launcher.device_isolation,config.launcher.device_isolation_action,config.launcher.numactl,config.launcher.start_method,config.environment.cpu,config.environment.cpu_count,config.environment.cpu_ram_mb,config.environment.system,config.environment.machine,config.environment.platform,config.environment.processor,config.environment.python_version,config.environment.gpu,config.environment.gpu_count,config.environment.gpu_vram_mb,config.environment.optimum_benchmark_version,config.environment.optimum_benchmark_commit,config.environment.transformers_version,config.environment.transformers_commit,config.environment.accelerate_version,config.environment.accelerate_commit,config.environment.diffusers_version,config.environment.diffusers_commit,config.environment.optimum_version,config.environment.optimum_commit,config.environment.timm_version,config.environment.timm_commit,config.environment.peft_version,config.environment.peft_commit,report.traceback,report.load.memory.unit,report.load.memory.max_ram,report.load.memory.max_global_vram,report.load.memory.max_process_vram,report.load.memory.max_reserved,report.load.memory.max_allocated,report.load.latency.unit,report.load.latency.count,report.load.latency.total,report.load.latency.mean,report.load.latency.stdev,report.load.latency.p50,report.load.latency.p90,report.load.latency.p95,report.load.latency.p99,report.load.latency.values,report.load.throughput,report.load.energy.unit,report.load.energy.cpu,report.load.energy.ram,report.load.energy.gpu,report.load.energy.total,report.load.efficiency,report.prefill.memory.unit,report.prefill.memory.max_ram,report.prefill.memory.max_global_vram,report.prefill.memory.max_process_vram,report.prefill.memory.max_reserved,report.prefill.memory.max_allocated,report.prefill.latency.unit,report.prefill.latency.count,report.prefill.latency.total,report.prefill.latency.mean,report.prefill.latency.stdev,report.prefill.latency.p50,report.prefill.latency.p90,report.prefill.latency.p95,report.prefill.latency.p99,report.prefill.latency.values,report.prefill.throughput.unit,report.prefill.throughput.value,report.prefill.energy.unit,report.prefill.energy.cpu,report.prefill.energy.ram,report.prefill.energy.gpu,report.prefill.energy.total,report.prefill.efficiency.unit,report.prefill.efficiency.value,report.decode.memory.unit,report.decode.memory.max_ram,report.decode.memory.max_global_vram,report.decode.memory.max_process_vram,report.decode.memory.max_reserved,report.decode.memory.max_allocated,report.decode.latency.unit,report.decode.latency.count,report.decode.latency.total,report.decode.latency.mean,report.decode.latency.stdev,report.decode.latency.p50,report.decode.latency.p90,report.decode.latency.p95,report.decode.latency.p99,report.decode.latency.values,report.decode.throughput.unit,report.decode.throughput.value,report.decode.energy.unit,report.decode.energy.cpu,report.decode.energy.ram,report.decode.energy.gpu,report.decode.energy.total,report.decode.efficiency.unit,report.decode.efficiency.value,report.per_token.memory,report.per_token.latency.unit,report.per_token.latency.count,report.per_token.latency.total,report.per_token.latency.mean,report.per_token.latency.stdev,report.per_token.latency.p50,report.per_token.latency.p90,report.per_token.latency.p95,report.per_token.latency.p99,report.per_token.latency.values,report.per_token.throughput.unit,report.per_token.throughput.value,report.per_token.energy,report.per_token.efficiency bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 890, in __init__ self.model = OPTModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 822, in __init__ self.decoder = OPTDecoder(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in __init__ self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 373, in __init__ self.self_attn = OPT_ATTENTION_CLASSES[config._attn_implementation](config=config, is_decoder=True) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 116, in __init__ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 120.12 MiB is free. Process 128763 has 14.62 GiB memory in use. Of the allocated memory 14.51 GiB is allocated by PyTorch, and 2.29 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,738.89792,6315.507712,0.0,5920.260096,5695.433728,s,1,7.3876904296875,7.3876904296875,0.0,7.3876904296875,7.3876904296875,7.3876904296875,7.3876904296875,[7.3876904296875],,kWh,8.986639549997715e-06,9.709685918221336e-07,4.50611471600193e-06,1.4463722857821777e-05,,MB,1064.28416,6328.090624,0.0,5922.357248,5577.220096,s,10,5.196808197021484,0.5196808197021484,0.003407965845916442,0.5197416381835938,0.5229087463378906,0.5238181121826172,0.5245456048583984,"[0.5115663757324219, 0.520348388671875, 0.51844873046875, 0.5185545654296875, 0.5213436279296875, 0.5227066650390625, 0.5247274780273438, 0.5191348876953125, 0.5178452758789063, 0.5221322021484375]",tokens/s,492.6100604342579,kWh,1.5207874129583086e-05,1.6765977565631868e-06,1.0062230271999998e-05,2.6946702158146272e-05,tokens/kWh,9500234.889507936,MB,1090.33472,6328.090624,0.0,5922.357248,5663.963136,s,10,20.073852661132815,2.007385266113281,0.007085642304722359,2.0098646240234377,2.013493786621094,2.0144458068847655,2.015207423095703,"[2.0055675048828125, 1.990516845703125, 2.0153978271484374, 2.0097249755859377, 2.0074752197265626, 2.0100042724609377, 1.9990238037109376, 2.0132822265625, 2.0117939453125, 2.0110660400390623]",tokens/s,31.384109997968263,kWh,5.835305238583259e-05,6.436982631482033e-06,3.8695558734199933e-05,0.00010348559375151456,tokens/kWh,608780.3888072871,,s,630,20.070110181808488,0.03185731774890234,0.00032581729772583455,0.031819424629211425,0.032132120513916014,0.03226419200897217,0.03332832782745361,"[0.03364457702636719, 0.032511905670166014, 0.031821855545043944, 0.03167440032958985, 0.03160035133361817, 0.03163164710998535, 0.031692384719848636, 0.03164780807495117, 0.03161692810058594, 0.031658432006835935, 0.03155763244628906, 0.03162112045288086, 0.031893503189086916, 0.03163750457763672, 0.03157318305969238, 0.031683391571044925, 0.03163875198364258, 0.031537952423095705, 0.03178275108337402, 0.0316921272277832, 0.031609664916992186, 0.031647743225097655, 0.031681631088256834, 0.03170121574401855, 0.03179795265197754, 0.03204217529296875, 0.03178486442565918, 0.031685535430908206, 0.03170099258422852, 0.03175155258178711, 0.032068225860595705, 0.032020481109619144, 0.031970752716064456, 0.03193449592590332, 0.03193091201782226, 0.03188531112670898, 0.032010238647460935, 0.031859935760498045, 0.031705888748168945, 0.031645696640014646, 0.03176038360595703, 0.03180748748779297, 0.03198953628540039, 0.0317606086730957, 0.03176198387145996, 0.03175673675537109, 0.031821823120117186, 0.031926271438598636, 0.03189491271972656, 0.03185523223876953, 0.03183206367492676, 0.03185647964477539, 0.03193395233154297, 0.032012958526611325, 0.03196425628662109, 0.031870880126953126, 0.031716352462768556, 0.03179929542541504, 0.031757535934448244, 0.031742752075195314, 0.03178291130065918, 0.03192422485351563, 0.032128158569335936, 0.03323545455932617, 0.03220479965209961, 0.03161907196044922, 0.03136531257629394, 0.031268672943115236, 0.03119094467163086, 0.03125257682800293, 0.03129343986511231, 0.03142860794067383, 0.0313055362701416, 0.03136531257629394, 0.03120742416381836, 0.031238143920898437, 0.031320064544677735, 0.03128639984130859, 0.0314081916809082, 0.03133523178100586, 0.031297407150268554, 0.03127900886535644, 0.03128956794738769, 0.03134806442260742, 0.03133872032165527, 0.0313450870513916, 0.03139776039123535, 0.03132019233703613, 0.0313956470489502, 0.031393983840942385, 0.03136511993408203, 0.0314748477935791, 0.031529823303222654, 0.03161622428894043, 0.0316563835144043, 0.03176883125305176, 0.03214960098266602, 0.031538240432739256, 0.03141932868957519, 0.03154431915283203, 0.03152899169921875, 0.03147651290893555, 0.03152607917785644, 0.03195337677001953, 0.03204150390625, 0.03173782348632812, 0.03154249572753906, 0.03160108757019043, 0.03157439994812012, 0.0314839038848877, 0.03145491218566895, 0.03176684761047363, 0.03164713668823242, 0.03174870491027832, 0.03176985549926758, 0.03173862457275391, 0.0319815673828125, 0.03183103942871094, 0.03170809555053711, 0.03170076751708984, 0.03169513511657715, 0.031747808456420896, 0.03189545631408691, 0.03225433731079102, 0.03203440093994141, 0.031951263427734376, 0.03333001708984375, 0.032143360137939454, 0.03180544090270996, 0.031597759246826174, 0.031690784454345707, 0.031598976135253906, 0.03160895919799805, 0.032005630493164065, 0.031691551208496094, 0.0318599681854248, 0.031759103775024417, 0.031716543197631834, 0.03188585662841797, 0.03184259223937988, 0.03176355171203613, 0.03165072059631348, 0.03174195289611816, 0.03171520042419434, 0.03182198333740234, 0.03174332809448242, 0.03172211265563965, 0.031752191543579104, 0.03174399948120117, 0.031649248123168945, 0.03164825630187988, 0.031704479217529294, 0.03171801567077637, 0.031808895111083986, 0.031928255081176755, 0.03219731140136719, 0.03217366409301758, 0.03227689743041992, 0.032069633483886716, 0.031936511993408204, 0.031903743743896484, 0.03194495964050293, 0.03185024070739746, 0.03177881622314453, 0.031825504302978515, 0.031951263427734376, 0.03189145660400391, 0.03189760017395019, 0.03199532890319824, 0.03189123153686523, 0.03187824058532715, 0.031848127365112305, 0.03422604751586914, 0.03305449676513672, 0.03204745483398438, 0.03199542427062988, 0.031930591583251955, 0.032069889068603516, 0.032094207763671875, 0.03196256065368652, 0.03200057601928711, 0.03209011077880859, 0.03209011077880859, 0.03214131164550781, 0.03209830474853516, 0.03224576187133789, 0.03235158538818359, 0.03224233627319336, 0.032405502319335935, 0.033595169067382816, 0.03245078277587891, 0.03198361587524414, 0.03163955116271973, 0.03162521553039551, 0.03153715133666992, 0.03158220863342285, 0.03165798377990723, 0.03172473526000977, 0.031646528244018556, 0.031657312393188475, 0.03177948760986328, 0.03174604797363281, 0.03163955116271973, 0.03172966384887695, 0.03166566467285156, 0.03164825630187988, 0.03169475173950195, 0.03178508758544922, 0.03177264022827148, 0.031850496292114255, 0.03180339241027832, 0.031774400711059574, 0.031932735443115236, 0.03185868835449219, 0.03182086372375488, 0.03178191947937012, 0.0317807674407959, 0.03178256034851074, 0.03189174461364746, 0.03197513580322266, 0.03192188835144043, 0.03188800048828125, 0.031936511993408204, 0.03198512077331543, 0.03185103988647461, 0.03173948860168457, 0.03179151916503906, 0.03180691146850586, 0.03181011199951172, 0.031971328735351565, 0.03179520034790039, 0.03176227188110352, 0.03176041603088379, 0.03179088020324707, 0.03217343902587891, 0.03187401580810547, 0.032478782653808595, 0.03190940856933594, 0.031846847534179684, 0.031789535522460936, 0.0321223030090332, 0.032096832275390626, 0.03199702453613281, 0.03188591957092285, 0.03198582458496094, 0.032014400482177734, 0.032030208587646485, 0.031998559951782225, 0.03224921417236328, 0.0320579833984375, 0.0320184326171875, 0.03218841552734375, 0.033562625885009766, 0.03228876876831055, 0.03167334365844727, 0.03148886489868164, 0.0315098876953125, 0.03154780769348144, 0.031790496826171875, 0.03160323143005371, 0.031513023376464847, 0.031528959274291994, 0.031620992660522464, 0.03166425514221191, 0.031663455963134766, 0.03159721565246582, 0.03155558395385742, 0.031494144439697266, 0.03177676773071289, 0.031627264022827145, 0.03159404754638672, 0.03158060836791992, 0.0318047046661377, 0.031816415786743164, 0.03166630363464355, 0.03164665603637695, 0.03173472023010254, 0.03175014305114746, 0.031719423294067385, 0.0317706241607666, 0.031753759384155276, 0.032018207550048826, 0.03195964813232422, 0.03200214385986328, 0.032010238647460935, 0.0320145263671875, 0.03197420883178711, 0.03186345672607422, 0.031848703384399414, 0.03181167984008789, 0.03182083129882812, 0.03175699234008789, 0.03176380729675293, 0.031777727127075196, 0.0317640323638916, 0.031651487350463865, 0.03183603286743164, 0.03178793525695801, 0.03172944068908692, 0.031768672943115236, 0.03186700820922852, 0.031993600845336916, 0.03188966369628906, 0.03191398429870605, 0.03208806228637695, 0.03222083282470703, 0.03216524887084961, 0.03247817611694336, 0.03197542381286621, 0.03211075210571289, 0.03207900619506836, 0.032154304504394535, 0.03211468887329102, 0.03230892944335938, 0.03227225494384765, 0.03355865478515625, 0.032326431274414064, 0.031844127655029295, 0.03173548889160156, 0.03172831916809082, 0.03156771278381348, 0.03159040069580078, 0.03158835220336914, 0.031524864196777344, 0.031784959793090824, 0.03174959945678711, 0.031830560684204104, 0.0318317756652832, 0.03165417671203613, 0.0316331844329834, 0.03172988891601562, 0.03171123123168945, 0.03168460845947266, 0.031649791717529296, 0.03160883140563965, 0.03187302398681641, 0.031741056442260746, 0.031654399871826173, 0.03162252807617188, 0.03171612739562988, 0.0318047046661377, 0.0318591365814209, 0.03189311981201172, 0.03184934425354004, 0.03194009590148926, 0.0326426887512207, 0.031996608734130856, 0.031919551849365235, 0.03184934425354004, 0.03179471969604492, 0.0317604808807373, 0.031993215560913085, 0.032549663543701174, 0.031817344665527346, 0.03176259231567383, 0.0319550724029541, 0.03198176002502441, 0.03178000068664551, 0.03182691192626953, 0.03199324798583984, 0.03192265510559082, 0.03188531112670898, 0.03195020866394043, 0.03189769554138184, 0.031830560684204104, 0.03182796859741211, 0.032018241882324217, 0.03197766494750977, 0.032045280456542966, 0.03193014335632324, 0.03198111915588379, 0.03199750328063965, 0.03195788764953613, 0.03204095840454101, 0.032116161346435544, 0.032078399658203124, 0.032142654418945316, 0.03215020751953125, 0.03330598449707031, 0.03207619094848633, 0.03159791946411133, 0.03177353668212891, 0.031531007766723636, 0.03138559913635254, 0.0313753604888916, 0.03138553619384766, 0.03126217651367187, 0.03138179206848145, 0.031612543106079104, 0.03155612754821777, 0.03156368064880371, 0.0315346565246582, 0.0315516471862793, 0.0314619197845459, 0.03136307144165039, 0.03144499206542969, 0.0314768009185791, 0.03151558494567871, 0.03145840072631836, 0.03149663925170899, 0.031496383666992187, 0.03162345504760742, 0.031512575149536134, 0.0315043830871582, 0.031536832809448245, 0.031586624145507815, 0.031514623641967776, 0.031733760833740236, 0.031784032821655275, 0.03170528030395508, 0.03171180725097656, 0.03203702545166016, 0.0318525447845459, 0.03173318481445313, 0.031734336853027345, 0.0316146240234375, 0.0316964168548584, 0.03167519950866699, 0.03157811164855957, 0.03157401657104492, 0.032292865753173826, 0.032005599975585934, 0.031765024185180665, 0.032126625061035155, 0.03200649642944336, 0.031784959793090824, 0.031874719619750976, 0.03187337684631348, 0.031786272048950195, 0.031731712341308595, 0.0318450870513916, 0.03188732719421387, 0.03175638389587403, 0.03185164833068848, 0.031802175521850586, 0.03169251251220703, 0.031991615295410156, 0.03175472068786621, 0.03193804740905762, 0.03233433532714844, 0.03222937774658203, 0.03330867385864258, 0.03218022537231445, 0.0318832950592041, 0.031659231185913086, 0.03170995140075684, 0.03162931251525879, 0.03157811164855957, 0.031676416397094724, 0.03172537612915039, 0.03169907188415527, 0.03177273559570312, 0.0319180793762207, 0.03174720001220703, 0.03172543907165527, 0.03184687995910645, 0.031814176559448244, 0.032099998474121094, 0.03182947158813477, 0.03184115219116211, 0.03181740760803223, 0.03184854316711426, 0.03185481643676758, 0.031838207244873046, 0.031866880416870115, 0.03179238319396973, 0.03185113525390625, 0.03177894401550293, 0.0318951358795166, 0.03191001510620117, 0.03193065643310547, 0.03213523101806641, 0.03200121688842773, 0.03210521697998047, 0.032010494232177736, 0.031923967361450194, 0.03198975944519043, 0.031919359207153324, 0.03187788772583008, 0.03193391990661621, 0.03202921676635742, 0.03187449645996094, 0.03184848022460938, 0.03202835083007813, 0.03201849746704102, 0.03246160125732422, 0.032097793579101565, 0.03180118370056152, 0.031868896484375, 0.03213177490234375, 0.03217407989501953, 0.03196928024291992, 0.03205254364013672, 0.03206828689575195, 0.03207721710205078, 0.03190025520324707, 0.03192793655395508, 0.03191231918334961, 0.03194175910949707, 0.03200294494628906, 0.03209625625610352, 0.03220012664794922, 0.032285247802734375, 0.03220275115966797, 0.0336558723449707, 0.03234255981445312, 0.03182022476196289, 0.03171327972412109, 0.031719423294067385, 0.031579967498779296, 0.03161734390258789, 0.031737344741821286, 0.031721216201782226, 0.03154598426818848, 0.03174617576599121, 0.031712352752685545, 0.03171817588806152, 0.031718816757202145, 0.03173391914367676, 0.03160518455505371, 0.03174399948120117, 0.031741439819335936, 0.03187148857116699, 0.031763999938964844, 0.03173606491088867, 0.03172710418701172, 0.03182665634155273, 0.03188060760498047, 0.031879776000976565, 0.03188051223754883, 0.03179999923706055, 0.03172336006164551, 0.031806751251220705, 0.03199884796142578, 0.032014209747314455, 0.032083393096923825, 0.03202732849121094, 0.032015872955322267, 0.032010753631591796, 0.03191193580627441, 0.03193391990661621, 0.03188995170593262, 0.031938304901123045, 0.031749504089355465, 0.03181862449645996, 0.032102081298828126, 0.0319768009185791, 0.03183244705200195, 0.03195881652832031, 0.03186054420471191, 0.03190003204345703, 0.03187366485595703, 0.032059391021728514, 0.031940031051635745, 0.032008094787597655, 0.03202320098876953, 0.03205238342285156, 0.03214422225952149, 0.03213625717163086, 0.03207632064819336, 0.03211920166015625, 0.032115745544433597, 0.03207215881347656, 0.032045726776123044, 0.032180065155029296, 0.03215359878540039, 0.032249855041503905, 0.03332419204711914, 0.03208687973022461, 0.03204428863525391, 0.0317652473449707, 0.03178291130065918, 0.031858047485351565, 0.03163983917236328, 0.031678815841674805, 0.03183001518249512, 0.03170508766174317, 0.03165705680847168, 0.03168108749389648, 0.03164534378051758, 0.03162796783447266, 0.03176038360595703, 0.03183404731750488, 0.03171743965148926, 0.03163340759277344, 0.0317923526763916, 0.03177529525756836, 0.03180771255493164, 0.03171846389770508, 0.031802175521850586, 0.03169452857971192, 0.03179295921325684, 0.03189823913574219, 0.0319180793762207, 0.03292095947265625, 0.032139808654785156, 0.03182601547241211, 0.031938560485839845, 0.03201612854003906, 0.03217184066772461, 0.03257769775390625, 0.03200780868530274, 0.03189561653137207, 0.03185510444641113, 0.03192563247680664, 0.031800031661987305, 0.03177388763427735, 0.031884096145629884, 0.031677600860595706, 0.031734624862670896, 0.03173776054382324, 0.031717472076416016, 0.031735807418823245, 0.03191791915893555, 0.031799455642700196, 0.03181059265136719, 0.031910688400268554, 0.03188723182678223, 0.03197932815551758, 0.03212457656860351, 0.031923040390014645, 0.032046497344970705, 0.03191456031799316, 0.032087200164794924, 0.03199830436706543, 0.03201257705688477, 0.03200153732299805, 0.032107425689697267, 0.03210764694213867, 0.03224649429321289]",tokens/s,31.3899622021523,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,837.947392,9637.39648,0.0,9242.148864,8603.568128,s,1,7.6634521484375,7.6634521484375,0.0,7.6634521484375,7.6634521484375,7.6634521484375,7.6634521484375,[7.6634521484375],,kWh,1.2463342704139297e-05,1.3674601049854078e-06,5.724449023997158e-06,1.9555251833121862e-05,,MB,1140.477952,9886.957568,0.0,9481.224192,8972.090368,s,10,7.041542114257813,0.7041542114257812,0.00480887993823181,0.7044410705566406,0.7089775390624999,0.7092788391113282,0.7095198791503906,"[0.6915390625, 0.7037074584960937, 0.7027904663085938, 0.7025294799804688, 0.707328369140625, 0.7038873291015625, 0.7049948120117188, 0.7062744140625, 0.7095801391601563, 0.7089105834960937]",tokens/s,363.5567264188446,kWh,2.0551944174999337e-05,2.266518104224068e-06,1.3657510926000834e-05,3.647597320522424e-05,tokens/kWh,7018318.5671200855,MB,1162.006528,9891.151872,0.0,9485.418496,8972.092928,s,10,25.263025390625,2.5263025390625002,0.014150736211522822,2.5282164306640627,2.541820458984375,2.5455982177734375,2.5486204248046875,"[2.50933154296875, 2.5493759765625, 2.54098095703125, 2.530982421875, 2.53126611328125, 2.530928466796875, 2.52550439453125, 2.523835205078125, 2.524316650390625, 2.496503662109375]",tokens/s,24.937630796737047,kWh,7.337199067916725e-05,8.093241882545913e-06,4.856909441079924e-05,0.0001300343269725124,tokens/kWh,484487.45394219947,,s,630,25.25983639907835,0.0400949784112355,0.0007732978727018159,0.03999001693725586,0.04052755584716797,0.041276592826843254,0.04312175277709963,"[0.04249353790283203, 0.043307422637939456, 0.04041104125976563, 0.04082649612426758, 0.039516448974609375, 0.04048089599609375, 0.03943430328369141, 0.03960422515869141, 0.03983273696899414, 0.03978736114501953, 0.040048641204833986, 0.03961222457885742, 0.039841983795166014, 0.039616512298583983, 0.0398315200805664, 0.03960160064697266, 0.039370529174804686, 0.039526657104492186, 0.039404094696044924, 0.039636993408203126, 0.0396492805480957, 0.0395489273071289, 0.03973104095458985, 0.03973699188232422, 0.03969279861450195, 0.03982950210571289, 0.0396124153137207, 0.039546463012695314, 0.039659393310546874, 0.039483936309814456, 0.03946700668334961, 0.03945676803588867, 0.039907329559326174, 0.039407646179199216, 0.03943753433227539, 0.03988966369628906, 0.03963401412963867, 0.0395846061706543, 0.039653438568115235, 0.03948249435424805, 0.039720897674560544, 0.03951440048217773, 0.03964144134521484, 0.03988883209228516, 0.039820735931396484, 0.03991151809692383, 0.039537567138671875, 0.03972438430786133, 0.04002799987792969, 0.0399183349609375, 0.0400445442199707, 0.039894943237304685, 0.040130657196044923, 0.03968819046020508, 0.039223297119140625, 0.03971072006225586, 0.03956041717529297, 0.03962140655517578, 0.0394728012084961, 0.039738945007324215, 0.03996652984619141, 0.03994704055786133, 0.0397468147277832, 0.04230822372436523, 0.04061753463745117, 0.04019039916992188, 0.04031488037109375, 0.040381568908691406, 0.04056358337402344, 0.04083017730712891, 0.04029232025146484, 0.04026860809326172, 0.04024115371704102, 0.04027801513671875, 0.040235008239746094, 0.040065025329589846, 0.04008972930908203, 0.04031475067138672, 0.03991551971435547, 0.040182785034179686, 0.04011872100830078, 0.04032979202270508, 0.040613887786865234, 0.04000521469116211, 0.04030636978149414, 0.04048355102539063, 0.04027391815185547, 0.04000342559814453, 0.04035190582275391, 0.04004249572753906, 0.04007843017578125, 0.04011529541015625, 0.04025939178466797, 0.04039475250244141, 0.04056883239746094, 0.04006092834472656, 0.040030208587646485, 0.04024729537963867, 0.03990323257446289, 0.04020822525024414, 0.040249504089355466, 0.040359935760498046, 0.04177094268798828, 0.05037062454223633, 0.040304641723632816, 0.03995606231689453, 0.04008182525634765, 0.040570911407470704, 0.04038803100585937, 0.04024076843261719, 0.040403968811035154, 0.040560256958007815, 0.03999116897583008, 0.04015913772583008, 0.040331775665283204, 0.04028211212158203, 0.04038614273071289, 0.03992556762695312, 0.039981056213378906, 0.04011193466186523, 0.04023580932617187, 0.040226814270019534, 0.04014284896850586, 0.04012236785888672, 0.04028742218017578, 0.040119102478027344, 0.042237953186035154, 0.040529918670654294, 0.040189056396484374, 0.040264575958251954, 0.03995600128173828, 0.04003839874267578, 0.03977059173583984, 0.03991689682006836, 0.04018652725219726, 0.040130561828613284, 0.03990528106689453, 0.04024115371704102, 0.03989299011230469, 0.04024140930175781, 0.04001475143432617, 0.04149129486083984, 0.04015513610839844, 0.0400148811340332, 0.04007974243164063, 0.04015478515625, 0.04041366577148438, 0.0402619514465332, 0.04006108856201172, 0.04007491302490234, 0.04033980941772461, 0.040793441772460935, 0.043618976593017576, 0.04017356872558594, 0.03986022567749024, 0.040005630493164065, 0.040182880401611325, 0.040197025299072264, 0.040136703491210936, 0.04324726486206055, 0.040528160095214844, 0.04041494369506836, 0.040080928802490236, 0.04008348846435547, 0.04017641448974609, 0.03976380920410156, 0.04017942428588867, 0.04032761764526367, 0.04001587295532227, 0.040271198272705075, 0.04011804962158203, 0.039943038940429686, 0.039852001190185546, 0.03999337768554687, 0.04029849624633789, 0.0404029426574707, 0.04031401443481445, 0.04038896179199219, 0.04026371383666992, 0.041116416931152346, 0.04016505432128906, 0.040022048950195316, 0.040136703491210936, 0.039890113830566405, 0.040360767364501955, 0.040118270874023435, 0.04021657562255859, 0.03993804931640625, 0.04049903869628906, 0.04219910430908203, 0.040132190704345705, 0.040548126220703126, 0.040122112274169924, 0.0401212158203125, 0.040339710235595704, 0.03994598388671875, 0.040343551635742186, 0.04240588760375977, 0.040908798217773434, 0.04048889541625977, 0.04038246536254883, 0.04024639892578125, 0.04031155014038086, 0.040116416931152345, 0.03985168075561524, 0.03987900924682617, 0.03994009780883789, 0.039725055694580076, 0.039882080078125, 0.03977072143554688, 0.04063852691650391, 0.040030208587646485, 0.04000358581542969, 0.04009369659423828, 0.039929855346679685, 0.03970364761352539, 0.03980527877807617, 0.03950249481201172, 0.03989807891845703, 0.04387321472167969, 0.04003190231323242, 0.04065299224853516, 0.03973068618774414, 0.0397823371887207, 0.04006943893432617, 0.040132545471191404, 0.03981727981567383, 0.03960211181640625, 0.03975743865966797, 0.039737407684326174, 0.03945568084716797, 0.040290145874023436, 0.04001792144775391, 0.04005401611328125, 0.03995929718017578, 0.03975167846679688, 0.039782398223876955, 0.039728416442871096, 0.0397790412902832, 0.03991686248779297, 0.040065216064453124, 0.04014883041381836, 0.03991619110107422, 0.03998886489868164, 0.04026816177368164, 0.04030025482177734, 0.04028995132446289, 0.039895103454589846, 0.03997753524780273, 0.04017935943603516, 0.03992995071411133, 0.040478046417236326, 0.04252345657348633, 0.04176688003540039, 0.03992374420166016, 0.040097793579101565, 0.03978035354614258, 0.04008038330078125, 0.03974403381347656, 0.03961459350585937, 0.0397633285522461, 0.03987760162353516, 0.039792640686035156, 0.04057510375976563, 0.04004441452026367, 0.0400261116027832, 0.04024428939819336, 0.039893184661865234, 0.04004735946655273, 0.03968000030517578, 0.03990323257446289, 0.040164958953857424, 0.040137054443359375, 0.04082284927368164, 0.0402655029296875, 0.04041046524047852, 0.04049359893798828, 0.04001177597045898, 0.041587039947509764, 0.03987875366210938, 0.040081024169921875, 0.039936286926269535, 0.039667713165283204, 0.04018918228149414, 0.03981593704223633, 0.03968729782104492, 0.04035820770263672, 0.04001811218261719, 0.04026124954223633, 0.03986412811279297, 0.039830463409423825, 0.0398636474609375, 0.03971343994140625, 0.039937343597412106, 0.039529151916503906, 0.039663646697998045, 0.0399318733215332, 0.04036198425292969, 0.041538719177246095, 0.04276924896240234, 0.041893470764160154, 0.039936416625976565, 0.03991926574707031, 0.04089478302001953, 0.03980233764648437, 0.039567039489746096, 0.03998348617553711, 0.039784286499023436, 0.04051545715332031, 0.039713569641113285, 0.04026313781738281, 0.03988124847412109, 0.0395489273071289, 0.03957756805419922, 0.03954691314697266, 0.042626911163330075, 0.03976003265380859, 0.03952409744262695, 0.03968022537231446, 0.03951004791259766, 0.03968819046020508, 0.039609760284423826, 0.03963875198364258, 0.039723743438720704, 0.03981123352050781, 0.03977948760986328, 0.0396317138671875, 0.03970457458496094, 0.039626750946044925, 0.03955507278442383, 0.039599777221679684, 0.03958204650878906, 0.039752960205078125, 0.03978931045532227, 0.04245913696289062, 0.03993804931640625, 0.04020412826538086, 0.04121567916870117, 0.0398135986328125, 0.039796382904052734, 0.039817184448242185, 0.03974959945678711, 0.0399117431640625, 0.039822654724121095, 0.03967055892944336, 0.03969023895263672, 0.0395994873046875, 0.04105484771728515, 0.04093337631225586, 0.039919296264648435, 0.04002848052978516, 0.04005462265014648, 0.04026339340209961, 0.040126625061035155, 0.04013699340820313, 0.040226814270019534, 0.04046847915649414, 0.040269824981689455, 0.040271873474121096, 0.040267200469970704, 0.04038304138183594, 0.0405852165222168, 0.04038643264770508, 0.03994432067871094, 0.04101116943359375, 0.04034694290161133, 0.040089920043945314, 0.040272289276123044, 0.040458240509033204, 0.04013449478149414, 0.040185791015625, 0.04039680099487305, 0.04019836807250977, 0.04041475296020508, 0.04062019348144531, 0.04253523254394531, 0.040132766723632814, 0.040224609375, 0.0425750732421875, 0.04048934555053711, 0.04036662292480469, 0.04028598403930664, 0.04020230484008789, 0.040374271392822264, 0.040390655517578124, 0.04035500717163086, 0.04003923034667969, 0.04014617538452148, 0.04024396896362305, 0.0400992317199707, 0.040127071380615234, 0.04062822341918945, 0.040447681427001954, 0.04046675109863281, 0.041326431274414065, 0.04020598220825195, 0.04014745712280274, 0.04004191970825195, 0.04042195129394531, 0.040180862426757814, 0.04027891159057617, 0.04054425430297852, 0.04032067108154297, 0.04011452865600586, 0.04089785766601563, 0.03979945755004883, 0.03999542236328125, 0.039649185180664064, 0.0397694091796875, 0.03962073516845703, 0.04077017593383789, 0.04016035079956055, 0.03974854278564453, 0.039739166259765625, 0.039728862762451175, 0.04039120101928711, 0.03972911834716797, 0.03956307220458984, 0.03968819046020508, 0.03958784103393555, 0.04004188919067383, 0.040230846405029295, 0.03981939315795899, 0.039656158447265624, 0.0395546875, 0.039639423370361325, 0.03953823852539062, 0.039483329772949216, 0.039559680938720705, 0.039943294525146486, 0.04048166275024414, 0.039798782348632815, 0.03970172882080078, 0.03984054565429687, 0.039683391571044925, 0.03960022354125976, 0.03969836807250977, 0.03976668930053711, 0.03972476959228516, 0.039532257080078126, 0.04019878387451172, 0.042686431884765626, 0.040072574615478515, 0.04028684616088867, 0.040050048828125, 0.0437254409790039, 0.03998454284667969, 0.04017139053344727, 0.039885025024414066, 0.039629310607910154, 0.04011008071899414, 0.039631935119628904, 0.039328704833984374, 0.040013343811035156, 0.04003644943237305, 0.03962099075317383, 0.03975481414794922, 0.0398570556640625, 0.03965254211425781, 0.039871326446533205, 0.03969177627563476, 0.0398770866394043, 0.03965760040283203, 0.04024899291992187, 0.039974143981933594, 0.03990771102905273, 0.03967552185058594, 0.03973392105102539, 0.03979504013061524, 0.039462913513183595, 0.03963651275634766, 0.03969887924194336, 0.03991145706176758, 0.04006707382202149, 0.040174976348876956, 0.03981990432739258, 0.039886081695556644, 0.039639774322509765, 0.03974313735961914, 0.040053119659423826, 0.03975987243652344, 0.03970230484008789, 0.039491134643554686, 0.03988528060913086, 0.04009328079223633, 0.03975228881835938, 0.03974553680419922, 0.04007052612304687, 0.0397523193359375, 0.03972844696044922, 0.03989369583129883, 0.03988479995727539, 0.03985123062133789, 0.0399529914855957, 0.04143328094482422, 0.03999334335327148, 0.039800830841064457, 0.04371839904785156, 0.039946495056152345, 0.03993190383911133, 0.040308734893798825, 0.0398131217956543, 0.039817054748535155, 0.040161441802978516, 0.04222566223144531, 0.03999692916870117, 0.03972876739501953, 0.04028710556030273, 0.039657024383544924, 0.039728641510009766, 0.039791038513183594, 0.03967356872558594, 0.03973308944702148, 0.03974854278564453, 0.03970790481567383, 0.03975040054321289, 0.03960627365112305, 0.03949747085571289, 0.040175167083740235, 0.03974828720092773, 0.03984384155273438, 0.0396124153137207, 0.039929855346679685, 0.03963900756835938, 0.04009539031982422, 0.03987494277954102, 0.03967583847045898, 0.03975600051879883, 0.039875839233398436, 0.040221473693847654, 0.03997257614135742, 0.039954784393310544, 0.040189697265625, 0.04098787307739258, 0.039983905792236325, 0.03960780715942383, 0.03994265747070312, 0.039782398223876955, 0.03944412612915039, 0.04019235229492187, 0.03976396942138672, 0.03990323257446289, 0.040030208587646485, 0.03968511962890625, 0.0428144645690918, 0.040089599609375, 0.04002816009521484, 0.03951747131347656, 0.03972784042358399, 0.040898399353027345, 0.040099647521972655, 0.04009603118896484, 0.04015929412841797, 0.040086849212646485, 0.04044796752929687, 0.04009664154052734, 0.04006076812744141, 0.04142710494995117, 0.04020198440551758, 0.040527488708496096, 0.0401638069152832, 0.04038860702514648, 0.04010598373413086, 0.039847934722900394, 0.04001315307617188, 0.040106655120849606, 0.04006467056274414, 0.042194847106933595, 0.03951193618774414, 0.03925651168823242, 0.03937737655639648, 0.039175552368164064, 0.03977484893798828, 0.039327743530273435, 0.03949977493286133, 0.03945798492431641, 0.03958249664306641, 0.03936259078979492, 0.03938825607299805, 0.03962563323974609, 0.039908607482910155, 0.03928128051757813, 0.0394013442993164, 0.03953241729736328, 0.039489601135253904, 0.039338302612304685, 0.03938508987426758, 0.03924972915649414, 0.03937094497680664, 0.04028982543945313, 0.04028464126586914, 0.04197785568237305, 0.039395328521728515, 0.03915724945068359, 0.03924579238891602, 0.03899756622314453, 0.03931235122680664, 0.039117855072021486, 0.03911164855957031, 0.039075328826904294, 0.03918502426147461, 0.03954390335083008, 0.039448673248291016, 0.03922118377685547, 0.039185150146484375, 0.03907516860961914, 0.03897139358520508, 0.03913897705078125, 0.03926323318481445, 0.03935980987548828, 0.03906351852416992, 0.039336673736572264, 0.03940966415405273, 0.039340000152587894, 0.039489566802978514, 0.03951520156860352, 0.039642047882080075, 0.03990937423706055, 0.040341503143310545, 0.040232158660888674, 0.040098686218261716, 0.04002374267578125, 0.04030691146850586, 0.03999884796142578, 0.040100479125976564, 0.04018175888061523, 0.04001094436645508, 0.04002899169921875, 0.0400711669921875, 0.040223873138427735]",tokens/s,24.940779110627425,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm2,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 1138, in __init__ self.model = InternLM2Model(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 918, in __init__ [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 918, in [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 709, in __init__ self.feed_forward = InternLM2MLP(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 205, in __init__ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 192.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 136.12 MiB is free. Process 151554 has 14.61 GiB memory in use. Of the allocated memory 14.49 GiB is allocated by PyTorch, and 3.07 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,deci,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,809.92256,14639.104,0.0,14243.856384,14221.3376,s,1,7.50015673828125,7.50015673828125,0.0,7.50015673828125,7.50015673828125,7.50015673828125,7.50015673828125,[7.50015673828125],,kWh,1.5394994562500605e-05,1.6904588861759922e-06,7.184450191999921e-06,2.426990364067652e-05,,MB,1110.228992,14735.572992,0.0,14329.839616,14290.688,s,10,14.017546020507812,1.4017546020507814,0.005064467607014813,1.4028267822265625,1.4066118896484376,1.4069143432617188,1.4071563061523438,"[1.3934443359375, 1.3924166259765625, 1.399595947265625, 1.4004007568359376, 1.4030111083984376, 1.4026424560546875, 1.4064407958984375, 1.407216796875, 1.40583251953125, 1.406544677734375]",tokens/s,182.6282572038425,kWh,4.101319376291641e-05,4.523301419646922e-06,2.717318840519999e-05,7.270968358776332e-05,tokens/kWh,3520851.520293007,MB,1138.958336,14750.253056,0.0,14344.51968,14290.69056,s,10,39.382056884765625,3.9382056884765624,0.0028361852012258122,3.9377154541015624,3.9428391357421875,3.942949108886719,3.943037087402344,"[3.93264404296875, 3.937390380859375, 3.936491943359375, 3.9376533203125, 3.937684814453125, 3.93774609375, 3.938677978515625, 3.93789453125, 3.94305908203125, 3.942814697265625]",tokens/s,15.997132954315202,kWh,0.00011518598807333356,1.2704394243449077e-05,7.642061669200003e-05,0.00020431099900878268,tokens/kWh,308353.4430630033,,s,630,39.37825381469723,0.06250516478523374,0.00023357617037945695,0.06250548934936523,0.06278532638549804,0.06288896923065185,0.06312925102233886,"[0.06311766433715821, 0.06226121520996094, 0.06225932693481445, 0.06189859390258789, 0.06193881607055664, 0.06222883224487305, 0.062042686462402345, 0.06216089630126953, 0.06200115203857422, 0.06224281692504883, 0.062414207458496095, 0.06231216049194336, 0.06223750305175781, 0.06258502578735352, 0.06216080093383789, 0.062195838928222655, 0.06219948959350586, 0.06223212814331055, 0.062155391693115236, 0.061967552185058596, 0.06203680038452149, 0.06238412857055664, 0.062453758239746096, 0.06251529693603515, 0.062299297332763674, 0.06239932632446289, 0.06256835174560547, 0.06234688186645508, 0.06235583877563477, 0.0625022087097168, 0.06236435317993164, 0.06235955047607422, 0.06239231872558594, 0.062486526489257815, 0.0626104965209961, 0.062387134552001955, 0.062183425903320315, 0.06274252700805664, 0.06236774444580078, 0.06257020950317382, 0.062295360565185545, 0.06242812728881836, 0.06235100936889648, 0.06262566375732422, 0.06256089782714844, 0.06289523315429688, 0.06241558456420898, 0.062365280151367185, 0.06243158340454102, 0.0625992317199707, 0.06236108779907226, 0.06244403076171875, 0.06293017578125, 0.0627119369506836, 0.06256089782714844, 0.062718017578125, 0.06256991958618165, 0.06255836868286133, 0.06274492645263671, 0.06263919830322266, 0.062446495056152344, 0.06305791854858399, 0.06260940933227539, 0.06337152099609375, 0.06236617660522461, 0.062189697265625, 0.0622059211730957, 0.06199219131469726, 0.06248444747924805, 0.0626480941772461, 0.0623089599609375, 0.062179550170898434, 0.06225324630737305, 0.06225100708007812, 0.06245321655273438, 0.06236959838867188, 0.062443359375, 0.06221836853027344, 0.06223244857788086, 0.06235635375976562, 0.06242083358764648, 0.06240480041503906, 0.0625781135559082, 0.06203776168823242, 0.06258774566650391, 0.06259241485595703, 0.062396064758300784, 0.06261407852172851, 0.06264172744750976, 0.06238899230957031, 0.06265856170654296, 0.06253936004638672, 0.06258870315551758, 0.062401153564453124, 0.06234316635131836, 0.06234223937988281, 0.06262614440917968, 0.06252953720092773, 0.06270214462280274, 0.06232451248168945, 0.06226908874511719, 0.062341697692871095, 0.06239846420288086, 0.06252105712890625, 0.06245404815673828, 0.062389633178710935, 0.06264281463623046, 0.06261920166015625, 0.0628813133239746, 0.06250588989257813, 0.062437374114990236, 0.0626480941772461, 0.06256371307373047, 0.06261398315429688, 0.06275305557250976, 0.06250102233886719, 0.06256019210815429, 0.062453407287597656, 0.0627305908203125, 0.0628223991394043, 0.06261491012573242, 0.06262643051147461, 0.06271155166625976, 0.06254111862182617, 0.06269382476806641, 0.0625805778503418, 0.06323279953002929, 0.06244480133056641, 0.06195462417602539, 0.06197174453735352, 0.06202057647705078, 0.06210355377197266, 0.062117889404296876, 0.062156097412109375, 0.062370494842529295, 0.06252544021606446, 0.062461952209472656, 0.06241888046264649, 0.06259267044067383, 0.06221993637084961, 0.06219209671020508, 0.06256262588500977, 0.06238361740112305, 0.06256662368774414, 0.06222463989257813, 0.062279678344726565, 0.06249241638183594, 0.0623372802734375, 0.062230270385742185, 0.06227788925170898, 0.06233472061157227, 0.0628364486694336, 0.06253366470336914, 0.062470657348632816, 0.06265001678466797, 0.06252579116821289, 0.06264012908935547, 0.06253948974609375, 0.062384449005126956, 0.06255379104614257, 0.062331199645996094, 0.06238934326171875, 0.062281856536865236, 0.06225382232666016, 0.06267903900146485, 0.0625541114807129, 0.06258895874023437, 0.06283039855957032, 0.06266073608398437, 0.06249065780639648, 0.06242899322509766, 0.06250310516357421, 0.0625450553894043, 0.062402721405029296, 0.06244579315185547, 0.06283929443359375, 0.06248566436767578, 0.06252767944335938, 0.06247283172607422, 0.06247219085693359, 0.06278511810302734, 0.0625316162109375, 0.06254767990112305, 0.06276079940795898, 0.06269209671020508, 0.06261142349243164, 0.06286959838867187, 0.06285472106933594, 0.06267744064331054, 0.06311296081542969, 0.063023681640625, 0.06239980697631836, 0.062185665130615235, 0.062368255615234375, 0.06248646545410156, 0.062292030334472656, 0.06258009719848633, 0.06228649520874024, 0.06237334442138672, 0.06241888046264649, 0.062293952941894534, 0.06242367935180664, 0.06255001449584961, 0.06257664108276367, 0.06236569595336914, 0.062296062469482424, 0.062438560485839845, 0.06245379257202149, 0.06234195327758789, 0.06222438430786133, 0.062273536682128906, 0.06208512115478516, 0.06271721649169922, 0.06257056045532226, 0.06263792037963867, 0.06243411254882812, 0.06236502456665039, 0.06232950210571289, 0.062381790161132815, 0.06241923141479492, 0.062394367218017575, 0.062210079193115234, 0.06262688064575195, 0.06285609436035157, 0.06252953720092773, 0.06239641571044922, 0.06255001449584961, 0.06234255981445312, 0.06252934265136718, 0.06247504043579102, 0.06254182434082031, 0.06264236831665039, 0.06281609725952149, 0.06253065490722656, 0.06274288177490234, 0.06250960159301758, 0.06239401626586914, 0.06245830535888672, 0.0625516471862793, 0.062439743041992186, 0.06271139144897461, 0.06240431976318359, 0.06270022583007813, 0.0625041618347168, 0.06275913619995117, 0.06271446228027344, 0.06268937683105469, 0.06248819351196289, 0.06251264190673828, 0.06257535934448243, 0.0625334701538086, 0.06250486373901368, 0.06326476669311523, 0.06257171249389648, 0.062003265380859374, 0.06205094528198242, 0.061884449005126956, 0.062217662811279294, 0.062077598571777345, 0.06223052978515625, 0.06232252883911133, 0.06264233779907226, 0.06252463912963867, 0.06259519958496093, 0.062415519714355466, 0.06256006240844726, 0.0626157455444336, 0.06241487884521484, 0.06250508880615234, 0.06264815902709961, 0.06249881744384766, 0.0624824333190918, 0.06230019378662109, 0.0625561294555664, 0.06217113494873047, 0.06223801422119141, 0.062281566619873045, 0.06251708984375, 0.06240972900390625, 0.06280825424194336, 0.0623675537109375, 0.06285702514648438, 0.06253587341308593, 0.06262579345703125, 0.06268713760375977, 0.06254982376098633, 0.06233116912841797, 0.06246809768676758, 0.06227084732055664, 0.0624251823425293, 0.06218191909790039, 0.06240179061889648, 0.062400447845458985, 0.06284735870361328, 0.06265647888183594, 0.062519775390625, 0.06236569595336914, 0.06251043319702149, 0.06238684844970703, 0.06243139266967773, 0.062449504852294925, 0.06248857498168945, 0.06268915176391601, 0.0627256965637207, 0.06258723068237304, 0.06278720092773438, 0.06251100921630859, 0.062462337493896486, 0.06264438247680663, 0.06260559844970703, 0.06244486236572266, 0.06257030487060547, 0.0629502067565918, 0.06282969665527344, 0.0629349136352539, 0.06313398361206055, 0.062306304931640626, 0.061986175537109375, 0.06216870498657227, 0.06230876922607422, 0.062469982147216795, 0.062294784545898436, 0.06219980621337891, 0.06226947021484375, 0.06256022262573242, 0.06264131164550782, 0.06254806518554687, 0.062470943450927734, 0.06226953506469726, 0.06219555282592774, 0.06238332748413086, 0.06248860931396484, 0.06250783920288086, 0.062375358581542965, 0.062324703216552736, 0.06210390472412109, 0.06235891342163086, 0.062196575164794925, 0.0625398063659668, 0.06229913711547851, 0.06261417770385742, 0.0629865608215332, 0.0625316162109375, 0.06247011184692383, 0.062484127044677734, 0.0624268798828125, 0.0625011215209961, 0.062443294525146485, 0.06257846450805664, 0.06254230499267578, 0.062403999328613284, 0.062364574432373046, 0.06262287902832031, 0.06239718246459961, 0.06246342468261719, 0.06266947174072265, 0.06256972885131835, 0.0625456657409668, 0.06253676986694336, 0.06256768035888671, 0.06252819061279297, 0.06265964889526367, 0.062491134643554686, 0.06285734558105469, 0.06281849670410156, 0.06255801773071289, 0.062488895416259765, 0.06267084884643555, 0.06258393478393555, 0.06242598342895508, 0.06245785522460937, 0.06271385574340821, 0.06294937515258789, 0.06274867248535156, 0.06264435195922852, 0.06258838272094727, 0.06258131027221679, 0.06251897430419921, 0.06338969421386718, 0.06230764770507812, 0.06221667098999024, 0.06216847991943359, 0.0619958381652832, 0.06206399917602539, 0.06206531143188477, 0.0622562255859375, 0.06222476959228516, 0.06220982360839844, 0.06274329757690429, 0.06271392059326172, 0.0625266227722168, 0.06247663879394531, 0.06232310485839844, 0.062362945556640625, 0.06251187133789063, 0.06235504150390625, 0.062306655883789065, 0.06257664108276367, 0.06219776153564453, 0.062321727752685546, 0.062446529388427735, 0.062281726837158206, 0.06234883117675781, 0.0623985595703125, 0.06262211227416992, 0.06258256149291992, 0.06240604782104492, 0.06253647994995117, 0.06243081665039062, 0.06266694259643554, 0.06258505630493164, 0.06255820846557616, 0.06245158386230469, 0.06241225433349609, 0.06237820816040039, 0.0623724479675293, 0.062370849609375, 0.06228255844116211, 0.062434879302978516, 0.06264214324951171, 0.06268473434448242, 0.06282332611083985, 0.06271356964111328, 0.06252691268920899, 0.06268012619018555, 0.06284265518188477, 0.06255372619628906, 0.06265894317626954, 0.062475936889648434, 0.06269987106323242, 0.06254169464111328, 0.06267712020874024, 0.06287155151367188, 0.06269337463378906, 0.06264124679565429, 0.06267919921875, 0.0626879997253418, 0.0628809928894043, 0.06277920150756836, 0.06287263870239258, 0.06273993682861329, 0.06307872009277343, 0.06253891372680664, 0.062354270935058596, 0.06221014404296875, 0.062033790588378906, 0.062272670745849606, 0.06225913619995117, 0.06230518341064453, 0.06236972808837891, 0.06242867279052734, 0.06242707061767578, 0.06253760147094727, 0.062314369201660155, 0.06243779373168945, 0.06252297592163086, 0.06257548904418946, 0.06270326232910156, 0.06265420913696289, 0.06231228637695312, 0.06224972915649414, 0.06216022491455078, 0.06218112182617187, 0.062192543029785156, 0.06210697555541992, 0.062169761657714845, 0.06227475357055664, 0.06244160079956055, 0.0626572151184082, 0.06275459289550782, 0.06264585494995117, 0.06250969696044922, 0.06244966506958008, 0.06251830291748046, 0.0626115837097168, 0.06230223846435547, 0.06219232177734375, 0.062425247192382814, 0.0626003189086914, 0.06239113616943359, 0.062461952209472656, 0.0623135986328125, 0.06242755126953125, 0.06236620712280273, 0.06269705581665039, 0.06277772903442383, 0.06264371109008789, 0.06244809722900391, 0.06266681671142578, 0.06259913635253907, 0.06306204986572266, 0.06258070373535156, 0.06246793746948242, 0.06249283218383789, 0.06253148651123047, 0.06256204986572265, 0.0623985595703125, 0.062445217132568356, 0.06278358459472656, 0.06269321441650391, 0.0630951042175293, 0.06310960006713867, 0.06295849609375, 0.06276559829711914, 0.06363750457763671, 0.062493854522705075, 0.062117855072021486, 0.06217001724243164, 0.062152671813964847, 0.0625541114807129, 0.062363296508789065, 0.06243977737426758, 0.062228511810302735, 0.06235340881347656, 0.06246192169189453, 0.06279894256591798, 0.06251359939575195, 0.062454238891601566, 0.06237913513183594, 0.06274665451049805, 0.06229414367675781, 0.062333343505859375, 0.062303550720214845, 0.062235649108886716, 0.0620637435913086, 0.06254681777954102, 0.06274867248535156, 0.06261920166015625, 0.06242758560180664, 0.06263603210449219, 0.06255363082885743, 0.06261193466186524, 0.062441375732421874, 0.06254409790039063, 0.06260015869140625, 0.0626902084350586, 0.06256991958618165, 0.06255465698242188, 0.06277059173583985, 0.06254451370239258, 0.062304256439208984, 0.06237712097167969, 0.06239068984985351, 0.06246591949462891, 0.06242569732666016, 0.06299440002441406, 0.06295347213745117, 0.06295670318603516, 0.0626328010559082, 0.06287974548339843, 0.06260534286499024, 0.06251830291748046, 0.06257145690917969, 0.06277436828613281, 0.0627680320739746, 0.06278144073486328, 0.06265174484252929, 0.06286403274536133, 0.06257846450805664, 0.06270793533325195, 0.06261964797973633, 0.0626729278564453, 0.0627199363708496, 0.06285654449462891, 0.06297833633422852, 0.06302560043334961, 0.06266876983642578, 0.06329708862304688, 0.062414302825927734, 0.062134815216064454, 0.062142688751220705, 0.06235161590576172, 0.062339038848876954, 0.06250451278686524, 0.062354942321777344, 0.062443649291992184, 0.06258319854736329, 0.0622022705078125, 0.06255408096313476, 0.0625992317199707, 0.06256995010375976, 0.062335487365722655, 0.06255615997314454, 0.06250499343872071, 0.0625458869934082, 0.0623185920715332, 0.062217601776123045, 0.062173534393310546, 0.06231606292724609, 0.06236630249023437, 0.062457408905029294, 0.062487136840820315, 0.06252544021606446, 0.06254796981811524, 0.06251472091674805, 0.06262179183959961, 0.06260089492797852, 0.06244217681884766, 0.06255136108398437, 0.0625835189819336, 0.06261270523071288, 0.0625334701538086, 0.06253456115722657, 0.062408737182617184, 0.06248239898681641, 0.0625576629638672, 0.06263407897949219, 0.06251359939575195, 0.06258073425292969, 0.06271088027954101, 0.06274863815307617, 0.06261446380615235, 0.06283059310913086, 0.06292214584350586, 0.06275337600708007, 0.06265804672241211, 0.06294681549072266, 0.06256313705444336, 0.06280774307250976, 0.06289596939086914, 0.06260147094726562, 0.06283283233642578, 0.06293116760253906, 0.06290537643432617, 0.06275993728637695, 0.06263804626464843, 0.06274665451049805, 0.06286844635009765, 0.06285209655761718, 0.06282649612426758]",tokens/s,15.998677924231961,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 689, in __init__ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 357, in __init__ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 18.12 MiB is free. Process 166314 has 14.72 GiB memory in use. Of the allocated memory 14.60 GiB is allocated by PyTorch, and 3.02 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,784.0768,6162.415616,0.0,5767.168,5561.701376,s,1,7.27330419921875,7.27330419921875,0.0,7.27330419921875,7.27330419921875,7.27330419921875,7.27330419921875,[7.27330419921875],,kWh,4.423376970855013e-06,4.805878847703495e-07,1.4000011199916118e-06,6.303965975616974e-06,,MB,1110.417408,6172.901376,0.0,5767.168,5440.258048,s,10,4.984247161865235,0.4984247161865235,0.0032084074497081786,0.4983302459716797,0.5019024810791015,0.5026877975463867,0.5033160507202149,"[0.49047341918945314, 0.4979249572753906, 0.497743896484375, 0.49801724243164064, 0.49864324951171873, 0.5034731140136719, 0.5017279663085937, 0.4996493225097656, 0.49895217895507815, 0.4976418151855469]",tokens/s,513.6181888383684,kWh,1.448518486944421e-05,1.5974670973678187e-06,9.581885972381016e-06,2.5664537939193045e-05,tokens/kWh,9974853.262760485,MB,1135.939584,6174.998528,0.0,5769.265152,5523.463168,s,10,18.293435791015625,1.8293435791015624,0.003121007848996947,1.8282823486328126,1.8341563354492187,1.8346082580566405,1.8349697961425782,"[1.8311048583984375, 1.8350601806640625, 1.827931396484375, 1.8247835693359375, 1.82711572265625, 1.8304154052734376, 1.834055908203125, 1.826645263671875, 1.827690185546875, 1.82863330078125]",tokens/s,34.43858262587333,kWh,5.3543071277223245e-05,5.905837187575707e-06,3.5573594596419904e-05,9.502250306121886e-05,tokens/kWh,663000.8468563688,,s,630,18.290563566207897,0.02903264058128236,0.00021874437743233727,0.029019136428833008,0.029228883743286135,0.029365083980560303,0.029853543834686278,"[0.029493919372558595, 0.02923014450073242, 0.02893305587768555, 0.028976512908935548, 0.028829311370849608, 0.028816383361816408, 0.028851295471191408, 0.0287425594329834, 0.02881033515930176, 0.028782783508300783, 0.028768287658691407, 0.028854560852050782, 0.028818975448608397, 0.02878963279724121, 0.028829696655273438, 0.02877644729614258, 0.028891103744506836, 0.028975135803222658, 0.028838911056518556, 0.028721311569213866, 0.028959199905395507, 0.028925376892089842, 0.028842208862304687, 0.02884272003173828, 0.0292161922454834, 0.02918662452697754, 0.029124607086181642, 0.029107999801635743, 0.029051103591918946, 0.02902016067504883, 0.02901718330383301, 0.02896784019470215, 0.029022207260131837, 0.028904544830322267, 0.029229055404663085, 0.029608287811279298, 0.029907680511474608, 0.029040159225463866, 0.029331775665283204, 0.029017919540405272, 0.029100223541259764, 0.029152704238891602, 0.029253952026367186, 0.029024511337280273, 0.02906723213195801, 0.02914102363586426, 0.029128223419189452, 0.02909132766723633, 0.029004768371582033, 0.02911782455444336, 0.029112960815429686, 0.02913689613342285, 0.029456384658813478, 0.029107967376708985, 0.028993568420410155, 0.028979391098022462, 0.02908367919921875, 0.02933260726928711, 0.029719072341918944, 0.02917340850830078, 0.02912326431274414, 0.02918604850769043, 0.029286207199096678, 0.029671424865722655, 0.02931427192687988, 0.029045536041259767, 0.02888630485534668, 0.02899836730957031, 0.028839647293090822, 0.028772640228271484, 0.028856319427490236, 0.028944095611572265, 0.028768064498901368, 0.028758495330810548, 0.028763200759887694, 0.02884281539916992, 0.02899286460876465, 0.028893983840942383, 0.028915199279785156, 0.0288602237701416, 0.029218624114990235, 0.0290350399017334, 0.029170015335083007, 0.029068384170532226, 0.029084064483642577, 0.02913564872741699, 0.029161184310913087, 0.029321216583251954, 0.03021414375305176, 0.02913088035583496, 0.02913267135620117, 0.02911027145385742, 0.029077503204345705, 0.029016063690185546, 0.02886444854736328, 0.028934207916259766, 0.029069120407104493, 0.029108480453491212, 0.029177791595458986, 0.029124607086181642, 0.02916316795349121, 0.02909542465209961, 0.029145952224731445, 0.029083648681640626, 0.029087135314941406, 0.02906991958618164, 0.02915328025817871, 0.02899964714050293, 0.029085727691650392, 0.029117919921875, 0.029311519622802734, 0.029843456268310548, 0.02924896049499512, 0.029106143951416016, 0.029459039688110353, 0.029147136688232423, 0.029103967666625978, 0.028928159713745117, 0.028993535995483398, 0.02914656066894531, 0.029030656814575194, 0.029110591888427736, 0.029132575988769532, 0.02917740821838379, 0.02936016082763672, 0.030347904205322265, 0.029787456512451172, 0.029506431579589844, 0.029179904937744142, 0.028985343933105468, 0.02895257568359375, 0.02886419105529785, 0.028846080780029298, 0.028741920471191406, 0.028893024444580077, 0.028743520736694336, 0.028778175354003906, 0.029153472900390626, 0.028944000244140625, 0.028795743942260744, 0.028889087677001952, 0.028874176025390625, 0.028903999328613282, 0.028740800857543946, 0.02887353515625, 0.028844160079956056, 0.029081472396850584, 0.028849983215332033, 0.02879088020324707, 0.02878678321838379, 0.02896895980834961, 0.029009920120239258, 0.02904051208496094, 0.02897011184692383, 0.029074432373046875, 0.028998783111572266, 0.028883840560913084, 0.02889094352722168, 0.02902035140991211, 0.0290795841217041, 0.029104032516479493, 0.02905206489562988, 0.02916035270690918, 0.02906422424316406, 0.029096927642822266, 0.029001407623291016, 0.028926271438598633, 0.02889727973937988, 0.02897100830078125, 0.029024255752563476, 0.029112319946289062, 0.029111520767211914, 0.029065919876098634, 0.028939903259277342, 0.028939775466918945, 0.028939231872558594, 0.029005823135375978, 0.029087743759155273, 0.029157375335693358, 0.029236991882324218, 0.02911836814880371, 0.029069664001464844, 0.029142528533935546, 0.028967424392700194, 0.02912156867980957, 0.02917180824279785, 0.029139680862426756, 0.02912188720703125, 0.029170495986938477, 0.029755392074584962, 0.02931635284423828, 0.029012416839599608, 0.028788543701171874, 0.02880460739135742, 0.028767232894897462, 0.028890623092651366, 0.028827295303344727, 0.02875040054321289, 0.02880745506286621, 0.02886444854736328, 0.028806463241577148, 0.028754592895507813, 0.02879033660888672, 0.028735456466674806, 0.02883635139465332, 0.028755136489868164, 0.028827775955200197, 0.028825504302978516, 0.028746591567993165, 0.028820735931396484, 0.028857088088989256, 0.028823551177978517, 0.028831743240356447, 0.028814847946166993, 0.02888902473449707, 0.028856895446777345, 0.02892185592651367, 0.028775936126708986, 0.0288035831451416, 0.029042688369750977, 0.02904854393005371, 0.028936479568481447, 0.028863679885864257, 0.029032896041870117, 0.029126047134399414, 0.02900271987915039, 0.029165567398071288, 0.029130367279052733, 0.029143135070800782, 0.029122848510742188, 0.029090879440307617, 0.029180864334106445, 0.029112319946289062, 0.029033632278442384, 0.028984159469604493, 0.029030399322509767, 0.02902195167541504, 0.02900105667114258, 0.02892892837524414, 0.02890310478210449, 0.02899795150756836, 0.028994911193847655, 0.029101951599121094, 0.029081600189208984, 0.029008672714233397, 0.029022207260131837, 0.02897305679321289, 0.028964864730834962, 0.028985343933105468, 0.02910313606262207, 0.029178815841674803, 0.029143072128295897, 0.02969267272949219, 0.029351936340332032, 0.029144832611083984, 0.02889084815979004, 0.028858911514282225, 0.028799232482910157, 0.028759807586669923, 0.028671392440795897, 0.028844064712524414, 0.02883865547180176, 0.028699615478515624, 0.028875455856323243, 0.028817472457885743, 0.028805215835571288, 0.029059072494506837, 0.028835840225219726, 0.02895462417602539, 0.028704767227172853, 0.028994848251342773, 0.028906208038330078, 0.028882335662841797, 0.028838783264160155, 0.02888604736328125, 0.02908585548400879, 0.028891103744506836, 0.028912191390991212, 0.028909568786621095, 0.028857696533203126, 0.028861183166503906, 0.028864416122436523, 0.028910655975341797, 0.029014976501464843, 0.029089536666870117, 0.02917196846008301, 0.029042591094970704, 0.028950624465942383, 0.029048831939697265, 0.029009920120239258, 0.02884383964538574, 0.028960607528686524, 0.029036991119384764, 0.02910812759399414, 0.029070751190185547, 0.029086143493652343, 0.028951839447021486, 0.028954559326171875, 0.02886342430114746, 0.029114048004150392, 0.029135168075561522, 0.02911027145385742, 0.029071359634399413, 0.029149183273315428, 0.029043935775756837, 0.029076255798339844, 0.02910380744934082, 0.029090112686157226, 0.02916761589050293, 0.02919628715515137, 0.02918943977355957, 0.02908639907836914, 0.02939228820800781, 0.029194175720214845, 0.029102752685546875, 0.029838720321655274, 0.030132768630981445, 0.029251615524291993, 0.02888096046447754, 0.02879692840576172, 0.02876006317138672, 0.028824607849121095, 0.028921920776367186, 0.028797855377197267, 0.028831872940063476, 0.028702272415161132, 0.028780256271362305, 0.0287523193359375, 0.028774431228637695, 0.028884511947631836, 0.028987007141113283, 0.029023199081420897, 0.029081279754638673, 0.028879167556762696, 0.02877440071105957, 0.0289401912689209, 0.02898543930053711, 0.02891366386413574, 0.028770303726196288, 0.028847200393676758, 0.028778816223144533, 0.02871766471862793, 0.028956512451171874, 0.028886655807495117, 0.028885536193847657, 0.028955968856811523, 0.02891436767578125, 0.02916761589050293, 0.029095935821533202, 0.02915328025817871, 0.029124607086181642, 0.02909756851196289, 0.029219167709350586, 0.029106239318847656, 0.029123968124389648, 0.02905766487121582, 0.02897305679321289, 0.029138944625854493, 0.0289072322845459, 0.02903273582458496, 0.02894985580444336, 0.028938911437988282, 0.02902355194091797, 0.029780672073364257, 0.030064640045166017, 0.029091840744018556, 0.029106176376342774, 0.029122560501098634, 0.029185760498046876, 0.02918796730041504, 0.029290912628173828, 0.029278207778930664, 0.02922700881958008, 0.02915328025817871, 0.029007648468017577, 0.029075679779052736, 0.029115776062011718, 0.02908812713623047, 0.02990015983581543, 0.02932569694519043, 0.029077695846557616, 0.02898067283630371, 0.02894099235534668, 0.029857664108276366, 0.02898099136352539, 0.02896732711791992, 0.029054943084716796, 0.028907520294189453, 0.02891948890686035, 0.0289036808013916, 0.028763967514038084, 0.029310400009155274, 0.028996416091918945, 0.029042400360107423, 0.02890166473388672, 0.029031871795654297, 0.028822080612182617, 0.028842144012451172, 0.028954463958740233, 0.028988927841186524, 0.029158975601196287, 0.028808128356933593, 0.028852127075195313, 0.02894857597351074, 0.029059072494506837, 0.029017440795898436, 0.02896473693847656, 0.02889616012573242, 0.029093023300170898, 0.02912719917297363, 0.02915551948547363, 0.029290496826171877, 0.029315071105957033, 0.029743104934692382, 0.0291975040435791, 0.0290251522064209, 0.028962751388549805, 0.029072895050048828, 0.02921513557434082, 0.029093984603881837, 0.029112319946289062, 0.028987648010253907, 0.02917296028137207, 0.029114912033081055, 0.029112319946289062, 0.029063167572021483, 0.02927155113220215, 0.02903910446166992, 0.029152864456176757, 0.029106592178344725, 0.029218719482421874, 0.029154592514038086, 0.02903327941894531, 0.029140127182006835, 0.029135103225708007, 0.028985952377319334, 0.029244831085205078, 0.02939913558959961, 0.02932371139526367, 0.029175872802734374, 0.029335552215576172, 0.029573152542114258, 0.02922083282470703, 0.028986463546752928, 0.02880780792236328, 0.028684576034545897, 0.028790143966674803, 0.02876684761047363, 0.028818912506103515, 0.028898080825805663, 0.02885196876525879, 0.028753919601440428, 0.028804351806640625, 0.028711103439331056, 0.02920694351196289, 0.028950687408447265, 0.028839935302734376, 0.028846080780029298, 0.02883558464050293, 0.028823808670043947, 0.02885577583312988, 0.028899135589599608, 0.029093759536743164, 0.029055263519287108, 0.029049407958984374, 0.029119552612304686, 0.028967872619628906, 0.028964864730834962, 0.028837888717651368, 0.028853792190551758, 0.028862943649291994, 0.028850048065185548, 0.028860544204711912, 0.028909568786621095, 0.029114368438720704, 0.029281375885009765, 0.02910915184020996, 0.029138368606567384, 0.029043104171752928, 0.029070911407470704, 0.029003904342651366, 0.029083776473999023, 0.02894063949584961, 0.028811264038085937, 0.028808191299438478, 0.029035520553588868, 0.029017887115478515, 0.02889289665222168, 0.028883071899414064, 0.028995168685913085, 0.029240095138549804, 0.028987199783325195, 0.02906540870666504, 0.029105152130126953, 0.02916454315185547, 0.0291409912109375, 0.029167167663574217, 0.029110687255859375, 0.02948508834838867, 0.029087135314941406, 0.029122560501098634, 0.028979808807373046, 0.028970815658569335, 0.02915760040283203, 0.029523359298706055, 0.029139328002929687, 0.028970560073852538, 0.029030527114868164, 0.028924543380737303, 0.02877008056640625, 0.028821407318115236, 0.02876367950439453, 0.028709888458251953, 0.02878441619873047, 0.028672224044799806, 0.028870527267456054, 0.028838016510009765, 0.02877337646484375, 0.02882252883911133, 0.028769439697265625, 0.02886124801635742, 0.028880640029907225, 0.028767616271972656, 0.028785696029663087, 0.028931968688964842, 0.028815071105957032, 0.028714527130126954, 0.029078271865844725, 0.02892799949645996, 0.02896076774597168, 0.028903423309326173, 0.02894438362121582, 0.029032447814941405, 0.028960224151611327, 0.028862815856933594, 0.028819232940673827, 0.02924176025390625, 0.029159423828125, 0.02915305519104004, 0.02912892723083496, 0.029089792251586914, 0.029091583251953126, 0.029018112182617187, 0.029143455505371094, 0.029095264434814454, 0.029097888946533205, 0.029364063262939454, 0.029164287567138673, 0.028901376724243165, 0.02895680046081543, 0.029065088272094728, 0.029286367416381836, 0.029003807067871094, 0.029065216064453125, 0.029155328750610353, 0.029228864669799806, 0.029130943298339845, 0.029147136688232423, 0.029097984313964844, 0.029079744338989258, 0.028983104705810548, 0.029109920501708984, 0.02917206382751465, 0.029149183273315428, 0.02936591911315918, 0.0292127685546875, 0.02911414337158203, 0.029585439682006835, 0.029360128402709962, 0.0290317440032959, 0.028840639114379882, 0.02878607940673828, 0.028741920471191406, 0.028700672149658202, 0.028709184646606444, 0.028735488891601563, 0.028729280471801757, 0.028768320083618164, 0.02873958396911621, 0.029011743545532227, 0.028839424133300783, 0.028760799407958983, 0.028839935302734376, 0.028837888717651368, 0.028844032287597656, 0.028841983795166014, 0.028917247772216798, 0.028868127822875976, 0.02886070442199707, 0.02893484878540039, 0.028899328231811523, 0.029386175155639647, 0.02962441635131836, 0.02909379196166992, 0.028977727890014647, 0.028841983795166014, 0.0290546875, 0.029050304412841798, 0.02952176094055176, 0.029180927276611326, 0.02919219207763672, 0.02897100830078125, 0.029097600936889647, 0.02896067237854004, 0.028998111724853514, 0.02898124885559082, 0.029068607330322266, 0.02911846351623535, 0.02893894386291504, 0.028908607482910156, 0.02886284828186035, 0.02895110321044922, 0.029173759460449217, 0.02914303970336914, 0.029106176376342774, 0.029140928268432616, 0.02900383949279785, 0.029147136688232423, 0.029120512008666992, 0.02914406394958496, 0.029159423828125, 0.029145599365234375, 0.029131263732910157, 0.02913430404663086, 0.02913539123535156, 0.029217920303344726, 0.02936716842651367, 0.029095935821533202, 0.029086719512939452, 0.028946815490722658]",tokens/s,34.443990624976436,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,phi,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1004.232704,7156.465664,0.0,6761.218048,6730.975744,s,1,7.091578125,7.091578125,0.0,7.091578125,7.091578125,7.091578125,7.091578125,[7.091578125],,kWh,7.47206920834742e-06,8.131772279029663e-07,2.6544465679956275e-06,1.0939693004246014e-05,,MB,1350.61504,7190.020096,0.0,6784.28672,5879.090688,s,10,6.102068359375,0.6102068359375,0.0034555948911244496,0.6108451843261719,0.6128059692382812,0.614352294921875,0.61558935546875,"[0.60192724609375, 0.6122781982421875, 0.6089447631835937, 0.6087664184570313, 0.6105785522460937, 0.6085650024414062, 0.61111181640625, 0.6124623413085938, 0.6158986206054687, 0.611535400390625]",tokens/s,419.5298789248906,kWh,1.7794484573283517e-05,1.9624232949622367e-06,1.1749372144587646e-05,3.15062800128334e-05,tokens/kWh,8125364.20979322,MB,1388.425216,7192.117248,0.0,6784.28672,5879.093248,s,10,23.0571494140625,2.30571494140625,0.012005142879227621,2.3050274658203125,2.3150239501953127,2.3248480346679687,2.3327073022460936,"[2.334672119140625, 2.31217724609375, 2.308483642578125, 2.296367431640625, 2.296572998046875, 2.3066298828125, 2.303425048828125, 2.293894775390625, 2.29208544921875, 2.3128408203125]",tokens/s,27.323412304201167,kWh,6.846874325254622e-05,7.5523427275254046e-06,4.5330506852612535e-05,0.00012135159283268417,tokens/kWh,519152.64175281534,,s,630,23.055483802795376,0.03659600603618319,0.0005661317764007443,0.03645841598510742,0.037020870971679685,0.03727109375,0.038784446487426766,"[0.038057792663574216, 0.036905471801757815, 0.03668345642089844, 0.036488670349121094, 0.03668345642089844, 0.040451969146728516, 0.03691811370849609, 0.03684979248046875, 0.03659715270996094, 0.03651440048217774, 0.03667510223388672, 0.03657308959960937, 0.03655955123901367, 0.03668912124633789, 0.03886931228637695, 0.037033729553222657, 0.03700796890258789, 0.036907009124755856, 0.03712409591674805, 0.036894081115722656, 0.037198143005371095, 0.03705199813842774, 0.036584159851074216, 0.0365404167175293, 0.03669379043579102, 0.03692156982421875, 0.036773311614990235, 0.03676326370239258, 0.03671072006225586, 0.03741475296020508, 0.03729843139648437, 0.03726729583740234, 0.0368606071472168, 0.03718892669677734, 0.036825569152832034, 0.03666147232055664, 0.03700326538085937, 0.036711456298828125, 0.036805152893066406, 0.03674771118164062, 0.036808353424072265, 0.03692780685424805, 0.039954463958740236, 0.03708422470092773, 0.036559806823730466, 0.03750297546386719, 0.03710723114013672, 0.03696073532104492, 0.03687628936767578, 0.03713980865478515, 0.036923648834228516, 0.03698729705810547, 0.03708911895751953, 0.03686006546020508, 0.03700060653686523, 0.03697484970092774, 0.03716540908813477, 0.03690198516845703, 0.03689081573486328, 0.03721289443969727, 0.03714815902709961, 0.03689932632446289, 0.03701958465576172, 0.03801939010620117, 0.03705670547485351, 0.03687763214111328, 0.03667407989501953, 0.036657150268554685, 0.03653612899780274, 0.036503902435302736, 0.037146625518798826, 0.03685289764404297, 0.036757537841796875, 0.03673171234130859, 0.03663052749633789, 0.036603134155273435, 0.036573951721191406, 0.036474815368652345, 0.03676268768310547, 0.03665999984741211, 0.03657923126220703, 0.03648748779296875, 0.03685171127319336, 0.03701145553588867, 0.03707686233520508, 0.03672281646728515, 0.03671244812011719, 0.03721807861328125, 0.03691772842407227, 0.03734092712402344, 0.036706302642822264, 0.03690086364746094, 0.036646976470947265, 0.03639900970458984, 0.03667731094360351, 0.03653814315795898, 0.03632799911499023, 0.03667967987060547, 0.036825088500976565, 0.03671161651611328, 0.03664070510864258, 0.036434814453125, 0.03646841430664063, 0.0366673583984375, 0.03640969467163086, 0.03659366226196289, 0.03644134521484375, 0.036279041290283205, 0.036483104705810544, 0.03641955184936523, 0.03664691162109375, 0.036826751708984376, 0.03651372909545898, 0.03659574508666992, 0.03652035140991211, 0.0363765754699707, 0.03659542465209961, 0.036499744415283204, 0.03642732620239258, 0.036733089447021486, 0.03632156753540039, 0.0366445426940918, 0.0370445442199707, 0.03644742584228516, 0.0374136962890625, 0.03671244812011719, 0.03967190551757813, 0.03775897598266602, 0.03655238342285156, 0.03646905517578125, 0.036413089752197265, 0.03644432067871094, 0.036491455078125, 0.036392192840576175, 0.03619305419921875, 0.036222721099853514, 0.03665238571166992, 0.03629555130004883, 0.03652947235107422, 0.03663897705078125, 0.036270145416259766, 0.0364189453125, 0.036389217376708985, 0.036363937377929687, 0.036807392120361326, 0.036262176513671876, 0.036337055206298825, 0.037034271240234375, 0.03613875198364258, 0.03642764663696289, 0.036305599212646485, 0.03670377731323242, 0.036420063018798826, 0.03674224090576172, 0.036335742950439454, 0.03637942504882812, 0.03623302459716797, 0.03666694259643555, 0.03623385620117187, 0.036224639892578125, 0.03634009552001953, 0.03676553726196289, 0.036538078308105466, 0.03674566268920899, 0.037814014434814455, 0.036880638122558596, 0.036724735260009765, 0.036450302124023434, 0.036345855712890625, 0.036677375793457034, 0.03654886245727539, 0.03697868728637695, 0.03660796737670898, 0.03645222473144531, 0.03653753662109375, 0.03668025588989258, 0.036581790924072266, 0.0367534065246582, 0.03682918548583984, 0.03675286483764648, 0.03675519943237305, 0.03678239822387695, 0.03647126388549805, 0.03661004638671875, 0.03626393508911133, 0.03794454574584961, 0.03666614532470703, 0.03676160049438477, 0.036618240356445314, 0.03733913421630859, 0.03684777450561524, 0.03659561538696289, 0.03648284912109375, 0.03657046508789062, 0.03640566253662109, 0.03637500762939453, 0.03638681411743164, 0.036635936737060545, 0.036388641357421876, 0.036192256927490236, 0.03652851104736328, 0.03727334213256836, 0.03665151977539063, 0.03653414535522461, 0.03644230270385742, 0.036520191192626957, 0.03638886260986328, 0.03622457504272461, 0.036190654754638674, 0.03656294250488281, 0.03616505432128906, 0.03626009750366211, 0.036261825561523436, 0.036346240997314455, 0.03637567901611328, 0.03636108779907227, 0.03665510559082031, 0.03647430419921875, 0.036364864349365235, 0.036370433807373044, 0.03645430374145508, 0.03669820785522461, 0.03680460739135742, 0.036369632720947266, 0.03645868682861328, 0.03624406433105469, 0.03647103881835938, 0.03664870452880859, 0.03637247848510742, 0.036466270446777346, 0.03632304000854492, 0.0362064323425293, 0.03648912048339844, 0.036142017364501955, 0.036747295379638674, 0.03622079849243164, 0.036259456634521486, 0.036372318267822265, 0.03613785552978516, 0.03635993576049805, 0.036156959533691406, 0.03624998474121094, 0.03647027206420898, 0.03637212753295899, 0.03643283081054687, 0.03642367935180664, 0.0364251823425293, 0.03704207992553711, 0.03640790557861328, 0.0361835823059082, 0.03632726287841797, 0.03629471969604492, 0.037151840209960936, 0.03672067260742187, 0.03674771118164062, 0.03680883026123047, 0.036542144775390625, 0.03659542465209961, 0.03658844757080078, 0.036706302642822264, 0.037104705810546874, 0.03643622589111328, 0.03633427047729492, 0.036230369567871096, 0.0364304313659668, 0.03616787338256836, 0.036274177551269535, 0.03635929489135742, 0.036336128234863284, 0.0365715217590332, 0.036362049102783206, 0.03630713653564453, 0.03630489730834961, 0.036435966491699216, 0.03617792129516602, 0.0362762222290039, 0.03609366226196289, 0.0363458251953125, 0.03618220901489258, 0.03621696090698242, 0.03624070358276367, 0.03641356658935547, 0.03650822448730469, 0.036450302124023434, 0.036435966491699216, 0.03644416046142578, 0.036413185119628905, 0.037042430877685543, 0.036495361328125, 0.036519233703613284, 0.03638265609741211, 0.03641420745849609, 0.0365219841003418, 0.036723903656005856, 0.036571678161621095, 0.03727286529541016, 0.03645747375488281, 0.036650527954101564, 0.03640572738647461, 0.03631718444824219, 0.03621887969970703, 0.03632979202270508, 0.03616259384155274, 0.036230945587158205, 0.0362720947265625, 0.0362212142944336, 0.03634368133544922, 0.036254783630371094, 0.03627180862426758, 0.03662643051147461, 0.03634783935546875, 0.03646879959106445, 0.036267040252685546, 0.03666409683227539, 0.03624307250976563, 0.03728079986572266, 0.03648406219482422, 0.036511745452880856, 0.03649945449829101, 0.03632537460327148, 0.036392288208007814, 0.03645814514160156, 0.036357120513916014, 0.03661126327514649, 0.03669414520263672, 0.03643862533569336, 0.036487262725830076, 0.036636383056640624, 0.036659328460693356, 0.037550174713134765, 0.03933804702758789, 0.0369332160949707, 0.03656950378417969, 0.03681398391723633, 0.036387775421142576, 0.03661536026000976, 0.036347904205322266, 0.03626678466796875, 0.03658691024780274, 0.03647084808349609, 0.036469215393066405, 0.03638272094726563, 0.036279487609863284, 0.036428607940673825, 0.03649945449829101, 0.03639910507202149, 0.03651318359375, 0.03651440048217774, 0.03629795074462891, 0.036299518585205075, 0.04444384002685547, 0.03694790267944336, 0.03659670257568359, 0.03655084609985351, 0.03638143920898437, 0.03640028762817383, 0.03668201446533203, 0.036268062591552734, 0.036390495300292966, 0.03624604797363281, 0.03623772811889649, 0.03621683120727539, 0.03623680114746094, 0.036137470245361326, 0.036155391693115234, 0.03613622283935547, 0.03618684768676758, 0.03615129470825195, 0.03614310455322266, 0.03616153717041016, 0.03625529479980469, 0.03630124664306641, 0.03617587280273438, 0.03631020736694336, 0.03618899154663086, 0.03609190368652344, 0.03630867385864258, 0.036364608764648435, 0.03726892852783203, 0.036571102142333986, 0.036534881591796874, 0.036281665802001956, 0.036271999359130856, 0.03649209594726562, 0.03648128128051758, 0.03625462341308594, 0.03619430541992188, 0.03620937728881836, 0.036321407318115236, 0.036395137786865234, 0.036405120849609375, 0.036253505706787106, 0.03634195327758789, 0.038384639739990234, 0.03662540817260742, 0.036408672332763674, 0.037776126861572265, 0.03665091323852539, 0.036757278442382815, 0.0364967041015625, 0.03709763336181641, 0.03827145767211914, 0.03673321533203125, 0.036939777374267575, 0.03629260635375976, 0.036361278533935545, 0.03633452987670899, 0.036317249298095704, 0.03641132736206055, 0.03644950485229492, 0.036307743072509766, 0.03627980804443359, 0.03703376007080078, 0.036289249420166016, 0.03618163299560547, 0.03689897537231445, 0.036503776550292966, 0.03649055862426758, 0.03643632125854492, 0.03640764617919922, 0.036264064788818356, 0.036544384002685545, 0.03617996978759765, 0.03666716766357422, 0.03709075164794922, 0.03734403228759765, 0.036634624481201174, 0.03635311889648438, 0.036350273132324216, 0.036534881591796874, 0.03644416046142578, 0.03686809539794922, 0.036478977203369144, 0.036279617309570314, 0.036270145416259766, 0.036241214752197264, 0.03620729446411133, 0.036329601287841795, 0.036396190643310546, 0.036112449645996095, 0.03626031875610351, 0.03724499130249023, 0.03651155090332031, 0.03624969482421875, 0.03635587310791016, 0.03642800140380859, 0.0363721923828125, 0.036432159423828124, 0.03632880020141602, 0.03639344024658203, 0.03645993423461914, 0.03623331069946289, 0.03619091033935547, 0.03630806350708008, 0.036262462615966794, 0.03641289520263672, 0.036289119720458986, 0.03627670288085937, 0.03640095901489258, 0.03834435272216797, 0.03664316940307617, 0.036329471588134765, 0.03673702239990234, 0.03672063827514648, 0.036705760955810546, 0.036373023986816404, 0.03628851318359375, 0.036341087341308594, 0.036399776458740235, 0.03618304061889648, 0.03621785736083984, 0.036378623962402344, 0.036716449737548826, 0.03645391845703125, 0.03631689453125, 0.03637299346923828, 0.03639046478271484, 0.03612089538574219, 0.036100574493408207, 0.03623526382446289, 0.036224510192871096, 0.0362889289855957, 0.036274272918701174, 0.03624739074707031, 0.036219039916992185, 0.036413440704345705, 0.03654860687255859, 0.03634726333618164, 0.036262527465820316, 0.036569087982177735, 0.0364031982421875, 0.03657318496704102, 0.03635599899291992, 0.036447776794433596, 0.03623788833618164, 0.03623030471801758, 0.036383583068847654, 0.03634518432617188, 0.03623798370361328, 0.03637247848510742, 0.03624959945678711, 0.03634902572631836, 0.03624028778076172, 0.03638272094726563, 0.03759894561767578, 0.03658422470092773, 0.03654975891113281, 0.03649219131469727, 0.03628012847900391, 0.03620297622680664, 0.03642339324951172, 0.0361673583984375, 0.0361802864074707, 0.036160736083984374, 0.03626710510253906, 0.03621795272827148, 0.03625225448608398, 0.036446208953857424, 0.036397056579589845, 0.03621852874755859, 0.03664726257324219, 0.03640729522705078, 0.03631513595581055, 0.03621683120727539, 0.03630403137207031, 0.03625398254394531, 0.036520511627197265, 0.036523136138916015, 0.0364450569152832, 0.03636627197265625, 0.036294113159179686, 0.03661248016357422, 0.03648329544067383, 0.03640054321289062, 0.03641609573364258, 0.036283615112304685, 0.036252159118652344, 0.03635795211791992, 0.0362828483581543, 0.03625721740722656, 0.036262462615966794, 0.0364400634765625, 0.0363392333984375, 0.03629923248291016, 0.0363372802734375, 0.03624179077148437, 0.036278270721435545, 0.03644646453857422, 0.03622614288330078, 0.03636275100708008, 0.03634118270874023, 0.03627648162841797, 0.0361879997253418, 0.03637094497680664, 0.036317470550537106, 0.03664265441894531, 0.03641139221191406, 0.03638272094726563, 0.036218814849853516, 0.036463905334472656, 0.03653299331665039, 0.036517921447753905, 0.03645644760131836, 0.03637452697753906, 0.036445823669433594, 0.03643840026855469, 0.03623075103759766, 0.03767359924316406, 0.03704419326782227, 0.03676764678955078, 0.03663679885864258, 0.03668787384033203, 0.03670761489868164, 0.03662329483032226, 0.03667740631103516, 0.03643353652954102, 0.036485504150390625, 0.03628851318359375, 0.036757057189941406, 0.036439937591552736, 0.03635276794433594, 0.036398910522460935, 0.03653152084350586, 0.03644076919555664, 0.036800479888916014, 0.03651689529418945, 0.03655081558227539, 0.036515998840332034, 0.03647663879394531, 0.03639599990844727, 0.03666447830200195, 0.03643068695068359, 0.03676160049438477, 0.03689596939086914, 0.036907264709472656, 0.0385766716003418, 0.03682486343383789, 0.03661209487915039, 0.03635235214233398, 0.0363493766784668, 0.03648966217041016, 0.03727939224243164, 0.03635030364990234, 0.036408321380615234, 0.036381248474121095, 0.036383167266845706, 0.03641139221191406, 0.03669305419921875, 0.03634908676147461, 0.03629033660888672, 0.036241409301757815, 0.036354049682617184, 0.03720601654052735, 0.03641513442993164, 0.03635388946533203, 0.036433727264404296, 0.03629536056518555, 0.04035785675048828, 0.03676089477539062, 0.036584159851074216, 0.03655881500244141, 0.03637251281738281, 0.03666723251342773, 0.036526241302490235, 0.03847980880737305, 0.03672633743286133, 0.0365032958984375, 0.03665536117553711, 0.03703244781494141, 0.03653539276123047]",tokens/s,27.32538624600948,, bfloat16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gptj,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,841.879552,12640.518144,0.0,12245.270528,12234.440192,s,1,7.38060107421875,7.38060107421875,0.0,7.38060107421875,7.38060107421875,7.38060107421875,7.38060107421875,[7.38060107421875],,kWh,1.417804526249521e-05,1.5536159205005573e-06,7.2327835639977855e-06,2.2964444746993552e-05,,MB,1094.017024,12923.633664,0.0,12517.900288,12440.744448,s,10,11.752084594726563,1.1752084594726564,0.005107282186621974,1.1762398071289062,1.1798683715820313,1.1802225158691406,1.1805058312988281,"[1.1633475341796875, 1.1689735107421875, 1.17531640625, 1.173837158203125, 1.1766422119140625, 1.178609375, 1.1791546630859375, 1.1797896728515624, 1.17583740234375, 1.18057666015625]",tokens/s,217.83369404511708,kWh,3.425772850499953e-05,3.778108879748517e-06,2.2671157025799803e-05,6.070699441054785e-05,tokens/kWh,4216977.013698441,MB,1109.85216,12986.548224,0.0,12580.814848,12543.681024,s,10,37.15011059570313,3.7150110595703127,0.0038259498988241136,3.7155910644531254,3.717879052734375,3.72025166015625,3.7221497460937503,"[3.707107421875, 3.715757568359375, 3.7126572265625, 3.712315185546875, 3.715424560546875, 3.71710791015625, 3.71376318359375, 3.717351806640625, 3.71600146484375, 3.722624267578125]",tokens/s,16.958226769663167,kWh,0.00010866937428958418,1.1985650922047147e-05,7.236253011220009e-05,0.0001930175553238314,tokens/kWh,326395.18148648704,,s,630,37.14671617889402,0.05896304155380006,0.0003156827940853869,0.05896268844604492,0.05928697166442871,0.05940313873291016,0.060383857650756836,"[0.05999932861328125, 0.058727359771728514, 0.05837321472167969, 0.05853577423095703, 0.05843865585327149, 0.05848601531982422, 0.05831142425537109, 0.0584376335144043, 0.05838838577270508, 0.058574337005615235, 0.058396385192871096, 0.05852979278564453, 0.05912623977661133, 0.058511775970458986, 0.05869977569580078, 0.05861500930786133, 0.05880207824707031, 0.05899766540527344, 0.05897830581665039, 0.05879600143432617, 0.058531841278076174, 0.05841632080078125, 0.05851532745361328, 0.058525760650634764, 0.05855731201171875, 0.0586608657836914, 0.05935103988647461, 0.05890252685546875, 0.05878121566772461, 0.05884934234619141, 0.05882102584838867, 0.05874835205078125, 0.05885599899291992, 0.058933246612548826, 0.059031585693359374, 0.05919334411621094, 0.05912547302246094, 0.05888230514526367, 0.05868364715576172, 0.05875686264038086, 0.05893257522583008, 0.058915489196777346, 0.05899625778198242, 0.05898211288452149, 0.05889510345458984, 0.058889919281005856, 0.058732864379882815, 0.058738689422607425, 0.05881241607666016, 0.05911129760742188, 0.05926105499267578, 0.059041534423828125, 0.0590195198059082, 0.05901091384887695, 0.059146400451660155, 0.058916862487792966, 0.05890380859375, 0.05901324844360351, 0.05903424072265625, 0.05938995361328125, 0.05917612838745117, 0.05891372680664062, 0.05913177490234375, 0.06052249526977539, 0.05883084869384766, 0.05861171340942383, 0.05854412841796875, 0.058423297882080075, 0.05864857482910156, 0.058515296936035154, 0.058488094329833984, 0.05856752014160156, 0.05899814224243164, 0.0586267204284668, 0.05878579330444336, 0.05865382385253906, 0.05896268844604492, 0.058953697204589844, 0.058808353424072264, 0.058925182342529296, 0.0588043212890625, 0.05885737609863281, 0.05882195281982422, 0.05873487854003906, 0.0586346549987793, 0.058673152923583986, 0.05860966491699219, 0.058710014343261716, 0.058916160583496094, 0.058813121795654295, 0.05889596939086914, 0.05879235076904297, 0.05901091384887695, 0.059078815460205075, 0.05912128067016602, 0.05942499160766602, 0.059232574462890625, 0.05945737457275391, 0.05916649627685547, 0.05919356918334961, 0.05924863815307617, 0.059025409698486325, 0.05893939208984375, 0.058703872680664064, 0.058866943359375, 0.05896268844604492, 0.058840320587158206, 0.05895423889160156, 0.05923455810546875, 0.05900294494628906, 0.059319393157958984, 0.059335296630859374, 0.05948819351196289, 0.05927350234985351, 0.05917055892944336, 0.059074817657470705, 0.059172863006591796, 0.05908070373535156, 0.05954150390625, 0.059089984893798825, 0.05897312164306641, 0.0589571533203125, 0.059084449768066406, 0.05915075302124023, 0.0589543342590332, 0.05915852737426758, 0.060614654541015625, 0.05891900634765625, 0.05849827194213867, 0.058653278350830076, 0.05840300750732422, 0.058479713439941405, 0.058436511993408206, 0.058570751190185545, 0.05862771224975586, 0.05852812957763672, 0.05885257720947266, 0.05851567840576172, 0.058576702117919925, 0.058906688690185546, 0.05884998321533203, 0.05869583892822266, 0.05945942306518555, 0.059150337219238285, 0.058910591125488285, 0.05881622314453125, 0.058589599609375, 0.05854719924926758, 0.058618881225585937, 0.05868342590332031, 0.058755039215087894, 0.05885974502563476, 0.05876508712768555, 0.058759166717529294, 0.05881961441040039, 0.05871020889282227, 0.05907904052734375, 0.05906790542602539, 0.059105663299560546, 0.05914064025878906, 0.05915238571166992, 0.05899776077270508, 0.05904793548583984, 0.058893310546875, 0.058950847625732425, 0.058988574981689454, 0.058854175567626954, 0.058963966369628903, 0.05892095947265625, 0.05890614318847656, 0.05889686584472656, 0.05892902374267578, 0.059039169311523435, 0.05892323303222656, 0.05900511932373047, 0.05905155181884766, 0.05939878463745117, 0.05923443222045898, 0.05934044647216797, 0.05924508666992188, 0.05915590286254883, 0.05906265640258789, 0.05895491027832031, 0.059093791961669924, 0.05922617721557617, 0.05904723358154297, 0.05897507095336914, 0.05900886535644531, 0.05911072158813477, 0.06039766311645508, 0.05884249496459961, 0.05860611343383789, 0.058449920654296876, 0.058342910766601565, 0.05838681411743164, 0.05829235076904297, 0.05855136108398438, 0.05854832077026367, 0.05859209442138672, 0.05850243377685547, 0.058581729888916016, 0.058492416381835936, 0.05890646362304688, 0.05859804916381836, 0.05860761642456055, 0.058947582244873044, 0.059099136352539064, 0.05869772720336914, 0.05866495895385742, 0.0585904312133789, 0.05875996780395508, 0.05871615982055664, 0.058654720306396485, 0.058834720611572265, 0.058895614624023436, 0.05874784088134766, 0.05896527862548828, 0.05874560165405274, 0.05895161437988281, 0.05891897583007812, 0.05894553756713867, 0.05907046508789063, 0.05906556701660156, 0.059284351348876954, 0.05925183868408203, 0.05929040145874023, 0.05918467330932617, 0.058964000701904294, 0.05883964920043945, 0.058724193572998046, 0.05890662384033203, 0.05888204956054687, 0.05890252685546875, 0.05897216033935547, 0.05907046508789063, 0.05916617584228516, 0.05912793731689453, 0.05901558303833008, 0.05918467330932617, 0.05950716781616211, 0.05940825653076172, 0.05910134506225586, 0.059031105041503905, 0.05905039978027344, 0.05907455825805664, 0.05907660675048828, 0.0591278076171875, 0.059084800720214846, 0.05939302444458008, 0.059020286560058595, 0.05916672134399414, 0.05920134353637695, 0.0606530876159668, 0.058823200225830076, 0.058709087371826174, 0.058522464752197266, 0.05850896072387695, 0.05868988800048828, 0.05851264190673828, 0.05855104064941406, 0.05850124740600586, 0.05857238388061523, 0.05884700775146484, 0.05874431991577148, 0.05870265579223633, 0.05878406524658203, 0.05881948852539062, 0.05868233489990234, 0.05884108734130859, 0.05897750473022461, 0.05888694381713867, 0.05900697708129883, 0.05915238571166992, 0.05862400054931641, 0.05874470520019531, 0.058721630096435544, 0.0586391372680664, 0.05880569458007812, 0.05894406509399414, 0.059041793823242185, 0.058931102752685545, 0.05909097671508789, 0.059004222869873044, 0.05897702407836914, 0.05887171173095703, 0.059041278839111325, 0.05937622451782226, 0.05941862487792969, 0.05895539093017578, 0.05897452926635742, 0.05880223846435547, 0.0590643196105957, 0.05903974533081055, 0.058964126586914065, 0.058910560607910153, 0.058969825744628904, 0.05904412841796875, 0.059145790100097656, 0.05919996643066406, 0.05919247817993164, 0.05913888168334961, 0.05918124771118164, 0.05942252731323242, 0.05936304092407227, 0.05921820831298828, 0.05916204833984375, 0.05918572616577149, 0.05895270538330078, 0.05884415817260742, 0.05904592132568359, 0.059027423858642576, 0.05907455825805664, 0.059084800720214846, 0.059084800720214846, 0.05931792068481445, 0.06030950546264648, 0.05882470321655273, 0.05849702453613281, 0.05855417633056641, 0.058599006652832034, 0.05862051010131836, 0.05859328079223633, 0.05885504150390625, 0.05869417572021484, 0.05868288040161133, 0.05870627212524414, 0.058552223205566405, 0.05859542465209961, 0.058867263793945315, 0.05890220642089844, 0.058727169036865236, 0.059305633544921875, 0.05950860977172852, 0.05886614227294922, 0.05884438323974609, 0.058815265655517576, 0.0591071662902832, 0.058643936157226566, 0.058663616180419924, 0.05893280029296875, 0.05895212936401367, 0.05898438262939453, 0.05884460830688477, 0.058887809753417966, 0.05897727966308594, 0.058961376190185544, 0.058837535858154294, 0.05906985473632813, 0.059127521514892575, 0.059114368438720706, 0.05911286544799805, 0.05910179138183594, 0.05921791839599609, 0.05891401672363281, 0.059018016815185544, 0.05902054214477539, 0.05905075073242187, 0.059041793823242185, 0.058977886199951174, 0.05892275238037109, 0.05909324645996094, 0.05914870452880859, 0.059022815704345706, 0.058951423645019534, 0.05896271896362305, 0.05929081726074219, 0.05931500625610352, 0.05932457733154297, 0.05928537750244141, 0.059444862365722655, 0.0590912971496582, 0.059035873413085936, 0.05917059326171875, 0.059150337219238285, 0.059186656951904296, 0.059087390899658206, 0.05949033737182617, 0.059286590576171874, 0.0603873291015625, 0.05882032012939453, 0.05850809478759766, 0.058455615997314456, 0.05847833633422852, 0.05841561508178711, 0.05851359939575195, 0.05853152084350586, 0.05855059051513672, 0.05873481750488281, 0.05867507171630859, 0.05864233779907226, 0.05863401412963867, 0.058646751403808595, 0.05874892807006836, 0.05875299072265625, 0.05881043243408203, 0.05888988876342773, 0.058813953399658205, 0.058772480010986325, 0.05858915328979492, 0.05866684722900391, 0.05880217742919922, 0.05890572738647461, 0.05871731185913086, 0.058746238708496094, 0.058880287170410155, 0.05901116943359375, 0.058851329803466794, 0.058963966369628903, 0.05899468612670898, 0.05923395156860352, 0.05903721618652344, 0.058966846466064454, 0.05894553756713867, 0.05912985610961914, 0.05921692657470703, 0.05906940841674805, 0.05890457534790039, 0.05937561416625976, 0.058910720825195315, 0.05897340774536133, 0.058937793731689454, 0.0590250244140625, 0.05904662322998047, 0.05904572677612305, 0.058931358337402345, 0.05895100784301758, 0.05917379379272461, 0.05944895935058594, 0.05917241668701172, 0.05885923385620117, 0.05895999908447266, 0.059173473358154295, 0.05949248123168945, 0.05969305419921875, 0.05897571182250977, 0.05902582550048828, 0.05908230209350586, 0.059011646270751957, 0.05916057586669922, 0.05917302322387695, 0.05940806579589844, 0.0604653434753418, 0.05899248123168945, 0.0585230712890625, 0.058399105072021486, 0.05863004684448242, 0.058402305603027345, 0.058577312469482425, 0.05851299285888672, 0.058552959442138675, 0.058638526916503904, 0.05881241607666016, 0.05895782470703125, 0.05872956848144531, 0.058839969635009766, 0.05877110290527344, 0.05877590560913086, 0.05916057586669922, 0.05910502243041992, 0.05878195190429687, 0.058670143127441406, 0.05908486557006836, 0.05890089416503906, 0.058861793518066405, 0.05884259033203125, 0.058753631591796876, 0.05890848159790039, 0.058849662780761716, 0.05899017715454102, 0.0589881591796875, 0.05894595336914062, 0.05898073577880859, 0.0591234245300293, 0.059138336181640626, 0.05913977432250977, 0.059144512176513675, 0.05912566375732422, 0.05905215835571289, 0.059076576232910155, 0.05907660675048828, 0.059006175994873046, 0.05908153533935547, 0.05903926467895508, 0.058971969604492185, 0.05924025726318359, 0.05894636917114258, 0.059025409698486325, 0.05919049453735352, 0.05906438446044922, 0.05905481719970703, 0.05940224075317383, 0.05937062454223633, 0.059267967224121094, 0.059230335235595705, 0.059275009155273437, 0.059410430908203124, 0.059312255859375, 0.05907436752319336, 0.05913417434692383, 0.05901689529418945, 0.05919772720336914, 0.05901276779174805, 0.059216224670410156, 0.05917625427246094, 0.06037535858154297, 0.0588590087890625, 0.05867366409301758, 0.0584169921875, 0.05848489761352539, 0.05843379211425781, 0.05856972885131836, 0.058538753509521486, 0.05853567886352539, 0.058566177368164066, 0.05868207931518555, 0.058789249420166015, 0.05885948944091797, 0.05870249557495117, 0.05881856155395508, 0.05890457534790039, 0.059229248046875, 0.05913491058349609, 0.05901039886474609, 0.058872032165527347, 0.05869612884521484, 0.058842910766601565, 0.05880416107177734, 0.05881679916381836, 0.05888332748413086, 0.05888691329956055, 0.058915969848632815, 0.059035968780517575, 0.05883142471313477, 0.05897206497192383, 0.05910537719726563, 0.05902748870849609, 0.05908067321777344, 0.0590909423828125, 0.05910528182983398, 0.05920153427124023, 0.05922633743286133, 0.05908662414550781, 0.05886777496337891, 0.05884921646118164, 0.05886361694335938, 0.058893600463867185, 0.05892499160766602, 0.05933747100830078, 0.05896809768676758, 0.059066497802734375, 0.05911337661743164, 0.05917283248901367, 0.05921177673339844, 0.059391551971435544, 0.05934038543701172, 0.059275360107421876, 0.05929616165161133, 0.05922649765014648, 0.059231296539306644, 0.059274143218994144, 0.058981472015380856, 0.05895414352416992, 0.05913782501220703, 0.059120384216308594, 0.05887382507324219, 0.058992641448974606, 0.05922812652587891, 0.0604139518737793, 0.05894710540771484, 0.05870230484008789, 0.05864572906494141, 0.058583839416503906, 0.05867833709716797, 0.05860857772827149, 0.058738689422607425, 0.058761215209960936, 0.05891481781005859, 0.05876041412353516, 0.05862684631347656, 0.05875487899780273, 0.05874710464477539, 0.05874070358276367, 0.05892252731323242, 0.05909142303466797, 0.05925273513793945, 0.059383167266845706, 0.05929638290405274, 0.059057697296142575, 0.05873916625976563, 0.05876435089111328, 0.058886592864990234, 0.05922870254516602, 0.05901836776733398, 0.05902016067504883, 0.058919967651367186, 0.05904838562011719, 0.0590300178527832, 0.05894569778442383, 0.05902320098876953, 0.05931008148193359, 0.05937753677368164, 0.05957235336303711, 0.05927084732055664, 0.058992641448974606, 0.05901708984375, 0.059003326416015626, 0.059030975341796875, 0.05907638549804688, 0.0591798095703125, 0.0590643196105957, 0.059039295196533205, 0.05907500839233398, 0.05910732650756836, 0.05925628662109375, 0.05908124923706055, 0.05931622314453125, 0.05945257568359375, 0.05925084686279297, 0.059219905853271484, 0.05917567825317383, 0.05940150451660156, 0.05947055816650391, 0.059061504364013674, 0.05922278213500977, 0.05940387344360352, 0.05949276733398438, 0.05931008148193359, 0.059138046264648435, 0.05922332763671875, 0.05939683151245117]",tokens/s,16.95977638954671,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 134.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 52.12 MiB is free. Process 96558 has 14.69 GiB memory in use. Of the allocated memory 14.47 GiB is allocated by PyTorch, and 108.93 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 614, in __init__ self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 274, in __init__ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 30.12 MiB is free. Process 84509 has 14.71 GiB memory in use. Of the allocated memory 14.37 GiB is allocated by PyTorch, and 229.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,737.456128,804.192256,0.0,408.94464,387.119104,s,1,7.182080078125,7.182080078125,0.0,7.182080078125,7.182080078125,7.182080078125,7.182080078125,[7.182080078125],,kWh,6.235722179174748e-06,6.807830903083486e-07,2.0150016119997727e-06,8.931506881482869e-06,,MB,1039.253504,827.260928,0.0,421.527552,354.083328,s,17,0.44126082992553717,0.025956519407384537,0.0007704486004763689,0.025722015380859376,0.026036025619506836,0.02668463325500488,0.028530885696411133,"[0.028992448806762695, 0.025850559234619142, 0.02569664001464844, 0.02565315246582031, 0.025737695693969727, 0.025810623168945314, 0.025988256454467774, 0.02610767936706543, 0.025722015380859376, 0.02579302406311035, 0.02569443130493164, 0.025657024383544922, 0.0255994873046875, 0.02593222427368164, 0.02568422317504883, 0.025718751907348632, 0.02562259292602539]",tokens/s,9862.647452152962,kWh,8.819642737411628e-07,9.724077051836299e-08,5.812534022296101e-07,1.5604584464891359e-06,tokens/kWh,164054352.473129,MB,1065.844736,841.940992,0.0,436.207616,354.085888,s,17,10.024740356445314,0.5896906092026655,0.0030526179067493597,0.5890370483398437,0.593540087890625,0.5946925415039063,0.5948475415039063,"[0.5899246215820313, 0.5886675415039062, 0.5948862915039063, 0.5928040771484375, 0.588941650390625, 0.58674462890625, 0.5922803344726563, 0.5868428955078125, 0.5838924560546875, 0.5850997924804687, 0.5876492919921875, 0.5888758544921875, 0.5890370483398437, 0.59021142578125, 0.5946441040039062, 0.592195556640625, 0.5920427856445313]",tokens/s,106.83568470792468,kWh,1.686057835910163e-05,1.8594751716190853e-06,7.630632252240906e-06,2.6350685782961627e-05,tokens/kWh,2390829.617069619,,s,1071,10.016516191482534,0.009352489441160173,0.00018683751353915182,0.00931488037109375,0.00946723175048828,0.00958407974243164,0.010190162849426268,"[0.009582559585571289, 0.009558079719543457, 0.009326144218444824, 0.00931488037109375, 0.009281375885009765, 0.00934665584564209, 0.009284159660339356, 0.009285344123840331, 0.00930777645111084, 0.009285280227661133, 0.009210240364074708, 0.009363807678222657, 0.009299391746520997, 0.009382816314697265, 0.009649696350097657, 0.00953593635559082, 0.009332480430603028, 0.009400511741638183, 0.009327520370483398, 0.009412575721740722, 0.009391103744506836, 0.009379615783691406, 0.009423423767089843, 0.009365280151367188, 0.009382111549377441, 0.009430463790893556, 0.009339103698730469, 0.009338175773620606, 0.009308863639831542, 0.009281760215759277, 0.009324607849121093, 0.009309247970581054, 0.009366368293762207, 0.009301823616027832, 0.009455615997314454, 0.009381695747375489, 0.009307904243469238, 0.009355711936950683, 0.009283424377441406, 0.009275424003601073, 0.009264800071716308, 0.009260607719421386, 0.00930457592010498, 0.00935974407196045, 0.009297951698303223, 0.00934227180480957, 0.009354240417480468, 0.009420479774475098, 0.009416383743286133, 0.009494912147521973, 0.009358752250671386, 0.009275039672851563, 0.00933568000793457, 0.009369152069091797, 0.009308544158935547, 0.009293888092041016, 0.009302016258239745, 0.009267200469970703, 0.009359071731567383, 0.009388319969177246, 0.009350751876831055, 0.009293503761291504, 0.009546784400939942, 0.009229887962341308, 0.009464256286621094, 0.009391807556152343, 0.009322815895080567, 0.0092871675491333, 0.009281951904296875, 0.009401760101318359, 0.009308863639831542, 0.009303263664245606, 0.009335007667541504, 0.009238176345825196, 0.00947702407836914, 0.009273216247558594, 0.009261183738708496, 0.009357312202453612, 0.00928508758544922, 0.009359487533569336, 0.00931388759613037, 0.009306943893432618, 0.009261055946350098, 0.009347423553466797, 0.009307680130004882, 0.009312479972839356, 0.009352640151977539, 0.009262784004211426, 0.009347871780395508, 0.009293824195861817, 0.0093023681640625, 0.009313952445983887, 0.009267200469970703, 0.009287712097167968, 0.009363007545471192, 0.00931436824798584, 0.009352864265441895, 0.009267040252685547, 0.009341152191162109, 0.009306752204895019, 0.009350527763366699, 0.009271871566772462, 0.009363743782043457, 0.009260543823242188, 0.00932271957397461, 0.009631903648376464, 0.009445088386535645, 0.009341119766235351, 0.00930406379699707, 0.009351167678833008, 0.009528575897216797, 0.009360128402709961, 0.009375743865966797, 0.009318400382995605, 0.009344799995422363, 0.00946723175048828, 0.009370431900024415, 0.009443391799926757, 0.00932044792175293, 0.009281760215759277, 0.009328224182128907, 0.009242815971374512, 0.009369279861450195, 0.0093221435546875, 0.009335455894470214, 0.00932863998413086, 0.009151904106140137, 0.009402976036071778, 0.009377887725830078, 0.009296031951904296, 0.00934217643737793, 0.009245408058166505, 0.009254719734191895, 0.009275744438171387, 0.009334591865539551, 0.00929315185546875, 0.009347583770751953, 0.00936355209350586, 0.009344927787780762, 0.009375712394714356, 0.009305248260498047, 0.009325440406799317, 0.009369407653808594, 0.009300160408020019, 0.009312512397766114, 0.009222240447998046, 0.00925046443939209, 0.009249919891357422, 0.00932953643798828, 0.00932044792175293, 0.00925068759918213, 0.009352767944335937, 0.009396224021911622, 0.009417183876037597, 0.00983568000793457, 0.01030185604095459, 0.012427807807922363, 0.009649888038635254, 0.009404704093933106, 0.009422975540161133, 0.009332320213317872, 0.00932688045501709, 0.009476351737976074, 0.009602687835693359, 0.009342623710632323, 0.009554400444030761, 0.00932249641418457, 0.009361568450927735, 0.00965129566192627, 0.009378560066223144, 0.009418432235717773, 0.009400639533996582, 0.00941055965423584, 0.009401984214782715, 0.009322272300720216, 0.009316960334777831, 0.009431039810180664, 0.00940067195892334, 0.009299615859985351, 0.009313504219055175, 0.009947839736938477, 0.009334912300109863, 0.009376959800720215, 0.009346879959106446, 0.009292767524719239, 0.009319583892822265, 0.009216095924377441, 0.009306879997253418, 0.009346943855285644, 0.009099776268005372, 0.009375871658325196, 0.009298048019409179, 0.009340928077697755, 0.009361536026000976, 0.00932646369934082, 0.009373696327209472, 0.009654272079467773, 0.009332544326782226, 0.009395392417907714, 0.009556991577148437, 0.00935910415649414, 0.009406720161437988, 0.00928115177154541, 0.009389792442321777, 0.009453951835632324, 0.009525728225708009, 0.009358271598815918, 0.010694656372070312, 0.00983232021331787, 0.0095098237991333, 0.009506464004516602, 0.009488800048828124, 0.009463808059692384, 0.00937334442138672, 0.009331295967102051, 0.009312031745910644, 0.009614879608154298, 0.009484736442565918, 0.009418208122253418, 0.009451168060302734, 0.009443615913391113, 0.009316224098205567, 0.00940009593963623, 0.009788543701171874, 0.009307519912719726, 0.009364928245544434, 0.009255935668945312, 0.009406368255615234, 0.009400416374206542, 0.00928767967224121, 0.009222368240356445, 0.009295519828796386, 0.009244799613952637, 0.009234623908996582, 0.00927945613861084, 0.00929980754852295, 0.009388031959533692, 0.0093306884765625, 0.009385984420776367, 0.00949465560913086, 0.00952678394317627, 0.009320128440856933, 0.009306976318359375, 0.00930799961090088, 0.009289728164672852, 0.009250495910644531, 0.0092675199508667, 0.00928694438934326, 0.009321184158325195, 0.009313535690307618, 0.009277888298034668, 0.009314784049987793, 0.00906982421875, 0.009359968185424805, 0.009304415702819825, 0.009256768226623534, 0.009293824195861817, 0.009252927780151366, 0.009289088249206543, 0.009329216003417969, 0.009387071609497071, 0.009224960327148438, 0.00925715160369873, 0.00931430435180664, 0.009562272071838379, 0.009327615737915039, 0.009347935676574708, 0.009308416366577149, 0.009322015762329102, 0.009470175743103028, 0.00957875156402588, 0.009448800086975098, 0.009357536315917969, 0.009420096397399902, 0.009341823577880859, 0.009324543952941895, 0.009308159828186035, 0.00937168025970459, 0.00924668788909912, 0.009451519966125489, 0.009265248298645019, 0.009242527961730957, 0.009265151977539063, 0.00926959991455078, 0.0092642240524292, 0.009244319915771484, 0.009247648239135741, 0.009342687606811523, 0.009256383895874024, 0.009243552207946776, 0.009234399795532226, 0.009244480133056641, 0.009204928398132323, 0.009315648078918458, 0.009270943641662598, 0.009279071807861328, 0.009279328346252442, 0.009320480346679687, 0.00926159954071045, 0.00941055965423584, 0.010364831924438477, 0.010149024009704589, 0.009276448249816894, 0.009248671531677246, 0.009282848358154298, 0.00920854377746582, 0.009211551666259766, 0.009228639602661133, 0.009354911804199218, 0.009247072219848633, 0.009311296463012696, 0.009252127647399902, 0.009608896255493164, 0.009420160293579102, 0.009310815811157227, 0.00909334373474121, 0.009426048278808594, 0.009326815605163574, 0.009212672233581543, 0.00938588809967041, 0.00931948757171631, 0.010384639739990235, 0.00937337589263916, 0.009319968223571777, 0.00918883228302002, 0.009166879653930664, 0.009378175735473632, 0.009242688179016113, 0.009269791603088379, 0.00920969581604004, 0.009250752449035645, 0.00924614429473877, 0.00924454402923584, 0.009275615692138672, 0.009290399551391602, 0.009238080024719238, 0.009220576286315918, 0.009341119766235351, 0.009290911674499512, 0.009302687644958497, 0.009265119552612305, 0.009315839767456055, 0.009231167793273926, 0.009231167793273926, 0.009227168083190919, 0.009326592445373535, 0.009236479759216308, 0.009264351844787598, 0.009355839729309081, 0.009318623542785644, 0.009252863883972168, 0.00919961643218994, 0.009207807540893554, 0.00919155216217041, 0.00931606388092041, 0.009405599594116212, 0.009313280105590821, 0.009308159828186035, 0.009265151977539063, 0.009363455772399902, 0.009298239707946777, 0.009211071968078613, 0.009244959831237793, 0.009258399963378907, 0.009238431930541992, 0.009318400382995605, 0.0092741117477417, 0.009277600288391114, 0.009654272079467773, 0.009286975860595703, 0.009239232063293457, 0.009236607551574707, 0.009185152053833008, 0.00931663990020752, 0.009518719673156739, 0.009375295639038085, 0.009372063636779785, 0.009367072105407714, 0.009246848106384277, 0.00948857593536377, 0.009408255577087403, 0.009277407646179198, 0.009625568389892578, 0.009420607566833496, 0.009289919853210449, 0.009356831550598145, 0.009369888305664063, 0.009299424171447754, 0.009392864227294922, 0.009289759635925293, 0.009330656051635742, 0.009374752044677734, 0.009351936340332032, 0.009333215713500976, 0.009350336074829102, 0.009298496246337891, 0.009273344039916993, 0.009283519744873047, 0.009346688270568847, 0.00929366397857666, 0.009285247802734375, 0.009324895858764648, 0.00926534366607666, 0.009318816184997558, 0.009306143760681153, 0.00933852767944336, 0.009578847885131836, 0.009422080039978027, 0.009304896354675293, 0.009281824111938477, 0.009369248390197754, 0.009293824195861817, 0.009319711685180664, 0.009269984245300292, 0.009285632133483887, 0.009611328125, 0.009494463920593261, 0.0093306884765625, 0.009375583648681641, 0.009339039802551269, 0.00928767967224121, 0.009339103698730469, 0.009454367637634277, 0.00925817584991455, 0.00930726432800293, 0.009274016380310059, 0.009363136291503905, 0.009355615615844727, 0.009283103942871095, 0.009296383857727051, 0.009316320419311524, 0.009545568466186524, 0.009543935775756835, 0.010135104179382324, 0.009476448059082031, 0.010182751655578613, 0.009299872398376464, 0.00939136028289795, 0.009285408020019531, 0.009450464248657227, 0.010119423866271973, 0.009173184394836427, 0.009430848121643066, 0.009290047645568848, 0.00930735969543457, 0.00931062412261963, 0.0093635196685791, 0.009310208320617675, 0.009398271560668945, 0.009271295547485351, 0.00937382411956787, 0.009297792434692382, 0.009215840339660645, 0.009279871940612793, 0.009381664276123048, 0.009347071647644043, 0.009403903961181641, 0.009288127899169923, 0.00922214412689209, 0.00928767967224121, 0.009275168418884277, 0.009224512100219727, 0.009352704048156739, 0.009284064292907715, 0.009377792358398437, 0.00932863998413086, 0.009361408233642577, 0.009314240455627442, 0.009421088218688966, 0.009314080238342286, 0.009451519966125489, 0.009287872314453126, 0.009256768226623534, 0.009238752365112304, 0.009267104148864747, 0.00965824031829834, 0.009270400047302245, 0.009736703872680665, 0.009259391784667968, 0.009185279846191406, 0.009274656295776368, 0.009287520408630371, 0.009208703994750976, 0.009278464317321777, 0.009452383995056152, 0.009211711883544922, 0.00941500759124756, 0.009242624282836913, 0.009279423713684083, 0.009306464195251465, 0.009230048179626464, 0.009218048095703125, 0.009267200469970703, 0.009207424163818359, 0.009251199722290038, 0.009260160446166992, 0.009249152183532715, 0.009248479843139649, 0.009273119926452637, 0.009309184074401856, 0.00923033618927002, 0.009227583885192871, 0.009291999816894532, 0.009308735847473144, 0.00910540771484375, 0.009277440071105958, 0.009303839683532714, 0.009309503555297851, 0.009239456176757813, 0.009203295707702636, 0.009234880447387695, 0.009244768142700196, 0.009210975646972656, 0.009274144172668457, 0.009235679626464844, 0.00916915225982666, 0.009206303596496582, 0.009383968353271484, 0.009508831977844238, 0.009307840347290038, 0.009314144134521484, 0.009212160110473632, 0.009339327812194825, 0.009394047737121582, 0.00922374439239502, 0.009267552375793457, 0.009302271842956542, 0.009228032112121582, 0.009305088043212891, 0.00923750400543213, 0.009281824111938477, 0.009211615562438965, 0.009268544197082519, 0.009233023643493652, 0.009265215873718261, 0.009225600242614746, 0.009302304267883301, 0.009249119758605958, 0.00927948760986328, 0.009299615859985351, 0.009204352378845215, 0.009264384269714356, 0.009226847648620605, 0.009230208396911622, 0.009228287696838379, 0.009211168289184571, 0.009224672317504883, 0.009439776420593262, 0.009491904258728028, 0.009291999816894532, 0.00929798412322998, 0.009214240074157715, 0.009209600448608399, 0.009218015670776368, 0.009261216163635254, 0.009230175971984863, 0.009261055946350098, 0.009211935997009278, 0.009202783584594726, 0.009260992050170898, 0.009212863922119141, 0.009252448081970215, 0.009194016456604004, 0.009207679748535156, 0.009240511894226075, 0.009217663764953614, 0.009230655670166016, 0.00898204803466797, 0.00936188793182373, 0.009355327606201173, 0.009562047958374023, 0.009285728454589843, 0.009355263710021973, 0.009256863594055175, 0.009267200469970703, 0.009303680419921875, 0.009226271629333496, 0.009550368309020996, 0.009272640228271484, 0.009310144424438477, 0.009318943977355956, 0.009279520034790038, 0.009268223762512207, 0.009288703918457031, 0.009285056114196777, 0.009388383865356445, 0.00924079990386963, 0.009244671821594238, 0.009370688438415528, 0.009347552299499512, 0.00933683204650879, 0.009302207946777344, 0.0092511043548584, 0.009271455764770507, 0.00923737621307373, 0.009248064041137696, 0.009347968101501465, 0.009206560134887696, 0.009258591651916503, 0.009243040084838868, 0.009221343994140626, 0.00930076789855957, 0.00923356819152832, 0.009190560340881348, 0.009210944175720215, 0.009256832122802735, 0.00921670436859131, 0.009274623870849609, 0.009196352005004883, 0.009223648071289062, 0.009234175682067872, 0.009193440437316895, 0.009231167793273926, 0.009285632133483887, 0.009223872184753418, 0.009269696235656738, 0.00923635196685791, 0.009233407974243164, 0.009345215797424316, 0.009255743980407715, 0.009161727905273438, 0.009211999893188477, 0.009285599708557128, 0.009230976104736327, 0.009527968406677247, 0.009436832427978516, 0.009246720314025878, 0.009275584220886231, 0.00927519989013672, 0.009316351890563965, 0.008990336418151855, 0.00931388759613037, 0.009284480094909668, 0.009310208320617675, 0.009287520408630371, 0.009326016426086426, 0.009269984245300292, 0.009320351600646972, 0.009328960418701172, 0.009236255645751952, 0.009233983993530273, 0.00934342384338379, 0.009218048095703125, 0.009275391578674316, 0.009269248008728028, 0.00929753589630127, 0.009259391784667968, 0.009266464233398438, 0.0093088960647583, 0.00930735969543457, 0.009229248046875, 0.009288607597351074, 0.009585599899291992, 0.009276896476745606, 0.009320992469787598, 0.009342464447021484, 0.009284095764160156, 0.009261055946350098, 0.009336095809936523, 0.009263232231140136, 0.009298879623413086, 0.009286815643310548, 0.009265664100646973, 0.00931388759613037, 0.009264863967895508, 0.009244671821594238, 0.009248479843139649, 0.009271679878234863, 0.00942563247680664, 0.00931827163696289, 0.009319744110107421, 0.009265055656433105, 0.009269951820373535, 0.00934102439880371, 0.009291775703430176, 0.009302016258239745, 0.009224191665649414, 0.009610560417175293, 0.009357312202453612, 0.00929043197631836, 0.009299967765808105, 0.009461440086364747, 0.009367487907409667, 0.009306495666503906, 0.009332736015319825, 0.009302047729492188, 0.009275263786315917, 0.00942908763885498, 0.00926534366607666, 0.009265215873718261, 0.009313823699951172, 0.0102074556350708, 0.009504768371582031, 0.009276800155639649, 0.0096428804397583, 0.010266624450683593, 0.010410176277160645, 0.009338687896728516, 0.009452896118164062, 0.009317312240600586, 0.009315775871276856, 0.009291999816894532, 0.009273407936096191, 0.009287839889526367, 0.009293824195861817, 0.009262432098388671, 0.009273920059204101, 0.009293408393859863, 0.009293343544006348, 0.009330880165100098, 0.009287903785705567, 0.00926966381072998, 0.00930947208404541, 0.009453311920166015, 0.009278047561645507, 0.009201472282409667, 0.009331263542175294, 0.009273344039916993, 0.009267200469970703, 0.009284735679626465, 0.009252896308898926, 0.009236448287963868, 0.009229184150695801, 0.009250816345214843, 0.009284832000732423, 0.009222944259643555, 0.009518943786621093, 0.009407936096191406, 0.009324607849121093, 0.00930457592010498, 0.009425056457519532, 0.009283583641052246, 0.009467904090881347, 0.009242752075195312, 0.009289631843566895, 0.00928547191619873, 0.009242752075195312, 0.009254912376403808, 0.009334336280822754, 0.009660832405090332, 0.009266464233398438, 0.009409279823303222, 0.00922163200378418, 0.009245183944702149, 0.009266912460327148, 0.00924505615234375, 0.009300928115844726, 0.00925385570526123, 0.009256735801696777, 0.00934502410888672, 0.009263039588928223, 0.009220704078674317, 0.009312288284301758, 0.009251935958862305, 0.009263680458068848, 0.009187328338623046, 0.00903433609008789, 0.009310144424438477, 0.009361184120178223, 0.009350879669189453, 0.009290207862854004, 0.009477439880371094, 0.009307200431823731, 0.009276479721069335, 0.00930406379699707, 0.009276000022888184, 0.009291328430175782, 0.009377535820007324, 0.009314944267272949, 0.009339136123657226, 0.009301983833312988, 0.009321632385253907, 0.00929043197631836, 0.009332736015319825, 0.009293600082397461, 0.009255328178405763, 0.009305919647216797, 0.009291232109069824, 0.009271200180053712, 0.009571167945861816, 0.009295647621154784, 0.00933471965789795, 0.009310272216796875, 0.009709792137145996, 0.009309696197509766, 0.009388319969177246, 0.0094551362991333, 0.00937007999420166, 0.009434144020080566, 0.009367903709411622, 0.009301664352416993, 0.009374176025390625, 0.009345631599426269, 0.009271200180053712, 0.00930406379699707, 0.009631744384765625, 0.00935929584503174, 0.009351327896118164, 0.00927507209777832, 0.00927996826171875, 0.009363200187683106, 0.009275135993957519, 0.009322943687438965, 0.009436991691589356, 0.009347071647644043, 0.009305855751037598, 0.009371904373168946, 0.009276415824890137, 0.009339903831481934, 0.009406463623046875, 0.009357248306274414, 0.009307552337646484, 0.009370400428771972, 0.009398143768310547, 0.009359423637390136, 0.009347007751464844, 0.009267200469970703, 0.00931827163696289, 0.009377087593078613, 0.009158368110656739, 0.009416031837463378, 0.009450464248657227, 0.009379584312438965, 0.009367456436157226, 0.009423487663269043, 0.009392895698547364, 0.009302975654602051, 0.00932044792175293, 0.00932863998413086, 0.00974403190612793, 0.009664608001708984, 0.009421055793762206, 0.009391231536865234, 0.009415552139282227, 0.00939840030670166, 0.009391072273254395, 0.009423935890197754, 0.009293984413146973, 0.009279040336608887, 0.009312383651733399, 0.009363327980041504, 0.009557184219360351, 0.00951801586151123, 0.009336511611938476, 0.009390399932861329, 0.009302016258239745, 0.009353311538696289, 0.009319999694824218, 0.009361760139465332, 0.009403871536254884, 0.00933465576171875, 0.009347935676574708, 0.00935910415649414, 0.009283647537231446, 0.009309951782226562, 0.009257216453552247, 0.009302176475524903, 0.009273183822631837, 0.009367584228515625, 0.00937775993347168, 0.00936963176727295, 0.009315391540527344, 0.009363776206970214, 0.009361536026000976, 0.009418304443359376, 0.009331199645996094, 0.009363936424255372, 0.009273280143737793, 0.009315936088562012, 0.009310912132263184, 0.009324095726013183, 0.009287039756774902, 0.009337632179260254, 0.009395584106445313, 0.00935321617126465, 0.009310175895690918, 0.009345279693603516, 0.009323136329650879, 0.009289119720458984, 0.009332608222961426, 0.00931062412261963, 0.009304160118103028, 0.009390015602111817, 0.01005571174621582, 0.00972812843322754, 0.00993017578125, 0.00998243236541748, 0.00983580780029297, 0.009865471839904785, 0.009544159889221191, 0.00945257568359375, 0.009515392303466796, 0.009323103904724121, 0.009315808296203614, 0.009628191947937011, 0.009510687828063965, 0.00943286418914795, 0.009342752456665038, 0.009320927619934081, 0.009361056327819825, 0.009409055709838868, 0.009338879585266113, 0.009335840225219726, 0.009258272171020508, 0.009227423667907715, 0.009277440071105958, 0.009250559806823731, 0.009253664016723633, 0.009301664352416993, 0.009342623710632323, 0.009272000312805177, 0.009388031959533692, 0.009406496047973632, 0.00943286418914795, 0.009498815536499023, 0.009447456359863281, 0.009408479690551757, 0.009414239883422852, 0.00937820816040039, 0.009417823791503906, 0.009405344009399415, 0.009406047821044922, 0.009339296340942382, 0.009326687812805176, 0.00931011199951172, 0.00932863998413086, 0.009326592445373535, 0.009296159744262695, 0.009278176307678222, 0.009294848442077636, 0.009273344039916993, 0.009346240043640137, 0.00934342384338379, 0.009381312370300293, 0.009421759605407715, 0.009392127990722657, 0.00944870376586914, 0.009519488334655761, 0.009467583656311035, 0.009406559944152832, 0.009483967781066895, 0.009472224235534668, 0.009401023864746094, 0.009396032333374023, 0.00947219181060791, 0.009058303833007812, 0.009429280281066894, 0.009375455856323243, 0.009388031959533692, 0.009302016258239745, 0.009302080154418945, 0.009297599792480469, 0.009392416000366211, 0.009243680000305175, 0.009372608184814453, 0.009371871948242188, 0.009387455940246581, 0.009383359909057616, 0.009420831680297852, 0.00939743995666504, 0.009375616073608399, 0.009361151695251466, 0.009373760223388672, 0.009269023895263672, 0.009298144340515136, 0.009275391578674316, 0.009240575790405273, 0.009262656211853027, 0.009314751625061036, 0.009300000190734863, 0.009223872184753418, 0.009277728080749512, 0.009318431854248048, 0.009277503967285156, 0.00926694393157959, 0.00937929630279541, 0.00927830410003662, 0.009463647842407226, 0.01049942398071289, 0.010584095954895019, 0.009760383605957032, 0.009409536361694336, 0.009306303977966309, 0.00923423957824707, 0.009381407737731934, 0.009287775993347168, 0.009288415908813477, 0.009655967712402343, 0.009798720359802246, 0.009536352157592774, 0.009316448211669923, 0.009263168334960938, 0.009664704322814941, 0.009436927795410156, 0.009302016258239745, 0.009363455772399902, 0.009362848281860351, 0.00927945613861084, 0.009253567695617675, 0.009689023971557617, 0.009287263870239258, 0.009290111541748048, 0.009318240165710449, 0.00927359962463379, 0.009348223686218262, 0.009276224136352538, 0.009318464279174805, 0.00923027229309082, 0.009006752014160156, 0.009349472045898437, 0.009334783554077148, 0.009344160079956055, 0.009336992263793946, 0.009339103698730469, 0.009207903861999512, 0.009306655883789063, 0.009336671829223632, 0.009260767936706544, 0.009298208236694337, 0.00929587173461914, 0.009564448356628417, 0.010582752227783203, 0.010077183723449706, 0.009422623634338378, 0.009394335746765136, 0.009386048316955567, 0.009317728042602539, 0.009282208442687989, 0.009294112205505372, 0.009288736343383789, 0.009263263702392579, 0.009316608428955079, 0.00932483196258545, 0.00933683204650879, 0.009328543663024902, 0.009317567825317383, 0.00934988784790039, 0.009373855590820313, 0.009349120140075684, 0.009439231872558594, 0.009383456230163574, 0.009354880332946777, 0.009323360443115235, 0.009363327980041504, 0.009371487617492676, 0.00935580825805664, 0.009596159934997558, 0.009355487823486329, 0.009414527893066406, 0.00935977554321289, 0.009340031623840332, 0.00941759967803955, 0.009453248023986817, 0.009453344345092773, 0.00946668815612793, 0.00952905559539795, 0.009493599891662598, 0.009460639953613282, 0.009455615997314454, 0.009390048027038574, 0.009468992233276368, 0.00931270408630371, 0.009323040008544921, 0.009329728126525879, 0.009382847785949708, 0.009388031959533692, 0.009437184333801269, 0.009324128150939942, 0.009252544403076171, 0.009305088043212891, 0.009282367706298828]",tokens/s,106.9234032597796,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1065.504768,2079.260672,0.0,1684.013056,1657.439232,s,1,7.2145654296875,7.2145654296875,0.0,7.2145654296875,7.2145654296875,7.2145654296875,7.2145654296875,[7.2145654296875],,kWh,3.7684097791763326e-06,4.085566477662718e-07,1.0952786540022186e-06,5.272245080944823e-06,,MB,1341.435904,2119.10656,0.0,1713.373184,1302.298112,s,10,1.011987174987793,0.10119871749877932,0.0028366070230200846,0.10055105590820312,0.10325200500488281,0.1061389305114746,0.10844847091674804,"[0.1090258560180664, 0.09853689575195312, 0.10062416076660156, 0.10158761596679687, 0.0996248016357422, 0.10057234954833984, 0.10052976226806641, 0.09919296264648438, 0.10261046600341797, 0.09968230438232421]",tokens/s,2529.676327203336,kWh,3.3570094340517515e-06,3.7021805883598037e-07,2.1758606168046864e-06,5.903088109692418e-06,tokens/kWh,43367131.78644032,MB,1366.355968,2165.243904,0.0,1759.510528,1302.300672,s,10,9.428148559570314,0.9428148559570314,0.0034621751030130873,0.9426940612792969,0.9475249206542969,0.9475557647705078,0.9475804400634765,"[0.9435919799804687, 0.94119482421875, 0.9369241333007813, 0.9395125732421875, 0.939375, 0.9475866088867188, 0.9459053344726562, 0.94751806640625, 0.941796142578125, 0.944743896484375]",tokens/s,66.82117873084428,kWh,2.7282876182614957e-05,3.008836718986481e-06,1.5394820106395427e-05,4.5686533007996866e-05,tokens/kWh,1378962.154755158,,s,630,9.4258660144806,0.014961692086477128,0.00027714551945568324,0.014900368213653564,0.015108636951446533,0.015313551902770995,0.01607775957107544,"[0.015352224349975586, 0.015136735916137695, 0.014893376350402832, 0.014906240463256835, 0.014957375526428222, 0.014939488410949707, 0.018080415725708007, 0.016070079803466798, 0.015026399612426758, 0.01488111972808838, 0.014872575759887695, 0.014792703628540039, 0.014876576423645019, 0.014796895980834961, 0.014934111595153808, 0.015548319816589355, 0.015044608116149903, 0.014843328475952149, 0.014919391632080078, 0.014852959632873535, 0.014910719871520995, 0.014924544334411621, 0.01482096004486084, 0.014870944023132325, 0.014802495956420898, 0.015010239601135254, 0.014884832382202149, 0.014985247611999512, 0.014882816314697265, 0.014840991973876953, 0.014947168350219727, 0.01490124797821045, 0.01485756778717041, 0.014783136367797852, 0.014888287544250488, 0.014848671913146972, 0.014833120346069336, 0.014715488433837891, 0.01481926441192627, 0.01477836799621582, 0.01472332763671875, 0.01487388801574707, 0.014911840438842774, 0.01489094352722168, 0.014870719909667969, 0.014812191963195801, 0.014826463699340821, 0.01480294418334961, 0.01489305591583252, 0.0148602876663208, 0.01491532802581787, 0.014870783805847169, 0.014757887840270996, 0.014874624252319337, 0.015093759536743164, 0.014888959884643555, 0.014820799827575684, 0.014901951789855957, 0.014843008041381837, 0.014842623710632325, 0.014826656341552735, 0.01497993564605713, 0.01526153564453125, 0.015292256355285645, 0.01506390380859375, 0.014968511581420898, 0.014985631942749024, 0.014911775588989257, 0.015009311676025391, 0.014891200065612793, 0.014800895690917968, 0.014813183784484863, 0.014856224060058593, 0.014853471755981446, 0.014798784255981445, 0.014901280403137207, 0.01485654354095459, 0.014849632263183594, 0.014870559692382813, 0.014833663940429688, 0.01485689640045166, 0.014947487831115722, 0.014863200187683105, 0.014810688018798828, 0.014782912254333496, 0.015089568138122558, 0.01487235164642334, 0.014764351844787598, 0.014866687774658204, 0.014825216293334961, 0.014847264289855958, 0.014777055740356445, 0.014790656089782715, 0.014827520370483398, 0.014767871856689454, 0.01490873622894287, 0.01488582420349121, 0.014792832374572754, 0.014811008453369141, 0.014800895690917968, 0.014837759971618653, 0.015011679649353028, 0.014821536064147949, 0.01477222442626953, 0.014784511566162109, 0.014850048065185547, 0.016857088088989256, 0.01634105682373047, 0.015107456207275391, 0.01492137622833252, 0.014857119560241699, 0.014845952033996582, 0.014750816345214844, 0.01483356761932373, 0.014824447631835937, 0.015148096084594727, 0.014826399803161621, 0.014776351928710938, 0.014829216003417968, 0.014815584182739257, 0.014835488319396973, 0.01542576026916504, 0.014891008377075195, 0.014807040214538575, 0.014921728134155274, 0.014838879585266113, 0.015002623558044433, 0.01507472038269043, 0.014985407829284668, 0.015028512001037598, 0.014977024078369141, 0.01486847972869873, 0.014824607849121093, 0.014785375595092774, 0.014781503677368165, 0.014904255867004395, 0.014800895690917968, 0.014913536071777344, 0.014830911636352539, 0.014859199523925781, 0.014867584228515624, 0.014725760459899902, 0.01488486385345459, 0.014839808464050292, 0.014974080085754394, 0.014742239952087403, 0.01480521583557129, 0.014806976318359375, 0.014763104438781737, 0.014846176147460937, 0.014878560066223144, 0.014889087677001953, 0.014876992225646972, 0.014961055755615234, 0.014854144096374512, 0.014851391792297363, 0.014776512145996094, 0.014988863945007324, 0.014859199523925781, 0.01481113624572754, 0.014827232360839843, 0.014938400268554688, 0.01484716796875, 0.014839648246765137, 0.014843071937561035, 0.014860383987426758, 0.014830464363098145, 0.014771167755126952, 0.014882143974304199, 0.015006208419799804, 0.014782048225402833, 0.01477184009552002, 0.01480784034729004, 0.014864383697509765, 0.01490329647064209, 0.014971936225891113, 0.014914048194885255, 0.014885343551635743, 0.014870528221130372, 0.014782464027404785, 0.014870495796203613, 0.014882847785949707, 0.014880000114440918, 0.014946271896362304, 0.01488156795501709, 0.01484832000732422, 0.014864352226257324, 0.014851327896118163, 0.014821536064147949, 0.014996319770812989, 0.014979071617126465, 0.014938079833984375, 0.015054847717285156, 0.014940159797668457, 0.014896767616271973, 0.014928256034851074, 0.01504646396636963, 0.014929439544677734, 0.014954912185668945, 0.014946559906005859, 0.014904959678649903, 0.01490732765197754, 0.014964192390441895, 0.014947039604187012, 0.014827775955200195, 0.014828864097595216, 0.015259807586669921, 0.014938464164733887, 0.014887104034423828, 0.014942336082458495, 0.014886176109313965, 0.014838368415832519, 0.014899040222167969, 0.014897536277770997, 0.014974528312683106, 0.01498134422302246, 0.014936063766479492, 0.014921728134155274, 0.014819135665893554, 0.014782655715942382, 0.014858240127563477, 0.014858240127563477, 0.014776320457458495, 0.014796799659729003, 0.015081472396850586, 0.014751392364501953, 0.014860639572143555, 0.014948351860046387, 0.014831551551818848, 0.01485769557952881, 0.014867039680480957, 0.014816767692565918, 0.014817824363708496, 0.014816864013671875, 0.014882816314697265, 0.01487235164642334, 0.015159903526306152, 0.01487168025970459, 0.014988160133361817, 0.014877696037292481, 0.014856608390808105, 0.014793120384216308, 0.015179167747497559, 0.014947104454040527, 0.014911456108093262, 0.014870559692382813, 0.01487830352783203, 0.014786975860595703, 0.014905344009399414, 0.014855327606201172, 0.014875455856323242, 0.014874655723571778, 0.015102016448974609, 0.014970463752746582, 0.014923456192016602, 0.01491532802581787, 0.015059616088867188, 0.01483187198638916, 0.014838047981262207, 0.014824640274047852, 0.014917311668395996, 0.014936287879943848, 0.014930463790893555, 0.014870207786560058, 0.014921343803405762, 0.014938912391662597, 0.014804767608642579, 0.014850272178649902, 0.014858240127563477, 0.014910528182983399, 0.014824000358581543, 0.014983551979064941, 0.014870528221130372, 0.014980928421020508, 0.014950592041015625, 0.01493404769897461, 0.014893024444580079, 0.014879776000976562, 0.014916383743286132, 0.014907584190368653, 0.014890751838684081, 0.014870112419128417, 0.014862079620361329, 0.014877599716186523, 0.014794879913330079, 0.014833151817321777, 0.01488707160949707, 0.014864607810974121, 0.014933568000793457, 0.014804703712463379, 0.014908127784729004, 0.014854144096374512, 0.01480294418334961, 0.014802816390991212, 0.01485632038116455, 0.01509990406036377, 0.01501974391937256, 0.014936320304870606, 0.014896256446838379, 0.01496566390991211, 0.014920703887939453, 0.015007935523986816, 0.014899200439453125, 0.01525228786468506, 0.014927359580993652, 0.014850560188293458, 0.014849696159362793, 0.014858271598815918, 0.014925215721130371, 0.014807135581970214, 0.014951231956481934, 0.014907199859619141, 0.014872447967529297, 0.014918975830078125, 0.01488588809967041, 0.015405055999755859, 0.015144512176513672, 0.015151552200317383, 0.015052800178527831, 0.015038463592529297, 0.014933888435363769, 0.014997632026672363, 0.014888959884643555, 0.014970879554748535, 0.014956031799316406, 0.014882687568664552, 0.014866527557373046, 0.01484438419342041, 0.014835647583007813, 0.014760064125061036, 0.014718976020812988, 0.014817279815673828, 0.014804384231567384, 0.014852704048156739, 0.014945280075073243, 0.014943231582641601, 0.014954496383666992, 0.015050815582275391, 0.014944031715393066, 0.01497219181060791, 0.015065024375915528, 0.016918560028076172, 0.014969504356384278, 0.01546675205230713, 0.015015520095825196, 0.014995871543884277, 0.014948351860046387, 0.014942208290100097, 0.015067135810852051, 0.016990207672119142, 0.015140447616577148, 0.01521059226989746, 0.015153216361999513, 0.015179391860961913, 0.015088255882263184, 0.015138815879821778, 0.015161343574523926, 0.015333375930786132, 0.015075551986694335, 0.014855968475341796, 0.014949440002441406, 0.014836544036865235, 0.01514857578277588, 0.01486076831817627, 0.014921792030334472, 0.014880831718444825, 0.01476534366607666, 0.01488969612121582, 0.014831071853637695, 0.014780960083007812, 0.014808927536010742, 0.015091872215270996, 0.014948351860046387, 0.014875904083251953, 0.014840576171875, 0.014882816314697265, 0.014767680168151855, 0.014830016136169433, 0.015335328102111816, 0.015159392356872558, 0.015058943748474121, 0.015028351783752442, 0.014864255905151367, 0.014933856010437011, 0.014901408195495605, 0.014833312034606933, 0.014932319641113282, 0.014886272430419923, 0.014869119644165039, 0.01480303955078125, 0.014863871574401855, 0.014981535911560059, 0.01490732765197754, 0.014923839569091797, 0.014970848083496094, 0.014874239921569825, 0.014995871543884277, 0.014835712432861328, 0.014907391548156738, 0.014785759925842286, 0.014920479774475097, 0.01488652801513672, 0.014856063842773437, 0.014844415664672851, 0.014834943771362305, 0.014850591659545899, 0.014803168296813964, 0.014926848411560058, 0.014971296310424804, 0.014934623718261719, 0.015005536079406738, 0.014909600257873535, 0.014929920196533204, 0.01486847972869873, 0.014940159797668457, 0.014913536071777344, 0.014919072151184083, 0.014902144432067872, 0.014894816398620605, 0.014878080368041993, 0.01497548770904541, 0.014788736343383789, 0.014954719543457031, 0.01526352024078369, 0.015006912231445313, 0.014920512199401855, 0.01488691234588623, 0.016080896377563478, 0.01765171241760254, 0.015241215705871582, 0.015108096122741698, 0.01551360034942627, 0.015087103843688965, 0.01500547218322754, 0.01490403175354004, 0.014951807975769043, 0.014908032417297363, 0.014854144096374512, 0.015176735877990722, 0.014900192260742188, 0.014861568450927735, 0.015791744232177735, 0.015386112213134765, 0.015179648399353027, 0.01508176040649414, 0.015000255584716796, 0.015105088233947754, 0.014895296096801758, 0.01491811180114746, 0.014936351776123047, 0.01489305591583252, 0.014951680183410644, 0.014994175910949707, 0.01503007984161377, 0.014899392127990723, 0.015005696296691894, 0.015040127754211426, 0.014965120315551758, 0.01539891242980957, 0.014996800422668457, 0.01485689640045166, 0.014803071975708008, 0.01495580768585205, 0.015084128379821777, 0.014853792190551758, 0.015077728271484375, 0.014851712226867675, 0.014876095771789551, 0.014873536109924316, 0.014827520370483398, 0.014927647590637206, 0.015046879768371582, 0.015005599975585938, 0.014933695793151855, 0.015080127716064453, 0.015042271614074707, 0.01508556842803955, 0.014956543922424317, 0.01494758415222168, 0.014969120025634766, 0.014862815856933593, 0.01489305591583252, 0.014868000030517577, 0.015012543678283691, 0.014847935676574707, 0.014888352394104003, 0.014844351768493653, 0.014947936058044434, 0.014798848152160645, 0.014813599586486816, 0.014936063766479492, 0.015395936012268066, 0.016021888732910158, 0.015702272415161134, 0.015434016227722168, 0.01524665641784668, 0.01502182388305664, 0.015195072174072266, 0.015330975532531738, 0.014860639572143555, 0.014858240127563477, 0.014958592414855957, 0.014942144393920899, 0.015081536293029786, 0.015691776275634766, 0.015216608047485352, 0.014897151947021485, 0.014847999572753906, 0.014938112258911132, 0.01508556842803955, 0.01490073585510254, 0.014946816444396972, 0.01484124755859375, 0.01487286376953125, 0.014934592247009278, 0.014839839935302735, 0.014911199569702148, 0.01488486385345459, 0.014923040390014648, 0.015031007766723633, 0.014921024322509765, 0.014877280235290528, 0.014862144470214844, 0.014846240043640137, 0.014827360153198242, 0.01483894443511963, 0.014805824279785156, 0.014811327934265137, 0.014894335746765137, 0.015829631805419922, 0.014844032287597656, 0.014790656089782715, 0.014870528221130372, 0.014867839813232421, 0.014836352348327636, 0.015054847717285156, 0.015675007820129396, 0.014940544128417969, 0.014841856002807617, 0.014853152275085449, 0.014864831924438477, 0.014909312248229981, 0.01563100814819336, 0.015199232101440429, 0.014928288459777832, 0.014915679931640625, 0.014811488151550293, 0.014866592407226563, 0.014872575759887695, 0.01490054416656494, 0.014869183540344237, 0.014824895858764649, 0.014889535903930664, 0.014954496383666992, 0.014773695945739747, 0.014828096389770508, 0.014816800117492675, 0.014848480224609375, 0.01490944004058838, 0.014915743827819824, 0.014909279823303223, 0.01483334445953369, 0.014973247528076172, 0.014796799659729003, 0.014882847785949707, 0.01492147159576416, 0.014868703842163086, 0.015491711616516112, 0.015365344047546386, 0.015029024124145508, 0.014956128120422364, 0.014848287582397462, 0.015022208213806152, 0.014918720245361328, 0.01483801555633545, 0.014805695533752442, 0.014942527770996094, 0.01492140769958496, 0.01491763210296631, 0.015009792327880859, 0.014833024024963379, 0.015016736030578614, 0.015006943702697754, 0.015351903915405274, 0.014982975959777833, 0.015128479957580567, 0.014836000442504884, 0.014857983589172364, 0.014905376434326172, 0.014995807647705079, 0.01513308811187744, 0.01489510440826416, 0.015122688293457032, 0.014925503730773925, 0.014924863815307617, 0.014865407943725586, 0.014775615692138672, 0.015090368270874023, 0.01497929573059082, 0.015092991828918456, 0.015061535835266114, 0.01496678352355957, 0.015242815971374512, 0.014950207710266113, 0.014920415878295899, 0.015027135848999023, 0.015014880180358887, 0.015017984390258789, 0.014980607986450196, 0.014929439544677734, 0.014980064392089844, 0.014952192306518555, 0.015085184097290039, 0.01509440040588379, 0.014888416290283204, 0.01503286361694336, 0.014942208290100097, 0.014825695991516114, 0.015061056137084961, 0.015355615615844727, 0.014995231628417968, 0.015113504409790039, 0.014936863899230957, 0.015055007934570312, 0.01489254379272461, 0.014903807640075683, 0.014954015731811524, 0.014839967727661134, 0.014878080368041993, 0.014822336196899414]",tokens/s,66.83735998709885,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,,MB,869.638144,13880.918016,0.0,13478.395904,13476.849152,s,1,7.36861669921875,7.36861669921875,0.0,7.36861669921875,7.36861669921875,7.36861669921875,7.36861669921875,[7.36861669921875],,kWh,8.536695474989148e-06,9.340445897731681e-07,4.368892384004619e-06,1.3839632448766935e-05,,MB,1220.558848,14115.79904,0.0,13702.791168,13671.637504,s,10,12.48476940917969,1.2484769409179688,0.005002776956231827,1.2489312744140624,1.2538059692382812,1.2551531677246095,1.256230926513672,"[1.239541015625, 1.240701904296875, 1.2499635009765624, 1.2467474365234374, 1.247649658203125, 1.253506591796875, 1.2478990478515626, 1.2511883544921876, 1.251071533203125, 1.2565003662109375]",tokens/s,205.04984241981325,kWh,3.64970023104172e-05,4.024844575132593e-06,2.426346385519945e-05,6.478531074074925e-05,tokens/kWh,3951513.037028297,MB,1268.846592,14115.79904,0.0,13702.791168,13671.640064,s,10,37.65105639648437,3.765105639648438,0.0033735412183279532,3.7657999267578126,3.76849091796875,3.769096044921875,3.769580146484375,"[3.758876953125, 3.7631982421875, 3.759820556640625, 3.768198486328125, 3.766015625, 3.769701171875, 3.7651357421875, 3.7661689453125, 3.765584228515625, 3.7683564453125]",tokens/s,16.732598240160545,kWh,0.00011008657440666525,1.2143687170692753e-05,7.322514191340085e-05,0.00019545540349075885,tokens/kWh,322324.1664074979,,s,630,37.64839903259281,0.05975936354379805,0.00029764083370002124,0.05974302291870117,0.0600270320892334,0.060157479858398435,0.0612939622116089,"[0.06089161682128906, 0.05930793762207031, 0.05935523223876953, 0.059290878295898436, 0.059214431762695315, 0.059399520874023434, 0.059435039520263674, 0.059367198944091794, 0.059464702606201174, 0.0594530258178711, 0.05948796844482422, 0.05944790267944336, 0.05942195129394531, 0.0594870719909668, 0.05949158477783203, 0.059723678588867186, 0.059722591400146484, 0.05967862319946289, 0.059509918212890624, 0.05941686248779297, 0.05930604934692383, 0.05940035247802734, 0.059445823669433594, 0.05946895980834961, 0.05941718292236328, 0.059560062408447266, 0.0598419189453125, 0.05967526245117188, 0.059600894927978515, 0.05967359924316406, 0.05965897750854492, 0.05970937728881836, 0.05966473770141602, 0.05987116622924805, 0.059931808471679685, 0.059746814727783204, 0.059656608581542966, 0.05969919967651367, 0.05967052841186524, 0.059660350799560544, 0.05960480117797851, 0.05974848175048828, 0.05963792037963867, 0.05962956619262695, 0.05956796646118164, 0.05966966247558594, 0.059716415405273435, 0.05967465591430664, 0.05975449752807617, 0.06007603073120117, 0.05986918258666992, 0.06025830459594726, 0.059834369659423826, 0.05988524627685547, 0.05977225494384766, 0.05965628814697266, 0.059679615020751954, 0.05979868698120117, 0.05983113479614258, 0.05986832046508789, 0.059999073028564456, 0.059930622100830076, 0.059931873321533206, 0.06136832046508789, 0.05950239944458008, 0.059275455474853515, 0.05922582244873047, 0.059203872680664064, 0.05940224075317383, 0.05944220733642578, 0.05941347122192383, 0.05942620849609375, 0.05941862487792969, 0.05940838241577148, 0.059464126586914065, 0.05950479888916015, 0.059568126678466796, 0.05967452621459961, 0.059736160278320315, 0.060383262634277346, 0.060066814422607424, 0.05978006362915039, 0.05946588897705078, 0.05948400115966797, 0.05949184036254883, 0.059474079132080075, 0.0596157112121582, 0.05951884841918945, 0.05953945541381836, 0.0596234245300293, 0.059533344268798825, 0.059727840423583985, 0.05967801666259766, 0.05976953506469727, 0.05973209762573242, 0.05986291122436523, 0.059881473541259764, 0.05989990234375, 0.059883167266845706, 0.05979171371459961, 0.05972979354858399, 0.05970739364624023, 0.05973811340332031, 0.05967884826660156, 0.05986729431152344, 0.059670368194580076, 0.05969295883178711, 0.05958399963378906, 0.05968751907348633, 0.05978508758544922, 0.059805824279785154, 0.05991116714477539, 0.05989468765258789, 0.06002841567993164, 0.06006950378417969, 0.05986566543579101, 0.05989744186401367, 0.05987583923339844, 0.05983663940429688, 0.05988771057128906, 0.059880897521972655, 0.060228160858154293, 0.05984889602661133, 0.05983417510986328, 0.05983983993530274, 0.0598372802734375, 0.061480960845947265, 0.05956764984130859, 0.05937404632568359, 0.05927526473999024, 0.059293281555175784, 0.0592982063293457, 0.05939814376831055, 0.05934422302246094, 0.059335105895996096, 0.05941059112548828, 0.05933855819702148, 0.05938995361328125, 0.0593853759765625, 0.0595810546875, 0.05953955078125, 0.059585823059082034, 0.05996332931518555, 0.05978806304931641, 0.05966604614257812, 0.05961561584472656, 0.05954576110839844, 0.05957411193847656, 0.05960704040527344, 0.05955583953857422, 0.0594813117980957, 0.05943084716796875, 0.0594051513671875, 0.05949817657470703, 0.05963167953491211, 0.059660350799560544, 0.05960108947753906, 0.05979676818847656, 0.059798240661621094, 0.05983027267456055, 0.05979040145874023, 0.0597589111328125, 0.059635711669921876, 0.059609729766845705, 0.059610622406005856, 0.05968537521362305, 0.05980979156494141, 0.05976678466796875, 0.059690654754638674, 0.05968918228149414, 0.05973209762573242, 0.05975820922851562, 0.059773086547851566, 0.059813087463378906, 0.06007295989990234, 0.059889278411865234, 0.05972723388671875, 0.05989023971557617, 0.059791614532470706, 0.05974444961547851, 0.05969680023193359, 0.05975177764892578, 0.05982310485839844, 0.05982822418212891, 0.05979750442504883, 0.05980364990234375, 0.059815937042236325, 0.059944286346435546, 0.05983308792114258, 0.06141164779663086, 0.05964054489135742, 0.05938988876342773, 0.05938175964355469, 0.05940633773803711, 0.05935337448120117, 0.059305694580078124, 0.05935849761962891, 0.059329086303710935, 0.05944950485229492, 0.05933670425415039, 0.059557662963867185, 0.05958639907836914, 0.05964838409423828, 0.05971686553955078, 0.059783935546875, 0.06015955352783203, 0.05985686492919922, 0.05959507369995117, 0.05956774520874023, 0.05965673446655274, 0.05974617767333985, 0.05958787155151367, 0.05954032135009766, 0.05969510269165039, 0.05976678466796875, 0.059731201171875, 0.059582847595214844, 0.0595807991027832, 0.059721920013427736, 0.05979228973388672, 0.05984316635131836, 0.05998828887939453, 0.06005744171142578, 0.059816097259521486, 0.05980364990234375, 0.05978054428100586, 0.05979808044433594, 0.05982396697998047, 0.059680927276611326, 0.05973011016845703, 0.060284191131591794, 0.05973238372802735, 0.059805118560791015, 0.059697662353515625, 0.06007727813720703, 0.05992752075195312, 0.0599285774230957, 0.06003907012939453, 0.06035260772705078, 0.06025539016723633, 0.06024892807006836, 0.060335262298583985, 0.06025814437866211, 0.06001545715332031, 0.05994281768798828, 0.059848960876464845, 0.05992556762695313, 0.05994387054443359, 0.0599818229675293, 0.05989295959472656, 0.059992862701416017, 0.05984972763061523, 0.061110145568847654, 0.05972351837158203, 0.05932521438598633, 0.05935305786132813, 0.05937772750854492, 0.059496288299560544, 0.05947574234008789, 0.059478496551513674, 0.05944934463500977, 0.05957632064819336, 0.059584510803222655, 0.05970700836181641, 0.059560321807861326, 0.05971148681640625, 0.059668479919433595, 0.05981798553466797, 0.05982003021240234, 0.05975558471679687, 0.05971551895141602, 0.05959987258911133, 0.05966553497314453, 0.059663230895996094, 0.059563041687011715, 0.059575263977050784, 0.059494400024414064, 0.05955379104614258, 0.05961641693115234, 0.059646785736083986, 0.05964297485351563, 0.05978927993774414, 0.05985174560546875, 0.059807743072509766, 0.059998207092285157, 0.059990016937255856, 0.05982112121582031, 0.05981475067138672, 0.05987747192382813, 0.05984796905517578, 0.0597347526550293, 0.05973331069946289, 0.05962105560302734, 0.059716575622558596, 0.05959683227539062, 0.05974790573120117, 0.05984294509887695, 0.05997987365722656, 0.059918270111083985, 0.05999942398071289, 0.0599192008972168, 0.05994601440429687, 0.05993983840942383, 0.06000841522216797, 0.060191967010498046, 0.060076831817626956, 0.05999411010742187, 0.05993267059326172, 0.059868896484375, 0.05994035339355469, 0.05982287979125977, 0.05985279846191406, 0.05983955383300781, 0.05995206451416016, 0.06002998352050781, 0.061359710693359375, 0.05965865707397461, 0.059394046783447264, 0.059434398651123044, 0.059428607940673825, 0.05955670547485352, 0.059542625427246094, 0.059447776794433596, 0.05943494415283203, 0.05959635162353515, 0.059362239837646484, 0.05948416137695312, 0.05962303924560547, 0.05961705780029297, 0.05968137741088867, 0.0598548469543457, 0.05989379119873047, 0.05987324905395508, 0.0597724494934082, 0.059711360931396486, 0.0596319694519043, 0.05964620971679688, 0.059682334899902344, 0.059685344696044924, 0.05967462539672851, 0.05978726577758789, 0.05972377777099609, 0.059651840209960935, 0.05957247924804687, 0.05959884643554687, 0.05977907180786133, 0.05987100982666015, 0.059842784881591796, 0.0599400634765625, 0.05989251327514648, 0.05982614517211914, 0.059731998443603516, 0.05975363159179688, 0.05975331115722656, 0.05992428970336914, 0.05993695831298828, 0.059923839569091794, 0.059961982727050785, 0.05989785766601562, 0.05986105728149414, 0.05992607879638672, 0.059969921112060544, 0.05990399932861328, 0.06005526351928711, 0.06011318588256836, 0.06014156723022461, 0.060154945373535156, 0.060130241394042966, 0.06018025588989258, 0.06005785751342774, 0.05993830490112305, 0.060064224243164065, 0.060237823486328126, 0.06009004974365234, 0.060094497680664063, 0.06009395217895508, 0.060007198333740235, 0.059998207092285157, 0.06113299179077149, 0.05961804962158203, 0.05930390548706055, 0.05937343978881836, 0.05929571151733398, 0.05953126525878906, 0.05954927825927735, 0.05951532745361328, 0.059535358428955076, 0.059598400115966794, 0.05952153778076172, 0.059590625762939456, 0.059552799224853514, 0.05961004638671875, 0.05959395217895508, 0.059593505859375, 0.0595926399230957, 0.05966444778442383, 0.05972371292114258, 0.05959481430053711, 0.059529216766357425, 0.05962137603759766, 0.05957164764404297, 0.05954172897338867, 0.05970159912109375, 0.05965379333496094, 0.05962172698974609, 0.05965619277954102, 0.05963980865478516, 0.05968076705932617, 0.05979497528076172, 0.05981436920166015, 0.05976675033569336, 0.05991632080078125, 0.05979340744018555, 0.059832481384277346, 0.059891326904296875, 0.05988288116455078, 0.059695327758789066, 0.0596998405456543, 0.059649375915527346, 0.059837089538574216, 0.05969004821777344, 0.05975894546508789, 0.059566688537597653, 0.05968310546875, 0.059823486328125, 0.059815937042236325, 0.05999241638183594, 0.05988153457641601, 0.06017123031616211, 0.060260704040527344, 0.05990876770019531, 0.06007600021362305, 0.060006401062011716, 0.059947006225585936, 0.06003302383422852, 0.059975296020507815, 0.059951072692871095, 0.060026432037353514, 0.05997040176391601, 0.060071937561035155, 0.05997158432006836, 0.06174364852905274, 0.05974211120605469, 0.059445632934570315, 0.05939718246459961, 0.05933561706542969, 0.05932428741455078, 0.05946790313720703, 0.05944319915771484, 0.059364990234375, 0.059612766265869144, 0.05941904067993164, 0.059660255432128904, 0.05956233596801758, 0.05958659362792969, 0.059672607421875, 0.05970870590209961, 0.06005632019042969, 0.05994623947143555, 0.05975244903564453, 0.059665119171142575, 0.059551742553710936, 0.05959065628051758, 0.059625473022460934, 0.05961884689331055, 0.05968329620361328, 0.059641857147216794, 0.059463680267333986, 0.05964915084838867, 0.059722625732421875, 0.05977436828613281, 0.05974883270263672, 0.05972918319702149, 0.059829086303710935, 0.059837535858154295, 0.05978179168701172, 0.05987558364868164, 0.05973376083374023, 0.05975020980834961, 0.05976518249511719, 0.05978131103515625, 0.05981158447265625, 0.0599466552734375, 0.059787681579589844, 0.05979340744018555, 0.05986681747436524, 0.05991862487792969, 0.059799457550048826, 0.05989593505859375, 0.06002678298950195, 0.06033216094970703, 0.0602191047668457, 0.06021459197998047, 0.059898815155029296, 0.059830303192138674, 0.05973603057861328, 0.05974854278564453, 0.05982099151611328, 0.059937664031982425, 0.05986729431152344, 0.05982191848754883, 0.05982003021240234, 0.059907615661621096, 0.05986288070678711, 0.06142083358764648, 0.05956003189086914, 0.05936374282836914, 0.05936873626708984, 0.05948409652709961, 0.059646976470947265, 0.0594637451171875, 0.05937350463867187, 0.0594634895324707, 0.059617568969726566, 0.05950864028930664, 0.059549503326416016, 0.059523136138916015, 0.059603073120117187, 0.05960902404785156, 0.05960300827026367, 0.05967824172973633, 0.05990553665161133, 0.05957660675048828, 0.05957292938232422, 0.059529216766357425, 0.05960819244384766, 0.05959756851196289, 0.05957030487060547, 0.05961523056030273, 0.059807743072509766, 0.05974835205078125, 0.05978217697143555, 0.05975904083251953, 0.05990806579589844, 0.059922080993652344, 0.059835296630859375, 0.05995248031616211, 0.059907936096191404, 0.05981267166137695, 0.05984188842773437, 0.05974492645263672, 0.059813663482666014, 0.059611358642578126, 0.05966438293457031, 0.05963292694091797, 0.05957436752319336, 0.05961587142944336, 0.05975859069824219, 0.059795391082763674, 0.059870655059814454, 0.059902591705322264, 0.059950241088867186, 0.059896671295166015, 0.06016543960571289, 0.05992435073852539, 0.06003558349609375, 0.05999811172485352, 0.06001913452148438, 0.059893726348876956, 0.05987942504882812, 0.05980979156494141, 0.05983846282958984, 0.05987311935424805, 0.05997910308837891, 0.05993247985839844, 0.05996239852905273, 0.06006576156616211, 0.061601856231689456, 0.05962998580932617, 0.05954470443725586, 0.059491199493408205, 0.05944630432128906, 0.05937660980224609, 0.059512832641601565, 0.05942272186279297, 0.059420894622802735, 0.0594409294128418, 0.05945328140258789, 0.05948963165283203, 0.05959123229980469, 0.05963187026977539, 0.06007807922363281, 0.05975356674194336, 0.05986601638793945, 0.05985827255249023, 0.05969919967651367, 0.05959952163696289, 0.059612415313720704, 0.05957097625732422, 0.05962732696533203, 0.059641246795654294, 0.0596234245300293, 0.05970774459838867, 0.05968716812133789, 0.05977487945556641, 0.05989401626586914, 0.059791358947753906, 0.059652095794677736, 0.059734016418457034, 0.05993983840942383, 0.05992755126953125, 0.05987936019897461, 0.05988351821899414, 0.05978521728515625, 0.059813953399658205, 0.05974393463134765, 0.05974809646606445, 0.059740734100341794, 0.05992819213867188, 0.05986956787109375, 0.05983846282958984, 0.05996953582763672, 0.06002687835693359, 0.059936767578125, 0.059842750549316405, 0.06024579238891602, 0.06024512100219727, 0.0601317138671875, 0.06008067321777344, 0.0600777587890625, 0.060033344268798826, 0.05992816162109375, 0.05990646362304688, 0.06018191909790039, 0.05991238403320313, 0.05979347229003906, 0.05977737426757813, 0.05980160140991211, 0.05995280075073242, 0.05994915390014648]",tokens/s,16.733779289116644,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,739.258368,3450.79808,0.0,3055.550464,2937.680896,s,1,7.3439462890625,7.3439462890625,0.0,7.3439462890625,7.3439462890625,7.3439462890625,7.3439462890625,[7.3439462890625],,kWh,7.681751145829215e-06,8.40129576004978e-07,3.286391518003695e-06,1.1808272239837887e-05,,MB,1068.863488,3520.004096,0.0,3114.27072,2817.473024,s,10,2.6321105651855463,0.2632110565185547,0.002689435497496622,0.26245011901855464,0.26671708374023434,0.26688536682128905,0.2670199932861328,"[0.26238107299804686, 0.2625191650390625, 0.26112960815429687, 0.26030831909179686, 0.2659143371582031, 0.25960931396484377, 0.26705364990234376, 0.26563711547851565, 0.2666796875, 0.2608782958984375]",tokens/s,972.603519723168,kWh,7.710339589473723e-06,8.499682402763044e-07,5.08705085326314e-06,1.3647358683013168e-05,tokens/kWh,18758208.525627933,MB,1094.914048,3520.004096,0.0,3114.27072,2877.80864,s,10,11.568907958984372,1.1568907958984376,0.0022785457809861944,1.1568141479492189,1.1604347778320312,1.1604911926269532,1.1605363244628906,"[1.1604222412109375, 1.15336181640625, 1.15709375, 1.1544727783203126, 1.1566710205078126, 1.160547607421875, 1.156957275390625, 1.1546573486328124, 1.156302001953125, 1.158422119140625]",tokens/s,54.45630670012757,kWh,3.367687294385985e-05,3.7132154301009313e-06,2.2316998847736745e-05,5.970708722169752e-05,tokens/kWh,1055151.1207719047,,s,630,11.56644199371338,0.01835943173605298,0.0003209969920466255,0.018289616584777832,0.018546284675598143,0.0187432110786438,0.019744583721160894,"[0.019453887939453126, 0.018830528259277345, 0.01853696060180664, 0.018365087509155272, 0.018214624404907228, 0.01823315238952637, 0.01832512092590332, 0.01828883171081543, 0.018188735961914063, 0.018196352005004884, 0.018296735763549805, 0.018154783248901366, 0.018243871688842773, 0.01816636848449707, 0.018135232925415037, 0.018240959167480468, 0.018158111572265625, 0.018204383850097657, 0.018325632095336913, 0.018389152526855468, 0.018384735107421876, 0.01846067237854004, 0.0198656005859375, 0.01984102439880371, 0.018390335083007813, 0.018277088165283204, 0.018292800903320312, 0.018261920928955077, 0.018371904373168945, 0.01853004837036133, 0.018463680267333984, 0.01850102424621582, 0.018246240615844726, 0.01829020881652832, 0.018315807342529297, 0.01853593635559082, 0.0183055362701416, 0.018237567901611327, 0.018239295959472657, 0.01830297660827637, 0.018343936920166014, 0.01822275161743164, 0.01828803253173828, 0.018283456802368165, 0.01830873680114746, 0.018313600540161134, 0.018397184371948243, 0.01855414390563965, 0.018504512786865233, 0.018479007720947266, 0.018550783157348632, 0.018451839447021483, 0.018412160873413085, 0.018460159301757813, 0.01839699172973633, 0.018536256790161132, 0.01848566436767578, 0.018379232406616212, 0.018358272552490236, 0.018347936630249022, 0.018329376220703124, 0.018392608642578124, 0.018329727172851563, 0.019767904281616212, 0.01886630439758301, 0.01852332878112793, 0.01838368034362793, 0.018229248046875, 0.018263168334960937, 0.018137983322143555, 0.01817804718017578, 0.018249727249145507, 0.018104320526123048, 0.018143072128295898, 0.018239648818969726, 0.018147232055664063, 0.018089855194091797, 0.01811244773864746, 0.018112384796142578, 0.01812931251525879, 0.018153472900390624, 0.018151071548461913, 0.018116767883300782, 0.01916876792907715, 0.018240032196044923, 0.01825939178466797, 0.018201311111450194, 0.018190336227416993, 0.018190336227416993, 0.01817804718017578, 0.018300256729125976, 0.01826220893859863, 0.018134880065917968, 0.018178688049316407, 0.018118656158447266, 0.018307104110717773, 0.018170015335083008, 0.01837808036804199, 0.018197151184082033, 0.01817990493774414, 0.018240991592407226, 0.01823798370361328, 0.01827235221862793, 0.01822096061706543, 0.018210271835327148, 0.018172447204589843, 0.01827599906921387, 0.018237791061401366, 0.01822710418701172, 0.01826348876953125, 0.018206687927246095, 0.018285247802734376, 0.018279455184936524, 0.018396127700805665, 0.01829478454589844, 0.018339168548583983, 0.018384639739990234, 0.018406303405761718, 0.018521631240844726, 0.018417823791503907, 0.01848556709289551, 0.018378751754760742, 0.018345407485961914, 0.018546239852905273, 0.018379776000976563, 0.01834592056274414, 0.019687488555908204, 0.018814207077026367, 0.018500192642211914, 0.01828659248352051, 0.01818435287475586, 0.01825584030151367, 0.0180861759185791, 0.01811404800415039, 0.018075103759765624, 0.01810518455505371, 0.018165760040283203, 0.01836025619506836, 0.01811414337158203, 0.018104736328125, 0.018167808532714845, 0.018744895935058594, 0.019987136840820312, 0.019451263427734376, 0.01813747215270996, 0.01819647979736328, 0.018137088775634767, 0.018198528289794923, 0.01819148826599121, 0.018149728775024413, 0.018317855834960938, 0.018155519485473632, 0.018275936126708983, 0.0182706241607666, 0.01825529670715332, 0.018264223098754882, 0.018223520278930663, 0.01828976058959961, 0.018393375396728515, 0.01833184051513672, 0.018155168533325196, 0.018279296875, 0.018202272415161133, 0.01826201629638672, 0.018218399047851563, 0.018207712173461912, 0.01820044708251953, 0.0181777286529541, 0.01820198440551758, 0.018498495101928712, 0.01827840042114258, 0.018233343124389647, 0.01822105598449707, 0.01830297660827637, 0.01827020835876465, 0.018379968643188478, 0.018319328308105468, 0.018445152282714844, 0.01840447998046875, 0.018498432159423827, 0.018579456329345705, 0.018525888442993164, 0.01848521614074707, 0.01847881507873535, 0.018461376190185546, 0.01853398323059082, 0.018358911514282227, 0.018388864517211913, 0.01829052734375, 0.01924390411376953, 0.018632095336914064, 0.018447071075439452, 0.018308191299438475, 0.018262624740600586, 0.018225151062011717, 0.0180731201171875, 0.01809401512145996, 0.01814790344238281, 0.018214912414550782, 0.018124544143676757, 0.018218816757202147, 0.018151872634887694, 0.018225151062011717, 0.01819443130493164, 0.018356224060058594, 0.018220895767211913, 0.018206880569458007, 0.018116607666015624, 0.018200159072875977, 0.018231296539306642, 0.01842598342895508, 0.018198816299438477, 0.018211904525756835, 0.01816419219970703, 0.01823967933654785, 0.01822559928894043, 0.01823289680480957, 0.018163904190063477, 0.018222623825073243, 0.01816428756713867, 0.018370559692382812, 0.018294015884399415, 0.018372480392456054, 0.0183604793548584, 0.01831599998474121, 0.018300832748413084, 0.01837065505981445, 0.01823539161682129, 0.018266111373901366, 0.018211904525756835, 0.018289600372314453, 0.018324960708618165, 0.018330144882202148, 0.018253055572509766, 0.01826278305053711, 0.018278079986572264, 0.018397504806518555, 0.018386943817138672, 0.01836851119995117, 0.018331647872924805, 0.018429439544677736, 0.01839923286437988, 0.018561119079589843, 0.018417888641357422, 0.018688192367553712, 0.018374656677246092, 0.018471200942993163, 0.01852582359313965, 0.018583263397216797, 0.018430335998535156, 0.018493440628051756, 0.018388256072998047, 0.019920671463012695, 0.019418975830078126, 0.018680192947387694, 0.018445472717285156, 0.01834480094909668, 0.018225151062011717, 0.01832352066040039, 0.018296512603759765, 0.018256128311157225, 0.01824947166442871, 0.018143487930297852, 0.01812227249145508, 0.018078176498413086, 0.018151071548461913, 0.018390752792358397, 0.0181429443359375, 0.018141120910644532, 0.018113504409790038, 0.018273759841918945, 0.018268159866333008, 0.018188831329345703, 0.01816166305541992, 0.018621856689453126, 0.018188896179199218, 0.018192800521850586, 0.018207679748535155, 0.018196863174438478, 0.018162975311279295, 0.018192895889282225, 0.018260480880737305, 0.018288639068603514, 0.018251264572143554, 0.018283008575439453, 0.018249887466430664, 0.01823030471801758, 0.018250560760498045, 0.01829478454589844, 0.018269664764404298, 0.01827280044555664, 0.018268159866333008, 0.018311168670654295, 0.018414880752563475, 0.01833462333679199, 0.018227008819580077, 0.018296831130981444, 0.018272256851196288, 0.018333120346069334, 0.01839366340637207, 0.018423999786376953, 0.01839286422729492, 0.018361568450927734, 0.018349056243896485, 0.018536224365234374, 0.018741151809692384, 0.018443391799926757, 0.01846784019470215, 0.018459903717041017, 0.018608896255493165, 0.018515552520751953, 0.01834435272216797, 0.018333311080932616, 0.018378400802612306, 0.018428512573242187, 0.01960960006713867, 0.018894847869873048, 0.01864076805114746, 0.018396863937377928, 0.01821446418762207, 0.018225471496582032, 0.018145439147949218, 0.018182559967041014, 0.018228607177734377, 0.01814790344238281, 0.018217023849487306, 0.01817366409301758, 0.018188352584838866, 0.01827043151855469, 0.01821696090698242, 0.018155296325683593, 0.01822492790222168, 0.018319807052612304, 0.018386335372924806, 0.018415647506713866, 0.018256351470947264, 0.018255231857299804, 0.018138944625854494, 0.018260896682739256, 0.0183045768737793, 0.018299327850341798, 0.018298879623413086, 0.01827436828613281, 0.01820460891723633, 0.018488895416259764, 0.018288383483886717, 0.018250431060791016, 0.018181535720825197, 0.01825424003601074, 0.018218591690063478, 0.018301536560058593, 0.01820467185974121, 0.018259967803955078, 0.018282112121582032, 0.018393184661865233, 0.01848758316040039, 0.018542015075683593, 0.021207616806030272, 0.018765823364257812, 0.018479103088378905, 0.01841766357421875, 0.018520320892333984, 0.018386016845703124, 0.01827702331542969, 0.018343936920166014, 0.01840332794189453, 0.018583839416503906, 0.01858460807800293, 0.01841231918334961, 0.01863462448120117, 0.01839926338195801, 0.0184597110748291, 0.018508384704589844, 0.01838729667663574, 0.018396480560302735, 0.018436800003051756, 0.018476736068725585, 0.018506048202514648, 0.019605951309204103, 0.019136512756347656, 0.01873945617675781, 0.01846451187133789, 0.018296831130981444, 0.0182825927734375, 0.018261920928955077, 0.018325504302978517, 0.018173952102661133, 0.01813827133178711, 0.01819343948364258, 0.018146976470947266, 0.01817795181274414, 0.018106048583984374, 0.01817888069152832, 0.018148128509521484, 0.018239967346191405, 0.018333471298217774, 0.018268896102905274, 0.018224992752075196, 0.018268512725830077, 0.018243392944335936, 0.01820057678222656, 0.018336864471435548, 0.018174879074096678, 0.018181535720825197, 0.018180320739746094, 0.0182030086517334, 0.01832246398925781, 0.018213855743408204, 0.01823299217224121, 0.018257728576660158, 0.018354463577270507, 0.018555135726928712, 0.01847222328186035, 0.01841744041442871, 0.018292831420898437, 0.018260448455810548, 0.01829052734375, 0.018235200881958007, 0.018256032943725586, 0.018210752487182617, 0.0182806396484375, 0.018275871276855468, 0.01835238456726074, 0.01826883125305176, 0.018274303436279296, 0.018284543991088868, 0.018354175567626953, 0.01838489532470703, 0.018422975540161132, 0.018328096389770506, 0.018657087326049804, 0.01851430320739746, 0.018394880294799805, 0.01840995216369629, 0.018582592010498045, 0.01836934471130371, 0.018296192169189453, 0.01834566307067871, 0.018328447341918946, 0.018535999298095702, 0.019448320388793947, 0.019371519088745116, 0.018810911178588866, 0.01856787109375, 0.018382303237915038, 0.018267711639404296, 0.018181951522827148, 0.018045024871826174, 0.018043296813964844, 0.01807200050354004, 0.018036800384521483, 0.01808332824707031, 0.018125247955322266, 0.01801420783996582, 0.01801625633239746, 0.01823744010925293, 0.018078720092773438, 0.01812761688232422, 0.018141311645507814, 0.018135168075561522, 0.018102272033691406, 0.018104320526123048, 0.018193471908569337, 0.018127552032470705, 0.018102527618408203, 0.018108415603637695, 0.018481151580810547, 0.01951900863647461, 0.018546688079833985, 0.018257919311523436, 0.018321887969970703, 0.018427616119384767, 0.018204959869384765, 0.018239168167114257, 0.01843132781982422, 0.018236703872680664, 0.01811404800415039, 0.018187488555908203, 0.01828963279724121, 0.01835212707519531, 0.018501312255859374, 0.018237760543823242, 0.01828220748901367, 0.01820086479187012, 0.018354175567626953, 0.018368543624877928, 0.018208703994750976, 0.018222143173217773, 0.018323551177978514, 0.018485536575317384, 0.01850569534301758, 0.01850022315979004, 0.018366464614868162, 0.0183767032623291, 0.018483327865600585, 0.018435007095336915, 0.01855526351928711, 0.018348415374755858, 0.018546880722045897, 0.018314720153808594, 0.018475391387939452, 0.018448671340942382, 0.018421472549438475, 0.01836828804016113, 0.01953596878051758, 0.01903545570373535, 0.018678112030029295, 0.01847270393371582, 0.018279008865356446, 0.018192384719848635, 0.018163711547851562, 0.018322656631469727, 0.01822115135192871, 0.018344640731811523, 0.018388351440429686, 0.01833228874206543, 0.018481151580810547, 0.01835212707519531, 0.018696191787719727, 0.01840153694152832, 0.01828428840637207, 0.018237056732177733, 0.018213375091552735, 0.018179616928100585, 0.01824188804626465, 0.018106367111206053, 0.01816991996765137, 0.01833568000793457, 0.018694143295288086, 0.018351551055908202, 0.01835475158691406, 0.01827164840698242, 0.018219743728637695, 0.018211936950683592, 0.018237344741821288, 0.018387840270996093, 0.018210079193115233, 0.01819107246398926, 0.01822892761230469, 0.018198495864868165, 0.018346208572387696, 0.018391168594360352, 0.018366464614868162, 0.018323455810546875, 0.0182108154296875, 0.01823766326904297, 0.018157407760620116, 0.018175935745239256, 0.01824563217163086, 0.01819647979736328, 0.018183839797973632, 0.018283039093017577, 0.01824924850463867, 0.0182989444732666, 0.01838307189941406, 0.018414976119995118, 0.01850227165222168, 0.01844428825378418, 0.018307104110717773, 0.018318431854248047, 0.018342720031738282, 0.01848860740661621, 0.018481952667236328, 0.018446079254150392, 0.01841177558898926, 0.018291711807250977, 0.018338048934936523, 0.019400863647460936, 0.018782207489013672, 0.018579391479492186, 0.018427967071533203, 0.018279808044433594, 0.018155616760253908, 0.01806800079345703, 0.018061216354370118, 0.01883145523071289, 0.018276351928710938, 0.01805721664428711, 0.018070592880249023, 0.018035648345947265, 0.018136287689208986, 0.018141759872436523, 0.01809667205810547, 0.01801593589782715, 0.018129215240478516, 0.018242496490478516, 0.018379520416259766, 0.018542400360107424, 0.018299072265625, 0.018155519485473632, 0.01817215919494629, 0.018267135620117187, 0.01833839988708496, 0.01826972770690918, 0.018170560836791992, 0.018120800018310547, 0.018116640090942382, 0.018321056365966797, 0.018155839920043944, 0.01816582489013672, 0.01814313507080078, 0.018141056060791017, 0.018317312240600587, 0.018141183853149414, 0.018183231353759766, 0.018112991333007814, 0.018133216857910157, 0.021786880493164063, 0.01957683181762695, 0.018312736511230467, 0.01821129608154297, 0.01817190361022949, 0.018241535186767577, 0.018714399337768556, 0.018602207183837892, 0.018382848739624022, 0.01840460777282715, 0.018228992462158203, 0.018355199813842774, 0.018331680297851562, 0.018513343811035157, 0.01847555160522461, 0.01839030456542969, 0.01856988716125488, 0.018596960067749024, 0.018422271728515623, 0.018411455154418947, 0.018291072845458986, 0.018446495056152343, 0.018296831130981444]",tokens/s,54.46791678395302,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mixtral,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 890, in __init__ self.model = OPTModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 822, in __init__ self.decoder = OPTDecoder(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in __init__ self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 373, in __init__ self.self_attn = OPT_ATTENTION_CLASSES[config._attn_implementation](config=config, is_decoder=True) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 115, in __init__ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 98.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 44.12 MiB is free. Process 125647 has 14.70 GiB memory in use. Of the allocated memory 14.58 GiB is allocated by PyTorch, and 3.80 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2_moe,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 1203, in __init__ self.model = Qwen2MoeModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 977, in __init__ [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 977, in [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 750, in __init__ self.self_attn = QWEN2MOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 349, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 12.12 MiB is free. Process 93552 has 14.73 GiB memory in use. Of the allocated memory 12.32 GiB is allocated by PyTorch, and 2.30 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,815.140864,3354.329088,0.0,2959.081472,2942.567424,s,1,7.48135009765625,7.48135009765625,0.0,7.48135009765625,7.48135009765625,7.48135009765625,7.48135009765625,[7.48135009765625],,kWh,1.0317070429154758e-05,1.1307956339052472e-06,3.3486137899982338e-06,1.4796479853058239e-05,,MB,1108.537344,3545.16992,0.0,3139.436544,3105.830912,s,10,2.5526253204345704,0.25526253204345706,0.0032615790050734743,0.254351676940918,0.2591282501220703,0.26135854339599607,0.26314277801513675,"[0.25863262939453124, 0.2520792694091797, 0.2542895355224609, 0.2635888366699219, 0.25307455444335936, 0.2544411163330078, 0.252842041015625, 0.254413818359375, 0.255574462890625, 0.25368905639648437]",tokens/s,1002.8890568100194,kWh,7.693318503070439e-06,8.48431306636885e-07,5.088183895105415e-06,1.3629933704812739e-05,tokens/kWh,18782189.667555477,MB,1134.329856,3587.11296,0.0,3181.379584,3162.0096,s,10,13.320837524414063,1.3320837524414064,0.010960308835285407,1.3341849365234375,1.3424161987304688,1.3445538635253906,1.346263995361328,"[1.3348258056640625, 1.329916259765625, 1.3039884033203124, 1.341941162109375, 1.3466915283203125, 1.3388785400390626, 1.3343978271484376, 1.3339720458984374, 1.3292396240234374, 1.326986328125]",tokens/s,47.29432356226501,kWh,3.850215672317936e-05,4.246395864887071e-06,2.49971735064944e-05,6.774572609456083e-05,tokens/kWh,929947.9632421881,,s,630,13.317967199325548,0.021139630475119936,0.0004475622198116647,0.021108351707458495,0.021405736923217775,0.021646073341369625,0.023140482158660904,"[0.021833984375, 0.021306880950927733, 0.021195552825927735, 0.02118454360961914, 0.021015647888183595, 0.021033056259155275, 0.020974239349365233, 0.02094095993041992, 0.021659648895263672, 0.02223865509033203, 0.021121599197387694, 0.021217248916625978, 0.021082304000854493, 0.020973407745361328, 0.02104934310913086, 0.021352127075195314, 0.021195072174072266, 0.021053440093994142, 0.02337785530090332, 0.02159212875366211, 0.02106777572631836, 0.021054975509643553, 0.0210068473815918, 0.021184511184692383, 0.02147737693786621, 0.021200895309448242, 0.021020671844482423, 0.020979711532592774, 0.020916223526000977, 0.021108863830566406, 0.02112499237060547, 0.0210882568359375, 0.02117849540710449, 0.02107187271118164, 0.021050432205200195, 0.02100511932373047, 0.02101641654968262, 0.021037216186523437, 0.02063564872741699, 0.02084864044189453, 0.02136911964416504, 0.02136444854736328, 0.021158912658691405, 0.021185535430908203, 0.021143552780151367, 0.021073919296264648, 0.02111052894592285, 0.02115814399719238, 0.02109644889831543, 0.020907424926757814, 0.02106540870666504, 0.02101340866088867, 0.021019712448120117, 0.020785184860229493, 0.020589471817016602, 0.0209215030670166, 0.022244192123413085, 0.021233375549316407, 0.021301536560058593, 0.02109971237182617, 0.021086271286010743, 0.021033504486083984, 0.021063455581665037, 0.021380319595336914, 0.020991104125976563, 0.021048704147338868, 0.020976415634155275, 0.02112892723083496, 0.02088083267211914, 0.020973600387573243, 0.020910335540771485, 0.020911455154418945, 0.020947807312011717, 0.020795263290405274, 0.020844736099243165, 0.021308639526367187, 0.021358816146850586, 0.021047903060913087, 0.020997535705566405, 0.020933216094970702, 0.020958335876464843, 0.021136159896850585, 0.021221664428710936, 0.021040800094604493, 0.021117088317871093, 0.021107839584350585, 0.02110323143005371, 0.021239423751831056, 0.021079872131347658, 0.020884288787841796, 0.0211494083404541, 0.021518815994262697, 0.022140384674072266, 0.021156192779541016, 0.02117251205444336, 0.02138412857055664, 0.021217472076416017, 0.020951648712158204, 0.021546527862548827, 0.021117408752441405, 0.02133363151550293, 0.021086591720581055, 0.021157087326049803, 0.020970079421997072, 0.020967008590698243, 0.021233247756958007, 0.021285888671875, 0.02114460754394531, 0.021117408752441405, 0.021198911666870116, 0.021263008117675782, 0.020953216552734376, 0.02087286376953125, 0.020772159576416014, 0.020996799468994142, 0.02124595260620117, 0.02109235191345215, 0.02108201599121094, 0.021047199249267578, 0.021129440307617188, 0.021151519775390624, 0.021106624603271486, 0.021313056945800782, 0.02098454475402832, 0.02085500717163086, 0.020627231597900392, 0.025465856552124022, 0.021867679595947265, 0.020703296661376953, 0.02128771209716797, 0.020574207305908202, 0.020930656433105467, 0.020615072250366212, 0.020625024795532226, 0.020816255569458007, 0.020501855850219727, 0.020576927185058595, 0.020494335174560546, 0.020558847427368163, 0.020536319732666015, 0.020864831924438478, 0.020586687088012694, 0.02050009536743164, 0.020443519592285155, 0.0204202880859375, 0.02048646354675293, 0.020508096694946288, 0.020478111267089844, 0.02050089645385742, 0.020532928466796874, 0.020633535385131838, 0.020799871444702148, 0.020707328796386718, 0.02069708824157715, 0.02052230453491211, 0.02055027198791504, 0.020664384841918945, 0.02058448028564453, 0.020551647186279297, 0.020512767791748047, 0.020531200408935548, 0.020485664367675783, 0.02046614456176758, 0.020410367965698242, 0.02046771240234375, 0.020534271240234374, 0.02051584053039551, 0.020463615417480468, 0.020531200408935548, 0.020572160720825194, 0.020596736907958983, 0.020590591430664062, 0.02063564872741699, 0.020537343978881836, 0.020507776260375976, 0.020572736740112306, 0.021655231475830077, 0.020709856033325195, 0.020465824127197267, 0.020414464950561522, 0.020525056838989256, 0.020492000579833983, 0.020572160720825194, 0.02050281524658203, 0.02046335983276367, 0.02056550407409668, 0.020781824111938477, 0.020545536041259766, 0.020535232543945313, 0.02125619125366211, 0.021133279800415038, 0.021141536712646486, 0.02124799919128418, 0.021296127319335938, 0.021138431549072266, 0.02128428840637207, 0.021332735061645507, 0.021277568817138673, 0.021272863388061523, 0.0212957763671875, 0.021181535720825196, 0.021203872680664062, 0.02129052734375, 0.021238239288330078, 0.02134534454345703, 0.021300224304199217, 0.022749120712280274, 0.02287513542175293, 0.02124083137512207, 0.021333471298217773, 0.02170217514038086, 0.022010879516601564, 0.02146214485168457, 0.021266815185546874, 0.02122217559814453, 0.021153184890747072, 0.021186880111694336, 0.021448703765869142, 0.02124799919128418, 0.021207040786743164, 0.021253599166870116, 0.02104368019104004, 0.02105708885192871, 0.02120083236694336, 0.021190271377563477, 0.021177280426025392, 0.021171871185302733, 0.021121120452880858, 0.021266687393188478, 0.021147327423095705, 0.02116640090942383, 0.021195808410644532, 0.021153087615966796, 0.02103875160217285, 0.02104265594482422, 0.021388992309570313, 0.021577856063842774, 0.021409984588623046, 0.021238304138183593, 0.021200992584228515, 0.02117827224731445, 0.021106719970703125, 0.021207008361816406, 0.021103872299194335, 0.021134336471557616, 0.021362272262573243, 0.021135200500488283, 0.021229888916015623, 0.021364543914794924, 0.021190847396850586, 0.021127168655395507, 0.0210882568359375, 0.021634880065917968, 0.021311103820800783, 0.02136025619506836, 0.021177248001098634, 0.02107187271118164, 0.02127052879333496, 0.021209087371826172, 0.021190271377563477, 0.021202592849731444, 0.02115247917175293, 0.021182207107543944, 0.021278751373291015, 0.02121340751647949, 0.021122432708740233, 0.021219167709350586, 0.021351200103759765, 0.022511135101318358, 0.02142665672302246, 0.02135856056213379, 0.021226655960083007, 0.021185407638549803, 0.021075679779052735, 0.021219615936279298, 0.02122528076171875, 0.021108991622924806, 0.02101478385925293, 0.021200576782226564, 0.021214879989624024, 0.0214052791595459, 0.021123199462890624, 0.021260927200317383, 0.021169408798217774, 0.021069631576538086, 0.023248863220214844, 0.0233604793548584, 0.021357952117919923, 0.02140985679626465, 0.02125062370300293, 0.021296735763549804, 0.0215513916015625, 0.02125632095336914, 0.02267087936401367, 0.021575935363769533, 0.021428287506103514, 0.021313247680664064, 0.02131603240966797, 0.021181568145751953, 0.021787519454956054, 0.02124492835998535, 0.021115135192871094, 0.02109913635253906, 0.021289087295532225, 0.02145484733581543, 0.0213309440612793, 0.02144358444213867, 0.021247711181640625, 0.021168415069580077, 0.0211167049407959, 0.021125343322753905, 0.021087520599365233, 0.02134204864501953, 0.021276895523071288, 0.021254816055297852, 0.021783199310302735, 0.021296543121337892, 0.02130601692199707, 0.02127257537841797, 0.021301248550415038, 0.021168127059936523, 0.02126857566833496, 0.021217344284057617, 0.021465951919555665, 0.021345279693603517, 0.02130534362792969, 0.021268672943115234, 0.02139731216430664, 0.022196224212646484, 0.02129305648803711, 0.021118688583374023, 0.021364511489868163, 0.021380992889404298, 0.021574272155761718, 0.02125823974609375, 0.021190656661987304, 0.021127168655395507, 0.02108415985107422, 0.021103776931762696, 0.021154655456542968, 0.021229087829589845, 0.02126019287109375, 0.021135295867919922, 0.021205631256103516, 0.021215232849121093, 0.02131865692138672, 0.021363712310791014, 0.021189823150634765, 0.02106822395324707, 0.02113692855834961, 0.0211812801361084, 0.0212457275390625, 0.02119830322265625, 0.02114841651916504, 0.020973567962646485, 0.021064735412597655, 0.021056480407714843, 0.021204992294311522, 0.021129215240478515, 0.021364160537719726, 0.02106835174560547, 0.021114879608154297, 0.02123161506652832, 0.0211615047454834, 0.021156320571899413, 0.021202943801879884, 0.02113865661621094, 0.021184736251831055, 0.02124473571777344, 0.021122400283813476, 0.021099199295043947, 0.02109561538696289, 0.021012832641601562, 0.021196992874145507, 0.02123161506652832, 0.022130687713623046, 0.021125247955322266, 0.021128480911254882, 0.02150399971008301, 0.02106915283203125, 0.021060447692871093, 0.020957183837890626, 0.02116783905029297, 0.021106624603271486, 0.02112246322631836, 0.021028959274291992, 0.02072812843322754, 0.021128992080688476, 0.021239839553833007, 0.021026912689208983, 0.021003103256225585, 0.020920095443725587, 0.020948223114013672, 0.020926752090454102, 0.02120137596130371, 0.02097727966308594, 0.020945056915283203, 0.020927871704101562, 0.021322080612182617, 0.020916351318359373, 0.02105209541320801, 0.020932287216186524, 0.020932607650756836, 0.021143327713012694, 0.021059200286865233, 0.021389919281005858, 0.021180383682250975, 0.021092256546020507, 0.021167552947998047, 0.021328575134277345, 0.02150547218322754, 0.02205936050415039, 0.021088064193725584, 0.020908447265625, 0.020983808517456053, 0.021020320892333983, 0.021470815658569335, 0.021037824630737306, 0.024286624908447265, 0.023694976806640625, 0.0210994873046875, 0.021122880935668945, 0.021075328826904296, 0.02095552062988281, 0.02068115234375, 0.02089369583129883, 0.021451839447021483, 0.021174495697021484, 0.021015264511108397, 0.021089279174804687, 0.020906816482543944, 0.021061824798583983, 0.021012479782104493, 0.02121478462219238, 0.021096160888671875, 0.021062368392944335, 0.02105958366394043, 0.020977664947509765, 0.020946271896362306, 0.020852544784545898, 0.020812639236450194, 0.021603967666625975, 0.02116441535949707, 0.021301248550415038, 0.021168127059936523, 0.021608448028564452, 0.02220412826538086, 0.021254432678222655, 0.02103500747680664, 0.021045055389404297, 0.021072191238403322, 0.020982656478881836, 0.021497888565063475, 0.020992223739624023, 0.02112588882446289, 0.02106982421875, 0.02084883117675781, 0.021087648391723633, 0.021252511978149414, 0.021145599365234375, 0.0210882568359375, 0.02107404708862305, 0.021006208419799804, 0.021013664245605468, 0.020988767623901367, 0.021276735305786134, 0.02109791946411133, 0.021077728271484374, 0.021059680938720703, 0.02102751922607422, 0.021155712127685546, 0.020973983764648436, 0.021064640045166016, 0.0209846076965332, 0.02143436813354492, 0.02102176094055176, 0.02098681640625, 0.02106777572631836, 0.021339231491088868, 0.02154572868347168, 0.021133472442626953, 0.021022048950195313, 0.02105411148071289, 0.020971519470214844, 0.02125209617614746, 0.021032447814941405, 0.02096998405456543, 0.020973567962646485, 0.021147647857666017, 0.021069055557250978, 0.02108470344543457, 0.021240032196044922, 0.021690624237060547, 0.021812992095947267, 0.021111040115356444, 0.021012224197387696, 0.020943199157714844, 0.021057184219360352, 0.02153385543823242, 0.02139632034301758, 0.021168127059936523, 0.021112831115722656, 0.02104115104675293, 0.021116064071655272, 0.021465087890625, 0.02104934310913086, 0.021317632675170898, 0.021401344299316408, 0.021164287567138673, 0.020992000579833983, 0.021013919830322265, 0.020989568710327148, 0.02105839920043945, 0.020936511993408204, 0.02097555160522461, 0.02079372787475586, 0.02094198417663574, 0.021275487899780274, 0.021153791427612305, 0.02108563232421875, 0.02097823905944824, 0.020971616744995116, 0.02099955177307129, 0.02100399971008301, 0.021025600433349608, 0.02082761573791504, 0.020922208786010744, 0.02202899169921875, 0.021259967803955077, 0.02228665542602539, 0.0210513916015625, 0.0209998722076416, 0.02102617645263672, 0.02117433547973633, 0.021346336364746095, 0.021043935775756837, 0.020899999618530275, 0.021032608032226563, 0.0213240966796875, 0.02104115104675293, 0.02110233688354492, 0.021078239440917967, 0.020967456817626955, 0.02117532730102539, 0.020890592575073242, 0.02086092758178711, 0.021466400146484373, 0.021222047805786133, 0.021151391983032227, 0.020962751388549805, 0.0210599365234375, 0.02111756706237793, 0.020979360580444337, 0.02103273582458496, 0.02095756721496582, 0.020985727310180665, 0.020980031967163085, 0.020983808517456053, 0.020975616455078124, 0.02097260856628418, 0.020999103546142577, 0.02111692810058594, 0.020922176361083983, 0.021043392181396486, 0.021008384704589843, 0.021149696350097655, 0.020944320678710937, 0.02152409553527832, 0.020810144424438477, 0.021338144302368165, 0.0209072322845459, 0.020828224182128905, 0.02098044776916504, 0.020930559158325195, 0.02107792091369629, 0.020764768600463866, 0.020851999282836913, 0.02126483154296875, 0.02117475128173828, 0.021118783950805665, 0.021018527984619142, 0.020957279205322265, 0.021032960891723632, 0.021018016815185548, 0.020867679595947267, 0.02102841567993164, 0.02101043128967285, 0.021172672271728515, 0.021028959274291992, 0.020977567672729493, 0.021052576065063475, 0.02134899139404297, 0.020979328155517576, 0.021035392761230468, 0.021062143325805666, 0.02100387191772461, 0.020889055252075194, 0.020812448501586915, 0.021323263168334963, 0.021208768844604493, 0.021117727279663087, 0.020932031631469727, 0.020933216094970702, 0.021006303787231444, 0.02101203155517578, 0.02131180763244629, 0.024764575958251954, 0.02135785675048828, 0.021234399795532228, 0.021270463943481446, 0.021692224502563476, 0.021104896545410156, 0.022007295608520508, 0.021066240310668945, 0.021188928604125978, 0.021292736053466797, 0.021004703521728514, 0.021165664672851563, 0.02072985649108887, 0.02064793586730957, 0.020494335174560546, 0.02056172752380371, 0.020389503479003906, 0.020437568664550782, 0.020658176422119142, 0.02050048065185547, 0.020569183349609374, 0.020695968627929686, 0.02067865562438965, 0.020507776260375976]",tokens/s,47.304516565553946,, bfloat16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,813.715456,3354.329088,0.0,2959.081472,2942.567424,s,1,7.60247119140625,7.60247119140625,0.0,7.60247119140625,7.60247119140625,7.60247119140625,7.60247119140625,[7.60247119140625],,kWh,1.027498409583245e-05,1.124794598929495e-06,4.711670436002846e-06,1.611144913076479e-05,,MB,1118.08512,3545.16992,0.0,3139.436544,3105.830912,s,10,2.5615629425048834,0.2561562942504883,0.0025241374356524703,0.25539284515380856,0.26039235534667965,0.26045658416748046,0.26050796722412106,"[0.2603780822753906, 0.2574383544921875, 0.2528868408203125, 0.2541678009033203, 0.25575640869140626, 0.2550292816162109, 0.2546710662841797, 0.2536778869628906, 0.2605208129882812, 0.2570364074707031]",tokens/s,999.3898480966645,kWh,7.679832204056866e-06,8.469384555319108e-07,5.085201436578925e-06,1.3611972096167704e-05,tokens/kWh,18806973.610537585,MB,1144.561664,3587.11296,0.0,3181.379584,3162.0096,s,10,13.417264282226563,1.3417264282226564,0.013599975796685194,1.3432182006835938,1.3592529663085937,1.3610109436035156,1.3624173254394532,"[1.3265428466796876, 1.3588623046875, 1.3477608642578125, 1.3466318359375, 1.34207275390625, 1.3443636474609375, 1.3353577880859375, 1.31404443359375, 1.3627689208984375, 1.33885888671875]",tokens/s,46.954430258524575,kWh,3.888306745719286e-05,4.2885395841120465e-06,2.506946157602105e-05,6.824106861732596e-05,tokens/kWh,923197.7352711724,,s,630,13.414208038330063,0.021292393711635042,0.0005596877692547637,0.021259455680847167,0.021615834045410155,0.022005284976959225,0.02318074527740479,"[0.02122380828857422, 0.020987552642822267, 0.02083875274658203, 0.020719200134277343, 0.02167843246459961, 0.0205980167388916, 0.02066633605957031, 0.02083718490600586, 0.020845888137817382, 0.02263644790649414, 0.021711904525756835, 0.020838176727294922, 0.020822015762329102, 0.02083430480957031, 0.02065555191040039, 0.020869695663452148, 0.02089574432373047, 0.0209749755859375, 0.020836544036865235, 0.02113580894470215, 0.021360479354858398, 0.020811935424804688, 0.020969472885131835, 0.02066227149963379, 0.02062131118774414, 0.020551071166992188, 0.02053590393066406, 0.02062950325012207, 0.020549631118774413, 0.021269535064697264, 0.020786144256591796, 0.020676607131958007, 0.020793216705322266, 0.02068809509277344, 0.020581279754638672, 0.020642976760864257, 0.020616031646728514, 0.02067865562438965, 0.020774944305419922, 0.020943904876708986, 0.020870271682739257, 0.020727615356445312, 0.020727807998657227, 0.020917728424072267, 0.021040735244750978, 0.021232160568237304, 0.021495296478271485, 0.021324703216552734, 0.02145052719116211, 0.021397727966308594, 0.02136195182800293, 0.021284927368164064, 0.022167680740356445, 0.021407808303833008, 0.02129484748840332, 0.02139561653137207, 0.021470048904418945, 0.02145155143737793, 0.02151910400390625, 0.021424320220947264, 0.021409887313842774, 0.021597728729248047, 0.021488000869750976, 0.021881311416625977, 0.021443904876708983, 0.02135465621948242, 0.021456735610961914, 0.02142473602294922, 0.021325759887695313, 0.021406976699829102, 0.02133475112915039, 0.02135481643676758, 0.021377952575683593, 0.021386016845703126, 0.022263168334960937, 0.021505760192871093, 0.021564064025878907, 0.021763423919677734, 0.02161552047729492, 0.02145894432067871, 0.02149580764770508, 0.021546016693115233, 0.021470176696777345, 0.021213279724121094, 0.02145471954345703, 0.021467168807983397, 0.022299840927124025, 0.021452831268310546, 0.021343008041381836, 0.021336063385009766, 0.021480640411376952, 0.021420864105224608, 0.02146633529663086, 0.02124880027770996, 0.02123075294494629, 0.0213656005859375, 0.021475040435791015, 0.021487648010253907, 0.02156972885131836, 0.023054399490356446, 0.022042623519897463, 0.02148761558532715, 0.021634592056274413, 0.021317375183105468, 0.02159814453125, 0.021299680709838866, 0.02141747283935547, 0.0214304313659668, 0.021364704132080078, 0.021347007751464843, 0.021420032501220702, 0.021348352432250976, 0.021336063385009766, 0.021317983627319338, 0.021400768280029295, 0.021154272079467774, 0.02126643180847168, 0.02125823974609375, 0.02151628875732422, 0.021640928268432617, 0.02147545623779297, 0.02143657684326172, 0.021393760681152344, 0.021406784057617187, 0.023015232086181642, 0.024418752670288087, 0.02168012809753418, 0.021169279098510744, 0.021162879943847655, 0.021434463500976563, 0.02137868881225586, 0.021133600234985353, 0.021174272537231444, 0.021131263732910157, 0.021227519989013673, 0.021198848724365234, 0.02211862373352051, 0.021614368438720704, 0.021710847854614256, 0.02145075225830078, 0.021223424911499023, 0.02128108787536621, 0.02122659111022949, 0.0211746883392334, 0.021403839111328125, 0.0215118408203125, 0.021544832229614258, 0.02135641670227051, 0.021267040252685547, 0.02140390396118164, 0.021192447662353515, 0.021213184356689452, 0.02110588836669922, 0.02128156852722168, 0.021301248550415038, 0.021151744842529296, 0.021102592468261717, 0.02126665687561035, 0.020952287673950194, 0.024524831771850587, 0.02122707176208496, 0.020874399185180664, 0.021102399826049806, 0.020743488311767578, 0.02100704002380371, 0.022416608810424805, 0.021646112442016602, 0.021581823348999024, 0.022279199600219728, 0.021314527511596678, 0.021263744354248045, 0.02117043113708496, 0.021361024856567382, 0.021446304321289064, 0.02125971221923828, 0.021273151397705078, 0.021256479263305664, 0.021198911666870116, 0.021267967224121095, 0.021387487411499023, 0.021221824645996094, 0.02156732749938965, 0.02130668830871582, 0.021289663314819338, 0.02168422317504883, 0.021261407852172853, 0.021424543380737304, 0.02136252784729004, 0.021185184478759767, 0.02188047981262207, 0.02115190315246582, 0.021336544036865236, 0.021114944458007812, 0.02106572723388672, 0.02136809539794922, 0.021592159271240235, 0.02159881591796875, 0.021263904571533203, 0.0210150089263916, 0.021147680282592774, 0.021376096725463867, 0.021313631057739257, 0.021316608428955077, 0.02214860725402832, 0.021268287658691407, 0.02139187240600586, 0.021180416107177736, 0.021311487197875977, 0.021194944381713866, 0.021243711471557618, 0.021204416275024413, 0.021113407135009764, 0.02130473518371582, 0.021080160140991212, 0.021375423431396486, 0.021497919082641603, 0.021477344512939454, 0.021302623748779295, 0.0215631046295166, 0.021289440155029298, 0.02198358345031738, 0.02294528007507324, 0.02134310340881348, 0.021241216659545897, 0.02128486442565918, 0.021287391662597657, 0.021213119506835937, 0.021202943801879884, 0.02134364891052246, 0.02120355224609375, 0.022134559631347656, 0.021079263687133788, 0.02146611213684082, 0.021729280471801758, 0.021307392120361326, 0.02122547149658203, 0.021153791427612305, 0.02115692710876465, 0.02112403106689453, 0.02127872085571289, 0.02143846321105957, 0.021238912582397462, 0.02117932891845703, 0.021249984741210936, 0.0212541446685791, 0.021048479080200196, 0.02147769546508789, 0.02115135955810547, 0.02103593635559082, 0.021352447509765626, 0.022439071655273438, 0.021257055282592772, 0.021649152755737304, 0.021547359466552736, 0.0215097599029541, 0.02141744041442871, 0.021077024459838868, 0.021036991119384764, 0.02137654495239258, 0.02134009552001953, 0.021148191452026368, 0.021053440093994142, 0.020995264053344728, 0.021138240814208984, 0.021253952026367186, 0.02129859161376953, 0.021215744018554687, 0.02117238426208496, 0.02136457633972168, 0.021090591430664062, 0.021120351791381838, 0.021191328048706055, 0.021397504806518555, 0.02139952087402344, 0.021348384857177733, 0.021336063385009766, 0.021157888412475585, 0.021211135864257814, 0.021332000732421873, 0.021198816299438476, 0.021151744842529296, 0.020967424392700194, 0.02103091239929199, 0.02128281593322754, 0.021331199645996092, 0.022072063446044923, 0.021421760559082032, 0.021137311935424806, 0.021170591354370116, 0.021110784530639647, 0.02126028823852539, 0.021172224044799806, 0.021338111877441408, 0.021437471389770507, 0.021540895462036132, 0.021273536682128905, 0.021254207611083983, 0.021075904846191405, 0.021280128479003905, 0.021259199142456053, 0.021472543716430665, 0.021387680053710938, 0.021560672760009766, 0.021324447631835938, 0.02127769660949707, 0.02110361671447754, 0.021839872360229492, 0.021310848236083986, 0.02146771240234375, 0.02093881607055664, 0.02141788864135742, 0.021553247451782227, 0.02166783905029297, 0.021310623168945313, 0.021184576034545897, 0.02168822479248047, 0.02104470443725586, 0.021189599990844726, 0.021583871841430666, 0.02163408088684082, 0.022155807495117186, 0.021166528701782227, 0.02120412826538086, 0.021271392822265624, 0.02122137641906738, 0.021011680603027345, 0.021085311889648437, 0.021350048065185548, 0.024834367752075197, 0.021546592712402345, 0.02120841598510742, 0.021218048095703126, 0.021567487716674806, 0.02112512016296387, 0.021510143280029297, 0.021736703872680663, 0.021349119186401366, 0.021362176895141603, 0.02142255973815918, 0.021403743743896485, 0.021088191986083984, 0.0212807674407959, 0.021024480819702148, 0.021094688415527342, 0.021202943801879884, 0.021204736709594725, 0.021047552108764647, 0.021127168655395507, 0.02106572723388672, 0.021073919296264648, 0.02088960075378418, 0.02111692810058594, 0.021034112930297853, 0.02130828857421875, 0.020786687850952147, 0.021209152221679687, 0.0214716796875, 0.02141209602355957, 0.021454559326171876, 0.02116217613220215, 0.02119868850708008, 0.021134815216064452, 0.02127324867248535, 0.02127017593383789, 0.021012704849243165, 0.02123776054382324, 0.021180767059326172, 0.02208118438720703, 0.021354143142700194, 0.021305248260498046, 0.020998592376708983, 0.02143436813354492, 0.021390527725219727, 0.021293888092041014, 0.02107151985168457, 0.02122172737121582, 0.02129088020324707, 0.02134614372253418, 0.02181340789794922, 0.0211680965423584, 0.0211343994140625, 0.021046207427978515, 0.02126438331604004, 0.021235712051391603, 0.021006336212158205, 0.021342208862304687, 0.02118377685546875, 0.021199199676513673, 0.021342592239379884, 0.02116761589050293, 0.021182464599609374, 0.02093516731262207, 0.021243072509765624, 0.021455007553100584, 0.021393312454223632, 0.021426048278808594, 0.021234560012817382, 0.021153791427612305, 0.02108940887451172, 0.021180479049682618, 0.02119353675842285, 0.020998144149780275, 0.022128639221191407, 0.021429279327392577, 0.021238527297973632, 0.021395103454589844, 0.022294431686401366, 0.021851903915405275, 0.021373023986816408, 0.021379295349121093, 0.021215839385986326, 0.02130067253112793, 0.021154367446899414, 0.02102681541442871, 0.020940576553344727, 0.020832223892211912, 0.02086265563964844, 0.021137344360351563, 0.020875936508178712, 0.021136959075927733, 0.02103113555908203, 0.021098688125610353, 0.020962560653686523, 0.020986623764038086, 0.021190464019775392, 0.021381183624267577, 0.021098047256469726, 0.020918176651000975, 0.02086524772644043, 0.02102112007141113, 0.021308544158935547, 0.021170751571655273, 0.021203487396240235, 0.021114656448364258, 0.02099836730957031, 0.020975391387939454, 0.02105548858642578, 0.020813695907592772, 0.020861055374145506, 0.020968479156494142, 0.021102783203125, 0.021472000122070314, 0.021866592407226562, 0.02105958366394043, 0.02079689598083496, 0.02075641632080078, 0.020970079421997072, 0.021650560379028322, 0.021046207427978515, 0.02075436782836914, 0.020714719772338866, 0.020769567489624025, 0.021236991882324217, 0.02075315284729004, 0.020750335693359375, 0.020612192153930665, 0.020847488403320312, 0.020883487701416015, 0.02086297607421875, 0.02074985694885254, 0.020619743347167967, 0.020775968551635743, 0.02055062484741211, 0.02057401657104492, 0.02053548812866211, 0.020682687759399413, 0.020643903732299806, 0.020594688415527345, 0.020606752395629882, 0.020705440521240234, 0.020650047302246094, 0.022099967956542968, 0.020821216583251954, 0.020620063781738283, 0.02063155174255371, 0.020683839797973634, 0.020650400161743163, 0.020617599487304687, 0.020750495910644533, 0.020766687393188477, 0.020670719146728515, 0.020709152221679687, 0.02067865562438965, 0.020672416687011717, 0.020721151351928712, 0.020613311767578125, 0.02174118423461914, 0.020697887420654298, 0.02087881660461426, 0.02068662452697754, 0.020760448455810546, 0.020687040328979493, 0.020649856567382812, 0.020766944885253907, 0.020908639907836913, 0.021407743453979493, 0.021163328170776367, 0.020883712768554687, 0.020911840438842772, 0.020646400451660156, 0.020817535400390625, 0.021161951065063477, 0.021058111190795897, 0.020738079071044923, 0.02147737693786621, 0.021331968307495116, 0.021101696014404297, 0.02119708824157715, 0.0213090877532959, 0.02144879913330078, 0.022098783493041993, 0.021712896347045898, 0.023810176849365233, 0.02156844711303711, 0.02154537582397461, 0.02191209602355957, 0.02149580764770508, 0.021452096939086913, 0.021663583755493165, 0.021344287872314453, 0.021490495681762697, 0.02209324836730957, 0.02146566390991211, 0.02143436813354492, 0.021311487197875977, 0.021370880126953123, 0.021312543869018555, 0.021388256072998046, 0.021352447509765626, 0.021579776763916016, 0.021448703765869142, 0.02128691291809082, 0.021403776168823243, 0.021410943984985352, 0.022600160598754884, 0.021603872299194336, 0.021618656158447266, 0.021604415893554687, 0.02153750419616699, 0.021741567611694337, 0.02143027114868164, 0.021327871322631836, 0.021484703063964845, 0.021439327239990234, 0.021381343841552734, 0.02147052764892578, 0.021444608688354492, 0.0214102725982666, 0.02130352020263672, 0.021169952392578125, 0.021264192581176757, 0.021239999771118165, 0.021514240264892577, 0.02162073516845703, 0.02123075294494629, 0.021269344329833986, 0.02109235191345215, 0.021319135665893555, 0.023232351303100585, 0.02972947120666504, 0.021136640548706054, 0.02114761543273926, 0.02138528060913086, 0.020902624130249025, 0.020970592498779295, 0.02103388786315918, 0.02100662422180176, 0.021309440612792968, 0.021105663299560547, 0.02165225601196289, 0.021205087661743165, 0.02127020835876465, 0.021146047592163087, 0.0212807674407959, 0.021237119674682618, 0.021151968002319336, 0.02114761543273926, 0.021168447494506835, 0.020958879470825195, 0.021121503829956055, 0.02102252769470215, 0.021002431869506837, 0.021102304458618163, 0.021176607131958007, 0.02147532844543457, 0.02127462387084961, 0.02127257537841797, 0.021559295654296876, 0.021276416778564452, 0.021177696228027343, 0.021169055938720704, 0.02126233673095703, 0.021067520141601563, 0.020983680725097657, 0.021227615356445313, 0.02118275260925293, 0.021153791427612305, 0.021102592468261717, 0.021391008377075197, 0.0214531192779541, 0.02138319969177246, 0.021313440322875975, 0.022146528244018554, 0.021250688552856445, 0.021180448532104493, 0.021274911880493165, 0.021176223754882813, 0.021135135650634764, 0.021061632156372072, 0.020923839569091798, 0.021052032470703124, 0.021574752807617188, 0.021417823791503907, 0.021141952514648437, 0.021518911361694336, 0.021535999298095704, 0.021588735580444336, 0.021178367614746094, 0.023399456024169922, 0.022023040771484374, 0.021243999481201172, 0.021317472457885744, 0.021016288757324218, 0.021033311843872072, 0.02082195281982422, 0.02060310363769531, 0.0211778564453125, 0.02075276756286621, 0.02058559989929199, 0.020624319076538087]",tokens/s,46.96512818347703,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 286, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 280.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 42.12 MiB is free. Process 21988 has 14.70 GiB memory in use. Of the allocated memory 14.58 GiB is allocated by PyTorch, and 1.64 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 609, in __init__ self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 200.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 164.12 MiB is free. Process 45756 has 14.58 GiB memory in use. Of the allocated memory 14.46 GiB is allocated by PyTorch, and 4.94 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1035.137024,10975.379456,0.0,10580.13184,10162.029568,s,1,11.9223359375,11.9223359375,0.0,11.9223359375,11.9223359375,11.9223359375,11.9223359375,[11.9223359375],,kWh,7.199695445816208e-06,7.769629309695722e-07,3.88500310800205e-06,1.186166148478783e-05,,MB,1304.940544,11094.91712,0.0,10689.183744,9358.065152,s,10,8.74055206298828,0.874055206298828,0.0030499145467565874,0.8741604309082032,0.8765967407226563,0.8782952270507812,0.8796540161132812,"[0.8684814453125, 0.8739532470703125, 0.8738178100585937, 0.8712845458984375, 0.8759263916015625, 0.871088623046875, 0.8799937133789062, 0.8754193725585937, 0.8743676147460937, 0.8762192993164063]",tokens/s,292.88767820974107,kWh,2.5562439670831813e-05,2.8187286797481014e-06,1.693825429133269e-05,4.5319422641912595e-05,tokens/kWh,5648792.175106937,MB,1330.46272,11094.91712,0.0,10689.183744,9397.6704,s,10,30.260364257812498,3.0260364257812498,0.006906549708564813,3.0271842041015624,3.032440185546875,3.0346143798828127,3.0363537353515624,"[3.017893310546875, 3.017557373046875, 3.01461865234375, 3.02799169921875, 3.02494384765625, 3.03678857421875, 3.03181982421875, 3.030417236328125, 3.026376708984375, 3.03195703125]",tokens/s,20.81931316597913,kWh,8.862553406583476e-05,9.774984543296727e-06,5.896827865606729e-05,0.00015736879726519878,tokens/kWh,400333.491103907,,s,630,30.256514354705796,0.048026213261437786,0.00030421240737976484,0.047994447708129884,0.04833654632568359,0.04852303009033203,0.049130749359130865,"[0.04891849517822266, 0.04798441696166992, 0.04778211212158203, 0.0475681266784668, 0.04751385498046875, 0.04756710433959961, 0.04762361526489258, 0.04757183837890625, 0.04763846588134766, 0.04765695953369141, 0.047582942962646486, 0.04776700973510742, 0.04768851089477539, 0.047900543212890626, 0.04771184158325195, 0.047624736785888674, 0.048045406341552736, 0.04780303955078125, 0.04794582366943359, 0.047857566833496096, 0.04783718490600586, 0.048133983612060546, 0.04780252838134766, 0.04798659133911133, 0.047715713500976566, 0.0477949104309082, 0.047590656280517576, 0.047827518463134766, 0.04771648025512695, 0.048003135681152345, 0.04777337646484375, 0.04888739013671875, 0.04814102554321289, 0.04781260681152344, 0.04777983856201172, 0.04798668670654297, 0.0477388801574707, 0.047882240295410154, 0.04790000152587891, 0.04789465713500977, 0.047884990692138675, 0.047994239807128906, 0.04806243133544922, 0.04896979141235352, 0.04839059066772461, 0.04791910552978516, 0.047890430450439454, 0.047652126312255856, 0.04801545715332031, 0.047982814788818356, 0.04804003143310547, 0.04805372619628906, 0.04786057662963867, 0.047751167297363284, 0.04800662231445312, 0.04789072036743164, 0.047798526763916015, 0.047634078979492185, 0.04788054275512695, 0.048056320190429686, 0.04799465560913086, 0.04797872161865235, 0.04788947296142578, 0.048936767578125, 0.04811139297485351, 0.04753654479980469, 0.047512958526611325, 0.04758156967163086, 0.047743198394775394, 0.04771023941040039, 0.04762003326416016, 0.04752297592163086, 0.04779100799560547, 0.04794367980957031, 0.04768767929077149, 0.04777308654785156, 0.04773129653930664, 0.048920574188232424, 0.047726593017578124, 0.04777983856201172, 0.047850784301757814, 0.047559391021728514, 0.04774092864990234, 0.04802969741821289, 0.04813820648193359, 0.04767951965332031, 0.0477388801574707, 0.04767334365844727, 0.047876094818115236, 0.04770406341552735, 0.04779008102416992, 0.048353279113769534, 0.04785587310791015, 0.047701663970947265, 0.04795097732543945, 0.04820256042480469, 0.04795929718017578, 0.04787907028198242, 0.047898624420166014, 0.04792444610595703, 0.04791542434692383, 0.04778140640258789, 0.04795068740844727, 0.04781603240966797, 0.04797507095336914, 0.0481927375793457, 0.047817665100097655, 0.04779401779174805, 0.047833087921142575, 0.04791296005249023, 0.04793139266967773, 0.047967647552490236, 0.047931999206542966, 0.04765081787109375, 0.04801945495605469, 0.04796211242675781, 0.04798831939697266, 0.04779459381103516, 0.04808415985107422, 0.04788716888427735, 0.047923198699951174, 0.04799871826171875, 0.047846881866455075, 0.047991134643554687, 0.04814393615722656, 0.047966911315917966, 0.048801631927490235, 0.04803379058837891, 0.04772975921630859, 0.047713184356689455, 0.04758323287963867, 0.04768153762817383, 0.04747673416137695, 0.047621150970458985, 0.04745929718017578, 0.04759961700439453, 0.04760543823242187, 0.04747043228149414, 0.04771683120727539, 0.048107521057128906, 0.04774256134033203, 0.04758774566650391, 0.04754431915283203, 0.04755580902099609, 0.047473438262939455, 0.04771558380126953, 0.047741439819335936, 0.04776716613769531, 0.04753062438964844, 0.04785712051391602, 0.04784592056274414, 0.047688831329345704, 0.0476864013671875, 0.04777791976928711, 0.04782889556884766, 0.047564640045166015, 0.04756006240844726, 0.04754496002197266, 0.04815238571166992, 0.0498221435546875, 0.04794572830200195, 0.0478699836730957, 0.04760367965698242, 0.04799897766113281, 0.04766515350341797, 0.047816703796386716, 0.04779417419433594, 0.047851520538330077, 0.047662334442138674, 0.04828448104858398, 0.047881919860839846, 0.04785177612304688, 0.04785971069335938, 0.04778406524658203, 0.047932735443115236, 0.04801923370361328, 0.04779292678833008, 0.047922977447509764, 0.0479664306640625, 0.04776937484741211, 0.04810720062255859, 0.04807939147949219, 0.04789209747314453, 0.04802803039550781, 0.048024574279785154, 0.048021663665771486, 0.04806934356689453, 0.04809036636352539, 0.04808793640136719, 0.048917152404785155, 0.04823859024047852, 0.04758937454223633, 0.0478532485961914, 0.04785120010375977, 0.04803417587280273, 0.04773455810546875, 0.04761183929443359, 0.047882110595703124, 0.048399009704589845, 0.04778927993774414, 0.047877185821533205, 0.04773638534545899, 0.047953983306884766, 0.04765910339355469, 0.04790393447875976, 0.04758201599121094, 0.0478474235534668, 0.047777793884277345, 0.048166526794433596, 0.04821347045898437, 0.048218879699707035, 0.047947902679443356, 0.047965248107910155, 0.04796460723876953, 0.04808902359008789, 0.0480846061706543, 0.04782783889770508, 0.048154495239257813, 0.0478394546508789, 0.04801289749145508, 0.047990398406982424, 0.047859584808349606, 0.047952224731445316, 0.04782735824584961, 0.04813020706176758, 0.048027393341064456, 0.04833715057373047, 0.04856614303588867, 0.047978271484375, 0.0481099853515625, 0.047992767333984374, 0.04799283218383789, 0.04799897766113281, 0.04801740646362305, 0.04804636764526367, 0.0483521614074707, 0.048021793365478516, 0.04803142547607422, 0.04805718231201172, 0.04789657592773437, 0.048130046844482424, 0.04825702285766602, 0.048174816131591795, 0.04811932754516601, 0.04817081451416016, 0.04812486267089844, 0.048418815612792966, 0.04820751953125, 0.04812243270874023, 0.04925212860107422, 0.04845977783203125, 0.04827660751342774, 0.04901744079589844, 0.048205249786376955, 0.0476717758178711, 0.047867904663085936, 0.047661056518554686, 0.047615550994873045, 0.04756649780273438, 0.04786460876464844, 0.047884288787841796, 0.047855072021484375, 0.047921791076660156, 0.04789238357543945, 0.04797644805908203, 0.04792835235595703, 0.0478873291015625, 0.04783420944213867, 0.04763536071777344, 0.04792729568481445, 0.04792934417724609, 0.048901729583740235, 0.0485601921081543, 0.048173408508300784, 0.04826931381225586, 0.04796982574462891, 0.047765888214111325, 0.04800931167602539, 0.04767129516601563, 0.047935489654541016, 0.047933441162109375, 0.04797340774536133, 0.04808393478393555, 0.04780803298950195, 0.04801993560791016, 0.047933441162109375, 0.04788864135742187, 0.04811750411987305, 0.04812799835205078, 0.04786742401123047, 0.04802608108520508, 0.04793958282470703, 0.048096702575683596, 0.048000896453857425, 0.047962783813476566, 0.04815372848510742, 0.04791321563720703, 0.04803855895996094, 0.04801923370361328, 0.047943809509277346, 0.04798883056640625, 0.04814137649536133, 0.04801836776733399, 0.04812799835205078, 0.04803379058837891, 0.047890430450439454, 0.04809891128540039, 0.04806492614746094, 0.04824448013305664, 0.048197856903076174, 0.04804816055297852, 0.04813955307006836, 0.04803247833251953, 0.04819968032836914, 0.048121856689453124, 0.049148223876953126, 0.048205825805664064, 0.047836318969726566, 0.04775203323364258, 0.0478267822265625, 0.04773289489746094, 0.0479268798828125, 0.047954334259033206, 0.04792729568481445, 0.0481743049621582, 0.047964897155761715, 0.04796627044677734, 0.04816617584228516, 0.048056896209716794, 0.04815068817138672, 0.04811907196044922, 0.047909343719482425, 0.048236801147460935, 0.047967521667480466, 0.04825980758666992, 0.0482242546081543, 0.0481607666015625, 0.04800102233886719, 0.04791676712036133, 0.04784912109375, 0.04829248046875, 0.04843110275268555, 0.04815052795410156, 0.047981983184814454, 0.048097217559814456, 0.04824044799804687, 0.04806268692016601, 0.048005950927734374, 0.048153472900390626, 0.048202529907226566, 0.048342239379882815, 0.04815353775024414, 0.04839424133300781, 0.048311489105224606, 0.04827628707885742, 0.048527359008789066, 0.048353374481201174, 0.04813737487792969, 0.04829436874389648, 0.048160224914550784, 0.048261470794677734, 0.04810316848754883, 0.04806291198730469, 0.048009185791015624, 0.04827791976928711, 0.048256256103515624, 0.0482966079711914, 0.048244735717773435, 0.048261119842529294, 0.04845363235473633, 0.048611328125, 0.048814079284667966, 0.04883251190185547, 0.04831436920166016, 0.04836966323852539, 0.04862774276733398, 0.04838396835327148, 0.04817667388916016, 0.04935887908935547, 0.048524513244628906, 0.0486506233215332, 0.048002975463867184, 0.04809571075439453, 0.047783935546875, 0.047833087921142575, 0.047736831665039066, 0.047818016052246094, 0.04787606430053711, 0.047971073150634765, 0.04782284927368164, 0.04803529739379883, 0.04801385498046875, 0.04788019180297851, 0.048057376861572264, 0.04794214248657227, 0.04796163177490234, 0.04788729476928711, 0.04818329620361328, 0.048078529357910155, 0.04815699386596679, 0.04809231948852539, 0.04797552108764649, 0.04908796691894531, 0.04814470291137695, 0.04790678405761719, 0.04806390380859375, 0.04788489532470703, 0.047939521789550785, 0.0478331527709961, 0.04804822540283203, 0.048072608947753906, 0.048092193603515625, 0.04789145660400391, 0.04784950256347656, 0.04794262313842773, 0.04797539138793945, 0.04799235153198242, 0.04861385726928711, 0.0481525764465332, 0.04844553756713867, 0.04853359985351562, 0.04810895919799805, 0.048029376983642576, 0.048317054748535156, 0.04823459243774414, 0.048107521057128906, 0.04793974304199219, 0.04814937591552734, 0.048161758422851565, 0.048213630676269534, 0.048038272857666015, 0.04825702285766602, 0.04796575927734375, 0.04796051025390625, 0.04825497436523438, 0.048325984954833985, 0.04799910354614258, 0.048140640258789065, 0.048250686645507815, 0.04824496078491211, 0.048468128204345706, 0.04905292892456055, 0.04824671936035156, 0.048029823303222655, 0.0479667854309082, 0.04791843032836914, 0.0477949104309082, 0.04793142318725586, 0.04793753433227539, 0.04820560073852539, 0.04796847915649414, 0.047912639617919923, 0.04797062301635742, 0.04787152099609375, 0.048019073486328126, 0.048096096038818356, 0.047946975708007815, 0.04772534561157227, 0.04820572662353516, 0.047734878540039063, 0.04808499145507812, 0.048322528839111326, 0.04835023880004883, 0.04815564727783203, 0.04824169540405274, 0.047807456970214844, 0.04823859024047852, 0.047925247192382815, 0.04808086395263672, 0.047962142944335935, 0.04820377731323242, 0.047998046875, 0.04795452880859375, 0.04788665771484375, 0.048078014373779294, 0.04798486328125, 0.04789670562744141, 0.047702495574951174, 0.04799283218383789, 0.04806860733032227, 0.047908863067626956, 0.04800710296630859, 0.04842313766479492, 0.048080734252929684, 0.04803763198852539, 0.0502110710144043, 0.048091136932373046, 0.04792272186279297, 0.048056800842285155, 0.04823040008544922, 0.048115711212158206, 0.04801891326904297, 0.048108062744140624, 0.0480008316040039, 0.04805855941772461, 0.04802764892578125, 0.048227424621582034, 0.04800198364257813, 0.04799484634399414, 0.04805980682373047, 0.048257568359375, 0.04804364776611328, 0.048159168243408206, 0.048510974884033206, 0.04917436981201172, 0.048175998687744144, 0.04767465591430664, 0.047561439514160156, 0.04771635055541992, 0.0476956787109375, 0.04784352111816406, 0.04875263977050781, 0.047711872100830076, 0.047798656463623045, 0.04791910552978516, 0.04774092864990234, 0.04790476989746094, 0.04793753433227539, 0.04785091018676758, 0.04792486572265625, 0.04782179260253906, 0.04760780715942383, 0.04834099197387695, 0.04852121734619141, 0.04793660736083984, 0.04809328079223633, 0.0479136962890625, 0.04776121520996094, 0.047925537109375, 0.04816486358642578, 0.047742462158203124, 0.0477209587097168, 0.047876094818115236, 0.04782489776611328, 0.04789443206787109, 0.047914913177490234, 0.047556224822998046, 0.04804169464111328, 0.04801385498046875, 0.04795129776000977, 0.047954784393310544, 0.0479595832824707, 0.047621761322021484, 0.04811407852172851, 0.04804191970825195, 0.04801567840576172, 0.04801087951660156, 0.04833647918701172, 0.048053249359130856, 0.04817919921875, 0.0482344970703125, 0.04918044662475586, 0.048311614990234376, 0.048177345275878906, 0.048024158477783206, 0.04823871994018555, 0.048138240814208984, 0.04818739318847656, 0.048105472564697264, 0.04814451217651367, 0.048347007751464846, 0.048137313842773435, 0.0480307502746582, 0.048094303131103515, 0.04804307174682617, 0.048223968505859374, 0.04807238388061524, 0.04890236663818359, 0.04805785751342773, 0.04768928146362305, 0.04806729507446289, 0.04760400009155273, 0.047767551422119144, 0.048347137451171876, 0.04781238555908203, 0.04766326522827148, 0.04795808029174805, 0.04799478530883789, 0.0480313606262207, 0.04850735855102539, 0.047923198699951174, 0.04818739318847656, 0.04799270248413086, 0.047782142639160155, 0.048108928680419924, 0.04811196899414062, 0.04793487930297852, 0.048331775665283204, 0.048468929290771484, 0.04821894454956055, 0.04793324661254883, 0.04802163314819336, 0.048240703582763673, 0.04807475280761719, 0.04819148635864258, 0.04782470321655274, 0.04802988815307617, 0.04796364974975586, 0.048083553314208986, 0.048076160430908205, 0.048347679138183594, 0.04788188934326172, 0.04817750549316406, 0.048162815093994144, 0.04819148635864258, 0.04833280181884766, 0.04834415817260742, 0.04809532928466797, 0.04803462219238281, 0.048035072326660155, 0.04814720153808594, 0.04826012802124023, 0.04834336090087891, 0.048091808319091794, 0.04797257614135742, 0.04807190322875977, 0.048035808563232425, 0.047981151580810545, 0.048082782745361326, 0.047945758819580075, 0.04811750411987305, 0.04816099166870117, 0.04817318344116211, 0.04834243011474609, 0.04833135986328125, 0.04816444778442383, 0.048323009490966795, 0.04841062545776367, 0.048578048706054686, 0.04847244644165039]",tokens/s,20.821962259575876,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 706, in __init__ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.96 GiB. GPU 0 has a total capacity of 14.74 GiB of which 662.12 MiB is free. Process 136209 has 14.09 GiB memory in use. Of the allocated memory 13.97 GiB is allocated by PyTorch, and 6.66 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 134.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 52.12 MiB is free. Process 81550 has 14.69 GiB memory in use. Of the allocated memory 14.47 GiB is allocated by PyTorch, and 108.93 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 248, in __init__ self.model = DeciCoderModel(config) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 215, in __init__ self.layers = nn.ModuleList([DeciCoderDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 215, in self.layers = nn.ModuleList([DeciCoderDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 181, in __init__ self.self_attn = DeciCoderAttention(config=config) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 54, in __init__ self._init_rope() File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1729, in __getattr__ raise AttributeError(f""'{type(self).__name__}' object has no attribute '{name}'"") AttributeError: 'DeciCoderAttention' object has no attribute '_init_rope' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 217, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 258.12 MiB is free. Process 87649 has 14.49 GiB memory in use. Of the allocated memory 14.32 GiB is allocated by PyTorch, and 53.40 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 906, in __init__ self.model = InternLMModel(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in __init__ self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 547, in __init__ self.mlp = InternLMMLP( File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 276, in __init__ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 136.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 18.12 MiB is free. Process 148575 has 14.72 GiB memory in use. Of the allocated memory 14.60 GiB is allocated by PyTorch, and 9.56 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 219, in __init__ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 768.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 286.12 MiB is free. Process 90547 has 14.46 GiB memory in use. Of the allocated memory 14.30 GiB is allocated by PyTorch, and 41.77 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 582, in __init__ self.transformer = CodeGenModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 400, in __init__ self.h = nn.ModuleList([CodeGenBlock(config) for _ in range(config.n_layer)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 400, in self.h = nn.ModuleList([CodeGenBlock(config) for _ in range(config.n_layer)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 258, in __init__ self.mlp = CodeGenMLP(inner_dim, config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 236, in __init__ self.fc_in = nn.Linear(embed_dim, intermediate_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 288.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 172.12 MiB is free. Process 105083 has 14.57 GiB memory in use. Of the allocated memory 14.44 GiB is allocated by PyTorch, and 14.15 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt2,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 286, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 344.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 66.12 MiB is free. Process 171914 has 14.67 GiB memory in use. Of the allocated memory 14.56 GiB is allocated by PyTorch, and 1.71 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 689, in __init__ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 358, in __init__ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 2.12 MiB is free. Process 169093 has 14.74 GiB memory in use. Of the allocated memory 14.53 GiB is allocated by PyTorch, and 90.39 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1032, in __init__ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.16 GiB. GPU 0 has a total capacity of 14.74 GiB of which 774.12 MiB is free. Process 67020 has 13.98 GiB memory in use. Of the allocated memory 13.72 GiB is allocated by PyTorch, and 148.73 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-9b,google/recurrentgemma-9b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py"", line 790, in __init__ self.model = RecurrentGemmaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py"", line 660, in __init__ [RecurrentGemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py"", line 660, in [RecurrentGemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py"", line 490, in __init__ self.mlp_block = RecurrentGemmaMlp(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py"", line 472, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 30.12 MiB is free. Process 145486 has 14.71 GiB memory in use. Of the allocated memory 14.59 GiB is allocated by PyTorch, and 1.44 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 608, in __init__ self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 288.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 182.12 MiB is free. Process 38060 has 14.56 GiB memory in use. Of the allocated memory 14.43 GiB is allocated by PyTorch, and 13.08 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mixtral,mistralai/Mixtral-8x22B-v0.1,mistralai/Mixtral-8x22B-v0.1,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,812.417024,12523.077632,0.0,12127.830016,12122.08896,s,1,7.2994873046875,7.2994873046875,0.0,7.2994873046875,7.2994873046875,7.2994873046875,7.2994873046875,[7.2994873046875],,kWh,1.1944894587497856e-05,1.2906058269482203e-06,6.215838306000091e-06,1.945133872044617e-05,,MB,1129.816064,12695.044096,0.0,12289.31072,12248.586752,s,10,11.432853271484374,1.1432853271484373,0.003098576912891139,1.1437304077148438,1.1467366577148437,1.146837567138672,1.1469182946777343,"[1.13678466796875, 1.139625, 1.1412708740234374, 1.1431728515625, 1.1437130126953126, 1.143747802734375, 1.144585205078125, 1.1467142333984375, 1.1469384765625, 1.1463011474609375]",tokens/s,223.9161073102467,kWh,3.350108923875007e-05,3.694341063623324e-06,2.2123045476200084e-05,5.9318475778573484e-05,tokens/kWh,4315687.4252063995,MB,1173.42208,12703.432704,0.0,12297.699328,12248.589312,s,10,33.81919946289062,3.381919946289062,0.002572435008086271,3.382077392578125,3.3849273437500003,3.3851793701171875,3.385380991210938,"[3.37895458984375, 3.37922119140625, 3.3785986328125, 3.38262890625, 3.383670166015625, 3.38152587890625, 3.379484130859375, 3.384813232421875, 3.384871337890625, 3.385431396484375]",tokens/s,18.628471696714495,kWh,9.873379739124999e-05,1.089143092125667e-05,6.570288589559988e-05,0.00017532811420810655,tokens/kWh,359326.285373844,,s,630,33.81635486221316,0.053676753749544656,0.00028610013942388234,0.05367704010009766,0.05391408386230469,0.05399905891418457,0.055077218322753904,"[0.05495600128173828, 0.053784576416015625, 0.05345059204101563, 0.05316624069213867, 0.05299609756469727, 0.052991519927978514, 0.053130943298339846, 0.05316793441772461, 0.05340208053588867, 0.053469345092773436, 0.05364944076538086, 0.053452129364013674, 0.05346198272705078, 0.05349929428100586, 0.053352161407470705, 0.053179264068603516, 0.05315584182739258, 0.05346303939819336, 0.053599361419677735, 0.05381177520751953, 0.05366815948486328, 0.05349990463256836, 0.05333606338500976, 0.05348556900024414, 0.05334000015258789, 0.05345862579345703, 0.053488094329833986, 0.05365119934082031, 0.05359231948852539, 0.05361423873901367, 0.053510494232177734, 0.05368832015991211, 0.053528575897216796, 0.05336403274536133, 0.053572288513183595, 0.053645313262939455, 0.05386608123779297, 0.05390582275390625, 0.053749088287353516, 0.05393436813354492, 0.05368051147460937, 0.05366579055786133, 0.053526527404785154, 0.05374959945678711, 0.05369241714477539, 0.05401206588745117, 0.05393936157226562, 0.053598751068115236, 0.05371907043457031, 0.054013729095458984, 0.05370230484008789, 0.053764289855957034, 0.05374736022949219, 0.053768417358398435, 0.053803455352783205, 0.05402159881591797, 0.053932350158691404, 0.05403910446166992, 0.053907455444335936, 0.05377433776855469, 0.053744895935058594, 0.05396950531005859, 0.05383184051513672, 0.054832416534423827, 0.05351532745361328, 0.05334614562988281, 0.05319641494750976, 0.05313766479492187, 0.05346460723876953, 0.05319097518920898, 0.053262401580810546, 0.05395814514160156, 0.05352483367919922, 0.05355295944213867, 0.053631553649902346, 0.05339910507202148, 0.053645278930664064, 0.05346966552734375, 0.053448318481445316, 0.05346342468261719, 0.0537245101928711, 0.053607070922851566, 0.053628929138183595, 0.05343148803710938, 0.05343110275268555, 0.05339340972900391, 0.05331148910522461, 0.05343139266967773, 0.05341686248779297, 0.05333340835571289, 0.053524192810058595, 0.053711776733398435, 0.05368761444091797, 0.0536459846496582, 0.05368627166748047, 0.053573696136474606, 0.0536165771484375, 0.05363097763061524, 0.05365760040283203, 0.053761184692382814, 0.053742431640625, 0.053937248229980465, 0.05370767974853516, 0.05350112152099609, 0.053456897735595706, 0.05333689498901367, 0.05341593551635742, 0.05351177597045898, 0.0536371841430664, 0.05365385437011719, 0.053651454925537106, 0.053754047393798826, 0.05389907073974609, 0.053835777282714846, 0.05384396743774414, 0.05366988754272461, 0.053929088592529296, 0.05394931030273437, 0.053892383575439455, 0.05420864105224609, 0.05401676940917969, 0.053827423095703125, 0.053940223693847655, 0.05376598358154297, 0.053733631134033205, 0.05384182357788086, 0.05520844650268555, 0.053714942932128903, 0.05346713638305664, 0.053260128021240236, 0.05318415832519531, 0.05330492782592773, 0.053156097412109374, 0.053682430267333985, 0.05339494323730469, 0.05366012954711914, 0.0536693115234375, 0.053482494354248046, 0.053348350524902347, 0.05353062438964844, 0.05345014572143555, 0.053559902191162106, 0.05342972946166992, 0.0535700798034668, 0.0537242546081543, 0.05374863815307617, 0.05347087860107422, 0.05345724868774414, 0.05344460678100586, 0.0533831672668457, 0.0534835205078125, 0.05330739212036133, 0.0535327033996582, 0.053762016296386717, 0.053597312927246094, 0.05369331359863281, 0.053583774566650394, 0.05375705718994141, 0.053465312957763675, 0.05362969589233398, 0.05357065582275391, 0.05365852737426758, 0.053819393157958986, 0.05367766571044922, 0.05378688049316406, 0.05364303970336914, 0.05351420974731445, 0.05360886383056641, 0.05351001739501953, 0.053602432250976564, 0.05360639953613281, 0.053663745880126956, 0.0538603515625, 0.05380441665649414, 0.05374835205078125, 0.05356492614746094, 0.053580097198486325, 0.05349596786499024, 0.05348969650268555, 0.05377024078369141, 0.053684223175048826, 0.05391299057006836, 0.053830047607421876, 0.05377657699584961, 0.05384313583374024, 0.053811710357666014, 0.05388320159912109, 0.053766143798828124, 0.05374771118164062, 0.05544809722900391, 0.05384396743774414, 0.05328486251831055, 0.05330739212036133, 0.05304912185668945, 0.05308745574951172, 0.05308729553222656, 0.05318761444091797, 0.05328947067260742, 0.0533570556640625, 0.05341116714477539, 0.05359430313110351, 0.05348390579223633, 0.053422080993652345, 0.05330944061279297, 0.053561344146728515, 0.05324758529663086, 0.0536539192199707, 0.053722942352294925, 0.05370006561279297, 0.053510879516601564, 0.05355868911743164, 0.05354713439941406, 0.053628639221191404, 0.05357849502563477, 0.0541080322265625, 0.05369187164306641, 0.05366550445556641, 0.05366265487670899, 0.05375590515136719, 0.053698558807373044, 0.05364432144165039, 0.05362502288818359, 0.053531425476074215, 0.05360639953613281, 0.05382758331298828, 0.053678081512451174, 0.05389311981201172, 0.05396480178833008, 0.05393203353881836, 0.05373747253417969, 0.05389430236816406, 0.05364822387695312, 0.05374566268920898, 0.05373132705688476, 0.05375942230224609, 0.05382815933227539, 0.05382758331298828, 0.05373132705688476, 0.053838977813720705, 0.05380777740478516, 0.05376800155639649, 0.05373583984375, 0.05400502395629883, 0.053840351104736325, 0.05401558303833008, 0.054010528564453125, 0.053902942657470705, 0.053889278411865235, 0.05393423843383789, 0.053794654846191406, 0.05386387252807617, 0.0538746223449707, 0.0554106559753418, 0.05382368087768555, 0.053427040100097654, 0.05347225570678711, 0.05326182556152344, 0.053436321258544923, 0.0534218864440918, 0.05341059112548828, 0.05333401489257812, 0.05345836639404297, 0.05381792068481445, 0.05348716735839844, 0.05361081695556641, 0.053583518981933594, 0.053561824798583985, 0.05373491287231445, 0.0534984016418457, 0.05378249740600586, 0.05387468719482422, 0.053852161407470706, 0.053704414367675785, 0.05369785690307617, 0.053596351623535154, 0.053617408752441406, 0.0536781120300293, 0.05357158279418945, 0.053645313262939455, 0.053556385040283205, 0.0536126708984375, 0.05380124664306641, 0.053623233795166016, 0.05365923309326172, 0.053676414489746097, 0.053685886383056644, 0.05365187072753906, 0.05381497573852539, 0.05378889465332031, 0.05379679870605469, 0.05389459228515625, 0.053725921630859375, 0.05366534423828125, 0.05367801666259766, 0.05370300674438477, 0.05370665740966797, 0.05364879989624023, 0.053658462524414065, 0.053626880645751954, 0.053642559051513675, 0.05359891128540039, 0.05358720016479492, 0.05376076889038086, 0.05372911834716797, 0.05383731079101563, 0.05401257705688477, 0.05399552154541016, 0.053907455444335936, 0.05390553665161133, 0.05377830505371094, 0.0537968635559082, 0.053816574096679684, 0.0536890869140625, 0.053704158782958984, 0.05390595245361328, 0.055509056091308594, 0.05405596923828125, 0.05329919815063477, 0.053298145294189456, 0.053141502380371096, 0.05313324737548828, 0.05328287887573242, 0.05331763076782227, 0.0533414077758789, 0.05339215850830078, 0.05334220886230469, 0.05344460678100586, 0.053403297424316404, 0.053373279571533205, 0.053489376068115234, 0.05355548858642578, 0.053378944396972654, 0.05360652923583984, 0.05364303970336914, 0.05360038375854492, 0.05348486328125, 0.053504798889160154, 0.053387264251708984, 0.053456897735595706, 0.05327667236328125, 0.05347942352294922, 0.05409366226196289, 0.053575199127197264, 0.053492351531982424, 0.0535200309753418, 0.053727584838867186, 0.05376409530639648, 0.05356339263916016, 0.053460990905761716, 0.053491168975830075, 0.05372774505615235, 0.05361872100830078, 0.05366483306884766, 0.05392236709594726, 0.05383206558227539, 0.053628929138183595, 0.05372108840942383, 0.05350153732299805, 0.05357814407348633, 0.054063102722167966, 0.05382144165039063, 0.053857311248779294, 0.05386134338378906, 0.053768192291259766, 0.05376768112182617, 0.054008289337158205, 0.053823520660400394, 0.053889022827148435, 0.05380505752563477, 0.053816864013671875, 0.05398780822753906, 0.05404467010498047, 0.053933345794677734, 0.05397331237792969, 0.05397135925292969, 0.05389625549316406, 0.05391996765136719, 0.05391843032836914, 0.05531846237182617, 0.05389315032958984, 0.0534615364074707, 0.05349728012084961, 0.05315430450439453, 0.05328028869628906, 0.05352054214477539, 0.05336307144165039, 0.05332588958740234, 0.05345868682861328, 0.053402816772460934, 0.05339433670043945, 0.05358796691894531, 0.05351023864746094, 0.053429534912109375, 0.05358803176879883, 0.053354400634765625, 0.05359283065795899, 0.05366742324829102, 0.05374403381347656, 0.05368569564819336, 0.0536929931640625, 0.05359001541137695, 0.053441665649414063, 0.053296001434326175, 0.05349785614013672, 0.05359548950195313, 0.05357372665405274, 0.05351795196533203, 0.05366259384155273, 0.0535428466796875, 0.05342425537109375, 0.0535470085144043, 0.0535838737487793, 0.053626304626464845, 0.053762622833251957, 0.05368012619018555, 0.05389644622802734, 0.0537628173828125, 0.05374294281005859, 0.053596832275390624, 0.05370675277709961, 0.053610496520996094, 0.053575199127197264, 0.053635551452636716, 0.05380662536621094, 0.05375862503051758, 0.05370582580566406, 0.053602336883544925, 0.0537504653930664, 0.05367561721801758, 0.05362729644775391, 0.05371020889282226, 0.05378713607788086, 0.05379072189331055, 0.05386159896850586, 0.053738399505615236, 0.0537784309387207, 0.0537861442565918, 0.053807582855224606, 0.05370675277709961, 0.05374566268920898, 0.053782527923583984, 0.05525897598266601, 0.0540054702758789, 0.053416385650634765, 0.05335244750976562, 0.053255840301513674, 0.053373279571533205, 0.053364734649658206, 0.05324342346191406, 0.05346963119506836, 0.05339344024658203, 0.05336064147949219, 0.0533831672668457, 0.05348543930053711, 0.05351414489746094, 0.053298465728759764, 0.053545921325683594, 0.05346281433105469, 0.053604705810546875, 0.05385801696777344, 0.05376416015625, 0.0536003532409668, 0.05374771118164062, 0.05359791946411133, 0.05368592071533203, 0.05364595031738281, 0.05363091278076172, 0.053657665252685546, 0.05381324768066406, 0.05364096069335938, 0.0536352653503418, 0.0537426872253418, 0.05385468673706055, 0.053723648071289064, 0.053694465637207034, 0.05368822479248047, 0.05380684661865234, 0.05364284896850586, 0.05376233673095703, 0.053752288818359376, 0.053743614196777346, 0.053743488311767576, 0.05385023880004883, 0.05374771118164062, 0.053823520660400394, 0.05392995071411133, 0.053691841125488284, 0.05390095901489258, 0.05385852813720703, 0.05373974227905273, 0.05390383911132812, 0.053806175231933595, 0.053894046783447266, 0.05378047943115234, 0.05391360092163086, 0.053800960540771485, 0.05385420989990235, 0.05386441421508789, 0.053878814697265624, 0.05392947387695313, 0.054104576110839846, 0.053850112915039064, 0.054106113433837894, 0.054091007232666015, 0.0550563850402832, 0.05373721694946289, 0.053444862365722656, 0.05348726272583008, 0.0535002555847168, 0.05351619338989258, 0.05347452926635742, 0.0535316162109375, 0.05334230422973633, 0.05328774261474609, 0.05359254455566406, 0.053590560913085936, 0.05337702560424805, 0.05365756988525391, 0.05352860641479492, 0.053528575897216796, 0.053423263549804687, 0.05366460800170898, 0.05386240005493164, 0.05399052810668945, 0.05366806411743164, 0.05364553451538086, 0.053688159942626955, 0.05376800155639649, 0.053596126556396485, 0.05370553588867188, 0.05354086303710937, 0.05362076950073242, 0.0536486701965332, 0.05386710357666016, 0.05376214218139649, 0.05376755142211914, 0.05368691253662109, 0.05370675277709961, 0.05368832015991211, 0.053790401458740235, 0.05386214447021485, 0.05390959930419922, 0.053823966979980466, 0.05384806442260742, 0.053823486328125, 0.053768192291259766, 0.05367603302001953, 0.05383990478515625, 0.05361043167114258, 0.05362662506103515, 0.053655742645263675, 0.05367958450317383, 0.053795265197753905, 0.0536451187133789, 0.05393446350097656, 0.05389923095703125, 0.05376121520996094, 0.053895103454589845, 0.054001953125, 0.05392652893066406, 0.05375356674194336, 0.053823486328125, 0.05378047943115234, 0.053982494354248046, 0.05390361785888672, 0.05382944107055664, 0.05381216049194336, 0.05508572769165039, 0.05351628875732422, 0.053292991638183594, 0.053448768615722654, 0.0531599349975586, 0.053352001190185544, 0.05328326416015625, 0.05325209426879883, 0.05356505584716797, 0.05363750457763672, 0.05351116943359375, 0.0538263053894043, 0.0534653434753418, 0.05360351943969727, 0.05360108947753906, 0.05351628875732422, 0.0534854736328125, 0.05369251251220703, 0.05362185668945312, 0.05373023986816406, 0.05360022354125977, 0.05363916778564453, 0.053548160552978515, 0.05368681716918945, 0.05357603073120117, 0.05383782577514649, 0.05398483276367187, 0.053844417572021484, 0.053714942932128903, 0.053984512329101564, 0.05382406234741211, 0.05377862548828125, 0.05389926528930664, 0.05377766418457031, 0.0537259521484375, 0.05377795028686523, 0.05363091278076172, 0.05368681716918945, 0.053907455444335936, 0.053866497039794924, 0.05379020690917969, 0.053799297332763674, 0.05369401550292969, 0.05387286376953125, 0.0538353271484375, 0.05376470565795898, 0.05388054275512695, 0.053758430480957034, 0.05378416061401367, 0.05396284866333008, 0.05388307189941406, 0.05383785629272461, 0.053768287658691405, 0.05382067108154297, 0.05376486587524414, 0.053788608551025394, 0.05379283142089844, 0.0539791374206543, 0.05387257766723633, 0.053682239532470706, 0.053768062591552736, 0.0541267204284668, 0.05395574569702148]",tokens/s,18.630038706625083,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 959, in __init__ self.model = MistralModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 711, in __init__ [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 711, in [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 508, in __init__ self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 199, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 24.12 MiB is free. Process 108056 has 14.71 GiB memory in use. Of the allocated memory 14.46 GiB is allocated by PyTorch, and 141.44 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,814.907392,806.289408,0.0,411.041792,391.374848,s,1,7.3405439453125,7.3405439453125,0.0,7.3405439453125,7.3405439453125,7.3405439453125,7.3405439453125,[7.3405439453125],,kWh,4.876233570833695e-06,5.308025702608459e-07,1.983334919991586e-06,7.3903710610861275e-06,,MB,1112.3712,879.689728,0.0,473.956352,454.832128,s,14,0.35395107078552246,0.025282219341823033,0.0006675251077587096,0.02511552047729492,0.025283087921142578,0.02612307538986206,0.027355866603851316,"[0.027664064407348633, 0.025009151458740234, 0.0250250244140625, 0.025128000259399413, 0.02510304069519043, 0.02513587188720703, 0.024959232330322264, 0.02525923156738281, 0.024972927093505858, 0.025055456161499023, 0.0250283203125, 0.02516223907470703, 0.02515519905090332, 0.025293312072753905]",tokens/s,10125.69333960776,kWh,8.802714563880312e-07,9.703644657400391e-08,5.748766312530154e-07,1.5521845342150508e-06,tokens/kWh,164928843.41838953,MB,1139.023872,906.952704,0.0,501.219328,454.834688,s,14,10.088037719726563,0.7205741228376116,0.007503769931621452,0.7197563781738281,0.7292069396972656,0.7304784545898437,0.7312623901367188,"[0.7006243286132813, 0.7314583740234375, 0.7256400146484375, 0.7224078979492188, 0.7274712524414062, 0.72591748046875, 0.714115234375, 0.7185491943359374, 0.71629638671875, 0.7185131225585938, 0.7195335083007812, 0.7299508056640625, 0.719979248046875, 0.7175808715820312]",tokens/s,87.43028371863649,kWh,2.0470741543611325e-05,2.2576304109255806e-06,8.849634876604323e-06,3.157800683114122e-05,tokens/kWh,1995059.4202124062,,s,882,10.07979100131987,0.011428334468616649,0.00034070346924705217,0.011425951957702636,0.01164567985534668,0.011714222478866578,0.012337450504302967,"[0.011187392234802246, 0.01128428840637207, 0.011154335975646973, 0.011010080337524415, 0.010950079917907715, 0.011192223548889161, 0.01102511978149414, 0.01102400016784668, 0.010981760025024413, 0.011669504165649413, 0.011978719711303711, 0.013942432403564454, 0.011230751991271973, 0.011288736343383789, 0.011254464149475098, 0.011176959991455078, 0.01110102367401123, 0.011054783821105958, 0.012296671867370606, 0.011003168106079101, 0.010989760398864746, 0.010976960182189941, 0.010957216262817383, 0.010914239883422851, 0.011362303733825683, 0.011315199851989746, 0.010932288169860839, 0.010882623672485351, 0.010912287712097167, 0.010935232162475586, 0.011019167900085449, 0.010912960052490234, 0.010942815780639648, 0.01100870418548584, 0.011087648391723633, 0.010894559860229492, 0.010933247566223145, 0.010874912261962891, 0.010816800117492675, 0.010888895988464355, 0.010926464080810546, 0.010907648086547851, 0.010867232322692872, 0.010972928047180176, 0.010893535614013673, 0.010917792320251465, 0.010840031623840332, 0.010933823585510254, 0.010846688270568847, 0.01088652801513672, 0.010914048194885255, 0.010934623718261718, 0.01090294361114502, 0.010934911727905273, 0.010950655937194824, 0.011067647933959961, 0.011034367561340332, 0.010991616249084473, 0.010966015815734862, 0.011037152290344238, 0.011231743812561035, 0.0112326078414917, 0.011455136299133301, 0.011290047645568848, 0.01157363224029541, 0.011560928344726563, 0.011636768341064453, 0.011632479667663575, 0.011688096046447754, 0.011600192070007325, 0.011626175880432129, 0.011542752265930175, 0.011669376373291015, 0.011519904136657716, 0.011464768409729004, 0.011421631813049317, 0.01149289608001709, 0.01174176025390625, 0.011482560157775878, 0.01153395175933838, 0.011540863990783691, 0.011558752059936523, 0.011541119575500488, 0.01148470401763916, 0.011463135719299316, 0.011498496055603028, 0.01141427230834961, 0.01158176040649414, 0.011614144325256348, 0.011487232208251954, 0.011552767753601074, 0.012955615997314453, 0.012981951713562012, 0.011619903564453126, 0.01168012809753418, 0.011649439811706543, 0.012210176467895508, 0.01161404800415039, 0.011614368438720704, 0.011426048278808594, 0.01187228775024414, 0.01154428768157959, 0.011496512413024903, 0.011527104377746582, 0.011610367774963378, 0.011675392150878906, 0.011970815658569335, 0.01173299217224121, 0.011515647888183593, 0.011440128326416015, 0.011456512451171874, 0.011669568061828613, 0.011499456405639649, 0.011447808265686036, 0.01148134422302246, 0.011630240440368653, 0.011630623817443848, 0.01154310417175293, 0.011495455741882325, 0.011386207580566406, 0.011491680145263672, 0.011349632263183593, 0.011459551811218261, 0.011456319808959961, 0.01133513641357422, 0.011241888046264649, 0.011032575607299805, 0.011427840232849122, 0.0115447998046875, 0.011566975593566894, 0.011640735626220703, 0.011513728141784668, 0.011403039932250976, 0.011448672294616699, 0.011531840324401856, 0.011629216194152832, 0.011405088424682618, 0.011272192001342773, 0.011266048431396485, 0.01133516788482666, 0.011606687545776368, 0.011623776435852051, 0.011602432250976562, 0.011648320198059081, 0.011510463714599609, 0.011593728065490723, 0.011746527671813965, 0.011553728103637695, 0.011612000465393067, 0.011527199745178223, 0.011545568466186524, 0.011470720291137696, 0.011489567756652832, 0.011444064140319824, 0.0113536958694458, 0.011292703628540039, 0.011383071899414062, 0.011434080123901368, 0.011660544395446778, 0.011631360054016113, 0.011698176383972168, 0.011501567840576172, 0.011489279747009277, 0.011423680305480957, 0.01154047966003418, 0.011556927680969237, 0.011454463958740235, 0.011410783767700196, 0.01142585563659668, 0.011599679946899415, 0.011473600387573241, 0.011390368461608886, 0.011399168014526367, 0.011524736404418945, 0.01147116756439209, 0.0114749755859375, 0.011458271980285645, 0.01151910400390625, 0.011521023750305176, 0.011621536254882813, 0.011596608161926269, 0.011699616432189941, 0.011405599594116212, 0.011509119987487793, 0.011631520271301269, 0.011700160026550293, 0.011671551704406738, 0.011577343940734864, 0.011525664329528808, 0.011155008316040039, 0.011452863693237305, 0.011413503646850585, 0.011390975952148438, 0.0117391357421875, 0.011433792114257813, 0.011395584106445313, 0.011449983596801758, 0.011585599899291992, 0.011503616333007812, 0.011351200103759765, 0.011457375526428223, 0.011540831565856934, 0.011529855728149414, 0.01152012825012207, 0.01148470401763916, 0.011538016319274902, 0.011522720336914063, 0.011432064056396485, 0.011393024444580077, 0.011362303733825683, 0.011294719696044921, 0.011253824234008789, 0.011340831756591797, 0.011393535614013671, 0.011483551979064942, 0.011493375778198242, 0.01132953643798828, 0.011302016258239745, 0.011290656089782716, 0.011190688133239746, 0.011202048301696778, 0.011407936096191406, 0.01164352035522461, 0.011464127540588379, 0.011445664405822753, 0.01151478385925293, 0.011559200286865235, 0.011677408218383789, 0.01147052764892578, 0.011540127754211425, 0.011597503662109375, 0.011625503540039063, 0.011628576278686523, 0.011564959526062011, 0.011460288047790528, 0.011513567924499512, 0.011544768333435058, 0.011425503730773926, 0.01152070426940918, 0.01142745590209961, 0.011405856132507323, 0.011462400436401367, 0.011374143600463868, 0.011401663780212403, 0.011468480110168457, 0.011552255630493164, 0.011510944366455078, 0.0115217924118042, 0.011342016220092774, 0.011411264419555664, 0.01157475185394287, 0.011516448020935058, 0.011628543853759766, 0.013717184066772461, 0.011911487579345703, 0.011515904426574707, 0.011476415634155274, 0.011471103668212891, 0.01145248031616211, 0.01158351993560791, 0.011587712287902832, 0.01161843204498291, 0.011538399696350097, 0.011611840248107911, 0.011534111976623535, 0.011663935661315917, 0.01159119987487793, 0.011714240074157715, 0.01161292839050293, 0.011497792243957519, 0.011520031929016114, 0.01140003204345703, 0.011350879669189453, 0.0116627836227417, 0.011468607902526856, 0.01151369571685791, 0.011412320137023925, 0.011347711563110352, 0.011539775848388672, 0.01151478385925293, 0.01142307186126709, 0.011346688270568847, 0.011347935676574708, 0.011470656394958496, 0.01146236801147461, 0.01150819206237793, 0.011436032295227052, 0.01145241641998291, 0.011460448265075683, 0.011327360153198242, 0.011418047904968262, 0.011382368087768555, 0.01136076831817627, 0.011364095687866211, 0.011499808311462403, 0.011531871795654297, 0.01148969554901123, 0.011503328323364257, 0.011501855850219726, 0.0114518404006958, 0.011479328155517578, 0.011526111602783204, 0.011524127960205079, 0.011575296401977539, 0.011652768135070801, 0.011631135940551757, 0.011695327758789063, 0.01159228801727295, 0.011429887771606445, 0.011500896453857422, 0.01155958366394043, 0.011505663871765137, 0.01140940761566162, 0.011296319961547851, 0.011322943687438965, 0.011124128341674805, 0.011658207893371582, 0.011484512329101563, 0.011401568412780762, 0.011434144020080566, 0.011333791732788086, 0.011294719696044921, 0.012070624351501465, 0.011448512077331543, 0.011585280418395997, 0.011502079963684082, 0.011352160453796386, 0.0113570556640625, 0.01141823959350586, 0.011584063529968262, 0.011595775604248047, 0.011562463760375976, 0.011581727981567383, 0.011623616218566895, 0.01154047966003418, 0.011493120193481445, 0.01152444839477539, 0.01154105567932129, 0.011789983749389648, 0.01166585636138916, 0.011690079689025879, 0.011476479530334472, 0.011508128166198731, 0.011454591751098633, 0.011439935684204101, 0.011477055549621583, 0.011583488464355468, 0.011573023796081543, 0.011528127670288086, 0.011341152191162109, 0.011378879547119141, 0.011806528091430664, 0.011367487907409667, 0.011396703720092773, 0.011426079750061035, 0.011646976470947265, 0.012785216331481934, 0.011399295806884766, 0.011305024147033691, 0.011204863548278808, 0.011456640243530273, 0.011435903549194337, 0.01124687957763672, 0.01163747215270996, 0.011558912277221679, 0.011531904220581054, 0.011328895568847657, 0.011306303977966309, 0.011480768203735352, 0.011487104415893555, 0.011569503784179688, 0.011489055633544921, 0.01159926414489746, 0.0117990083694458, 0.011484992027282715, 0.011437824249267578, 0.011461183547973633, 0.011306271553039551, 0.011020383834838866, 0.011834495544433594, 0.011561599731445313, 0.011286751747131347, 0.011161536216735839, 0.011355487823486329, 0.011458239555358886, 0.01140220832824707, 0.01137052822113037, 0.01127830410003662, 0.01122713565826416, 0.011318400382995605, 0.011293567657470704, 0.011399168014526367, 0.011270496368408203, 0.011131775856018067, 0.011176735877990722, 0.01117734432220459, 0.011146271705627441, 0.011998815536499024, 0.011028608322143555, 0.011007648468017578, 0.011438303947448731, 0.011671551704406738, 0.01168716812133789, 0.01162668800354004, 0.011517631530761718, 0.01148630428314209, 0.011489055633544921, 0.011382399559020996, 0.011325535774230957, 0.01123750400543213, 0.011352224349975586, 0.011182368278503418, 0.01112179183959961, 0.011201120376586915, 0.011259455680847168, 0.011270112037658691, 0.011230815887451171, 0.01116044807434082, 0.011175423622131348, 0.01147481632232666, 0.011647616386413574, 0.011395071983337402, 0.011228192329406738, 0.011287520408630371, 0.011319231986999512, 0.011201919555664063, 0.011356863975524902, 0.011401439666748047, 0.011351840019226074, 0.011560959815979004, 0.01133743953704834, 0.011536928176879882, 0.01147980785369873, 0.011171039581298827, 0.01118505573272705, 0.0111494722366333, 0.011057439804077149, 0.010963104248046874, 0.010989151954650878, 0.011173695564270019, 0.011473119735717774, 0.01198265552520752, 0.011597791671752929, 0.011545023918151855, 0.011427231788635254, 0.011345727920532227, 0.011336480140686035, 0.011364480018615723, 0.011267104148864747, 0.011203071594238282, 0.011192192077636718, 0.011129311561584473, 0.011318559646606446, 0.011594207763671874, 0.011469056129455566, 0.011294719696044921, 0.01147935962677002, 0.011491007804870605, 0.011404831886291504, 0.011237824440002441, 0.011218015670776366, 0.011250335693359375, 0.011219584465026855, 0.011129695892333985, 0.011235967636108398, 0.011397184371948242, 0.011354240417480468, 0.011288576126098633, 0.011122271537780762, 0.01111900806427002, 0.011082847595214844, 0.011055968284606933, 0.010969152450561523, 0.01092403221130371, 0.011327263832092285, 0.011657024383544922, 0.011564736366271972, 0.01153536033630371, 0.011541664123535156, 0.011529024124145509, 0.011448224067687989, 0.011937952041625977, 0.01209926414489746, 0.011427840232849122, 0.012511296272277832, 0.011321120262145996, 0.011315360069274902, 0.011306912422180175, 0.011337408065795898, 0.011501983642578125, 0.011503968238830566, 0.011515551567077637, 0.011311103820800781, 0.011324704170227051, 0.011393759727478027, 0.011472895622253418, 0.01140940761566162, 0.0112576322555542, 0.011265536308288575, 0.011412192344665527, 0.011472415924072266, 0.011475104331970215, 0.011409728050231934, 0.011332991600036622, 0.011019136428833008, 0.011167743682861327, 0.011103263854980469, 0.01126307201385498, 0.011672960281372071, 0.011581695556640625, 0.011669055938720703, 0.011662015914916992, 0.011577343940734864, 0.011488415718078614, 0.011420512199401855, 0.01122713565826416, 0.011093376159667968, 0.011343903541564941, 0.011179807662963868, 0.01117471981048584, 0.011050335884094238, 0.011138943672180176, 0.01135696029663086, 0.01152409553527832, 0.011718463897705079, 0.011607904434204102, 0.01125158405303955, 0.011282848358154298, 0.01134598445892334, 0.01123145580291748, 0.011202527999877929, 0.011310912132263184, 0.011481087684631347, 0.011390975952148438, 0.011356160163879395, 0.011567104339599609, 0.011396575927734375, 0.011172479629516601, 0.011018176078796387, 0.010997376441955566, 0.011055711746215821, 0.011443679809570312, 0.011701567649841309, 0.011623456001281738, 0.011539999961853026, 0.01150614356994629, 0.011373855590820313, 0.011313983917236328, 0.011251744270324706, 0.011206463813781738, 0.01123737621307373, 0.011249024391174317, 0.011266752243041992, 0.01152627182006836, 0.01147475242614746, 0.011463744163513184, 0.011296799659729004, 0.011213600158691406, 0.01144547176361084, 0.011470815658569337, 0.011340543746948243, 0.011379167556762696, 0.01149510383605957, 0.011437824249267578, 0.011421759605407715, 0.011489503860473633, 0.011449503898620605, 0.011141119956970215, 0.011389984130859374, 0.011142047882080078, 0.011192383766174317, 0.011583200454711914, 0.011540639877319335, 0.011683903694152831, 0.01154054355621338, 0.011491328239440919, 0.011576800346374512, 0.01147548770904541, 0.01132755184173584, 0.011380672454833984, 0.011302911758422851, 0.011222463607788086, 0.011253567695617675, 0.011407487869262696, 0.011457216262817383, 0.011417792320251465, 0.011248415946960449, 0.01128060817718506, 0.011538271903991698, 0.011560959815979004, 0.011395456314086914, 0.011333312034606934, 0.011373408317565918, 0.011511584281921387, 0.011472352027893066, 0.01138764762878418, 0.011552448272705079, 0.011434304237365722, 0.01139065647125244, 0.011394880294799804, 0.011239935874938965, 0.011222528457641602, 0.011260416030883789, 0.011309056282043458, 0.011084863662719727, 0.011158432006835937, 0.011400320053100587, 0.011684767723083496, 0.011705856323242187, 0.011612223625183106, 0.011616928100585937, 0.01155782413482666, 0.011719264030456544, 0.011303168296813965, 0.01109228801727295, 0.01127619171142578, 0.011396096229553223, 0.011303071975708007, 0.011543007850646972, 0.011401375770568848, 0.011226719856262207, 0.011202336311340332, 0.01122374439239502, 0.011194304466247558, 0.011431936264038087, 0.011388928413391113, 0.011466303825378417, 0.011571935653686524, 0.011447456359863281, 0.01147049617767334, 0.011185471534729003, 0.01138268756866455, 0.011340576171875, 0.011339776039123535, 0.011591520309448242, 0.011524255752563477, 0.01160752010345459, 0.011643424034118652, 0.011480640411376954, 0.011534784317016602, 0.011390432357788086, 0.01132307243347168, 0.011221792221069336, 0.010997823715209961, 0.010950655937194824, 0.011142304420471191, 0.011305824279785156, 0.01115884780883789, 0.01132806396484375, 0.01159603214263916, 0.011435327529907226, 0.011380672454833984, 0.011412096023559571, 0.011396639823913575, 0.011386816024780273, 0.011530783653259278, 0.011334976196289063, 0.011316255569458008, 0.011413215637207031, 0.011395008087158202, 0.011255071640014649, 0.01150211238861084, 0.01143558406829834, 0.01192204761505127, 0.011956512451171875, 0.011598912239074707, 0.011410079956054687, 0.011385919570922852, 0.011469759941101075, 0.0114617919921875, 0.011524959564208985, 0.011692031860351563, 0.011333632469177245, 0.011304960250854493, 0.011593728065490723, 0.01165721607208252, 0.011419872283935546, 0.011534111976623535, 0.011802463531494141, 0.01147100830078125, 0.011757823944091797, 0.011482463836669923, 0.01131497573852539, 0.011324159622192383, 0.011302783966064453, 0.011247008323669434, 0.011336288452148437, 0.011482272148132324, 0.011504480361938477, 0.011187552452087402, 0.011014335632324219, 0.011006431579589844, 0.011196352005004883, 0.011448543548583984, 0.011786016464233398, 0.011518143653869628, 0.0113438081741333, 0.011450336456298829, 0.011713888168334961, 0.014022527694702148, 0.011655872344970702, 0.011632384300231934, 0.011481120109558105, 0.011462880134582519, 0.011303263664245606, 0.011177632331848144, 0.011169695854187011, 0.01145251178741455, 0.01146675205230713, 0.011394271850585938, 0.011402303695678712, 0.011368224143981934, 0.011376799583435059, 0.011758624076843261, 0.011551103591918944, 0.011362688064575195, 0.011249407768249512, 0.011210623741149903, 0.011183679580688477, 0.011477791786193847, 0.011648927688598633, 0.011614368438720704, 0.011456480026245117, 0.011481216430664062, 0.011396991729736327, 0.01120687961578369, 0.01105465602874756, 0.011036800384521485, 0.011175423622131348, 0.011260512351989747, 0.011165696144104004, 0.011392831802368164, 0.01124953556060791, 0.011456831932067871, 0.011280256271362305, 0.01153651237487793, 0.011376768112182618, 0.011472767829895019, 0.01147606372833252, 0.011362815856933594, 0.011204352378845215, 0.011276960372924805, 0.011318431854248048, 0.011479328155517578, 0.011385439872741699, 0.011321311950683593, 0.01127785587310791, 0.011346559524536132, 0.012291872024536132, 0.016046464920043944, 0.015373920440673828, 0.011554911613464355, 0.011342111587524415, 0.011253600120544433, 0.011236703872680665, 0.011177760124206543, 0.011076031684875488, 0.011390496253967285, 0.011491904258728028, 0.011560256004333497, 0.011459168434143066, 0.011396703720092773, 0.011481504440307617, 0.011438079833984375, 0.011304960250854493, 0.01139913558959961, 0.01140944004058838, 0.011347135543823243, 0.011286656379699707, 0.011404064178466797, 0.01150496006011963, 0.011397407531738282, 0.011417887687683105, 0.01113491153717041, 0.011211903572082519, 0.011645919799804687, 0.011658368110656738, 0.011613280296325683, 0.011558367729187011, 0.011491647720336914, 0.011978752136230468, 0.011326560020446777, 0.011172767639160155, 0.011209919929504394, 0.01115772819519043, 0.011117183685302734, 0.011470911979675293, 0.01134768009185791, 0.011332799911499023, 0.011502271652221679, 0.01136575984954834, 0.011318207740783692, 0.011222208023071289, 0.011400159835815429, 0.011456543922424317, 0.011430047988891601, 0.01132630443572998, 0.011294591903686523, 0.011506624221801758, 0.011339039802551269, 0.011465439796447754, 0.011308320045471191, 0.011220000267028808, 0.011183744430541992, 0.011493087768554688, 0.011569503784179688, 0.011720447540283204, 0.011773951530456543, 0.011538687705993653, 0.011544544219970703, 0.011444576263427734, 0.011851648330688476, 0.011355072021484376, 0.0114901762008667, 0.011317248344421387, 0.011271552085876465, 0.011473631858825684, 0.011474495887756347, 0.011527839660644532, 0.011315808296203614, 0.011546688079833984, 0.011382783889770508, 0.01132953643798828, 0.01128809642791748, 0.011333503723144532, 0.011448415756225586, 0.011491840362548827, 0.011517824172973633, 0.011509311676025391, 0.011655679702758789, 0.011647295951843262, 0.011771648406982423, 0.011629887580871582, 0.011601823806762696, 0.011498496055603028, 0.011361536026000976, 0.011356703758239746, 0.011286175727844239, 0.011306976318359375, 0.011382207870483399, 0.01155571174621582, 0.011362367630004883, 0.011471936225891113, 0.011461376190185547, 0.011335743904113769, 0.011432064056396485, 0.011531904220581054, 0.011321727752685546, 0.011353983879089355, 0.011331520080566405, 0.01130515193939209, 0.011405311584472656, 0.011334815979003906, 0.01132153606414795, 0.011439007759094238, 0.011288607597351074, 0.011207776069641113, 0.011099072456359863, 0.011328831672668457, 0.01164735984802246, 0.011677696228027343, 0.012042207717895508, 0.011521599769592284, 0.01209596824645996, 0.011251711845397949, 0.01110540771484375, 0.01113491153717041, 0.011086400032043458, 0.011023776054382324, 0.011246560096740722, 0.011314944267272949, 0.011133184432983398, 0.011300864219665528, 0.011206751823425292, 0.011374879837036132, 0.011299679756164551, 0.01111734390258789, 0.011167743682861327, 0.011170880317687988, 0.011125823974609376, 0.011093215942382812, 0.011279168128967286]",tokens/s,87.50181426227068,, bfloat16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,815.90272,14274.199552,0.0,13878.951936,13865.632768,s,1,7.55004736328125,7.55004736328125,0.0,7.55004736328125,7.55004736328125,7.55004736328125,7.55004736328125,[7.55004736328125],,kWh,1.3800054829179469e-05,1.5147876523830924e-06,6.2275049819982e-06,2.1542347463560763e-05,,MB,1129.074688,14695.727104,0.0,14289.993728,14241.298944,s,10,13.345639648437501,1.3345639648437502,0.003894462219437641,1.3360365600585937,1.3384409790039062,1.3385873718261718,1.3387044860839843,"[1.32904296875, 1.3282088623046875, 1.335257568359375, 1.3383267822265625, 1.3303668212890625, 1.3368155517578124, 1.3375191650390625, 1.332959716796875, 1.338408447265625, 1.3387337646484374]",tokens/s,191.82295247269943,kWh,3.896184749041557e-05,4.297043286655047e-06,2.5829770663800265e-05,6.908866144087088e-05,tokens/kWh,3705383.7006104984,MB,1144.2176,14863.499264,0.0,14457.765888,14413.156352,s,10,40.96315966796875,4.096315966796874,0.004376815909226851,4.095991577148437,4.10388447265625,4.10389853515625,4.10390978515625,"[4.0968349609375, 4.09696240234375, 4.0912841796875, 4.091384033203125, 4.091685791015625, 4.095148193359375, 4.10391259765625, 4.10388134765625, 4.0973232421875, 4.094742919921875]",tokens/s,15.379672981931378,kWh,0.00011971858115291828,1.3205879698689224e-05,7.97050915417999e-05,0.00021262955239340745,tokens/kWh,296289.952599991,,s,630,40.95959750366215,0.065015234132797,0.00030070849411744234,0.06500059127807617,0.06537307205200196,0.06550978622436524,0.06580866020202637,"[0.06566841888427734, 0.0649345932006836, 0.06491478729248047, 0.064529052734375, 0.06437792205810547, 0.06460717010498047, 0.06472637176513672, 0.06464761352539063, 0.06466377258300782, 0.06464022064208984, 0.06524393463134766, 0.06474956512451172, 0.06488063812255859, 0.06469017791748047, 0.06489087677001953, 0.06500761413574219, 0.06507929229736328, 0.06488790130615234, 0.06477302551269531, 0.06478643035888672, 0.06467791748046875, 0.06478128051757813, 0.06495948791503907, 0.06486016082763672, 0.06484114837646485, 0.06477062225341797, 0.06485327911376954, 0.06519471740722656, 0.06498918151855469, 0.06497280120849609, 0.06513423919677734, 0.06511446380615235, 0.06509158325195312, 0.0651878433227539, 0.06503424072265625, 0.06495027160644531, 0.06492147064208985, 0.06489920043945313, 0.06504227447509765, 0.06505487823486328, 0.06510944366455078, 0.06513481903076172, 0.06512834930419922, 0.06528361511230468, 0.06507778930664063, 0.06528355407714843, 0.06535820770263671, 0.06523753356933594, 0.06533468627929688, 0.06531251525878906, 0.06503919982910156, 0.0651673583984375, 0.06505677032470703, 0.06529228973388672, 0.06516524505615234, 0.06512646484375, 0.06538822174072266, 0.06524905395507813, 0.06524777221679688, 0.06541516876220703, 0.06530246734619141, 0.06541289520263673, 0.06531100463867187, 0.06574205017089843, 0.06474626922607422, 0.06458573150634765, 0.06454886627197266, 0.06448902130126953, 0.06465171051025391, 0.06456521606445312, 0.06463081359863282, 0.06571759796142577, 0.06469599914550782, 0.06491776275634766, 0.06506569671630859, 0.06485417938232421, 0.06487229156494141, 0.0650997085571289, 0.06497187042236328, 0.06491168212890625, 0.0650533447265625, 0.06488678741455078, 0.06479257965087891, 0.06527699279785157, 0.06478943634033203, 0.06479052734375, 0.06486630249023438, 0.06473628997802734, 0.06518867492675781, 0.0647927017211914, 0.06483766174316406, 0.06511766052246094, 0.06510582733154296, 0.06502873229980469, 0.06505401611328125, 0.06495712280273437, 0.06498713684082032, 0.0649085464477539, 0.06493177795410156, 0.0649019546508789, 0.06482128143310546, 0.06498095703125, 0.06516121673583984, 0.06492569732666016, 0.06497593688964844, 0.06514579010009766, 0.06516310119628907, 0.065087646484375, 0.06524889373779297, 0.0652721939086914, 0.0653148193359375, 0.06516918182373047, 0.06506495666503906, 0.06531462097167968, 0.06532870483398437, 0.0650514907836914, 0.06499327850341798, 0.06496611022949218, 0.06510441589355469, 0.06534963226318359, 0.06541004943847656, 0.06521753692626953, 0.06518918609619141, 0.06565516662597656, 0.06534751892089843, 0.06533113861083985, 0.06566092681884765, 0.06467581176757813, 0.06447232055664062, 0.06449842834472656, 0.06442598724365234, 0.06454025268554688, 0.06453414154052735, 0.06457955169677734, 0.06463369750976562, 0.06469990539550781, 0.06478844451904296, 0.06468659210205079, 0.06478643035888672, 0.0648419189453125, 0.06505452728271484, 0.06485919952392578, 0.06507965087890626, 0.06497955322265625, 0.06466934204101563, 0.0644807357788086, 0.06452438354492188, 0.06451689910888672, 0.0645889892578125, 0.06477606201171875, 0.0646902084350586, 0.06488771057128906, 0.0649031982421875, 0.0649785614013672, 0.06503663635253906, 0.06511325073242187, 0.06509859466552734, 0.06510173034667968, 0.06499452972412109, 0.0649708480834961, 0.06495465850830077, 0.06484585571289063, 0.06518614196777343, 0.06482752227783203, 0.06474752044677734, 0.06481327819824219, 0.06491932678222656, 0.06494822692871094, 0.06515238189697266, 0.0650183334350586, 0.06523222351074219, 0.06515766143798828, 0.06512777709960937, 0.06517775726318359, 0.06519254302978515, 0.06522492980957031, 0.06504230499267578, 0.06504457855224609, 0.06518342590332031, 0.06499263763427734, 0.06497571563720703, 0.06496265411376953, 0.06517350769042969, 0.06516896057128906, 0.06528173065185547, 0.06538246154785156, 0.0652008285522461, 0.06550131225585938, 0.06537583923339843, 0.06551789093017578, 0.06466127777099609, 0.0644920654296875, 0.06452019500732421, 0.06456082916259766, 0.06460572814941407, 0.0644820785522461, 0.06446694183349609, 0.06463488006591797, 0.06458573150634765, 0.06469427490234375, 0.06481436920166016, 0.06486093139648437, 0.0648636474609375, 0.06487635040283203, 0.06506896209716796, 0.064768798828125, 0.06471481323242187, 0.0646983642578125, 0.06454393768310547, 0.06450873565673829, 0.06484134674072266, 0.06481139373779297, 0.06474137878417968, 0.06478438568115234, 0.06505052947998047, 0.06504867553710937, 0.06495641326904297, 0.06489702606201173, 0.06500748443603516, 0.06494834899902344, 0.06498303985595703, 0.06494783782958985, 0.06490560150146485, 0.06471065521240234, 0.06470764923095704, 0.06493280029296875, 0.06489839935302734, 0.06490589141845703, 0.06488665771484375, 0.0650769271850586, 0.06490550231933594, 0.06500969696044921, 0.06506050872802735, 0.06521001434326172, 0.06527378845214844, 0.06508332824707032, 0.06537862396240235, 0.06519257354736328, 0.06497689819335938, 0.06497261047363281, 0.06490509033203125, 0.06509305572509766, 0.06494502258300781, 0.06516534423828126, 0.06528406524658203, 0.06514076995849609, 0.06523286437988281, 0.06554332733154297, 0.06534381103515625, 0.06538409423828125, 0.06563276672363282, 0.06530496215820313, 0.06576019287109375, 0.06473725128173828, 0.06455296325683593, 0.06439094543457032, 0.06444000244140625, 0.06440399932861328, 0.06449254608154296, 0.06460288238525391, 0.06458745574951172, 0.06467027282714843, 0.06464921569824218, 0.06488063812255859, 0.06479027557373047, 0.0646371841430664, 0.06480681610107422, 0.06494998168945312, 0.06486463928222656, 0.06469631958007813, 0.06464717102050781, 0.06469120025634766, 0.06469516754150391, 0.06468732452392578, 0.06474127960205078, 0.06512108612060546, 0.06474320220947266, 0.06476432037353516, 0.06485603332519531, 0.06473017883300781, 0.0649920654296875, 0.06499094390869141, 0.06499971008300781, 0.0649483871459961, 0.06502178955078125, 0.06498524475097656, 0.06486573028564453, 0.06489555358886719, 0.06516941070556641, 0.06506665802001953, 0.06490509033203125, 0.06499702453613282, 0.06496342468261719, 0.06498505401611328, 0.0651304931640625, 0.06514265441894532, 0.06519331359863281, 0.06515106964111328, 0.06518841552734375, 0.06523932647705079, 0.06521590423583984, 0.06518422698974609, 0.06502397155761719, 0.06500479888916015, 0.06505955505371094, 0.06500662231445313, 0.06506598663330078, 0.06529843139648438, 0.0652042236328125, 0.06524684906005859, 0.06536844635009766, 0.06525917053222656, 0.0653028793334961, 0.06538240051269531, 0.06530662536621094, 0.06581043243408204, 0.06480486297607421, 0.06455059051513672, 0.06436873626708985, 0.06460643005371093, 0.06458338928222657, 0.06468172454833984, 0.06466614532470703, 0.0645670394897461, 0.06468633270263671, 0.06464832305908202, 0.06487273406982422, 0.06517158508300781, 0.06481970977783204, 0.06497071838378907, 0.06490499114990235, 0.06494025421142578, 0.06484371185302734, 0.0646075210571289, 0.064768798828125, 0.06466371154785157, 0.06477811431884765, 0.06478224182128907, 0.06464112091064453, 0.06476188659667968, 0.0647628173828125, 0.06468918609619141, 0.0646368637084961, 0.0648908462524414, 0.06497901153564453, 0.06499062347412109, 0.06511676788330079, 0.06512640380859375, 0.06505401611328125, 0.06510047912597657, 0.06476515197753906, 0.0647524185180664, 0.06487449645996093, 0.0650240020751953, 0.06510387420654297, 0.06495549011230468, 0.06512060546875, 0.06526009368896485, 0.06518374633789062, 0.06514864349365235, 0.0651918716430664, 0.06524307250976563, 0.06530457305908204, 0.06527843475341796, 0.06501558685302734, 0.06514895629882812, 0.06534770965576171, 0.06509372711181641, 0.06512630462646485, 0.06607872009277344, 0.06522982025146484, 0.06520524597167969, 0.06540691375732421, 0.06531897735595703, 0.06524313354492188, 0.06541455841064453, 0.06537276458740235, 0.06572978973388671, 0.06578253173828125, 0.06482681274414062, 0.06451795196533203, 0.06444729614257813, 0.06442393493652344, 0.0647352294921875, 0.06463078308105469, 0.06457158660888672, 0.06472013092041015, 0.06484639739990235, 0.06554192352294921, 0.06488086700439454, 0.06483148956298829, 0.06485807800292968, 0.06518172454833984, 0.06533939361572266, 0.06498303985595703, 0.06475775909423828, 0.06483148956298829, 0.06468402862548828, 0.06485148620605469, 0.06499488067626953, 0.06501673889160156, 0.06486937713623046, 0.06485017395019531, 0.0650881576538086, 0.06509986877441407, 0.06499046325683594, 0.06515174102783203, 0.06541280364990235, 0.06516515350341796, 0.06511459350585938, 0.06521199798583985, 0.06526403045654297, 0.06499942779541015, 0.06506633758544922, 0.06502057647705078, 0.06510793304443359, 0.0655848617553711, 0.06494611358642578, 0.06521040344238281, 0.06518972778320313, 0.06546809387207031, 0.06522962951660156, 0.06529843139648438, 0.06558035278320312, 0.06542546844482422, 0.06523958587646485, 0.06530876922607422, 0.06528739166259766, 0.0652415008544922, 0.06523664093017578, 0.06572048187255859, 0.06552841949462891, 0.06527516937255859, 0.06544044494628906, 0.06539878082275391, 0.06531276702880859, 0.06557901000976563, 0.0655579833984375, 0.06586000061035156, 0.06545830535888672, 0.06546227264404297, 0.06596784210205078, 0.06479612731933594, 0.06460905456542969, 0.06471068572998047, 0.06447625732421874, 0.06458822631835938, 0.06484835052490234, 0.06476534271240235, 0.06479318237304688, 0.06462646484375, 0.06482150268554687, 0.06494409942626952, 0.06486019134521484, 0.06479049682617187, 0.06489292907714844, 0.0651608657836914, 0.06488272094726563, 0.06495587158203125, 0.0648642578125, 0.06471561431884766, 0.06484992218017578, 0.06548585510253906, 0.0651785888671875, 0.06488665771484375, 0.06478451538085937, 0.06500713348388672, 0.06502857971191406, 0.06495577239990234, 0.06512191772460937, 0.06566194915771484, 0.06539453125, 0.06518390655517578, 0.06499737548828124, 0.06515302276611327, 0.06500147247314453, 0.06496208190917968, 0.06532867431640625, 0.065274658203125, 0.06513426971435547, 0.06526000213623047, 0.06526976013183594, 0.06536396789550782, 0.0654725112915039, 0.06538400268554688, 0.06539103698730468, 0.06556854248046876, 0.0655912322998047, 0.06531206512451172, 0.0658043212890625, 0.0649942398071289, 0.0652260513305664, 0.06528844451904296, 0.06515699005126953, 0.06513107299804688, 0.06537830352783203, 0.06532051086425782, 0.06523494720458985, 0.065285888671875, 0.06517420959472656, 0.06545817565917969, 0.06550527954101562, 0.06596604919433594, 0.06548694610595703, 0.06600908660888671, 0.06495177459716797, 0.06456761932373047, 0.06459986877441407, 0.06448931121826172, 0.06461702728271485, 0.06476595306396485, 0.06465535736083984, 0.0648253402709961, 0.06484150695800782, 0.06476620483398438, 0.06488060760498048, 0.06486611175537109, 0.06500985717773437, 0.06498303985595703, 0.06528614044189453, 0.06506700897216797, 0.06486195373535156, 0.06490345764160156, 0.0647775650024414, 0.0647399673461914, 0.06466969299316407, 0.06493596649169922, 0.06477616119384766, 0.06496665954589843, 0.06510387420654297, 0.06502809906005859, 0.06503132629394531, 0.06511638641357421, 0.06524524688720704, 0.06500204467773438, 0.06512614440917969, 0.06497100830078124, 0.06493103790283203, 0.06491801452636718, 0.06514495849609375, 0.06500982666015626, 0.06499737548828124, 0.06487452697753907, 0.06493746948242188, 0.06505110168457032, 0.06507705688476563, 0.06498249816894532, 0.06516400146484375, 0.06539469146728516, 0.06531890869140625, 0.0652390365600586, 0.0651878433227539, 0.06531053161621093, 0.06518739318847656, 0.06508515167236328, 0.06504108428955079, 0.06505622100830079, 0.06520665740966797, 0.06515340423583985, 0.06516643524169922, 0.06523792266845703, 0.06529638671875, 0.06522415924072265, 0.06541327667236328, 0.0653438720703125, 0.06532495880126953, 0.06526764678955078, 0.06558719635009766, 0.06475142669677734, 0.06442540740966797, 0.06439762878417969, 0.06428511810302734, 0.06423757171630859, 0.06430105590820312, 0.06452569580078125, 0.06485874938964843, 0.06492364501953125, 0.06457094573974609, 0.06479625701904297, 0.06475145721435546, 0.06480377960205078, 0.06479055786132812, 0.06503427124023438, 0.06476799774169922, 0.06475737762451172, 0.06491808319091796, 0.06468716430664062, 0.06462335968017578, 0.06455625915527344, 0.06453305816650391, 0.06464739227294922, 0.06489907073974609, 0.06476390075683594, 0.06473728179931641, 0.06612966156005859, 0.06490310668945312, 0.06496697235107422, 0.06522035217285156, 0.06524543762207032, 0.06548592376708984, 0.06495938873291016, 0.06513017272949219, 0.0651185302734375, 0.06496463775634766, 0.06490723419189454, 0.06497484588623047, 0.06505062103271485, 0.06496230316162109, 0.06503977966308594, 0.06507504272460937, 0.06514585876464844, 0.0652779541015625, 0.06534915161132812, 0.06519602966308594, 0.06534601593017578, 0.06513375854492187, 0.06514265441894532, 0.06531305694580078, 0.06525199890136718, 0.0651855697631836, 0.06507894134521484, 0.06510854339599609, 0.06512230682373046, 0.06523407745361329, 0.06532592010498046, 0.06526361846923828, 0.06537149047851562, 0.06567388916015625, 0.06551347351074219, 0.06529452514648437]",tokens/s,15.381010517588047,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 890, in __init__ self.model = OPTModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 822, in __init__ self.decoder = OPTDecoder(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in __init__ self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 373, in __init__ self.self_attn = OPT_ATTENTION_CLASSES[config._attn_implementation](config=config, is_decoder=True) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 115, in __init__ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 8.12 MiB is free. Process 122733 has 14.73 GiB memory in use. Of the allocated memory 14.61 GiB is allocated by PyTorch, and 3.97 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,782.934016,14129.496064,0.0,13734.248448,13728.777216,s,1,7.401724609375,7.401724609375,0.0,7.401724609375,7.401724609375,7.401724609375,7.401724609375,[7.401724609375],,kWh,7.16384237918722e-06,7.825425540195544e-07,3.5797250860017393e-06,1.1526110019208514e-05,,MB,1137.598464,14142.078976,0.0,13736.3456,13487.53408,s,10,12.767971313476561,1.276797131347656,0.0034546170262645267,1.2778217773437501,1.2802987060546875,1.2804129638671875,1.2805043701171874,"[1.2690040283203126, 1.27655322265625, 1.273699462890625, 1.2774561767578125, 1.2802733154296875, 1.273830322265625, 1.27937548828125, 1.2805272216796875, 1.279064697265625, 1.2781873779296875]",tokens/s,200.50170361033994,kWh,3.725450471458354e-05,4.10871512767824e-06,2.4681547523000557e-05,6.604476736526235e-05,tokens/kWh,3876158.705869689,MB,1162.518528,14142.078976,0.0,13736.3456,13661.262848,s,10,37.650972656250005,3.7650972656249997,0.0023110677335511625,3.765232421875,3.768010693359375,3.7682917236328124,3.7685165478515628,"[3.76295849609375, 3.766229248046875, 3.7679482421875, 3.76857275390625, 3.766557373046875, 3.765681884765625, 3.760609375, 3.764782958984375, 3.76463818359375, 3.762994140625]",tokens/s,16.73263545544609,kWh,0.00010977200966958206,1.2107495557714114e-05,7.312919739219867e-05,0.00019500870261949485,tokens/kWh,323062.5051792019,,s,630,37.64779961776732,0.05975841209169418,0.00019985936006495185,0.05975465583801269,0.059999047088623046,0.0600776029586792,0.06035248321533203,"[0.060187488555908206, 0.059701248168945314, 0.059469825744628904, 0.05955081558227539, 0.05928847885131836, 0.059463680267333986, 0.05941183853149414, 0.05939468765258789, 0.05959884643554687, 0.06039756774902344, 0.0595333137512207, 0.059588481903076175, 0.05944316864013672, 0.059616737365722657, 0.059562686920166016, 0.05978112030029297, 0.059770591735839845, 0.05977088165283203, 0.05964009475708008, 0.05964083099365235, 0.0595561294555664, 0.05955452728271484, 0.0594977912902832, 0.05954220962524414, 0.05954150390625, 0.059686912536621096, 0.059510784149169924, 0.05954764938354492, 0.05949161529541016, 0.0596910400390625, 0.05975315093994141, 0.05966438293457031, 0.059795425415039065, 0.059856895446777345, 0.059672607421875, 0.05982393646240235, 0.05967686462402344, 0.059805694580078124, 0.05965414428710938, 0.059584510803222655, 0.06037299346923828, 0.05977907180786133, 0.059772926330566405, 0.059719680786132816, 0.05973929595947266, 0.059705760955810545, 0.05970169448852539, 0.05989718246459961, 0.05993715286254883, 0.05998825454711914, 0.05991424179077148, 0.05996502304077148, 0.05989382553100586, 0.059913761138916014, 0.05985363388061524, 0.05983027267456055, 0.05979689788818359, 0.059961761474609375, 0.06000864028930664, 0.059807743072509766, 0.0597995834350586, 0.05982204818725586, 0.05977679824829102, 0.06014617538452149, 0.05969142532348633, 0.05938307189941406, 0.059437793731689455, 0.05940140914916992, 0.05948259353637695, 0.05948982238769531, 0.05949545669555664, 0.05949792098999023, 0.05951932907104492, 0.05962319946289062, 0.05962339019775391, 0.059581886291503905, 0.05959148788452148, 0.059568126678466796, 0.05955910491943359, 0.059893695831298825, 0.059818878173828124, 0.05970534515380859, 0.0596357421875, 0.05951631927490234, 0.05954412841796875, 0.05958041763305664, 0.059579681396484375, 0.059592575073242185, 0.05967116928100586, 0.05959027099609375, 0.05976028823852539, 0.05978412628173828, 0.059791358947753906, 0.05969305419921875, 0.05969919967651367, 0.059756542205810545, 0.059842655181884766, 0.05976873779296875, 0.05978889465332031, 0.060110622406005856, 0.05999004745483399, 0.05984438323974609, 0.059732833862304685, 0.05977494430541992, 0.060090465545654295, 0.05975187301635742, 0.05982374572753906, 0.05973078536987304, 0.05991628646850586, 0.05994496154785156, 0.059854270935058594, 0.05996319961547852, 0.06004169464111328, 0.060068126678466796, 0.059942401885986325, 0.059994014739990234, 0.05999593734741211, 0.060005184173583984, 0.06001804733276367, 0.059970176696777344, 0.05978112030029297, 0.05990399932861328, 0.06063036727905274, 0.06003692626953125, 0.06001321411132812, 0.05986016082763672, 0.060125503540039066, 0.059625537872314456, 0.05962924957275391, 0.05940310287475586, 0.05945657730102539, 0.05948652648925781, 0.05942284774780274, 0.05973446273803711, 0.06014166259765625, 0.05984601593017578, 0.059585121154785155, 0.059615264892578124, 0.05959676742553711, 0.05955535888671875, 0.059576801300048825, 0.05978112030029297, 0.05980979156494141, 0.05969097518920898, 0.059607105255126955, 0.059762657165527346, 0.05961884689331055, 0.05973654556274414, 0.05978217697143555, 0.05955683135986328, 0.05962937545776367, 0.06022505569458008, 0.059966110229492185, 0.059834369659423826, 0.05976883316040039, 0.059774974822998046, 0.05967443084716797, 0.059748382568359376, 0.06004444885253906, 0.05995212936401367, 0.05979692840576172, 0.05976326370239258, 0.059840511322021485, 0.05981919860839844, 0.05986387252807617, 0.05986304092407226, 0.05970684814453125, 0.05994345474243164, 0.05978857421875, 0.059880062103271486, 0.059784385681152345, 0.05993529510498047, 0.05986953735351563, 0.05992784118652344, 0.059928512573242186, 0.060305633544921876, 0.059925056457519534, 0.05987123107910156, 0.05985279846191406, 0.05994496154785156, 0.05991219329833984, 0.05993859100341797, 0.059776512145996094, 0.05989007949829102, 0.05986540985107422, 0.05988662338256836, 0.05993068695068359, 0.060040096282958984, 0.0600002555847168, 0.060268543243408204, 0.059686912536621096, 0.05954079818725586, 0.0594600944519043, 0.05957603073120117, 0.05950921630859375, 0.05954764938354492, 0.0596190071105957, 0.059644222259521484, 0.05963776016235352, 0.059598560333251956, 0.05971177673339844, 0.05955583953857422, 0.059651615142822266, 0.05965046310424805, 0.05953532791137695, 0.05972572708129883, 0.05982352066040039, 0.05971212768554687, 0.05959596633911133, 0.05960188674926758, 0.05956787109375, 0.05972316741943359, 0.05976559829711914, 0.059789310455322264, 0.05977052688598633, 0.059647327423095704, 0.05968707275390625, 0.05972409439086914, 0.0597628173828125, 0.05972623825073242, 0.05965363311767578, 0.05974272155761719, 0.05997772979736328, 0.06014976119995117, 0.06020438385009766, 0.059646591186523434, 0.05971868896484375, 0.059887775421142576, 0.05975481414794922, 0.05998982238769531, 0.059880062103271486, 0.05974009704589844, 0.059725345611572264, 0.059810367584228516, 0.05985696029663086, 0.05979750442504883, 0.0599818229675293, 0.05998284912109375, 0.060006401062011716, 0.059896671295166015, 0.06006697463989258, 0.05991731262207031, 0.06008195114135742, 0.06011312103271484, 0.060022785186767576, 0.060184574127197264, 0.0602149772644043, 0.060335647583007815, 0.06002463912963867, 0.05997260665893555, 0.06005075073242187, 0.06004908752441406, 0.0604956169128418, 0.059609153747558596, 0.05955440139770508, 0.05954716873168946, 0.059424705505371093, 0.05978988647460937, 0.05958041763305664, 0.060014591217041016, 0.059573726654052736, 0.059587039947509766, 0.05951059341430664, 0.059698497772216794, 0.05980051040649414, 0.05970684814453125, 0.059612766265869144, 0.05961004638671875, 0.059717632293701174, 0.059797374725341794, 0.05974556732177734, 0.059568992614746095, 0.05954889678955078, 0.059634273529052734, 0.05976287841796875, 0.059676673889160155, 0.05972518539428711, 0.05967526245117188, 0.0596049919128418, 0.059652000427246096, 0.05975839996337891, 0.05993913650512695, 0.0598773422241211, 0.05976601409912109, 0.0598392333984375, 0.059842559814453126, 0.059789310455322264, 0.05975449752807617, 0.05976886367797852, 0.05987705612182617, 0.05959267044067383, 0.05974867248535156, 0.05974972915649414, 0.05991462326049805, 0.05976927947998047, 0.05966937637329101, 0.05979849624633789, 0.059768318176269535, 0.05986095809936524, 0.059951648712158204, 0.0599444465637207, 0.05988195037841797, 0.05994895935058594, 0.060069408416748044, 0.05995993423461914, 0.0598546257019043, 0.059892990112304687, 0.05980460739135742, 0.059824127197265625, 0.0600384635925293, 0.059953857421875, 0.05994905471801758, 0.059936767578125, 0.05992038345336914, 0.059969600677490235, 0.06006070327758789, 0.05967929458618164, 0.05942108917236328, 0.059463680267333986, 0.05932783889770508, 0.059670238494873046, 0.05943392181396484, 0.05954134368896485, 0.05956012725830078, 0.059463680267333986, 0.059485248565673825, 0.05960796737670898, 0.05954492950439453, 0.059787105560302735, 0.059568958282470705, 0.05960908889770508, 0.05976268768310547, 0.05991628646850586, 0.059715007781982424, 0.05957894515991211, 0.0595882568359375, 0.060268894195556644, 0.05975449752807617, 0.059694206237792966, 0.05961308670043945, 0.05967766571044922, 0.05971484756469726, 0.059665153503417966, 0.059639263153076175, 0.05975296020507812, 0.05969715118408203, 0.05964799880981445, 0.059731998443603516, 0.06026649475097656, 0.059757537841796875, 0.0597694091796875, 0.05982979202270508, 0.05970143890380859, 0.059681503295898435, 0.059676193237304685, 0.05970915222167969, 0.059738174438476566, 0.059998912811279295, 0.05997772979736328, 0.05976883316040039, 0.059807743072509766, 0.059966880798339846, 0.059857246398925784, 0.05999590301513672, 0.05999257659912109, 0.0599920654296875, 0.05997568130493164, 0.0600494384765625, 0.060016609191894534, 0.059756542205810545, 0.059908096313476565, 0.06019651031494141, 0.060072288513183594, 0.05974425506591797, 0.059829822540283205, 0.05988191986083984, 0.059844062805175784, 0.05997212982177735, 0.06016211318969727, 0.059686878204345706, 0.05937097549438477, 0.05931222534179687, 0.05946182250976562, 0.05946799850463867, 0.05981769561767578, 0.05942300796508789, 0.0594920654296875, 0.059447582244873044, 0.05942230224609375, 0.05961564636230469, 0.059469825744628904, 0.05956185531616211, 0.05951919937133789, 0.059568031311035156, 0.05975244903564453, 0.059686912536621096, 0.059660289764404295, 0.059676673889160155, 0.05959385681152344, 0.05963776016235352, 0.059572639465332033, 0.05949488067626953, 0.059432193756103514, 0.059433727264404296, 0.05950054550170898, 0.059600704193115236, 0.05963702392578125, 0.05968783950805664, 0.05970473480224609, 0.05959270477294922, 0.05963193511962891, 0.05986681747436524, 0.059789920806884764, 0.05992652893066406, 0.05981824111938477, 0.05978291320800781, 0.05971353530883789, 0.05967871856689453, 0.05967814254760742, 0.059802177429199216, 0.05966563034057617, 0.05980649566650391, 0.05969311904907226, 0.05981587219238281, 0.060022785186767576, 0.059931934356689455, 0.05989638519287109, 0.059754112243652346, 0.05982262420654297, 0.059891712188720705, 0.05977907180786133, 0.059873279571533204, 0.05979052734375, 0.06003180694580078, 0.05977097702026367, 0.059840415954589846, 0.0597212142944336, 0.05986089706420898, 0.059687744140625, 0.05975769424438476, 0.05972588729858398, 0.060084030151367186, 0.05970851135253906, 0.059464607238769535, 0.059487648010253906, 0.05948886489868164, 0.05951216125488281, 0.05954627227783203, 0.059399585723876956, 0.059525760650634765, 0.059539039611816405, 0.059476222991943356, 0.05954060745239258, 0.059529216766357425, 0.05987225723266602, 0.05960815811157227, 0.05972796630859375, 0.0599375991821289, 0.06000844955444336, 0.05978521728515625, 0.05972172927856445, 0.05978112030029297, 0.05962131118774414, 0.05964191818237305, 0.05964761734008789, 0.05951667022705078, 0.05954947280883789, 0.059546047210693356, 0.05962998580932617, 0.05967843246459961, 0.059729503631591796, 0.05965689468383789, 0.0599733772277832, 0.0603875846862793, 0.05978112030029297, 0.05973606491088867, 0.05978316879272461, 0.05969062423706055, 0.05990028762817383, 0.059718910217285155, 0.05966310501098633, 0.05958467102050781, 0.059727710723876955, 0.05957632064819336, 0.059661823272705077, 0.059738624572753904, 0.059698238372802734, 0.059980735778808594, 0.05990524673461914, 0.0599150390625, 0.05985696029663086, 0.0597154541015625, 0.05985823822021484, 0.059916545867919925, 0.0598873291015625, 0.0600700798034668, 0.06040636825561523, 0.05989785766601562, 0.05997292709350586, 0.059877086639404296, 0.059808319091796874, 0.05980201721191406, 0.06004121780395508, 0.05993577575683594, 0.060243968963623044, 0.05971558380126953, 0.05948320007324219, 0.05952767944335938, 0.05944527816772461, 0.06004336166381836, 0.05946774291992187, 0.05939440155029297, 0.0594595832824707, 0.05962464141845703, 0.05956486511230469, 0.05964543914794922, 0.05962799835205078, 0.05975830459594727, 0.05976710510253906, 0.05967792129516602, 0.0598043212890625, 0.059911392211914063, 0.05988454437255859, 0.05978694534301758, 0.05996976089477539, 0.059614654541015624, 0.05948412704467773, 0.05959740829467773, 0.05965619277954102, 0.05957017517089844, 0.05979520034790039, 0.059715839385986326, 0.0595599365234375, 0.05964799880981445, 0.059658241271972653, 0.05974211120605469, 0.05975868988037109, 0.059979774475097655, 0.05989577484130859, 0.059850273132324217, 0.05986067199707031, 0.05975676727294922, 0.059695518493652344, 0.059635902404785154, 0.05988739013671875, 0.059813312530517575, 0.05960326385498047, 0.059816417694091795, 0.05978083038330078, 0.05985686492919922, 0.059840065002441406, 0.05985971069335937, 0.05995542526245117, 0.059954975128173826, 0.05997564697265625, 0.06003919982910156, 0.05976646423339844, 0.059869503021240236, 0.059881153106689455, 0.059768928527832034, 0.05968217468261719, 0.0597471694946289, 0.05974835205078125, 0.05976678466796875, 0.05977088165283203, 0.05986716842651367, 0.059813697814941405, 0.060256542205810545, 0.059643905639648435, 0.05966761779785156, 0.05943996810913086, 0.05940019226074219, 0.05942691040039062, 0.05936528015136719, 0.059379711151123046, 0.05935932922363281, 0.059394081115722655, 0.05941644668579102, 0.05961068725585938, 0.059421119689941404, 0.059660289764404295, 0.05969900894165039, 0.0597977294921875, 0.059772865295410156, 0.059912223815917966, 0.059848705291748044, 0.05970534515380859, 0.059504863739013675, 0.05963478469848633, 0.05946755218505859, 0.05949257659912109, 0.059628223419189455, 0.0595333137512207, 0.05957017517089844, 0.0596049919128418, 0.05957820892333984, 0.0597751350402832, 0.06011084747314453, 0.05986304092407226, 0.06013132858276367, 0.05996255874633789, 0.05984543991088867, 0.059950206756591795, 0.05987145614624023, 0.05966096115112305, 0.05961321640014648, 0.05967244720458984, 0.05965427017211914, 0.059799518585205075, 0.05972124862670898, 0.059859390258789065, 0.05976038360595703, 0.05963174438476562, 0.05971574401855469, 0.05971148681640625, 0.059643905639648435, 0.059791358947753906, 0.05990115356445312, 0.06002355194091797, 0.05997091293334961, 0.060359359741210934, 0.05994496154785156, 0.059799774169921875, 0.059748126983642576, 0.059780319213867186, 0.05975529479980469, 0.0599733772277832, 0.059797630310058594, 0.059889087677001955, 0.05981254577636719]",tokens/s,16.73404571837661,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,816.238592,6223.233024,0.0,5827.985408,5712.718848,s,1,7.54695166015625,7.54695166015625,0.0,7.54695166015625,7.54695166015625,7.54695166015625,7.54695166015625,[7.54695166015625],,kWh,1.0930174412499126e-05,1.1981091724824766e-06,4.701948206002615e-06,1.683023179098422e-05,,MB,1111.724032,6451.822592,0.0,6046.089216,5989.425664,s,10,5.286087219238281,0.5286087219238281,0.002321793649104793,0.5290133361816407,0.5308089782714844,0.531027963256836,0.5312031512451172,"[0.5225958251953124, 0.52860546875, 0.5275892333984376, 0.5301387939453125, 0.5295997314453125, 0.5275242309570313, 0.5293984375, 0.5286282348632813, 0.5307603149414063, 0.5312469482421875]",tokens/s,484.29015523676753,kWh,1.5522173169080033e-05,1.7117404982930236e-06,1.0341382542105052e-05,2.757529620947811e-05,tokens/kWh,9283671.807376934,MB,1137.668096,6514.737152,0.0,6109.003776,6090.851328,s,10,20.916714111328126,2.0916714111328125,0.006449218288308434,2.09066162109375,2.1005560058593753,2.101516650390625,2.102285166015625,"[2.08726904296875, 2.081265380859375, 2.084882080078125, 2.09225341796875, 2.08906982421875, 2.088210693359375, 2.096529296875, 2.09441455078125, 2.102477294921875, 2.100342529296875]",tokens/s,30.119453593277495,kWh,6.068127666216896e-05,6.6933406774990235e-06,4.018646343569547e-05,0.00010756108077536346,tokens/kWh,585713.7130443371,,s,630,20.91351463317871,0.03319605497329954,0.0003447476206661443,0.03314238357543945,0.033563927841186524,0.03374415397644043,0.03473555046081543,"[0.0346644172668457, 0.03373174285888672, 0.03311088180541992, 0.032956447601318356, 0.03288854217529297, 0.03291366577148438, 0.03288684844970703, 0.032904319763183594, 0.03283145523071289, 0.033006431579589844, 0.033435329437255856, 0.03340934371948242, 0.03290457534790039, 0.032905887603759766, 0.03291545486450195, 0.03283990478515625, 0.03289583969116211, 0.0328480339050293, 0.03286297607421875, 0.03293398284912109, 0.03310291290283203, 0.03321331024169922, 0.03304035186767578, 0.033058815002441407, 0.03306905746459961, 0.033058559417724606, 0.0330590705871582, 0.03303395080566406, 0.0330937614440918, 0.033147041320800784, 0.03329228973388672, 0.033277950286865234, 0.03304857635498047, 0.03302918243408203, 0.03296761703491211, 0.033058815002441407, 0.03318374252319336, 0.0332485122680664, 0.03301862335205078, 0.033132190704345706, 0.033091934204101565, 0.03320217514038086, 0.033159168243408206, 0.03303593444824219, 0.03306710433959961, 0.033245311737060544, 0.03321219253540039, 0.033144416809082033, 0.033140830993652344, 0.033102527618408206, 0.03308540725708008, 0.03312639999389649, 0.03320217514038086, 0.03317708969116211, 0.0331514892578125, 0.03316659164428711, 0.03310464096069336, 0.03313180923461914, 0.03322544097900391, 0.0334552001953125, 0.03326249694824219, 0.03326092910766602, 0.03325750350952148, 0.03412057495117188, 0.03347763061523437, 0.03413993453979492, 0.03299964904785156, 0.032835582733154296, 0.03278652954101562, 0.03289075088500976, 0.03295849609375, 0.032958335876464843, 0.03279430389404297, 0.032841793060302736, 0.03278041458129883, 0.0328111686706543, 0.03270207977294922, 0.032647647857666016, 0.032704479217529295, 0.03279289627075195, 0.03269398498535156, 0.03277004623413086, 0.032815006256103514, 0.03281110382080078, 0.03290697479248047, 0.032792865753173826, 0.03286227035522461, 0.03290924835205078, 0.03297484970092773, 0.032958240509033204, 0.03303433609008789, 0.03300979232788086, 0.03334707260131836, 0.033323360443115235, 0.03318742370605469, 0.033185760498046876, 0.03328224182128906, 0.033251777648925784, 0.03302601623535156, 0.03299123382568359, 0.03292559814453125, 0.032845920562744144, 0.03288063812255859, 0.03284172821044922, 0.03291664123535156, 0.032885601043701175, 0.03296390533447266, 0.0329911994934082, 0.033027935028076175, 0.032981246948242185, 0.03294476699829101, 0.03302134323120117, 0.03292745590209961, 0.03291545486450195, 0.03314777755737305, 0.03300131225585937, 0.03313036727905273, 0.03328841781616211, 0.03325049591064453, 0.033121150970458986, 0.03308240127563476, 0.03323344039916992, 0.033579456329345704, 0.033261566162109374, 0.033186912536621094, 0.03325337600708008, 0.03483504104614258, 0.03366851043701172, 0.033057376861572264, 0.03282876968383789, 0.03278876876831055, 0.032866687774658204, 0.0327086067199707, 0.03273523330688476, 0.03268150329589844, 0.0326517448425293, 0.03269222259521484, 0.03263488006591797, 0.03274947357177734, 0.03284182357788086, 0.032866302490234374, 0.03283679962158203, 0.03276227188110352, 0.032766368865966795, 0.03275980758666992, 0.032785633087158206, 0.03287033462524414, 0.032783199310302734, 0.032958110809326174, 0.033443519592285156, 0.0329152946472168, 0.03288761520385742, 0.03294617462158203, 0.0329986572265625, 0.03314163208007812, 0.033107616424560546, 0.03309769439697265, 0.03311008071899414, 0.033199905395507816, 0.03368387222290039, 0.033027294158935544, 0.033142623901367185, 0.033164222717285155, 0.03310182571411133, 0.033157119750976564, 0.03319807815551758, 0.03292940902709961, 0.03304486465454102, 0.03298009490966797, 0.03306489562988281, 0.033063201904296874, 0.032997440338134766, 0.033065567016601564, 0.03308745574951172, 0.03315100860595703, 0.03362815856933594, 0.03298303985595703, 0.03314688110351562, 0.033392574310302736, 0.03329017639160156, 0.03316044616699219, 0.03317644882202148, 0.03328409576416016, 0.03356991958618164, 0.03341721725463867, 0.03358972930908203, 0.033339710235595704, 0.03355420684814453, 0.03321001434326172, 0.034756607055664065, 0.033670238494873043, 0.03304262542724609, 0.03287424087524414, 0.03284435272216797, 0.032865985870361325, 0.03284860610961914, 0.033023998260498046, 0.03377910232543945, 0.03296112060546875, 0.03295846557617187, 0.03299942398071289, 0.03294972610473633, 0.03289961624145508, 0.03284915161132813, 0.03289891052246094, 0.03287542343139648, 0.0331038703918457, 0.03307136154174805, 0.033083393096923826, 0.03305036926269531, 0.032903167724609376, 0.03285942459106445, 0.03283222579956055, 0.03294345474243164, 0.03314748764038086, 0.033062976837158205, 0.03313049697875976, 0.033232383728027344, 0.033417598724365234, 0.03349331283569336, 0.03329625701904297, 0.03362575912475586, 0.03313059234619141, 0.03301007843017578, 0.03293683242797851, 0.0330269775390625, 0.03323494338989258, 0.033130016326904294, 0.033098369598388674, 0.03313443374633789, 0.03319718551635742, 0.03323788833618164, 0.033345535278320314, 0.03339571380615235, 0.033205249786376956, 0.03314467239379883, 0.03329244613647461, 0.03317750549316406, 0.03317891311645508, 0.03314771270751953, 0.03317724609375, 0.0336448974609375, 0.0333496322631836, 0.033263614654541016, 0.03339433670043945, 0.03337027359008789, 0.03347270584106445, 0.03363772964477539, 0.03380438232421875, 0.033538623809814455, 0.033495040893554685, 0.0334194221496582, 0.034786399841308595, 0.0339851188659668, 0.033372478485107424, 0.03309568023681641, 0.03301375961303711, 0.03279673767089844, 0.033261505126953125, 0.03282944107055664, 0.03278031921386719, 0.03283305740356445, 0.03292745590209961, 0.03279536056518555, 0.0328089599609375, 0.03299327850341797, 0.03306291198730469, 0.03294617462158203, 0.03289702224731445, 0.03279872131347656, 0.032763904571533206, 0.03296041488647461, 0.03303004837036133, 0.033175167083740235, 0.033101406097412106, 0.03356361770629883, 0.033253246307373044, 0.0330937614440918, 0.032892929077148435, 0.03299532699584961, 0.03361740875244141, 0.03319039916992188, 0.03499359893798828, 0.0331454086303711, 0.03320627212524414, 0.03334572982788086, 0.03323782348632812, 0.03299430465698242, 0.032997184753417966, 0.03290361785888672, 0.032906017303466796, 0.032850528717041014, 0.032833919525146485, 0.032890911102294924, 0.03291952133178711, 0.03292364883422851, 0.0329411849975586, 0.03311094284057617, 0.0332369613647461, 0.03330035018920898, 0.03319411087036133, 0.033062400817871096, 0.03306108856201172, 0.03304476928710937, 0.03313071823120117, 0.03314467239379883, 0.03315008163452148, 0.033395294189453126, 0.0331286735534668, 0.03320832061767578, 0.03345427322387695, 0.033400863647460935, 0.03343337631225586, 0.03335699081420898, 0.033232769012451174, 0.034336734771728515, 0.033591327667236326, 0.03292127990722656, 0.032930110931396486, 0.03280691146850586, 0.0331893424987793, 0.03295929718017578, 0.03282304000854492, 0.03278041458129883, 0.03273043060302734, 0.0327685432434082, 0.03267900848388672, 0.03280579376220703, 0.03274342346191406, 0.03281305694580078, 0.03268972778320312, 0.03284566497802734, 0.03278908920288086, 0.03286969757080078, 0.03294892883300781, 0.032882686614990234, 0.03295795059204101, 0.03296307373046875, 0.03303219223022461, 0.03301686477661133, 0.03299407958984375, 0.033005470275878905, 0.03311030578613281, 0.03322995376586914, 0.03330342483520508, 0.033371326446533206, 0.03308217620849609, 0.033076351165771484, 0.03305971145629883, 0.0333251838684082, 0.03315727996826172, 0.033125312805175784, 0.033118305206298826, 0.033239742279052735, 0.0332327995300293, 0.03335382461547851, 0.03323260879516601, 0.0331280632019043, 0.0330667839050293, 0.033315296173095706, 0.03325788879394531, 0.03325155258178711, 0.03319305419921875, 0.03341110229492188, 0.03338499069213867, 0.03320230484008789, 0.03342326354980469, 0.03337839889526367, 0.03309088134765625, 0.03315987014770508, 0.03323075103759766, 0.03348489761352539, 0.033277950286865234, 0.03352492904663086, 0.0332927360534668, 0.033720703125, 0.033380352020263675, 0.033819904327392576, 0.03460748672485352, 0.0335906867980957, 0.033067615509033206, 0.03298918533325195, 0.03309590530395508, 0.033021728515625, 0.03294131088256836, 0.03297148895263672, 0.03291120147705078, 0.032970943450927735, 0.03298099136352539, 0.03295353698730469, 0.03295743942260742, 0.03300070571899414, 0.032879169464111326, 0.03287859344482422, 0.03301299285888672, 0.03294486236572266, 0.03323635101318359, 0.03301033782958984, 0.03294585418701172, 0.03303456115722656, 0.033019134521484375, 0.03312460708618164, 0.03317097473144531, 0.033003616333007815, 0.03300748825073242, 0.033062015533447266, 0.033216350555419924, 0.033552417755126955, 0.03336739349365234, 0.03354000091552734, 0.03331078338623047, 0.033333953857421876, 0.03337814331054687, 0.034025630950927734, 0.03321855926513672, 0.03313423919677734, 0.033083518981933596, 0.03327772903442383, 0.03452972793579102, 0.033226303100585934, 0.0331569595336914, 0.03317583847045898, 0.03330847930908203, 0.033219070434570314, 0.03390195083618164, 0.033979007720947266, 0.03343155288696289, 0.03343900680541992, 0.03319881439208985, 0.033181697845458984, 0.033268993377685546, 0.033344257354736326, 0.0332410888671875, 0.033588958740234376, 0.033322975158691405, 0.0332817268371582, 0.03349798583984375, 0.033328575134277345, 0.033382015228271486, 0.03340924835205078, 0.03392777633666992, 0.035089534759521486, 0.03408512115478515, 0.03329500961303711, 0.033158878326416015, 0.03313488006591797, 0.03288883209228516, 0.032917503356933595, 0.032919551849365236, 0.0329150390625, 0.03288310241699219, 0.03299532699584961, 0.033068416595458984, 0.03313257598876953, 0.033122081756591794, 0.03312022399902344, 0.03299728012084961, 0.03302406311035156, 0.033046817779541014, 0.033043041229248046, 0.033121952056884764, 0.033046558380126954, 0.032906719207763675, 0.032965473175048825, 0.03297484970092773, 0.03308700942993164, 0.03296099090576172, 0.03305814361572266, 0.0331168327331543, 0.03309097671508789, 0.03307785415649414, 0.03375059127807617, 0.033184192657470704, 0.033208511352539063, 0.03359955215454102, 0.033259456634521484, 0.03313782501220703, 0.03305539321899414, 0.033087646484375, 0.03297264099121094, 0.033132545471191405, 0.03312188720703125, 0.03308585739135742, 0.03317964935302734, 0.03309363174438477, 0.033124351501464845, 0.03314604949951172, 0.033194080352783206, 0.03323958587646485, 0.03342729568481445, 0.03336431884765625, 0.03326342391967774, 0.03319561767578125, 0.03322531127929688, 0.033236927032470706, 0.033386878967285157, 0.03318751907348633, 0.03322265625, 0.03344998550415039, 0.03339878463745117, 0.03411558532714844, 0.03395779037475586, 0.03424854278564453, 0.03361753463745117, 0.03513507080078125, 0.0338436164855957, 0.03355263900756836, 0.0332710075378418, 0.03310441589355469, 0.03313840103149414, 0.03324860763549805, 0.03308745574951172, 0.03301196670532226, 0.03307136154174805, 0.033692127227783204, 0.03321395111083984, 0.03307980728149414, 0.033355777740478515, 0.033191776275634764, 0.03306089782714844, 0.03326959991455078, 0.03310316848754883, 0.03320876693725586, 0.033161758422851566, 0.03307855987548828, 0.03309641647338867, 0.03321241760253906, 0.03364044952392578, 0.033142143249511716, 0.033245918273925784, 0.033255329132080076, 0.03332207870483399, 0.03332150268554687, 0.033656993865966794, 0.03338671875, 0.03347478485107422, 0.03352143859863281, 0.03347455978393555, 0.033306625366210936, 0.033261600494384765, 0.033381534576416017, 0.03324601745605469, 0.033102977752685545, 0.03315299224853516, 0.03331961441040039, 0.03344406509399414, 0.03333232116699219, 0.03336431884765625, 0.03333587265014649, 0.03325337600708008, 0.03329600143432617, 0.03331216049194336, 0.03319087982177735, 0.03312633514404297, 0.03323052978515625, 0.03359577560424805, 0.033304576873779294, 0.033363006591796876, 0.034683998107910154, 0.03353785705566406, 0.033157024383544925, 0.033277057647705076, 0.033653759002685545, 0.033465438842773435, 0.0336530876159668, 0.03373072052001953, 0.033401153564453126, 0.03485955047607422, 0.03357500839233398, 0.033286048889160154, 0.03316454315185547, 0.0330043830871582, 0.03305628967285156, 0.03305305480957031, 0.032881759643554685, 0.03303926467895508, 0.03318560028076172, 0.03313273620605469, 0.032985088348388675, 0.03300742340087891, 0.033027359008789066, 0.032956832885742186, 0.03291350555419922, 0.03288025665283203, 0.032946975708007815, 0.03299711990356445, 0.03320857620239258, 0.033189888000488284, 0.03327350234985352, 0.03318790435791016, 0.03309372711181641, 0.03320969772338867, 0.033164127349853516, 0.03320627212524414, 0.033274078369140626, 0.03347135925292969, 0.033491008758544924, 0.033501697540283204, 0.03369152069091797, 0.03331343841552734, 0.03340268707275391, 0.03335907363891601, 0.03317225646972656, 0.03317379379272461, 0.033508190155029295, 0.03332185745239258, 0.03330223846435547, 0.03336220932006836, 0.03324860763549805, 0.03318236923217773, 0.03330192184448242, 0.03348080062866211, 0.034129886627197265, 0.03324067306518555, 0.03355244827270508, 0.033483905792236326, 0.03344563293457031, 0.033271808624267575, 0.03326736068725586, 0.03365923309326172, 0.0332677116394043, 0.03356671905517578, 0.0333656005859375, 0.033736286163330076, 0.033407905578613284, 0.033771327972412106, 0.03390047836303711, 0.03364988708496094, 0.033455039978027346, 0.03375619125366211]",tokens/s,30.12406145261316,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 217, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 258.12 MiB is free. Process 99559 has 14.49 GiB memory in use. Of the allocated memory 14.32 GiB is allocated by PyTorch, and 53.40 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,836.268032,1903.099904,0.0,1507.852288,1469.840384,s,1,7.54557958984375,7.54557958984375,0.0,7.54557958984375,7.54557958984375,7.54557958984375,7.54557958984375,[7.54557958984375],,kWh,9.880303533331396e-06,1.08249113978262e-06,4.201947805995698e-06,1.5164742479109715e-05,,MB,1141.8624,1942.945792,0.0,1537.212416,1426.272256,s,10,0.9013761444091797,0.09013761444091797,0.0016001539587170693,0.08954978942871095,0.09113024673461914,0.09279881935119628,0.09413367744445801,"[0.09446739196777344, 0.0894210205078125, 0.08925401306152343, 0.08892195129394531, 0.08967855834960937, 0.09071209716796876, 0.09034918212890625, 0.08910758209228516, 0.09075945281982421, 0.08870489501953124]",tokens/s,2840.1017886689133,kWh,3.001324800595198e-06,3.309910265364032e-07,1.9376659492245198e-06,5.269981776356121e-06,tokens/kWh,48577018.074056566,MB,1163.390976,1953.431552,0.0,1547.698176,1426.274816,s,10,15.022645507812502,1.5022645507812498,0.01031252672261329,1.50402294921875,1.5139361694335938,1.5142273620605469,1.5144603161621093,"[1.5039227294921875, 1.480812255859375, 1.4960413818359375, 1.490408935546875, 1.5138714599609375, 1.5145185546875, 1.512547119140625, 1.506765869140625, 1.5041231689453125, 1.499634033203125]",tokens/s,41.93668816004276,kWh,4.3225946373989707e-05,4.767480243062044e-06,2.0830685598775315e-05,6.882411221582706e-05,tokens/kWh,915376.8638880063,,s,630,15.020117973327645,0.023841457100520057,0.00040457175319861285,0.023801039695739747,0.024200953865051267,0.02438948554992676,0.02525592248916626,"[0.024852064132690428, 0.02422825622558594, 0.02429481506347656, 0.024156768798828124, 0.024006656646728516, 0.023957504272460937, 0.024294912338256838, 0.024455680847167968, 0.02365763282775879, 0.023536415100097657, 0.02394291114807129, 0.023818559646606445, 0.023776319503784178, 0.0238351993560791, 0.02362406349182129, 0.023688383102416992, 0.023827264785766602, 0.024055328369140625, 0.023734272003173826, 0.02416819190979004, 0.023736127853393553, 0.02375369644165039, 0.023872608184814452, 0.026456415176391603, 0.02418943977355957, 0.024086528778076172, 0.02422915267944336, 0.026542816162109375, 0.023611488342285155, 0.023537664413452147, 0.023500064849853515, 0.023700096130371093, 0.023640064239501952, 0.02365235137939453, 0.02338128089904785, 0.023447872161865235, 0.02354422378540039, 0.023480319976806642, 0.023801023483276368, 0.023806783676147462, 0.02365644836425781, 0.023564287185668945, 0.02348646354675293, 0.023533567428588868, 0.023565343856811524, 0.023419008255004883, 0.02376585578918457, 0.023390111923217775, 0.025808992385864257, 0.023408063888549803, 0.023433792114257813, 0.023416831970214845, 0.023480319976806642, 0.02348441505432129, 0.023752704620361328, 0.023813119888305666, 0.02369193649291992, 0.023557567596435548, 0.023382720947265626, 0.02354198455810547, 0.023463935852050782, 0.02376412773132324, 0.02343612861633301, 0.024520671844482422, 0.0238985595703125, 0.024315488815307616, 0.02368284797668457, 0.023501184463500975, 0.023414047241210937, 0.023410879135131835, 0.023374624252319336, 0.02328335952758789, 0.023163232803344726, 0.023373376846313475, 0.023466432571411133, 0.02323865509033203, 0.023355392456054686, 0.023635551452636717, 0.023787935256958007, 0.023557376861572266, 0.023819007873535157, 0.02378447914123535, 0.0237291202545166, 0.02350694465637207, 0.02350809669494629, 0.023184255599975587, 0.02323187255859375, 0.023411199569702147, 0.023406047821044922, 0.023384735107421874, 0.023341056823730468, 0.0236910400390625, 0.023423200607299806, 0.0230830078125, 0.023504896163940428, 0.023980031967163085, 0.02371174430847168, 0.02355200004577637, 0.0231910400390625, 0.023260799407958985, 0.023427967071533204, 0.02324662399291992, 0.023134431838989257, 0.023355392456054686, 0.023549312591552733, 0.023511680603027343, 0.023525375366210938, 0.023721536636352538, 0.023814592361450195, 0.023623680114746092, 0.023513088226318358, 0.02369126319885254, 0.023572479248046875, 0.023447519302368165, 0.023271455764770507, 0.023130111694335938, 0.02314035224914551, 0.023244096755981446, 0.02318582344055176, 0.023439647674560547, 0.023447551727294923, 0.023470048904418946, 0.023547103881835937, 0.023543775558471678, 0.023669599533081054, 0.023670783996582033, 0.024637439727783202, 0.023605247497558594, 0.023558143615722657, 0.023611391067504883, 0.023580671310424805, 0.023615488052368162, 0.023574399948120116, 0.02502822494506836, 0.024299072265625, 0.023546016693115235, 0.023716032028198244, 0.023717727661132813, 0.023950271606445313, 0.02384671974182129, 0.023476224899291992, 0.023442527770996095, 0.02343619155883789, 0.02434048080444336, 0.023770591735839845, 0.023618303298950195, 0.023850784301757813, 0.023573759078979493, 0.023341312408447265, 0.023451776504516603, 0.02421798324584961, 0.023754751205444336, 0.02405311965942383, 0.023831008911132812, 0.023714975357055666, 0.02383091163635254, 0.023883424758911132, 0.023797887802124024, 0.023755615234375, 0.02386124801635742, 0.02396675109863281, 0.02373516845703125, 0.02371183967590332, 0.023813663482666017, 0.023732704162597658, 0.02359059143066406, 0.023607616424560548, 0.02348646354675293, 0.024089696884155274, 0.0238703670501709, 0.023610431671142577, 0.023579584121704102, 0.023779327392578126, 0.02372812843322754, 0.023740415573120118, 0.023631872177124022, 0.023785472869873047, 0.02352332878112793, 0.02352895927429199, 0.023427391052246095, 0.023637760162353517, 0.02370787239074707, 0.02410927963256836, 0.023607295989990236, 0.02349465560913086, 0.02360316848754883, 0.023409696578979493, 0.02344403266906738, 0.02356268882751465, 0.02451046371459961, 0.02348646354675293, 0.02364601516723633, 0.02332896041870117, 0.023513088226318358, 0.023595008850097656, 0.023392255783081056, 0.023474111557006835, 0.02335955238342285, 0.023558143615722657, 0.02341993522644043, 0.023361759185791017, 0.0233110408782959, 0.02361555290222168, 0.023412736892700195, 0.023357440948486328, 0.023371776580810546, 0.02367660713195801, 0.023428800582885743, 0.0237574405670166, 0.023330816268920897, 0.023387584686279297, 0.023500383377075194, 0.02341747283935547, 0.023462015151977537, 0.023574176788330077, 0.02367340850830078, 0.023562240600585937, 0.023963455200195313, 0.02351532745361328, 0.023694559097290038, 0.024437311172485352, 0.023382495880126954, 0.02346143913269043, 0.023541952133178713, 0.02384048080444336, 0.02358278465270996, 0.023361759185791017, 0.023644128799438478, 0.0233984317779541, 0.023512800216674803, 0.023385536193847655, 0.023598207473754882, 0.023793376922607423, 0.023789567947387694, 0.023418880462646483, 0.023448991775512695, 0.02467286491394043, 0.023975936889648438, 0.02371075248718262, 0.02362246322631836, 0.0238573112487793, 0.02373222351074219, 0.02360483169555664, 0.02414224052429199, 0.024260608673095704, 0.02524985694885254, 0.023766016006469725, 0.02343212890625, 0.023394304275512694, 0.023553024291992186, 0.024290559768676757, 0.023668479919433594, 0.024482336044311524, 0.023914016723632813, 0.027047840118408203, 0.023898880004882814, 0.023870559692382814, 0.02419580841064453, 0.024005983352661135, 0.02396022415161133, 0.023855104446411132, 0.024151744842529296, 0.023976255416870117, 0.024004608154296874, 0.023877504348754883, 0.024145183563232423, 0.023827295303344726, 0.02377628707885742, 0.02399945640563965, 0.02387331199645996, 0.02398579216003418, 0.02385686492919922, 0.02392563247680664, 0.02392278480529785, 0.023838623046875, 0.02445516777038574, 0.02374790382385254, 0.023749311447143553, 0.02394316864013672, 0.023844192504882813, 0.023968416213989256, 0.023911680221557617, 0.023823104858398437, 0.02391244888305664, 0.02400592041015625, 0.023876319885253905, 0.023961599349975587, 0.02394726371765137, 0.024170303344726564, 0.024234176635742188, 0.02388172721862793, 0.023807327270507814, 0.023994720458984375, 0.0238799991607666, 0.023715328216552735, 0.023926336288452147, 0.023968095779418944, 0.023877792358398438, 0.024109504699707032, 0.024223552703857423, 0.02459872055053711, 0.023932928085327147, 0.023901695251464843, 0.024283008575439455, 0.024006784439086912, 0.023795679092407228, 0.02388956832885742, 0.024142496109008788, 0.023959775924682618, 0.023911840438842775, 0.023972448348999024, 0.023941024780273438, 0.023838432312011718, 0.024108608245849608, 0.023964672088623046, 0.024815231323242187, 0.02404390335083008, 0.02390425682067871, 0.02394726371765137, 0.02401241683959961, 0.02406630325317383, 0.024004608154296874, 0.024166528701782226, 0.023903263092041015, 0.02394620704650879, 0.024391040802001954, 0.024068735122680665, 0.024619007110595705, 0.02387334442138672, 0.023967296600341796, 0.02399091148376465, 0.023862464904785156, 0.023937536239624024, 0.023828096389770508, 0.023898015975952147, 0.02416924858093262, 0.023879680633544922, 0.024196256637573244, 0.023876287460327147, 0.023916704177856445, 0.02386147117614746, 0.02435465621948242, 0.024108991622924805, 0.025121984481811525, 0.024613536834716798, 0.02463759994506836, 0.024009952545166014, 0.023895872116088866, 0.02431059265136719, 0.02419910430908203, 0.02419728088378906, 0.023920703887939453, 0.02392064094543457, 0.02393087959289551, 0.024018495559692384, 0.023988672256469726, 0.02383839988708496, 0.023943264007568358, 0.02383673667907715, 0.024028448104858397, 0.023714656829833983, 0.02396112060546875, 0.02376156806945801, 0.024032127380371093, 0.02378031921386719, 0.023965120315551758, 0.023955680847167968, 0.023797344207763672, 0.023781152725219728, 0.024282175064086912, 0.023967552185058593, 0.023963743209838868, 0.024039520263671874, 0.024047456741333007, 0.02406118392944336, 0.023698240280151366, 0.023760896682739258, 0.023672096252441405, 0.024681407928466795, 0.024115232467651366, 0.023858848571777343, 0.02416579246520996, 0.023919551849365235, 0.024352767944335937, 0.02417020797729492, 0.02393641662597656, 0.023804800033569336, 0.02378982353210449, 0.02382179260253906, 0.02501251220703125, 0.026570751190185548, 0.024061952590942383, 0.024307296752929686, 0.025258399963378905, 0.024263776779174805, 0.02410179138183594, 0.023623680114746092, 0.02373222351074219, 0.023875583648681642, 0.023836671829223634, 0.023827615737915038, 0.02402390480041504, 0.02388582420349121, 0.023736160278320314, 0.023898271560668944, 0.024002464294433593, 0.02389948844909668, 0.024437503814697267, 0.024023040771484375, 0.024176704406738282, 0.02396972846984863, 0.024006496429443358, 0.023765439987182616, 0.023778112411499023, 0.02389289665222168, 0.023818239212036133, 0.023859199523925782, 0.023777280807495117, 0.023965696334838867, 0.023721567153930666, 0.023912031173706053, 0.023712223052978515, 0.02369366455078125, 0.024250207901000978, 0.023914560317993164, 0.02408563232421875, 0.023845439910888673, 0.02373878479003906, 0.023910400390625, 0.02393427276611328, 0.023683712005615233, 0.023912511825561523, 0.023856416702270507, 0.023716447830200195, 0.023648384094238282, 0.02368297576904297, 0.023778879165649414, 0.02411369514465332, 0.0236723518371582, 0.023711328506469728, 0.02374336051940918, 0.024385087966918944, 0.024039968490600586, 0.02404902458190918, 0.023900800704956055, 0.023787071228027343, 0.0243306884765625, 0.023918048858642578, 0.02387334442138672, 0.02386403274536133, 0.02363363265991211, 0.02376252746582031, 0.023724767684936525, 0.02370351982116699, 0.02353971290588379, 0.02388787269592285, 0.024100223541259767, 0.023925535202026366, 0.023867231369018554, 0.024225791931152343, 0.02379132843017578, 0.023914335250854492, 0.023699264526367187, 0.02392947196960449, 0.02382361602783203, 0.023841535568237305, 0.02379724884033203, 0.023675392150878907, 0.023879680633544922, 0.023834047317504884, 0.023862112045288087, 0.02382204818725586, 0.023778400421142577, 0.024135679244995118, 0.024091552734375, 0.0241395206451416, 0.023902463912963866, 0.023770559310913087, 0.02389846420288086, 0.02373244857788086, 0.023746559143066406, 0.02369068717956543, 0.02456550407409668, 0.02382931137084961, 0.023764768600463868, 0.02385532760620117, 0.023801055908203125, 0.023825183868408203, 0.024217599868774413, 0.02380307197570801, 0.02385001564025879, 0.024059680938720702, 0.024037376403808593, 0.023756799697875978, 0.023996416091918944, 0.023778432846069335, 0.02398624038696289, 0.024126367568969728, 0.023967647552490236, 0.023852096557617188, 0.02424233627319336, 0.02382863998413086, 0.02396019172668457, 0.024086528778076172, 0.024357471466064453, 0.024000511169433594, 0.024387584686279298, 0.024080671310424805, 0.02372371292114258, 0.023669824600219727, 0.023708639144897462, 0.02393087959289551, 0.02371993637084961, 0.02388991928100586, 0.023814144134521483, 0.023762016296386718, 0.02376563262939453, 0.023764511108398438, 0.02354457664489746, 0.023879680633544922, 0.023705408096313475, 0.023664831161499023, 0.02354956817626953, 0.023871231079101562, 0.024068735122680665, 0.023864543914794922, 0.023745023727416992, 0.023709983825683595, 0.023799871444702147, 0.026411136627197265, 0.024299167633056642, 0.024096927642822265, 0.02387331199645996, 0.023748735427856445, 0.02396995162963867, 0.024084415435791016, 0.02379292869567871, 0.0238189754486084, 0.02380326461791992, 0.024281728744506837, 0.02356393623352051, 0.023928159713745116, 0.024118207931518556, 0.023997600555419923, 0.023585695266723633, 0.023752511978149413, 0.023719232559204103, 0.023589759826660155, 0.02395955276489258, 0.02369126319885254, 0.02364825630187988, 0.02368230438232422, 0.0237739200592041, 0.023377952575683595, 0.02385696029663086, 0.024391807556152344, 0.023620864868164063, 0.023446432113647463, 0.023719072341918945, 0.023997184753417968, 0.023813343048095702, 0.023834815979003908, 0.023660671234130858, 0.02369174385070801, 0.023635456085205078, 0.023947776794433592, 0.023732095718383788, 0.024270847320556642, 0.0237455997467041, 0.023673791885375977, 0.023611391067504883, 0.023603200912475586, 0.024223264694213868, 0.02384124755859375, 0.023747583389282227, 0.023540351867675783, 0.023878015518188477, 0.023856639862060547, 0.023692991256713865, 0.023608287811279296, 0.02364419174194336, 0.02389094352722168, 0.02349888038635254, 0.02364076805114746, 0.023780832290649413, 0.024172479629516602, 0.02366329574584961, 0.023625247955322264, 0.02356617546081543, 0.023954015731811523, 0.02391152000427246, 0.02376380729675293, 0.023777280807495117, 0.023817695617675782, 0.02358255958557129, 0.02390399932861328, 0.023786432266235353, 0.02373017692565918, 0.023841856002807617, 0.02381737518310547, 0.02405353546142578, 0.023707008361816405, 0.02385174369812012, 0.02389731216430664, 0.023720640182495117, 0.023650144577026366, 0.02403299140930176, 0.023998912811279298, 0.02388528060913086, 0.023849664688110353, 0.02370908737182617, 0.023589311599731447, 0.023934112548828126, 0.023666719436645507, 0.023733055114746094, 0.025133056640625, 0.02352332878112793, 0.02332467269897461, 0.02354380798339844, 0.024034400939941407, 0.023745439529418946, 0.023605247497558594, 0.023530752182006835, 0.024808191299438478, 0.023941152572631835, 0.023577632904052733, 0.023743423461914062, 0.02357801628112793, 0.02376969528198242, 0.023597055435180665]",tokens/s,41.94374512362278,, bfloat16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,836.673536,4675.534848,0.0,4280.287232,4115.121152,s,1,7.6016826171875,7.6016826171875,0.0,7.6016826171875,7.6016826171875,7.6016826171875,7.6016826171875,[7.6016826171875],,kWh,1.0649561300040963e-05,1.1669500490514966e-06,4.535559183990734e-06,1.6352070533083194e-05,,MB,1141.620736,4981.71904,0.0,4575.985664,4408.408064,s,10,3.0703495788574213,0.3070349578857422,0.0031113508746365526,0.30735542297363283,0.30992298278808594,0.3105379837036133,0.3110299844360352,"[0.30563629150390625, 0.3078035583496094, 0.30978631591796874, 0.305809814453125, 0.31115298461914065, 0.3053193359375, 0.3092148132324219, 0.30690728759765623, 0.29955322265625, 0.30916595458984375]",tokens/s,833.7812793788322,kWh,9.109229113762307e-06,1.0042019392834388e-06,6.0174627264245135e-06,1.6130893779470258e-05,tokens/kWh,15870168.355197433,MB,1163.149312,4981.71904,0.0,4575.985664,4408.410624,s,10,15.703744506835939,1.570374450683594,0.010764770164829358,1.5709315795898438,1.5774057006835938,1.5861736145019532,1.5931879455566407,"[1.5635303955078126, 1.5949415283203126, 1.575457275390625, 1.567982177734375, 1.57343115234375, 1.5576832275390624, 1.5684320068359374, 1.5746732177734375, 1.5737548828125, 1.553858642578125]",tokens/s,40.117820289661296,kWh,4.525882735623948e-05,4.99226833244792e-06,2.9779704800174935e-05,8.003080048886235e-05,tokens/kWh,787196.9243737294,,s,630,15.701173805236804,0.024922498103550503,0.0004272402564130739,0.024874271392822264,0.02528845100402832,0.025565788555145262,0.026496753330230712,"[0.026102687835693358, 0.025196224212646483, 0.024997535705566405, 0.024463615417480468, 0.025049472808837892, 0.02510438346862793, 0.025030656814575194, 0.02476032066345215, 0.024825344085693358, 0.02540390396118164, 0.02489958381652832, 0.024928255081176756, 0.024862016677856445, 0.024836799621582032, 0.024797183990478516, 0.025020639419555665, 0.026484415054321288, 0.024778112411499024, 0.024988384246826173, 0.024788991928100586, 0.024749536514282227, 0.024975904464721678, 0.02467840003967285, 0.024720415115356446, 0.024675296783447265, 0.02478451156616211, 0.0245863037109375, 0.024650047302246094, 0.02476851272583008, 0.024532991409301756, 0.024600576400756836, 0.024489311218261717, 0.024676416397094728, 0.024684383392333985, 0.024685312271118164, 0.02476851272583008, 0.024755680084228515, 0.02483987236022949, 0.024685407638549806, 0.024723455429077147, 0.024803327560424804, 0.024874431610107422, 0.02490220832824707, 0.024626592636108398, 0.024721088409423827, 0.02501696014404297, 0.024639232635498047, 0.024637983322143554, 0.02453708839416504, 0.024753503799438477, 0.02453708839416504, 0.02462905693054199, 0.02465878486633301, 0.02449407958984375, 0.024461311340332033, 0.02452889633178711, 0.024820831298828124, 0.024779680252075196, 0.024526687622070314, 0.024524192810058593, 0.0245533447265625, 0.024827775955200197, 0.025082176208496093, 0.025601760864257812, 0.025077600479125977, 0.025168256759643556, 0.025092096328735353, 0.025173759460449217, 0.025379072189331053, 0.02611199951171875, 0.02509823989868164, 0.024986976623535155, 0.026501792907714844, 0.025174016952514647, 0.02531283187866211, 0.025022911071777343, 0.02510643196105957, 0.025440256118774415, 0.025280511856079102, 0.025208831787109375, 0.02533990478515625, 0.025112031936645508, 0.025060928344726563, 0.02517705535888672, 0.025235679626464842, 0.026005279541015624, 0.025058752059936525, 0.02528108787536621, 0.02527846336364746, 0.025186239242553712, 0.025094207763671876, 0.025026559829711914, 0.025834720611572267, 0.028717248916625977, 0.025162080764770507, 0.025092063903808595, 0.025484895706176756, 0.02531808090209961, 0.025070720672607422, 0.025049983978271486, 0.02565555191040039, 0.024929376602172853, 0.025104320526123047, 0.02495382308959961, 0.025081600189208984, 0.02486800003051758, 0.02741744041442871, 0.025100160598754882, 0.025208255767822266, 0.025230016708374024, 0.02483404731750488, 0.02494259262084961, 0.02655561637878418, 0.025391584396362306, 0.025010496139526366, 0.024936447143554686, 0.025272319793701172, 0.025309183120727538, 0.0249487361907959, 0.024983903884887696, 0.025122079849243164, 0.02492185592651367, 0.02502038383483887, 0.024807231903076172, 0.024941408157348632, 0.024813568115234375, 0.02556159973144531, 0.024815807342529295, 0.025108480453491212, 0.02476201629638672, 0.024852832794189452, 0.025132352828979493, 0.025187007904052733, 0.02479859161376953, 0.02477324867248535, 0.024879104614257814, 0.02485043144226074, 0.024979455947875977, 0.0246778564453125, 0.024840736389160158, 0.024905920028686523, 0.02506528091430664, 0.024967231750488282, 0.02499772834777832, 0.025595935821533203, 0.02516543960571289, 0.025006528854370116, 0.024720800399780272, 0.024848352432250975, 0.02477120018005371, 0.024868864059448242, 0.02488115119934082, 0.024781984329223634, 0.02485536003112793, 0.024868896484375, 0.024856447219848633, 0.024764543533325196, 0.025228511810302733, 0.02533452796936035, 0.024896896362304688, 0.02492483139038086, 0.02471731185913086, 0.024895488739013674, 0.02493235206604004, 0.024669792175292967, 0.02498192024230957, 0.0248353271484375, 0.024867456436157228, 0.024909952163696288, 0.024764415740966796, 0.02496512031555176, 0.02529280090332031, 0.025018367767333984, 0.024927520751953126, 0.024864896774291993, 0.025127519607543947, 0.024861696243286133, 0.024695808410644532, 0.024676000595092774, 0.024912191390991212, 0.024989984512329103, 0.02495257568359375, 0.026462207794189452, 0.02704310417175293, 0.025580255508422852, 0.025200096130371094, 0.024760160446166992, 0.02485318374633789, 0.02488934326171875, 0.025630720138549806, 0.025101696014404297, 0.02508198356628418, 0.02480179214477539, 0.02466160011291504, 0.024838144302368165, 0.02480684852600098, 0.024687583923339845, 0.024453119277954103, 0.02474777603149414, 0.02509971237182617, 0.024995935440063476, 0.02474985694885254, 0.02482681655883789, 0.024737951278686523, 0.025045984268188475, 0.024750495910644533, 0.024869344711303712, 0.024811807632446288, 0.025155296325683595, 0.024747711181640625, 0.02469875144958496, 0.024842687606811523, 0.02551398468017578, 0.025205888748168946, 0.02493529510498047, 0.024768192291259764, 0.024743776321411132, 0.024828384399414063, 0.024922111511230468, 0.02475212860107422, 0.0249051513671875, 0.0246625919342041, 0.024785919189453123, 0.024638463973999023, 0.024786815643310547, 0.025782400131225586, 0.025222591400146484, 0.024950944900512695, 0.02475200080871582, 0.02473628807067871, 0.025057279586791992, 0.024915136337280274, 0.024777536392211915, 0.02476995277404785, 0.024771167755126954, 0.02488528060913086, 0.024692703247070312, 0.02451251220703125, 0.025055007934570314, 0.025018592834472657, 0.02471651268005371, 0.024728160858154297, 0.024671903610229494, 0.024715808868408202, 0.02510643196105957, 0.024880607604980468, 0.025005983352661132, 0.02481558418273926, 0.02496169662475586, 0.024729600906372072, 0.024724863052368165, 0.025129600524902342, 0.025726688385009765, 0.025105791091918947, 0.02500495910644531, 0.024823808670043947, 0.024723295211791993, 0.024918176651000976, 0.025014272689819338, 0.02489753532409668, 0.024782848358154298, 0.02474809646606445, 0.024735679626464845, 0.024827903747558593, 0.02471900749206543, 0.024858879089355468, 0.02515567970275879, 0.024952831268310546, 0.024961023330688475, 0.02480931282043457, 0.02479283142089844, 0.025078176498413086, 0.024954879760742187, 0.024763904571533202, 0.02482431983947754, 0.024799232482910157, 0.025038175582885742, 0.024758495330810548, 0.02511644744873047, 0.026067615509033203, 0.025126911163330077, 0.025062976837158205, 0.024733951568603516, 0.025063583374023438, 0.02494063949584961, 0.02482975959777832, 0.024748159408569337, 0.02488096046447754, 0.024774848937988283, 0.024870336532592772, 0.024797760009765624, 0.024991743087768553, 0.025287967681884765, 0.02530748748779297, 0.024847808837890624, 0.02485958480834961, 0.02489952087402344, 0.02494441604614258, 0.024877344131469727, 0.02489753532409668, 0.0254748477935791, 0.024923648834228516, 0.024926464080810548, 0.02488368034362793, 0.025202592849731444, 0.025151584625244142, 0.024704191207885744, 0.025014591217041016, 0.02481203269958496, 0.025081439971923827, 0.025279232025146484, 0.025085248947143556, 0.024858976364135744, 0.02487411117553711, 0.025213823318481446, 0.025489887237548827, 0.02481564712524414, 0.024809663772583007, 0.02466377639770508, 0.02482614326477051, 0.024738815307617186, 0.024490400314331053, 0.024510879516601563, 0.024731840133666992, 0.02461033630371094, 0.02467238426208496, 0.024725727081298828, 0.024763967514038084, 0.02464614486694336, 0.02443199920654297, 0.024465375900268555, 0.024623327255249024, 0.024692960739135742, 0.024436511993408204, 0.024893951416015626, 0.02728246307373047, 0.02475926399230957, 0.02447100830078125, 0.024568447113037108, 0.02450979232788086, 0.024838720321655273, 0.024409311294555664, 0.02447849655151367, 0.024905439376831054, 0.025569215774536132, 0.024965471267700195, 0.024682079315185547, 0.02456220817565918, 0.024739072799682616, 0.024527488708496095, 0.024380672454833986, 0.025199359893798828, 0.024696832656860353, 0.02468659210205078, 0.02437443161010742, 0.024912736892700196, 0.02471673583984375, 0.024672672271728514, 0.024545024871826172, 0.024434431076049805, 0.024951007843017577, 0.02498147201538086, 0.024844768524169922, 0.02477414321899414, 0.02460723114013672, 0.024713279724121094, 0.024472864151000976, 0.024849056243896484, 0.02474630355834961, 0.02487468719482422, 0.024475616455078127, 0.0243917121887207, 0.024475648880004884, 0.024614431381225585, 0.02432044792175293, 0.024348352432250978, 0.024633695602416992, 0.024465055465698243, 0.02547884750366211, 0.024681856155395508, 0.02468118476867676, 0.024413759231567383, 0.024253215789794922, 0.025208671569824218, 0.024379392623901368, 0.02430735969543457, 0.02432035255432129, 0.02427449607849121, 0.024344255447387695, 0.02431667137145996, 0.02409267234802246, 0.02410851287841797, 0.024443424224853516, 0.02451878356933594, 0.02455779266357422, 0.02455311965942383, 0.024497600555419923, 0.02435744094848633, 0.024377344131469726, 0.0245166072845459, 0.02454732894897461, 0.024450624465942383, 0.024590784072875977, 0.02469478416442871, 0.024866559982299804, 0.024920320510864256, 0.025042943954467774, 0.02532307243347168, 0.025065919876098634, 0.02529859161376953, 0.025080160140991212, 0.025182207107543944, 0.02574131202697754, 0.025229312896728515, 0.024907039642333983, 0.025221855163574218, 0.02509414482116699, 0.025332927703857422, 0.02503763198852539, 0.0252969913482666, 0.025105663299560547, 0.025259807586669923, 0.025178720474243164, 0.02539507293701172, 0.025026208877563478, 0.02499580764770508, 0.025058080673217773, 0.02500806427001953, 0.025158815383911133, 0.024957056045532226, 0.024912448883056642, 0.025775711059570314, 0.02559449577331543, 0.02534604835510254, 0.025188352584838865, 0.02511257553100586, 0.024952192306518555, 0.02512249565124512, 0.024984384536743166, 0.02547110366821289, 0.02495078468322754, 0.02573311996459961, 0.02510438346862793, 0.024982816696166994, 0.025018304824829102, 0.0251297607421875, 0.024991743087768553, 0.024993791580200195, 0.02484809684753418, 0.024926496505737306, 0.02512009620666504, 0.024891040802001954, 0.024787967681884765, 0.02516377639770508, 0.025157312393188476, 0.02498796844482422, 0.025059328079223633, 0.02479497528076172, 0.025075872421264647, 0.024937952041625976, 0.025044607162475585, 0.02483228874206543, 0.02491827201843262, 0.024852319717407225, 0.024936479568481447, 0.024752639770507814, 0.02457747268676758, 0.02515385627746582, 0.025128351211547852, 0.024994848251342773, 0.02500966453552246, 0.024864288330078126, 0.025039264678955078, 0.02497747230529785, 0.02494211196899414, 0.024867231369018555, 0.024985984802246095, 0.024811103820800783, 0.02484003257751465, 0.024891807556152345, 0.02502467155456543, 0.025081823348999024, 0.025304895401000976, 0.024956863403320314, 0.024762655258178713, 0.02482713508605957, 0.024888032913208007, 0.024864927291870117, 0.02474380874633789, 0.02486262321472168, 0.025010271072387694, 0.02507161521911621, 0.024821760177612305, 0.024944032669067383, 0.02484694480895996, 0.02502182388305664, 0.025830015182495118, 0.02495692825317383, 0.025053152084350584, 0.025466911315917967, 0.02503987121582031, 0.024826400756835936, 0.02504038429260254, 0.025039392471313475, 0.025901952743530274, 0.025040319442749023, 0.02484486389160156, 0.0249467830657959, 0.024981407165527342, 0.02522915267944336, 0.027841856002807617, 0.025258848190307617, 0.025022464752197264, 0.025313247680664064, 0.024809503555297853, 0.02530860710144043, 0.024846912384033203, 0.024901216506958007, 0.024909568786621095, 0.024836767196655275, 0.0247127685546875, 0.024854976654052733, 0.0248090877532959, 0.024789375305175783, 0.02532099151611328, 0.025024991989135742, 0.02510438346862793, 0.02495692825317383, 0.02495078468322754, 0.024860448837280273, 0.024867040634155273, 0.02503887939453125, 0.024852447509765625, 0.02490096092224121, 0.02482441520690918, 0.024846399307250976, 0.024912927627563478, 0.024914016723632814, 0.025157983779907227, 0.025118976593017577, 0.024872928619384765, 0.024856895446777345, 0.025040447235107424, 0.024844736099243165, 0.02526518440246582, 0.025076416015625, 0.024860416412353516, 0.024975168228149415, 0.02530352020263672, 0.024951040267944338, 0.024993791580200195, 0.02516713523864746, 0.024832735061645506, 0.024532991409301756, 0.024606016159057616, 0.024582048416137696, 0.024684576034545897, 0.024572479248046876, 0.024503936767578127, 0.024566335678100584, 0.025038848876953124, 0.024696352005004883, 0.02490825653076172, 0.024750080108642578, 0.024944639205932616, 0.024710559844970705, 0.0245827522277832, 0.02560406494140625, 0.0246343994140625, 0.024334592819213866, 0.024294111251831056, 0.024363008499145508, 0.024772287368774414, 0.02504025650024414, 0.02467715263366699, 0.025089311599731445, 0.024744831085205077, 0.024397823333740236, 0.024467552185058594, 0.024422592163085937, 0.024391359329223632, 0.024465248107910155, 0.02428767967224121, 0.02412928009033203, 0.024260608673095704, 0.024224767684936522, 0.02447257614135742, 0.024227840423583984, 0.024276992797851563, 0.024223743438720705, 0.02434662437438965, 0.024319616317749024, 0.024489471435546875, 0.024296319961547852, 0.024321792602539062, 0.024270368576049806, 0.024369407653808593, 0.024230367660522462, 0.024231071472167968, 0.024239999771118164, 0.024346879959106445, 0.024429279327392577, 0.024449024200439453, 0.02481155204772949, 0.024452896118164064, 0.02439151954650879, 0.024455360412597656, 0.02438159942626953, 0.025869983673095703, 0.02511907196044922, 0.024579904556274415, 0.024358495712280274, 0.024795743942260744, 0.024793088912963866, 0.024440832138061523, 0.024411455154418945, 0.02466217613220215, 0.02484217643737793, 0.024576608657836913, 0.024827327728271485, 0.02606867218017578, 0.026467199325561522, 0.02553152084350586, 0.025037120819091797, 0.024994144439697264, 0.025038656234741212, 0.025051136016845704, 0.025047391891479493, 0.025286720275878905, 0.02515558433532715]",tokens/s,40.12438864856562,, bfloat16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,814.669824,569.311232,0.0,174.063616,172.57984,s,1,7.17195458984375,7.17195458984375,0.0,7.17195458984375,7.17195458984375,7.17195458984375,7.17195458984375,[7.17195458984375],,kWh,4.49210194999902e-06,4.882781367663077e-07,1.981946030002457e-06,6.962326116767785e-06,,MB,1108.475904,640.6144,0.0,234.881024,215.589888,s,25,0.27508755302429205,0.011003502120971677,0.00015233908185133062,0.010978240013122559,0.011162656211853028,0.011172537803649903,0.011461617774963379,"[0.01155247974395752, 0.010974176406860351, 0.011006848335266113, 0.010918208122253418, 0.011093888282775879, 0.011083488464355468, 0.010961407661437989, 0.010906815528869629, 0.010854496002197265, 0.010844511985778809, 0.010817952156066894, 0.010858304023742675, 0.011097536087036133, 0.011025247573852539, 0.011046751976013184, 0.01100153636932373, 0.011167136192321778, 0.011155936241149902, 0.011173888206481934, 0.010980640411376953, 0.010856415748596191, 0.010905407905578613, 0.010951775550842285, 0.010978240013122559, 0.010874464035034179]",tokens/s,23265.320184933415,kWh,3.5411350660398743e-07,3.90525435950372e-08,2.336999577257331e-07,6.268660079247578e-07,tokens/kWh,408380733.3045366,MB,1135.460352,642.711552,0.0,236.978176,215.592448,s,25,9.833397613525392,0.39333590454101564,0.02841497875139694,0.38773126220703125,0.3964486999511719,0.3983803649902344,0.498144299316406,"[0.3969692077636719, 0.5295372924804688, 0.39566793823242186, 0.3912528991699219, 0.39300204467773436, 0.388822998046875, 0.38113458251953125, 0.37845510864257814, 0.3840166931152344, 0.37589962768554686, 0.3793076171875, 0.39152328491210936, 0.3906401062011719, 0.3927539978027344, 0.39408251953125, 0.392140869140625, 0.398733154296875, 0.38739495849609373, 0.3850337829589844, 0.38190274047851563, 0.38393341064453124, 0.38520547485351564, 0.38467071533203123, 0.3835853271484375, 0.38773126220703125]",tokens/s,160.16844450931782,kWh,1.0956496214870327e-05,1.2083142877942698e-06,4.543194889428047e-06,1.670800539209264e-05,tokens/kWh,3770647.574115332,,s,1575,9.820896668434136,0.006235489948212153,0.0033837550131982762,0.0061016960144042965,0.006408895969390869,0.006480585527420044,0.006702362804412841,"[0.006441760063171387, 0.006477503776550293, 0.007278592109680176, 0.006242335796356201, 0.006197023868560791, 0.006123712062835693, 0.00619536018371582, 0.0062871999740600586, 0.0062791681289672855, 0.006250271797180176, 0.006262400150299072, 0.00640777587890625, 0.006451871871948242, 0.006435488224029541, 0.0064787201881408695, 0.006379903793334961, 0.006322336196899414, 0.006346879959106445, 0.006325600147247315, 0.006332896232604981, 0.006299583911895752, 0.0063175358772277835, 0.006257599830627442, 0.006154208183288574, 0.0061010241508483885, 0.006008416175842285, 0.00629750394821167, 0.006022655963897705, 0.006118144035339355, 0.006304160118103027, 0.006664127826690674, 0.006571743965148926, 0.006684864044189453, 0.00659660816192627, 0.006536287784576416, 0.006404416084289551, 0.006496863842010498, 0.006506591796875, 0.006361055850982666, 0.006279104232788086, 0.006217728137969971, 0.006187007904052734, 0.00610537576675415, 0.006141664028167725, 0.006139488220214844, 0.0062119998931884765, 0.006354015827178955, 0.006132031917572021, 0.006070847988128662, 0.006041632175445556, 0.006061952114105224, 0.006266335964202881, 0.0062523198127746584, 0.006249343872070313, 0.006047743797302246, 0.006020480155944824, 0.006121088027954102, 0.006068895816802979, 0.006124063968658448, 0.0061190400123596195, 0.006299839973449707, 0.006440864086151123, 0.006282815933227539, 0.006154208183288574, 0.006459455966949463, 0.006365056037902832, 0.006270336151123047, 0.006281504154205322, 0.0063179202079772945, 0.006151008129119873, 0.006214687824249268, 0.006289663791656494, 0.00641868782043457, 0.00624396800994873, 0.006178719997406006, 0.006220736026763916, 0.006245855808258057, 0.14023097229003906, 0.006438432216644287, 0.006478464126586914, 0.006367008209228516, 0.006177023887634277, 0.006741055965423584, 0.006666848182678223, 0.006194975852966309, 0.006236991882324219, 0.006126751899719238, 0.006145696163177491, 0.006063039779663086, 0.0061320638656616215, 0.006153183937072754, 0.0061016960144042965, 0.006318079948425293, 0.0062912960052490235, 0.006263199806213379, 0.006190336227416992, 0.006142079830169678, 0.006067615985870361, 0.0063088321685791015, 0.006425695896148682, 0.006314911842346191, 0.006272895812988281, 0.006056159973144531, 0.00615558385848999, 0.006147903919219971, 0.0063373122215271, 0.0063508481979370115, 0.006336512088775635, 0.006254591941833496, 0.00695091199874878, 0.006221824169158936, 0.006158239841461181, 0.006170720100402832, 0.006177087783813476, 0.006147520065307617, 0.006162687778472901, 0.006333727836608887, 0.006486815929412842, 0.006649504184722901, 0.006252831935882568, 0.006184415817260742, 0.006132256031036377, 0.0061831679344177244, 0.0062082881927490235, 0.006208127975463868, 0.006134111881256104, 0.005865471839904785, 0.006037856101989746, 0.006028960227966309, 0.006107135772705078, 0.006444416046142578, 0.00649894380569458, 0.006588704109191894, 0.006657760143280029, 0.006494016170501709, 0.006662591934204102, 0.006512447834014893, 0.006442016124725342, 0.006470560073852539, 0.0063610877990722655, 0.006357279777526856, 0.006414048194885254, 0.006186272144317627, 0.006176896095275879, 0.006113887786865235, 0.006187104225158692, 0.00617193603515625, 0.006304192066192627, 0.0063203201293945315, 0.006230016231536865, 0.006182015895843506, 0.006160352230072021, 0.006350048065185547, 0.0063259520530700684, 0.006202720165252686, 0.006091423988342285, 0.006133312225341797, 0.0062689919471740725, 0.006090464115142823, 0.006234784126281739, 0.006102240085601807, 0.006074975967407226, 0.006121664047241211, 0.006028992176055908, 0.006142591953277588, 0.0065491838455200195, 0.006555808067321777, 0.006338240146636963, 0.006260863780975342, 0.006132832050323486, 0.006200287818908691, 0.006116479873657227, 0.006169439792633057, 0.006230016231536865, 0.006195199966430664, 0.0062259202003479, 0.006518784046173095, 0.0065413122177124024, 0.0064430079460144046, 0.006467584133148193, 0.006606847763061524, 0.006338560104370118, 0.006399328231811523, 0.00623308801651001, 0.006174143791198731, 0.006082784175872802, 0.006190815925598145, 0.0060104641914367676, 0.0060824317932128905, 0.0061421761512756344, 0.00657366418838501, 0.0065446081161499026, 0.006555808067321777, 0.006583104133605957, 0.006516064167022705, 0.006380127906799316, 0.0063571839332580565, 0.006253856182098389, 0.0062368960380554195, 0.006162240028381348, 0.0061420159339904785, 0.006054944038391114, 0.00614246416091919, 0.006173151969909668, 0.006033408164978027, 0.00603110408782959, 0.0060646400451660155, 0.0060698561668396, 0.006082719802856446, 0.006064127922058105, 0.006088223934173584, 0.006042079925537109, 0.006090752124786377, 0.006047743797302246, 0.006150144100189209, 0.006136127948760986, 0.0060638079643249515, 0.006078271865844726, 0.006041088104248047, 0.006166207790374756, 0.006115615844726563, 0.0062984638214111325, 0.006290847778320312, 0.0061831998825073245, 0.006312287807464599, 0.006327744007110596, 0.006338592052459717, 0.00621401596069336, 0.006223872184753418, 0.006199295997619629, 0.006153952121734619, 0.006160448074340821, 0.006117216110229492, 0.006191167831420898, 0.006327807903289795, 0.006329152107238769, 0.006367392063140869, 0.006283103942871094, 0.006315167903900147, 0.006409056186676025, 0.006300831794738769, 0.0062206401824951175, 0.006278848171234131, 0.006219295978546142, 0.006136608123779297, 0.006045087814331055, 0.006036064147949219, 0.006017024040222168, 0.006071424007415772, 0.006059135913848877, 0.006045440196990967, 0.006107135772705078, 0.006348832130432129, 0.006434815883636475, 0.006508607864379883, 0.006668320178985596, 0.0067721281051635746, 0.006377151966094971, 0.0064234561920166015, 0.0063610877990722655, 0.006407392024993896, 0.006359295845031738, 0.006272575855255127, 0.006247712135314941, 0.006297279834747314, 0.006217728137969971, 0.006209856033325196, 0.006119455814361572, 0.006096127986907959, 0.006143487930297851, 0.006663167953491211, 0.006080416202545166, 0.00609830379486084, 0.006070015907287597, 0.006091231822967529, 0.006020991802215576, 0.006253087997436523, 0.006494400024414063, 0.006410048007965088, 0.006289247989654541, 0.006141503810882568, 0.006091360092163086, 0.006208896160125732, 0.006910528182983398, 0.006057888031005859, 0.006135871887207031, 0.00620358419418335, 0.006245855808258057, 0.00627945613861084, 0.006191264152526856, 0.006190847873687744, 0.006051519870758057, 0.00606166410446167, 0.005978752136230469, 0.006058656215667725, 0.006114816188812256, 0.006309120178222656, 0.006243264198303223, 0.00638972806930542, 0.006241663932800293, 0.006118048191070557, 0.006101088047027588, 0.0061131839752197265, 0.006191103935241699, 0.006060031890869141, 0.0061168642044067386, 0.006089119911193847, 0.006089824199676514, 0.006071296215057373, 0.006104415893554688, 0.006050464153289795, 0.006069952011108398, 0.006017343997955322, 0.006122591972351074, 0.00630617618560791, 0.006260799884796143, 0.0063446397781372075, 0.006395904064178467, 0.00641974401473999, 0.006273727893829345, 0.006219711780548096, 0.006221920013427734, 0.006196320056915283, 0.0062262721061706544, 0.00628495979309082, 0.006218656063079834, 0.0061131839752197265, 0.006133855819702149, 0.006064127922058105, 0.006159391880035401, 0.006024159908294678, 0.006062079906463623, 0.006039135932922364, 0.00635097599029541, 0.006383039951324463, 0.006588287830352783, 0.00664467191696167, 0.006448959827423096, 0.006289792060852051, 0.006215136051177978, 0.006246880054473877, 0.006176544189453125, 0.006204576015472412, 0.006123551845550537, 0.00604256010055542, 0.006075520038604737, 0.006012063980102539, 0.006055232048034668, 0.0060133438110351566, 0.006082464218139649, 0.006002560138702393, 0.006215968132019043, 0.006258624076843262, 0.006158336162567139, 0.0060860800743103025, 0.006007359981536865, 0.00601907205581665, 0.006003903865814209, 0.0060076799392700195, 0.005959616184234619, 0.006174111843109131, 0.005993055820465088, 0.0060416641235351565, 0.005990623950958252, 0.006008416175842285, 0.005994624137878418, 0.006017183780670166, 0.005955584049224853, 0.006011839866638184, 0.00609168004989624, 0.006328256130218506, 0.006506559848785401, 0.006327807903289795, 0.006261248111724854, 0.006199391841888427, 0.006086688041687011, 0.006033279895782471, 0.006017024040222168, 0.0057554559707641605, 0.005979135990142822, 0.006034463882446289, 0.0059576001167297365, 0.005983967781066895, 0.00596940803527832, 0.005995296001434326, 0.005969823837280274, 0.006023519992828369, 0.0059818878173828124, 0.006021183967590332, 0.005967264175415039, 0.005986911773681641, 0.005952576160430908, 0.006038688182830811, 0.005959455966949463, 0.006041376113891601, 0.006084832191467285, 0.007065279960632324, 0.006388031959533692, 0.006017024040222168, 0.006012928009033203, 0.00597811222076416, 0.006039552211761475, 0.0059935998916625976, 0.006026112079620362, 0.006000639915466309, 0.006014944076538086, 0.005980224132537842, 0.0059732160568237306, 0.005970751762390137, 0.0059697279930114745, 0.006072256088256836, 0.006136000156402588, 0.006228991985321045, 0.005983168125152588, 0.005959743976593017, 0.0061354880332946775, 0.005955327987670898, 0.006042175769805909, 0.005967455863952637, 0.0060208959579467775, 0.005972608089447022, 0.006039231777191162, 0.005978271961212158, 0.006039711952209472, 0.006003712177276611, 0.0061224961280822755, 0.005964191913604736, 0.006037087917327881, 0.0059592962265014645, 0.0060207037925720215, 0.006015103816986084, 0.006032032012939453, 0.006418496131896973, 0.006033567905426025, 0.005982175827026367, 0.0060347518920898435, 0.006017536163330078, 0.0059593281745910645, 0.005968224048614502, 0.006455264091491699, 0.0059987521171569825, 0.005822688102722168, 0.005946527957916259, 0.005976704120635987, 0.006002463817596435, 0.005988416194915772, 0.005937376022338867, 0.006008287906646728, 0.005966303825378418, 0.006005023956298828, 0.00594217586517334, 0.005980991840362549, 0.005929152011871338, 0.005975872039794922, 0.005917695999145508, 0.005995488166809082, 0.005975903987884522, 0.006008831977844238, 0.006013472080230713, 0.006019968032836914, 0.005978911876678467, 0.00601907205581665, 0.005935200214385986, 0.005986112117767334, 0.005942495822906494, 0.006029727935791015, 0.005998112201690674, 0.006013023853302002, 0.006009056091308594, 0.006053567886352539, 0.006023359775543213, 0.006052127838134766, 0.005986783981323242, 0.006036863803863525, 0.00612175989151001, 0.006025568008422851, 0.006076416015625, 0.00601907205581665, 0.0059411201477050785, 0.006060192108154297, 0.0059411201477050785, 0.0059905281066894535, 0.005918687820434571, 0.0060104641914367676, 0.0059415998458862305, 0.005976352214813232, 0.0059489598274230955, 0.006432576179504395, 0.0059584641456604005, 0.006020927906036377, 0.005933023929595947, 0.006121088027954102, 0.005955743789672852, 0.006004511833190918, 0.005968160152435302, 0.006020415782928467, 0.006044415950775146, 0.006006912231445312, 0.006170400142669678, 0.006030496120452881, 0.005959968090057373, 0.005988959789276123, 0.005946400165557861, 0.005996607780456543, 0.005866015911102295, 0.006158720016479493, 0.005962912082672119, 0.007720128059387207, 0.008408767700195312, 0.00780617618560791, 0.007717919826507568, 0.0070100479125976565, 0.005971519947052002, 0.005986656188964844, 0.005963840007781982, 0.005984255790710449, 0.005922560214996338, 0.005966080188751221, 0.005912576198577881, 0.005987552165985108, 0.00588265609741211, 0.006002463817596435, 0.0059699521064758305, 0.005950784206390381, 0.005971136093139648, 0.005990079879760742, 0.005945087909698487, 0.005932384014129639, 0.005895071983337402, 0.005936927795410156, 0.005925087928771972, 0.0060026879310607914, 0.005938943862915039, 0.005990655899047852, 0.005951583862304688, 0.005928864002227783, 0.0059435200691223145, 0.005924479961395264, 0.0059671678543090825, 0.005953824043273926, 0.0059500160217285155, 0.0059269118309021, 0.005910528182983398, 0.005937151908874512, 0.005947391986846923, 0.005967872142791748, 0.005944736003875732, 0.005964384078979492, 0.005908480167388916, 0.0058951997756958, 0.0059647679328918455, 0.005904160022735596, 0.005949247837066651, 0.005894495964050293, 0.00592083215713501, 0.0059678077697753905, 0.005975488185882568, 0.005884543895721435, 0.00593452787399292, 0.005900864124298096, 0.0059658241271972655, 0.005898528099060059, 0.005941055774688721, 0.005913760185241699, 0.0059275197982788085, 0.005965983867645264, 0.00594870376586914, 0.005664127826690674, 0.005906688213348389, 0.005962111949920654, 0.005951231956481934, 0.0059558401107788084, 0.005912223815917969, 0.0059415998458862305, 0.005984255790710449, 0.006062079906463623, 0.0059205121994018554, 0.005947648048400879, 0.005887519836425781, 0.006045728206634521, 0.005915008068084717, 0.005945280075073243, 0.005939616203308106, 0.005927807807922363, 0.005907360076904297, 0.005953536033630371, 0.005914559841156006, 0.005943168163299561, 0.005936384201049805, 0.005938144207000733, 0.0061801280975341795, 0.005986944198608398, 0.005943168163299561, 0.005965727806091309, 0.005927231788635254, 0.005988255977630615, 0.005937280178070069, 0.00595136022567749, 0.005937119960784912, 0.005950975894927979, 0.0059227199554443355, 0.0059584641456604005, 0.005932864189147949, 0.005969088077545166, 0.006034175872802735, 0.0059515519142150876, 0.005980160236358643, 0.0059550080299377445, 0.005952064037322998, 0.005922815799713135, 0.005988351821899414, 0.005933055877685547, 0.005988639831542969, 0.005928063869476318, 0.00599510383605957, 0.005927167892456055, 0.005991968154907226, 0.005951712131500244, 0.0062979841232299804, 0.005985983848571777, 0.005965760231018066, 0.006059455871582031, 0.005966400146484375, 0.0059269118309021, 0.005943552017211914, 0.0059246401786804195, 0.005973983764648438, 0.0059617919921875, 0.005983295917510986, 0.005919616222381591, 0.005689343929290771, 0.005947455883026123, 0.005965760231018066, 0.005934144020080566, 0.005941247940063477, 0.0059211840629577635, 0.006122079849243164, 0.007403456211090088, 0.006957056045532227, 0.0062156801223754886, 0.0059688959121704105, 0.005952511787414551, 0.005935232162475586, 0.005983520030975342, 0.005941855907440186, 0.005958752155303955, 0.005910431861877442, 0.005935679912567138, 0.00593887996673584, 0.005985023975372314, 0.005918879985809326, 0.005928639888763428, 0.005926559925079346, 0.006015679836273193, 0.006008607864379883, 0.005953567981719971, 0.005951039791107178, 0.005949535846710205, 0.0060635838508605955, 0.005949600219726563, 0.00594374418258667, 0.00595747184753418, 0.005957183837890625, 0.00599948787689209, 0.005953536033630371, 0.005937151908874512, 0.005975135803222656, 0.005939551830291748, 0.005976672172546387, 0.005942431926727295, 0.005974080085754395, 0.005902112007141113, 0.005958623886108398, 0.005910528182983398, 0.006109087944030762, 0.0060498881340026855, 0.00601043176651001, 0.005929408073425293, 0.005969503879547119, 0.005916063785552979, 0.005978879928588868, 0.005904928207397461, 0.005973728179931641, 0.0059324798583984375, 0.00602784013748169, 0.005980160236358643, 0.006082560062408447, 0.006088160037994385, 0.006142240047454834, 0.006040095806121826, 0.006086368083953858, 0.005998432159423828, 0.006023327827453614, 0.005827936172485351, 0.006211872100830078, 0.006291872024536133, 0.006391583919525146, 0.0063482561111450194, 0.006269248008728028, 0.006226431846618652, 0.006270976066589356, 0.006367072105407715, 0.006162496089935303, 0.006154304027557373, 0.00603872013092041, 0.006025728225708008, 0.005963967800140381, 0.006080671787261963, 0.006012224197387696, 0.006118080139160156, 0.006209536075592041, 0.00617087984085083, 0.006147071838378906, 0.006057888031005859, 0.006024032115936279, 0.0060026879310607914, 0.006038688182830811, 0.006154719829559326, 0.006179200172424316, 0.00610748815536499, 0.006158304214477539, 0.006168288230895996, 0.006375391960144043, 0.006330687999725342, 0.006268608093261719, 0.006367231845855713, 0.00638105583190918, 0.006407904148101807, 0.006279935836791992, 0.0063266558647155765, 0.006227583885192871, 0.0061645121574401855, 0.006158527851104737, 0.006137663841247558, 0.006098944187164307, 0.0060661759376525876, 0.006227456092834473, 0.006087007999420166, 0.0062846078872680665, 0.00647049617767334, 0.006552927970886231, 0.006453120231628418, 0.006269696235656738, 0.006259871959686279, 0.006187136173248291, 0.00618943977355957, 0.006101376056671143, 0.006158336162567139, 0.006090752124786377, 0.006023263931274414, 0.006039167881011963, 0.006266304016113281, 0.006155104160308838, 0.006387455940246582, 0.006463935852050781, 0.006512032032012939, 0.005967423915863037, 0.006191008090972901, 0.006179327964782715, 0.006275360107421875, 0.006350592136383056, 0.006295551776885986, 0.006327616214752197, 0.006430399894714355, 0.006392288208007813, 0.006359392166137695, 0.006389472007751465, 0.006377855777740479, 0.006456895828247071, 0.006438752174377441, 0.006408736228942871, 0.0064139838218688966, 0.00637337589263916, 0.006441472053527832, 0.0063192639350891115, 0.006246975898742676, 0.006361375808715821, 0.006244095802307129, 0.006202688217163086, 0.006146719932556152, 0.006285600185394287, 0.006205440044403076, 0.006162367820739746, 0.006121535778045654, 0.006080512046813965, 0.006096896171569824, 0.006042943954467773, 0.006105279922485352, 0.006131648063659668, 0.006113247871398926, 0.006105984210968017, 0.006102303981781006, 0.006078911781311035, 0.006082464218139649, 0.005999743938446045, 0.006074592113494873, 0.006146111965179443, 0.006275775909423828, 0.006165887832641602, 0.006128255844116211, 0.006019040107727051, 0.006021152019500733, 0.006053887844085694, 0.006060128211975098, 0.006184864044189453, 0.006217728137969971, 0.006178815841674804, 0.006133247852325439, 0.006124032020568848, 0.0061214399337768555, 0.006066048145294189, 0.006052000045776367, 0.006092512130737305, 0.005996672153472901, 0.0061166400909423825, 0.006114528179168701, 0.006098176002502441, 0.006242112159729004, 0.006140768051147461, 0.00602726411819458, 0.006256671905517578, 0.006212992191314697, 0.006238719940185547, 0.006159743785858154, 0.006120255947113037, 0.0061420159339904785, 0.00606601619720459, 0.006109183788299561, 0.006094848155975342, 0.006072319984436035, 0.0060499200820922855, 0.0061626238822937015, 0.006196928024291992, 0.006330592155456543, 0.0063528637886047365, 0.006278560161590576, 0.006265247821807861, 0.006199295997619629, 0.006172671794891358, 0.006117087841033935, 0.00626470422744751, 0.006071936130523681, 0.006139808177947998, 0.006394112110137939, 0.006197855949401855, 0.006326047897338867, 0.0064924159049987796, 0.006612991809844971, 0.006840415954589844, 0.00640934419631958, 0.006416672229766845, 0.006408703804016113, 0.006343999862670899, 0.006365888118743897, 0.006369279861450195, 0.00623638391494751, 0.0060778241157531734, 0.00602563190460205, 0.005991680145263672, 0.006054656028747558, 0.006199295997619629, 0.00638156795501709, 0.006262784004211426, 0.006258975982666015, 0.006280928134918213, 0.006245888233184814, 0.006208000183105469, 0.006141024112701416, 0.0060834879875183104, 0.006049791812896729, 0.006100992202758789, 0.00603545618057251, 0.006067615985870361, 0.006199903964996338, 0.0064245758056640625, 0.00630998420715332, 0.006158143997192383, 0.006049312114715576, 0.00611084794998169, 0.006308703899383545, 0.00630406379699707, 0.006362912178039551, 0.005897439956665039, 0.00616534423828125, 0.006092735767364502, 0.00611737585067749, 0.006205440044403076, 0.006292736053466797, 0.00623308801651001, 0.006235263824462891, 0.006324160099029541, 0.006265247821807861, 0.006299935817718506, 0.0060677118301391605, 0.006086880207061767, 0.006038976192474365, 0.006107872009277344, 0.006119552135467529, 0.006217567920684814, 0.006217887878417969, 0.006168575763702393, 0.006154240131378174, 0.006098944187164307, 0.006134975910186768, 0.00616099214553833, 0.006314208030700683, 0.006379231929779052, 0.006312096118927002, 0.00620966386795044, 0.006117280006408691, 0.006115327835083008, 0.00610211181640625, 0.006093823909759521, 0.0063318080902099606, 0.006295904159545899, 0.006119103908538819, 0.006462368011474609, 0.006688767910003662, 0.006082208156585694, 0.0062847681045532225, 0.006187263965606689, 0.006215968132019043, 0.006256383895874023, 0.006211679935455322, 0.006125823974609375, 0.006379392147064209, 0.006526783943176269, 0.006590784072875977, 0.006518688201904297, 0.006479135990142822, 0.006424511909484863, 0.006437695980072021, 0.006342016220092774, 0.0063630399703979495, 0.0064617919921875, 0.006400352001190186, 0.006414048194885254, 0.006240543842315674, 0.006280735969543457, 0.006132192134857177, 0.006188159942626953, 0.006201759815216064, 0.006191264152526856, 0.006251071929931641, 0.0061478400230407714, 0.00613478422164917, 0.00637440013885498, 0.006485568046569824, 0.006318111896514892, 0.006315487861633301, 0.0061874880790710445, 0.006168384075164795, 0.006094624042510986, 0.006034624099731445, 0.006061535835266113, 0.006031583786010742, 0.006145023822784424, 0.0062863359451293946, 0.006276768207550049, 0.0061586880683898925, 0.00636627197265625, 0.006429632186889648, 0.0064204797744750975, 0.006291679859161377, 0.006173791885375976, 0.006222527980804443, 0.006141952037811279, 0.006155488014221192, 0.006160639762878418, 0.006238080024719238, 0.006093183994293213, 0.006111519813537598, 0.006350783824920654, 0.0063303041458129886, 0.006332543849945069, 0.0062518720626831056, 0.006242976188659668, 0.0062791681289672855, 0.0061851201057434085, 0.006068064212799072, 0.006004735946655273, 0.006038911819458008, 0.006015615940093994, 0.006028831958770752, 0.006009088039398193, 0.00608892822265625, 0.006134047985076905, 0.006310688018798828, 0.0063639039993286135, 0.0063526082038879396, 0.006220384120941162, 0.006207071781158448, 0.006164768218994141, 0.006038943767547608, 0.006070528030395508, 0.006048416137695313, 0.0060514240264892575, 0.006055871963500977, 0.006183072090148926, 0.006347104072570801, 0.006454944133758545, 0.006505951881408691, 0.006426464080810547, 0.006367487907409668, 0.00624889612197876, 0.006256608009338379, 0.006230048179626465, 0.006424799919128418, 0.006057983875274659, 0.006498559951782227, 0.006460447788238525, 0.006382304191589356, 0.0064471039772033695, 0.006289408206939697, 0.006297344207763672, 0.006307871818542481, 0.0063879361152648926, 0.0064143362045288085, 0.0062873601913452145, 0.006250688076019287, 0.006131455898284912, 0.006221888065338135, 0.006342175960540771, 0.0063820481300354, 0.006338304042816162, 0.00623638391494751, 0.006258143901824951, 0.006285888195037842, 0.006350336074829102, 0.0065090560913085935, 0.006334464073181153, 0.006316031932830811, 0.00620688009262085, 0.006375487804412842, 0.006523104190826416, 0.006490143775939941, 0.006472224235534668, 0.006325215816497803, 0.006255392074584961, 0.006174975872039795, 0.006133503913879394, 0.006199295997619629, 0.006174719810485839, 0.006164480209350586, 0.006131711959838867, 0.006171807765960693, 0.006201663970947266, 0.0063508481979370115, 0.006567935943603515, 0.006392384052276611, 0.006473760128021241, 0.006891456127166748, 0.006373663902282715, 0.006431903839111328, 0.00642310380935669, 0.006405151844024658, 0.006299967765808105, 0.0061938238143920896, 0.00626204776763916, 0.006171360015869141, 0.006129407882690429, 0.006087135791778564, 0.006098720073699951, 0.0060661759376525876, 0.006061279773712158, 0.006371583938598633, 0.006484511852264404, 0.006563615798950195, 0.006442560195922852, 0.0063883838653564454, 0.006408192157745361, 0.006060031890869141, 0.0062269439697265625, 0.006217055797576905, 0.006143519878387451, 0.0060797438621521, 0.006110079765319824, 0.00604307222366333, 0.0060505599975585935, 0.005973440170288086, 0.005990816116333008, 0.005987552165985108, 0.005990431785583496, 0.005960415840148925, 0.006063519954681396, 0.006291200160980224, 0.006267744064331055, 0.006080512046813965, 0.006150144100189209, 0.005996543884277344, 0.006103040218353272, 0.006000639915466309, 0.00601635217666626, 0.005994175910949707, 0.006044640064239502, 0.006025184154510498, 0.00612559986114502, 0.006193376064300537, 0.006233888149261475, 0.006188416004180909, 0.006079103946685791, 0.006084928035736084, 0.006065855979919434, 0.006127295970916748, 0.0060910720825195315, 0.006051839828491211, 0.006017024040222168, 0.006033184051513672, 0.006013440132141113, 0.006033152103424072, 0.006117216110229492, 0.006416512012481689, 0.006428671836853027, 0.006489952087402343, 0.0065414719581604, 0.0064839677810668945, 0.0064692158699035645, 0.006375840187072754, 0.006318143844604492, 0.006313920021057129, 0.00614739179611206, 0.006134367942810058, 0.006090559959411621, 0.006202976226806641, 0.006089312076568603, 0.006100480079650879, 0.006111839771270752, 0.006103040218353272, 0.006029439926147461, 0.006084479808807373, 0.006189184188842773, 0.006073311805725097, 0.006073247909545898, 0.006238207817077636, 0.006025728225708008, 0.006159872055053711, 0.00615664005279541, 0.0061132159233093265, 0.006126815795898437, 0.00610745620727539, 0.006160255908966065, 0.006083168029785156, 0.00608028793334961, 0.006062528133392334, 0.006122432231903076, 0.0060342721939086914, 0.006114880084991455, 0.006039999961853028, 0.006031360149383545, 0.006002848148345947, 0.006000607967376709, 0.005936351776123047, 0.005968544006347656, 0.005928256034851074, 0.006011360168457032, 0.005955264091491699, 0.005996928215026855, 0.005961343765258789, 0.006068287849426269, 0.006064223766326904, 0.0060993280410766605, 0.006006175994873047, 0.006093376159667969, 0.006051167964935302, 0.006216383934020996, 0.006110911846160889, 0.006062528133392334, 0.0060126399993896485, 0.005975488185882568, 0.006025951862335205, 0.005996511936187744, 0.006082496166229248, 0.005963456153869629, 0.005976480007171631, 0.006033408164978027, 0.006270495891571045, 0.006408671855926514, 0.006436992168426514, 0.00635481595993042, 0.006428864002227783, 0.006422336101531982, 0.006315743923187256, 0.006238495826721192, 0.006180863857269287, 0.0061996479034423825, 0.006098495960235596, 0.006084703922271729, 0.006024608135223389, 0.006019455909729004, 0.005974239826202392, 0.006000256061553955, 0.005927584171295166, 0.00599183988571167, 0.005986271858215332, 0.00624291181564331, 0.006526048183441162, 0.006341279983520508, 0.005863423824310303, 0.006123519897460937, 0.006124767780303955, 0.00605398416519165, 0.006046400070190429, 0.006004831790924072, 0.00598419189453125, 0.00603439998626709, 0.006181024074554444, 0.0060136961936950685, 0.00599283218383789, 0.005920447826385498, 0.005955967903137207, 0.005933856010437012, 0.005976128101348877, 0.005927264213562012, 0.005923295974731445, 0.005905695915222168, 0.005988863945007325, 0.005998176097869873, 0.006101632118225097, 0.006268032073974609, 0.006323071956634521, 0.0065491518974304195, 0.006379871845245361, 0.0061494078636169435, 0.006073376178741455, 0.0060044159889221195, 0.0059920320510864255, 0.005978528022766113, 0.005963776111602783, 0.005942912101745606, 0.0059498238563537595, 0.00591212797164917, 0.0059433279037475585, 0.005898848056793213, 0.005949567794799804, 0.005912255764007568, 0.005931295871734619, 0.005997568130493164, 0.006108928203582764, 0.006393983840942383, 0.006373888015747071, 0.006304096221923828, 0.006280288219451904, 0.006288127899169922, 0.00618668794631958, 0.006004672050476074, 0.005966368198394775, 0.005976096153259277, 0.005947360038757324, 0.006011072158813476, 0.005924352169036865, 0.006003007888793945, 0.005971968173980713, 0.00606822395324707, 0.005928959846496582, 0.005998623847961426, 0.005969823837280274, 0.0061502718925476076, 0.00624019193649292, 0.0061328959465026854, 0.006015071868896485, 0.0057849278450012205, 0.0059688959121704105, 0.0060002880096435545, 0.005978271961212158, 0.005995744228363037, 0.005912320137023926, 0.0059827518463134765, 0.006021471977233886, 0.006016895771026611, 0.006072447776794433, 0.005980127811431884, 0.005994527816772461, 0.006014976024627685, 0.006030432224273682, 0.005996511936187744, 0.005995456218719482, 0.006004735946655273, 0.006012224197387696, 0.005935808181762695, 0.005937280178070069, 0.00604966402053833, 0.006230016231536865, 0.006453248023986816, 0.006352255821228028, 0.006274847984313965, 0.00631712007522583, 0.006347743988037109, 0.006470143795013428, 0.006451519966125488, 0.006684351921081543, 0.006367775917053222, 0.006267712116241455, 0.006167520046234131, 0.005980160236358643, 0.006047743797302246, 0.006021344184875489, 0.006053696155548096, 0.005959360122680664, 0.006027008056640625, 0.005945888042449951, 0.005984384059906006, 0.005894015789031983, 0.006018176078796387, 0.00593395185470581, 0.005955584049224853, 0.0060269122123718264, 0.006312287807464599, 0.006440095901489258, 0.006320608139038086, 0.006125823974609375, 0.006037888050079346, 0.0059983677864074705, 0.0060412797927856445, 0.006050079822540283, 0.005973311901092529, 0.005982975959777832, 0.006041728019714356, 0.006018847942352295, 0.006092832088470459, 0.0060702719688415525, 0.00601043176651001, 0.006035583972930908, 0.005996863842010498, 0.00571830415725708, 0.00597760009765625, 0.005939231872558594, 0.0059732160568237306, 0.005960512161254883, 0.005957632064819336, 0.005944767951965332, 0.005994688034057618, 0.006013472080230713, 0.006033184051513672, 0.005986559867858887, 0.006039775848388672, 0.0060433921813964845, 0.006076704025268555, 0.006024064064025879, 0.006093152046203613, 0.006001120090484619, 0.006060031890869141, 0.006020448207855225, 0.006078176021575928, 0.006093791961669922, 0.00602726411819458, 0.005966047763824463, 0.005991487979888916, 0.005982336044311524, 0.005960544109344482, 0.005969664096832275, 0.006103199958801269, 0.006364511966705322, 0.006425087928771973, 0.006424352169036866, 0.006443071842193604, 0.0065168957710266115, 0.006370975971221924, 0.006370687961578369, 0.006353663921356201, 0.0061561279296875, 0.006211904048919678, 0.0061010560989379885, 0.006090752124786377, 0.006010015964508056, 0.00604860782623291, 0.006236159801483154, 0.005990399837493897, 0.00601087999343872, 0.005996672153472901, 0.00602294397354126, 0.006016511917114258, 0.006050399780273438, 0.006316031932830811, 0.006278783798217774, 0.006130080223083496, 0.006166016101837158, 0.006275551795959473, 0.006389472007751465, 0.00618287992477417, 0.006101503849029541, 0.006090496063232422, 0.0061051521301269535, 0.006059967994689942, 0.006326432228088379, 0.006035359859466552, 0.006033472061157227, 0.005752831935882568, 0.0060356159210205075, 0.005936031818389893, 0.005987360000610352, 0.005955488204956055, 0.006002560138702393, 0.005959743976593017, 0.006010367870330811, 0.005978687763214112, 0.00606822395324707, 0.006017087936401367, 0.006042623996734619, 0.006076960086822509, 0.006073823928833008, 0.006103936195373535, 0.0060910720825195315, 0.006091839790344238, 0.006062975883483887, 0.006149312019348144, 0.006130303859710693, 0.006112576007843018, 0.006180736064910888, 0.006131840229034424, 0.0060217280387878415, 0.006031455993652343, 0.005939328193664551, 0.005975935935974121, 0.005959360122680664, 0.006052031993865967, 0.006234208106994629, 0.00655731201171875, 0.00655951976776123, 0.006455872058868408, 0.006457151889801026, 0.0064330239295959475, 0.006379007816314697, 0.006131392002105713, 0.006113696098327637, 0.006167263984680176, 0.00608403205871582, 0.006092160224914551, 0.006030144214630127, 0.006004672050476074, 0.005966207981109619, 0.005994304180145264, 0.005958784103393555, 0.005989183902740478, 0.005955584049224853, 0.005969120025634766, 0.006038368225097656, 0.006219711780548096, 0.0061562881469726565, 0.006203104019165039, 0.006199584007263183, 0.006162432193756104, 0.006068287849426269, 0.0060638079643249515, 0.005968128204345703, 0.0060201921463012694, 0.005993728160858154, 0.00617468786239624, 0.006400864124298095, 0.006084671974182129, 0.005830495834350586, 0.00610313606262207, 0.006026559829711914, 0.006130176067352295, 0.00604150390625, 0.006032896041870117, 0.0060217280387878415, 0.005990784168243408, 0.005957503795623779, 0.005926400184631348, 0.005952000141143799, 0.0060208640098571775, 0.006024608135223389, 0.006037407875061035, 0.006036416053771972, 0.0060085439682006836, 0.0060152640342712406, 0.006039552211761475, 0.006014944076538086, 0.006035520076751709, 0.006027232170104981, 0.006017216205596924, 0.005966976165771485, 0.005962431907653809, 0.005986303806304932, 0.005989408016204834, 0.00602950382232666, 0.005972767829895019, 0.006166528224945069, 0.006420447826385498, 0.0064980158805847165, 0.00632863998413086, 0.006455296039581298, 0.006471712112426758, 0.006507743835449218, 0.006408959865570068, 0.006246335983276367, 0.006293568134307861, 0.006256319999694824, 0.006134079933166504, 0.006110496044158935, 0.006025951862335205, 0.006008831977844238, 0.006017024040222168, 0.005963007926940918, 0.006025375843048096, 0.005999199867248535, 0.005965151786804199, 0.005992159843444824, 0.0059539518356323245, 0.006113311767578125, 0.006276768207550049, 0.00624073600769043, 0.006053664207458496, 0.0060136961936950685, 0.005996511936187744, 0.006004096031188965, 0.005982592105865479, 0.005983967781066895, 0.006072735786437989, 0.005949440002441406, 0.005951488018035888, 0.00601859188079834, 0.0060785279273986815, 0.006256703853607178, 0.006608831882476807, 0.006103104114532471, 0.005994336128234863, 0.005976416110992431, 0.0060165758132934575, 0.006070816040039063, 0.0060415358543396, 0.006125408172607422, 0.005971583843231201, 0.006031551837921143, 0.0060126399993896485, 0.0060824317932128905, 0.005994016170501709, 0.006110079765319824, 0.006024511814117431, 0.0060750718116760255, 0.006047935962677002, 0.0060661759376525876, 0.006077983856201172, 0.006032800197601319, 0.006023263931274414, 0.0060152320861816405, 0.006079360008239746, 0.006043456077575684, 0.006074048042297363, 0.006452991962432862, 0.006256608009338379, 0.00640880012512207, 0.006524767875671387, 0.006377471923828125, 0.0063805441856384275, 0.006441952228546143, 0.006280352115631103, 0.0062657279968261715, 0.006302815914154053, 0.006370463848114014, 0.0062991042137146, 0.006215968132019043, 0.006140223979949951, 0.006065695762634277, 0.006123680114746094, 0.005989376068115234, 0.005999839782714843, 0.005955359935760498, 0.006092512130737305, 0.005951712131500244, 0.00603276777267456, 0.006220064163208008, 0.006422880172729492, 0.006346176147460938, 0.0061543679237365725, 0.006097536087036132, 0.006162303924560547, 0.006078464031219482, 0.006067999839782715, 0.006039775848388672, 0.006053088188171386, 0.006179615974426269, 0.006032735824584961, 0.006146687984466553, 0.006250527858734131]",tokens/s,160.37232171093808,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,937.94304,6533.61152,0.0,6138.363904,6060.931072,s,1,7.03056591796875,7.03056591796875,0.0,7.03056591796875,7.03056591796875,7.03056591796875,7.03056591796875,[7.03056591796875],,kWh,5.269836891667031e-06,5.705820254481695e-07,2.50000199999989e-06,8.34042091711509e-06,,MB,1265.094656,6556.680192,0.0,6150.946816,5419.87328,s,10,4.751995330810547,0.4751995330810546,0.004148406510364178,0.4741061706542969,0.4794715362548828,0.48165538482666015,0.483402463684082,"[0.47891998291015625, 0.47111331176757815, 0.4728049621582031, 0.4756724853515625, 0.47898623657226563, 0.47389395141601565, 0.473724609375, 0.46872216796875, 0.47431838989257813, 0.4838392333984375]",tokens/s,538.7210680536047,kWh,1.4066788356943664e-05,1.5512795423604402e-06,9.333168842190487e-06,2.4951236741494588e-05,tokens/kWh,10260012.465605162,MB,1313.3824,6556.680192,0.0,6150.946816,5419.87584,s,10,15.942974975585939,1.594297497558594,0.0036387952473232316,1.5941470336914063,1.5998011474609375,1.6006009521484375,1.6012407958984374,"[1.5903463134765625, 1.589517578125, 1.5938515625, 1.5944425048828126, 1.591487548828125, 1.6014007568359374, 1.5948016357421875, 1.59199658203125, 1.595507080078125, 1.5996234130859375]",tokens/s,39.515836973007985,kWh,4.62588489234756e-05,5.1023211861562766e-06,3.0745529887410417e-05,8.21066999970423e-05,tokens/kWh,767294.2646857008,,s,630,15.940892042160012,0.025303003241523864,0.00042494545731801465,0.025210111618041993,0.025517606925964356,0.025883853435516357,0.026789559669494627,"[0.026491424560546876, 0.02535215950012207, 0.025362464904785158, 0.025143295288085937, 0.025170080184936522, 0.025184095382690428, 0.0253439998626709, 0.02517196846008301, 0.02509823989868164, 0.025260032653808592, 0.025116672515869142, 0.02509823989868164, 0.025081119537353515, 0.02512950325012207, 0.025064800262451174, 0.02516796875, 0.025134880065917967, 0.0249036808013916, 0.02514224052429199, 0.02531123161315918, 0.025194271087646485, 0.02539952087402344, 0.02509414482116699, 0.025145343780517578, 0.025061376571655275, 0.025284608840942382, 0.02533990478515625, 0.026314176559448243, 0.025184064865112304, 0.02515123176574707, 0.02598111915588379, 0.025219903945922852, 0.02513020706176758, 0.025242399215698243, 0.025515264511108398, 0.025279232025146484, 0.025227264404296876, 0.025362016677856446, 0.02518684768676758, 0.025316448211669923, 0.02597667121887207, 0.025056352615356447, 0.02540070343017578, 0.024870912551879884, 0.024844768524169922, 0.025038848876953124, 0.025145343780517578, 0.025016319274902343, 0.02503615951538086, 0.025055871963500977, 0.02528223991394043, 0.025479488372802735, 0.02506342315673828, 0.02509791946411133, 0.025213247299194337, 0.024941888809204102, 0.025211584091186522, 0.02509814453125, 0.02558576011657715, 0.025158720016479494, 0.02512291145324707, 0.025065311431884764, 0.025026655197143553, 0.026490976333618164, 0.025425151824951173, 0.02507792091369629, 0.02506220817565918, 0.02492403221130371, 0.02509404754638672, 0.024972576141357422, 0.024978208541870116, 0.024962528228759766, 0.025291231155395506, 0.025075136184692384, 0.024899263381958008, 0.02503343963623047, 0.02512886428833008, 0.025054624557495117, 0.024989984512329103, 0.02493440055847168, 0.02503059196472168, 0.025325824737548828, 0.02504640007019043, 0.0249574089050293, 0.025134719848632813, 0.024988576889038085, 0.025433504104614257, 0.02544291114807129, 0.02523756790161133, 0.02524153518676758, 0.02511430358886719, 0.025763999938964843, 0.025280672073364256, 0.025212032318115234, 0.025181055068969727, 0.025628288269042968, 0.02520694351196289, 0.02514361572265625, 0.02509555244445801, 0.02539308738708496, 0.025387615203857423, 0.0252620792388916, 0.02521820831298828, 0.02520969581604004, 0.025114559173583986, 0.02524985694885254, 0.025102176666259766, 0.02521308708190918, 0.025220544815063476, 0.02536412811279297, 0.025396127700805664, 0.025436159133911132, 0.025452415466308595, 0.025367904663085937, 0.025278495788574218, 0.02531193542480469, 0.025319488525390624, 0.02532102394104004, 0.025248191833496095, 0.02531123161315918, 0.025161216735839844, 0.025142784118652343, 0.02523257637023926, 0.025171775817871094, 0.025194208145141603, 0.0253623046875, 0.026443967819213866, 0.025511936187744142, 0.025569280624389647, 0.02532966423034668, 0.025458688735961913, 0.02532966423034668, 0.025399295806884766, 0.025535839080810547, 0.025379487991333008, 0.025360511779785155, 0.0255281925201416, 0.025836864471435548, 0.025456703186035157, 0.02545712089538574, 0.025342111587524415, 0.0252620792388916, 0.02532966423034668, 0.025210880279541017, 0.025253087997436523, 0.025185056686401367, 0.02517945671081543, 0.025329952239990235, 0.025242015838623046, 0.025307199478149415, 0.02524153518676758, 0.025484928131103514, 0.025387392044067383, 0.02533072090148926, 0.025228256225585936, 0.025207839965820312, 0.02538800048828125, 0.02527027130126953, 0.025161727905273438, 0.025058847427368164, 0.02546112060546875, 0.025057504653930664, 0.02510220718383789, 0.025180063247680663, 0.02513315200805664, 0.025187744140625, 0.025325727462768555, 0.02535878372192383, 0.025212928771972655, 0.025193471908569336, 0.025178848266601564, 0.025102624893188475, 0.02536969566345215, 0.025148319244384765, 0.025269407272338867, 0.025684831619262695, 0.025196544647216795, 0.025145343780517578, 0.025253536224365235, 0.025073087692260743, 0.025432384490966797, 0.025003679275512697, 0.025014848709106446, 0.025165824890136718, 0.02502284812927246, 0.024985599517822265, 0.025016319274902343, 0.025171039581298828, 0.025204736709594725, 0.026668224334716797, 0.02544732856750488, 0.02529052734375, 0.025187679290771484, 0.02536128044128418, 0.025206783294677734, 0.025208831787109375, 0.025223167419433593, 0.02515558433532715, 0.025212608337402343, 0.025256256103515624, 0.025255935668945313, 0.025156736373901367, 0.02510323143005371, 0.02510438346862793, 0.02508799934387207, 0.025056768417358398, 0.025057184219360353, 0.025456352233886717, 0.026794784545898436, 0.025262304306030273, 0.025206367492675782, 0.025155872344970704, 0.025188352584838865, 0.025083904266357423, 0.025196544647216795, 0.025194496154785157, 0.02509004783630371, 0.02514841651916504, 0.025992191314697266, 0.025190143585205077, 0.025106176376342774, 0.02533145523071289, 0.025203104019165038, 0.02527471923828125, 0.025315359115600587, 0.025208671569824218, 0.025305215835571288, 0.025267871856689453, 0.025211231231689453, 0.025199712753295897, 0.025185184478759767, 0.025179967880249024, 0.025103551864624023, 0.025956735610961915, 0.025063583374023438, 0.025096160888671875, 0.02523619270324707, 0.025237279891967772, 0.02665385627746582, 0.026317440032958984, 0.025419424057006836, 0.02521468734741211, 0.02515439987182617, 0.025083040237426756, 0.025133920669555665, 0.025109983444213866, 0.025167999267578126, 0.02511827278137207, 0.025068384170532226, 0.025017791748046875, 0.02514531135559082, 0.02514406394958496, 0.02663702392578125, 0.02568502426147461, 0.025254079818725586, 0.0252193603515625, 0.025043455123901368, 0.025370624542236327, 0.025260032653808592, 0.02517955207824707, 0.025200895309448242, 0.02597462463378906, 0.025126815795898438, 0.025082464218139647, 0.025165824890136718, 0.025124864578247072, 0.025093568801879882, 0.02515001678466797, 0.02506937599182129, 0.025135295867919922, 0.02520195198059082, 0.025166015625, 0.025416223526000977, 0.025141248703002928, 0.0265031681060791, 0.025483264923095703, 0.02539107131958008, 0.025221151351928713, 0.025128000259399413, 0.025107295989990234, 0.02505491256713867, 0.025140768051147462, 0.025071775436401367, 0.025107168197631837, 0.025233407974243165, 0.025234848022460937, 0.025139551162719726, 0.025168127059936523, 0.025144479751586915, 0.02519536018371582, 0.025126943588256834, 0.025152639389038087, 0.02528937530517578, 0.025655487060546874, 0.02520182418823242, 0.025108768463134767, 0.025103967666625978, 0.02519139289855957, 0.025143295288085937, 0.02512441635131836, 0.02531711959838867, 0.025215679168701172, 0.025161727905273438, 0.025091583251953126, 0.025115135192871094, 0.025202688217163087, 0.025157087326049803, 0.02514588737487793, 0.025214624404907227, 0.025362783432006836, 0.025144575119018554, 0.02551795196533203, 0.025188703536987305, 0.025192991256713867, 0.02513920021057129, 0.02677676773071289, 0.02557145690917969, 0.025342655181884766, 0.025390815734863282, 0.025340480804443358, 0.025280223846435548, 0.02535424041748047, 0.02540867233276367, 0.02523798370361328, 0.025298336029052734, 0.025143455505371094, 0.025181055068969727, 0.025225120544433592, 0.025172000885009767, 0.025894912719726562, 0.025206335067749025, 0.02514784049987793, 0.025953567504882813, 0.02520956802368164, 0.02522064018249512, 0.025111007690429687, 0.025198591232299804, 0.025380863189697265, 0.025472959518432616, 0.025129024505615234, 0.025206783294677734, 0.025126495361328126, 0.025098655700683595, 0.025290496826171877, 0.025155839920043947, 0.025165504455566406, 0.02507321548461914, 0.02505571174621582, 0.02503494453430176, 0.025051231384277343, 0.025214975357055663, 0.025204736709594725, 0.02530303955078125, 0.025111616134643553, 0.025265087127685548, 0.025176063537597656, 0.02517747116088867, 0.025082496643066405, 0.025159231185913088, 0.0250467529296875, 0.02526598358154297, 0.025211103439331056, 0.02523411178588867, 0.025407487869262696, 0.02529689598083496, 0.02509619140625, 0.025151487350463866, 0.025222751617431642, 0.025217439651489256, 0.025870336532592773, 0.032484737396240235, 0.02551612854003906, 0.025241567611694337, 0.026204736709594726, 0.025092096328735353, 0.025176000595092774, 0.02535615921020508, 0.02549135971069336, 0.02657561683654785, 0.025503904342651366, 0.025578752517700195, 0.025743967056274415, 0.02542297554016113, 0.025275264739990234, 0.025186016082763673, 0.025321311950683593, 0.025302560806274414, 0.025338176727294923, 0.025530464172363283, 0.025243839263916015, 0.02536857604980469, 0.026101856231689452, 0.025821407318115233, 0.02536476707458496, 0.025345760345458983, 0.025187776565551757, 0.025086271286010743, 0.025121023178100586, 0.025306175231933594, 0.02544735908508301, 0.025513439178466796, 0.02551171112060547, 0.025432607650756837, 0.02519785690307617, 0.02524460792541504, 0.025210527420043944, 0.02521504020690918, 0.025198879241943358, 0.025210527420043944, 0.025166175842285157, 0.025200639724731445, 0.025167423248291014, 0.025166271209716796, 0.025198591232299804, 0.02548512077331543, 0.025276128768920898, 0.0251232967376709, 0.025078847885131837, 0.02517888069152832, 0.025578943252563477, 0.025221887588500976, 0.025182207107543944, 0.025155296325683595, 0.02503878402709961, 0.025147743225097656, 0.025092096328735353, 0.025284608840942382, 0.0251691837310791, 0.025116416931152345, 0.02514019203186035, 0.02525388717651367, 0.025380863189697265, 0.025208831787109375, 0.025124864578247072, 0.02519424057006836, 0.025192415237426758, 0.025044384002685546, 0.025084800720214843, 0.025432064056396485, 0.02537388801574707, 0.025228096008300782, 0.02667519950866699, 0.02565878486633301, 0.025211488723754883, 0.025198591232299804, 0.025218080520629883, 0.025115615844726564, 0.025249792098999024, 0.025169919967651368, 0.025162975311279298, 0.02506831932067871, 0.025168991088867186, 0.025033632278442384, 0.025241600036621094, 0.02513491249084473, 0.025088191986083985, 0.02510256004333496, 0.025138847351074217, 0.025055360794067384, 0.02528623962402344, 0.02520323181152344, 0.025152511596679687, 0.02516057586669922, 0.025177248001098634, 0.025053119659423827, 0.025193376541137694, 0.02509187126159668, 0.02528483200073242, 0.025279712677001954, 0.025860128402709962, 0.025232128143310547, 0.025404895782470703, 0.025294719696044923, 0.025182912826538086, 0.025221088409423827, 0.02546073532104492, 0.025323488235473632, 0.0252109432220459, 0.025255775451660155, 0.02527039909362793, 0.02516387176513672, 0.02584364891052246, 0.02530508804321289, 0.025364383697509766, 0.02518364715576172, 0.025242271423339843, 0.02512076759338379, 0.025272319793701172, 0.025221120834350585, 0.025208511352539063, 0.025183807373046874, 0.025314016342163084, 0.025315359115600587, 0.02532966423034668, 0.025302560806274414, 0.02533340835571289, 0.025205568313598634, 0.02515350341796875, 0.025331743240356447, 0.025236768722534178, 0.025298944473266603, 0.02521353530883789, 0.02512089538574219, 0.02521062469482422, 0.026804704666137696, 0.025528160095214844, 0.02536412811279297, 0.02532908821105957, 0.025168895721435547, 0.025212928771972655, 0.027256607055664062, 0.025661216735839844, 0.025605791091918944, 0.025766687393188478, 0.025517087936401367, 0.025239744186401368, 0.025242399215698243, 0.02520412826538086, 0.025129119873046876, 0.02522972869873047, 0.025212928771972655, 0.025393056869506835, 0.025188480377197266, 0.02523036766052246, 0.02519910430908203, 0.025184703826904298, 0.025167903900146484, 0.025063295364379883, 0.025204864501953125, 0.025214975357055663, 0.0253687686920166, 0.02527008056640625, 0.025251840591430662, 0.02523516845703125, 0.02510054397583008, 0.025221151351928713, 0.025103839874267578, 0.02516636848449707, 0.025042943954467774, 0.025456640243530275, 0.02613657569885254, 0.02515558433532715, 0.02532761573791504, 0.025341951370239257, 0.02523257637023926, 0.02517491149902344, 0.02525103950500488, 0.02515567970275879, 0.025014911651611328, 0.025204736709594725, 0.025061376571655275, 0.02516489601135254, 0.025820064544677734, 0.02532352066040039, 0.02550169563293457, 0.025333791732788085, 0.025243263244628906, 0.02505116844177246, 0.025123136520385742, 0.02513715171813965, 0.025087520599365233, 0.02526265525817871, 0.025110591888427736, 0.02523494338989258, 0.025101696014404297, 0.02514384078979492, 0.025073631286621094, 0.02667519950866699, 0.025620479583740235, 0.02530508804321289, 0.025393152236938478, 0.02525388717651367, 0.025210880279541017, 0.025411584854125976, 0.025309024810791017, 0.027152544021606446, 0.02581679916381836, 0.025331167221069335, 0.025123647689819336, 0.025169727325439453, 0.025180063247680663, 0.025248031616210937, 0.025249792098999024, 0.025208831787109375, 0.025977951049804687, 0.025055360794067384, 0.025316127777099608, 0.025101408004760743, 0.02526710319519043, 0.02511257553100586, 0.025159391403198242, 0.02507804870605469, 0.02534918403625488, 0.027118528366088867, 0.02547318458557129, 0.0255629768371582, 0.025350143432617187, 0.025185632705688476, 0.02527052879333496, 0.025225631713867186, 0.025517568588256836, 0.02543052864074707, 0.025173343658447266, 0.025100992202758788, 0.02545212745666504, 0.02509657669067383, 0.02510236740112305, 0.02509129524230957, 0.025184511184692383, 0.025119232177734374, 0.025126527786254883, 0.025079296112060546, 0.025534784317016602, 0.02512544059753418, 0.025134592056274413, 0.025278079986572267, 0.025240447998046874, 0.025968639373779297, 0.026963712692260743, 0.025296735763549804, 0.02538470458984375, 0.025391775131225584, 0.02515478324890137, 0.025139999389648438, 0.02555459213256836, 0.02506947135925293, 0.025082239151000975, 0.02506915283203125, 0.025167776107788087, 0.025118976593017577]",tokens/s,39.52100035141028,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 1001, in __init__ self.model = GemmaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 780, in __init__ [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 780, in [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 571, in __init__ self.mlp = GemmaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 167, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 144.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 34.12 MiB is free. Process 140407 has 14.71 GiB memory in use. Of the allocated memory 14.59 GiB is allocated by PyTorch, and 1.69 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,782.413824,741.277696,0.0,346.03008,335.0016,s,1,7.04750732421875,7.04750732421875,0.0,7.04750732421875,7.04750732421875,7.04750732421875,7.04750732421875,[7.04750732421875],,kWh,2.1352690916804325e-06,2.2859520841081572e-07,1.0325008259967627e-06,3.396365126088011e-06,,MB,1113.2928,764.346368,0.0,358.612992,302.626816,s,21,0.5210687370300293,0.02481279700142997,0.0006611941273767262,0.024646720886230468,0.024784448623657227,0.024796543121337892,0.027166284942626955,"[0.02775872039794922, 0.024570175170898437, 0.024735679626464845, 0.024618560791015626, 0.024701824188232423, 0.024796543121337892, 0.024646720886230468, 0.024646591186523438, 0.024784448623657227, 0.024670400619506837, 0.024628608703613282, 0.024597312927246092, 0.024624095916748048, 0.024617055892944335, 0.02470003128051758, 0.02471356773376465, 0.024626623153686522, 0.024702688217163087, 0.024634464263916016, 0.024665472030639648, 0.024629152297973633]",tokens/s,10317.256856824592,kWh,8.470441486111197e-07,9.33701046825079e-08,5.591300769333392e-07,1.499544330226967e-06,tokens/kWh,170718527.51512358,MB,1138.54464,779.026432,0.0,373.293056,302.629376,s,21,9.710362335205078,0.46239820643833707,0.0026130249103120417,0.46193701171875,0.46614492797851564,0.4669422912597656,0.4686030334472656,"[0.46901821899414065, 0.4669422912597656, 0.4628614501953125, 0.46303500366210937, 0.46614492797851564, 0.462698974609375, 0.46578253173828127, 0.46192800903320314, 0.4624483947753906, 0.46095526123046876, 0.46193701171875, 0.4588849792480469, 0.4605008544921875, 0.4591085205078125, 0.45975241088867186, 0.4604742431640625, 0.4616591491699219, 0.45940585327148437, 0.46350448608398437, 0.4609849853515625, 0.46233477783203125]",tokens/s,136.24620321359603,kWh,1.330715044999928e-05,1.4675907316296727e-06,6.077078935733302e-06,2.085182011736225e-05,tokens/kWh,3021318.9853648846,,s,1323,9.70028831863405,0.007332039545452784,0.00013567678003000158,0.0073137922286987305,0.007405478477478028,0.00746493124961853,0.007900964536666867,"[0.007321599960327148, 0.007458816051483155, 0.007464384078979492, 0.007450751781463623, 0.007417888164520264, 0.007374944210052491, 0.00791971206665039, 0.007330016136169433, 0.007371808052062988, 0.007412479877471924, 0.007480639934539795, 0.00739737606048584, 0.007377823829650879, 0.0072969279289245605, 0.0072971200942993164, 0.0073619837760925295, 0.007322175979614258, 0.007415808200836181, 0.007343711853027343, 0.007299424171447754, 0.007313055992126465, 0.0074629120826721195, 0.00733190393447876, 0.007366752147674561, 0.007343616008758545, 0.007331808090209961, 0.007334688186645508, 0.007426047801971435, 0.007348320007324219, 0.007491775989532471, 0.007419616222381592, 0.00738918399810791, 0.0073373122215271, 0.007330463886260986, 0.007384736061096192, 0.0073734397888183595, 0.0073499841690063475, 0.007387231826782226, 0.007294144153594971, 0.007273183822631836, 0.007350240230560303, 0.007391583919525146, 0.007491168022155762, 0.007391327857971191, 0.007350272178649903, 0.007290880203247071, 0.007595424175262451, 0.008765376091003418, 0.009026207923889161, 0.0074035201072692874, 0.007334239959716797, 0.00762224006652832, 0.007505216121673584, 0.007385248184204101, 0.007383039951324463, 0.007392191886901855, 0.007370175838470459, 0.007259840011596679, 0.007280831813812256, 0.0074878082275390626, 0.007350560188293457, 0.007371935844421387, 0.007334784030914306, 0.007037375926971436, 0.007291135787963868, 0.007297056198120117, 0.007330944061279297, 0.007381247997283936, 0.007400832176208496, 0.007348320007324219, 0.007316351890563965, 0.007401472091674805, 0.007339360237121582, 0.007398047924041748, 0.007444255828857422, 0.007335391998291016, 0.00728764820098877, 0.007244863986968994, 0.00733846378326416, 0.007360896110534668, 0.007331840038299561, 0.007360511779785156, 0.007333951950073242, 0.007276607990264893, 0.007320864200592041, 0.007303775787353516, 0.007311359882354736, 0.0072887039184570315, 0.007288959980010987, 0.0072704958915710445, 0.007372799873352051, 0.0073769278526306156, 0.007998816013336182, 0.007430399894714355, 0.00751961612701416, 0.0074019842147827145, 0.008697855949401855, 0.00882259178161621, 0.007452832221984863, 0.0073957757949829105, 0.0073359360694885255, 0.007363776206970215, 0.007340960025787354, 0.007405119895935059, 0.007448416233062744, 0.007402143955230713, 0.007308640003204346, 0.007245696067810058, 0.007328383922576905, 0.0073292160034179685, 0.007309887886047363, 0.007279647827148438, 0.007290175914764404, 0.007327392101287842, 0.007458687782287598, 0.007440512180328369, 0.007303167819976806, 0.007370751857757568, 0.007315423965454102, 0.007261280059814453, 0.007557536125183105, 0.007438432216644287, 0.0074223999977111816, 0.00740556812286377, 0.007364607810974121, 0.007264256000518799, 0.007036928176879883, 0.00726201581954956, 0.007380159854888916, 0.007341055870056152, 0.007352352142333984, 0.007358431816101074, 0.00758131217956543, 0.007330336093902588, 0.007329631805419922, 0.007401472091674805, 0.00739737606048584, 0.007426144123077393, 0.007493535995483399, 0.007358784198760986, 0.00729807996749878, 0.007305600166320801, 0.0074423041343688965, 0.007430880069732666, 0.007374527931213379, 0.007366655826568603, 0.0073768959045410155, 0.00729641580581665, 0.007371359825134277, 0.007417471885681153, 0.007317887783050537, 0.00733081579208374, 0.007271743774414062, 0.007291935920715332, 0.007350944042205811, 0.007366015911102295, 0.00731609582901001, 0.007423999786376953, 0.007280640125274658, 0.007305471897125244, 0.007315199851989746, 0.007315743923187256, 0.007317215919494629, 0.007356416225433349, 0.00728227186203003, 0.007346591949462891, 0.00734822416305542, 0.0073211522102355955, 0.007364640235900879, 0.007303904056549073, 0.007271455764770508, 0.007287807941436767, 0.0073144960403442386, 0.00731606388092041, 0.0073361282348632815, 0.007323455810546875, 0.007264256000518799, 0.00730947208404541, 0.007411200046539307, 0.007332191944122314, 0.007342080116271973, 0.00732374382019043, 0.00730511999130249, 0.007294591903686524, 0.007334271907806397, 0.007309663772583008, 0.0073376321792602535, 0.007268511772155762, 0.007392288208007813, 0.007016928195953369, 0.0073564801216125485, 0.0072724480628967286, 0.008041760444641114, 0.007333792209625244, 0.007359360218048096, 0.007319488048553467, 0.007256063938140869, 0.007302656173706055, 0.007338047981262207, 0.007381631851196289, 0.007318496227264404, 0.007443295955657959, 0.007323647975921631, 0.0074336638450622555, 0.007567935943603515, 0.0074356160163879395, 0.007369152069091797, 0.007379456043243408, 0.007304768085479737, 0.00723740816116333, 0.007276576042175293, 0.007364160060882569, 0.007283487796783447, 0.007506144046783447, 0.007370528221130371, 0.007292640209197998, 0.007299359798431397, 0.007393280029296875, 0.007307263851165771, 0.007395071983337402, 0.007360928058624268, 0.007248960018157959, 0.007259263992309571, 0.0072681279182434085, 0.007286655902862549, 0.007380671977996826, 0.007294655799865723, 0.007234176158905029, 0.007354368209838867, 0.007321599960327148, 0.007342080116271973, 0.007342080116271973, 0.007302239894866943, 0.007338912010192871, 0.00733622407913208, 0.007339744091033935, 0.00738099193572998, 0.007350560188293457, 0.0072696318626403805, 0.007268703937530517, 0.007288735866546631, 0.0072893438339233394, 0.007304351806640625, 0.007479872226715088, 0.0073690562248229985, 0.007319200038909912, 0.007313536167144775, 0.0073229122161865235, 0.00730950403213501, 0.0072278079986572265, 0.0074299521446228025, 0.0073146882057189945, 0.007042975902557373, 0.007395359992980957, 0.007395391941070557, 0.007398623943328858, 0.007410463809967041, 0.0073359360694885255, 0.007612415790557861, 0.007259359836578369, 0.007343935966491699, 0.007319551944732666, 0.007314559936523438, 0.007364031791687012, 0.007663551807403564, 0.007315392017364502, 0.0073183999061584475, 0.007418591976165772, 0.007394559860229492, 0.007337759971618652, 0.007790624141693115, 0.008145919799804687, 0.007834496021270752, 0.008226367950439453, 0.007410111904144287, 0.007382976055145264, 0.007375264167785644, 0.007380640029907227, 0.007481599807739258, 0.007419424057006836, 0.007359871864318848, 0.007340479850769043, 0.0073480639457702635, 0.0072988481521606445, 0.007406367778778076, 0.007450784206390381, 0.007350240230560303, 0.00740064001083374, 0.007323679924011231, 0.007314080238342285, 0.007280640125274658, 0.007316736221313477, 0.007316224098205567, 0.007280640125274658, 0.007282368183135986, 0.007241631984710693, 0.007301536083221436, 0.007337376117706299, 0.0072914881706237795, 0.007318687915802002, 0.007258975982666015, 0.00730079984664917, 0.007408031940460205, 0.007364287853240967, 0.007348447799682617, 0.007367839813232422, 0.007245759963989257, 0.007332767963409424, 0.0074670081138610836, 0.007349472045898437, 0.00733673620223999, 0.007310368061065674, 0.007242239952087402, 0.00728553581237793, 0.007397215843200683, 0.007160223960876465, 0.007385087966918945, 0.0072993278503417965, 0.007341184139251709, 0.007346816062927246, 0.007270400047302246, 0.007347968101501465, 0.007333471775054932, 0.0073564801216125485, 0.0073508801460266116, 0.007253824234008789, 0.007301152229309082, 0.007346015930175781, 0.007379263877868652, 0.00738099193572998, 0.007426047801971435, 0.007294911861419678, 0.007358528137207031, 0.007299071788787842, 0.007284863948822022, 0.007317376136779785, 0.007329055786132813, 0.00739961576461792, 0.0073096961975097656, 0.0073053760528564455, 0.007343711853027343, 0.007294591903686524, 0.007346975803375244, 0.007344128131866455, 0.007298624038696289, 0.007352767944335937, 0.007346176147460938, 0.007351840019226074, 0.007342912197113037, 0.007286431789398193, 0.007301216125488281, 0.007364319801330566, 0.007530303955078125, 0.00741209602355957, 0.007454912185668946, 0.007391392230987549, 0.0074584641456604, 0.007395423889160156, 0.007406879901885986, 0.007397535800933838, 0.007360799789428711, 0.007357696056365967, 0.007265376091003418, 0.0072436161041259765, 0.00728227186203003, 0.007315360069274903, 0.007418015956878662, 0.0073014721870422366, 0.007245823860168457, 0.007274496078491211, 0.007286911964416504, 0.007314432144165039, 0.0073491201400756835, 0.007414783954620361, 0.007249023914337158, 0.007361440181732177, 0.0073021121025085445, 0.0072951998710632324, 0.007276639938354492, 0.0074496960639953615, 0.0073794879913330075, 0.007335328102111817, 0.0073062081336975095, 0.00730953598022461, 0.007360288143157959, 0.007325215816497803, 0.007379072189331055, 0.007362912178039551, 0.0072765440940856935, 0.007292992115020752, 0.0073645439147949215, 0.007655488014221191, 0.007366591930389404, 0.007355487823486328, 0.0072895679473876955, 0.00725548791885376, 0.007379007816314697, 0.007291007995605469, 0.007291200160980224, 0.007309567928314209, 0.007270400047302246, 0.007288832187652588, 0.007329311847686768, 0.007387616157531738, 0.007538496017456054, 0.00743228816986084, 0.007292191982269287, 0.007392159938812256, 0.00733190393447876, 0.007589727878570557, 0.008124416351318359, 0.008281375885009766, 0.008227359771728516, 0.007449984073638916, 0.007387968063354492, 0.007374176025390625, 0.007328703880310059, 0.007326879978179932, 0.007361055850982666, 0.007378975868225098, 0.007368703842163086, 0.007378943920135498, 0.007332159996032715, 0.007306943893432618, 0.007290272235870361, 0.007326496124267578, 0.007390048027038574, 0.007287519931793213, 0.007350272178649903, 0.007287231922149659, 0.007295904159545899, 0.00730614423751831, 0.007329247951507569, 0.007325600147247315, 0.007301663875579834, 0.007251520156860352, 0.007238175868988037, 0.007323040008544922, 0.0072967357635498045, 0.007344736099243164, 0.007267776012420654, 0.00705456018447876, 0.0072930240631103515, 0.007339807987213134, 0.007473375797271729, 0.007307648181915283, 0.007334303855895996, 0.0072715520858764645, 0.00726636791229248, 0.007283008098602295, 0.007313727855682373, 0.007290976047515869, 0.007473152160644531, 0.0072540159225463864, 0.007216383934020996, 0.007266272068023682, 0.007557472229003906, 0.007322400093078613, 0.007306528091430664, 0.007246208190917969, 0.0073619518280029295, 0.008227680206298828, 0.00754252815246582, 0.007325535774230957, 0.007311520099639893, 0.007301119804382325, 0.007287968158721924, 0.007243648052215577, 0.007230112075805664, 0.007329951763153076, 0.007325856208801269, 0.007356256008148193, 0.007481855869293213, 0.007384736061096192, 0.007364607810974121, 0.007413119792938233, 0.007368383884429931, 0.007373760223388672, 0.007333216190338135, 0.0073816637992858885, 0.007241312026977539, 0.007311135768890381, 0.007287775993347168, 0.007304031848907471, 0.007266848087310791, 0.0072371201515197756, 0.007263008117675781, 0.00726800012588501, 0.0072726402282714845, 0.007253280162811279, 0.0072345280647277835, 0.007226655960083008, 0.0072585601806640625, 0.007317376136779785, 0.0073136320114135745, 0.007286880016326904, 0.007245312213897705, 0.007275008201599121, 0.007258111953735351, 0.007428095817565918, 0.00732912015914917, 0.007254687786102295, 0.007217023849487305, 0.0073012480735778805, 0.006948863983154297, 0.007316031932830811, 0.007288512229919434, 0.00730841588973999, 0.007392320156097412, 0.007323455810546875, 0.007315264225006103, 0.007315680027008057, 0.007354335784912109, 0.007360000133514405, 0.0073118720054626465, 0.007258111953735351, 0.007345248222351075, 0.0073276801109313965, 0.007341023921966553, 0.007350272178649903, 0.007437535762786865, 0.0076500802040100095, 0.007684447765350342, 0.007245471954345703, 0.007296288013458252, 0.007356575965881348, 0.0073137922286987305, 0.0073851518630981446, 0.007481472015380859, 0.007284736156463623, 0.007333856105804443, 0.007317759990692139, 0.007322879791259765, 0.007323808193206787, 0.007272096157073975, 0.007321792125701904, 0.007334688186645508, 0.0073844480514526365, 0.0073647680282592776, 0.007352543830871582, 0.007307263851165771, 0.007546879768371582, 0.007370751857757568, 0.007320831775665284, 0.00738486385345459, 0.0072991042137146, 0.007308224201202393, 0.007395328044891358, 0.007321599960327148, 0.007363808155059814, 0.007291679859161377, 0.007283872127532959, 0.007260928153991699, 0.0073619837760925295, 0.0072997441291809085, 0.007325407981872559, 0.0072967357635498045, 0.007279104232788086, 0.007211071968078613, 0.007233535766601563, 0.007254111766815186, 0.007300159931182861, 0.007257952213287354, 0.007328767776489258, 0.007303167819976806, 0.007328991889953613, 0.0074271678924560545, 0.007000415802001953, 0.007299392223358154, 0.007573887825012207, 0.007312511920928955, 0.0072854719161987306, 0.0072887039184570315, 0.007604127883911133, 0.007291391849517822, 0.007296512126922608, 0.007289055824279785, 0.007227456092834473, 0.0072715840339660645, 0.007284512042999267, 0.007293087959289551, 0.007291744232177735, 0.007267839908599853, 0.007324160099029541, 0.007319551944732666, 0.007331840038299561, 0.0073134078979492185, 0.007387263774871826, 0.007274367809295654, 0.007259712219238281, 0.007305503845214844, 0.007304575920104981, 0.007322591781616211, 0.007280479907989502, 0.00723964786529541, 0.007284863948822022, 0.00729856014251709, 0.007381375789642334, 0.007513728141784668, 0.007276927947998047, 0.007259200096130371, 0.0072995519638061526, 0.007342400074005127, 0.007308767795562744, 0.007324351787567139, 0.007318719863891602, 0.007283679962158203, 0.007264095783233643, 0.007333888053894043, 0.007395328044891358, 0.007333663940429688, 0.007274720191955566, 0.007204351902008056, 0.007326208114624024, 0.007321599960327148, 0.007299071788787842, 0.007303328037261963, 0.007266464233398437, 0.007253888130187988, 0.007368512153625488, 0.007300511837005615, 0.007306879997253418, 0.007319968223571777, 0.007284351825714111, 0.007275455951690673, 0.007306464195251465, 0.007332640171051025, 0.007311359882354736, 0.007360703945159912, 0.007280064105987549, 0.006944767951965332, 0.007309375762939453, 0.007337920188903809, 0.00729702377319336, 0.007329504013061524, 0.007340320110321045, 0.007285056114196778, 0.007270080089569092, 0.007313024044036865, 0.007374752044677735, 0.00733135986328125, 0.007320511817932129, 0.007231328010559082, 0.007431583881378174, 0.007344096183776855, 0.0073359360694885255, 0.0073612799644470215, 0.007298367977142334, 0.007230175971984863, 0.007298975944519043, 0.0073974719047546385, 0.007366655826568603, 0.007291232109069824, 0.007266304016113281, 0.007702400207519531, 0.007789792060852051, 0.007716544151306152, 0.007355008125305176, 0.007377312183380127, 0.007388864040374756, 0.007356736183166504, 0.007339680194854736, 0.007218656063079834, 0.007310048103332519, 0.007311359882354736, 0.007345791816711426, 0.007344128131866455, 0.007291039943695068, 0.00729315185546875, 0.007315392017364502, 0.00734006404876709, 0.007387423992156982, 0.007362304210662841, 0.0072737598419189455, 0.0072873601913452145, 0.007297183990478516, 0.007319551944732666, 0.007300447940826416, 0.0073274879455566405, 0.00723964786529541, 0.00722441577911377, 0.007294367790222168, 0.007276991844177246, 0.007257215976715088, 0.0072204480171203615, 0.007251711845397949, 0.007268256187438965, 0.007351871967315674, 0.007291456222534179, 0.007274335861206055, 0.007271520137786865, 0.007279551982879638, 0.007280352115631103, 0.007026336193084717, 0.007270271778106689, 0.007311423778533935, 0.007276895999908447, 0.007231232166290283, 0.007291456222534179, 0.007272192001342773, 0.00731766414642334, 0.007276607990264893, 0.007249855995178222, 0.007288928031921387, 0.00732089614868164, 0.007280096054077149, 0.007291872024536133, 0.007268352031707764, 0.007211008071899414, 0.0072988801002502445, 0.0072969279289245605, 0.00728927993774414, 0.007235583782196045, 0.0072436161041259765, 0.007253856182098389, 0.007270559787750244, 0.007266560077667236, 0.007374591827392578, 0.007304959774017334, 0.007225791931152344, 0.007255871772766113, 0.007341440200805664, 0.00730617618560791, 0.007287936210632324, 0.007237919807434082, 0.007245471954345703, 0.0072930240631103515, 0.007309567928314209, 0.007321887969970703, 0.0073034238815307614, 0.007226816177368164, 0.007249216079711914, 0.007279679775238037, 0.007282336235046386, 0.007270271778106689, 0.007211232185363769, 0.007222559928894043, 0.007292031764984131, 0.00738486385345459, 0.007297247886657715, 0.00723744010925293, 0.007188000202178955, 0.00725651216506958, 0.0072960638999938964, 0.007472064018249512, 0.007297215938568115, 0.007278336048126221, 0.007223519802093506, 0.007304096221923828, 0.007330624103546143, 0.007292640209197998, 0.0073281598091125486, 0.007212416172027588, 0.007229087829589843, 0.0073248958587646485, 0.007292511940002441, 0.007000351905822754, 0.007320511817932129, 0.007258143901824951, 0.007254208087921142, 0.00730998420715332, 0.00733788776397705, 0.007347807884216308, 0.007303584098815918, 0.007368703842163086, 0.007286752223968506, 0.007341792106628418, 0.0073199357986450195, 0.007316991806030273, 0.007309343814849854, 0.007276959896087646, 0.0072596797943115235, 0.007336319923400879, 0.007333759784698486, 0.007450719833374023, 0.007333759784698486, 0.0073119039535522465, 0.007231200218200683, 0.007313344001770019, 0.0073523840904235836, 0.007341599941253662, 0.007289440155029297, 0.0075467519760131834, 0.007246016025543213, 0.007286687850952148, 0.007329696178436279, 0.007312960147857666, 0.0072740478515625, 0.007265376091003418, 0.007312191963195801, 0.007287551879882812, 0.00727791976928711, 0.007293983936309815, 0.007315296173095703, 0.007264639854431152, 0.007267231941223144, 0.00732806396484375, 0.007309792041778565, 0.007346271991729736, 0.0073053760528564455, 0.007286464214324951, 0.007272319793701172, 0.00736678409576416, 0.007316480159759522, 0.007332863807678222, 0.007288767814636231, 0.007213119983673096, 0.007319551944732666, 0.007333888053894043, 0.007360511779785156, 0.00729702377319336, 0.007219327926635742, 0.007257247924804687, 0.007281375885009766, 0.00733081579208374, 0.007296000003814697, 0.007278719902038574, 0.007256288051605225, 0.007255712032318115, 0.006916096210479736, 0.007288832187652588, 0.007290880203247071, 0.007300479888916016, 0.007254559993743897, 0.007213151931762695, 0.007265312194824219, 0.007293920040130616, 0.007291039943695068, 0.007263840198516846, 0.00729318380355835, 0.007255360126495362, 0.007278656005859375, 0.007297215938568115, 0.00724780797958374, 0.0075671358108520504, 0.007294816017150879, 0.007244671821594238, 0.007282495975494385, 0.007404831886291504, 0.007300000190734863, 0.0072724480628967286, 0.007240767955780029, 0.007328927993774414, 0.007348000049591064, 0.007337984085083008, 0.007272319793701172, 0.007225503921508789, 0.00726416015625, 0.0072705278396606446, 0.007318719863891602, 0.007274975776672363, 0.007260000228881836, 0.0072501440048217776, 0.00732803201675415, 0.007315392017364502, 0.0073134078979492185, 0.007280447959899902, 0.007267615795135498, 0.007214240074157715, 0.007302048206329345, 0.007317791938781739, 0.007376832008361816, 0.007244416236877441, 0.007256383895874023, 0.007241151809692383, 0.007292191982269287, 0.007351232051849365, 0.0073523840904235836, 0.0072715840339660645, 0.00719920015335083, 0.007326047897338867, 0.007304255962371826, 0.007343039989471435, 0.0072724480628967286, 0.0072540159225463864, 0.007258111953735351, 0.007270400047302246, 0.007270175933837891, 0.007262432098388672, 0.007242047786712646, 0.007165952205657959, 0.007249631881713867, 0.0069415678977966305, 0.0072806720733642576, 0.007266304016113281, 0.007309023857116699, 0.007244063854217529, 0.007248032093048096, 0.0073112001419067384, 0.007285952091217041, 0.007323520183563232, 0.007276927947998047, 0.007233151912689209, 0.0072481918334960935, 0.007321983814239502, 0.007315423965454102, 0.0073276481628417964, 0.007256192207336426, 0.0072849922180175785, 0.007268256187438965, 0.007274591922760009, 0.007310336112976074, 0.007256127834320068, 0.007285568237304687, 0.0073034238815307614, 0.007306496143341065, 0.007327968120574951, 0.007315360069274903, 0.007415808200836181, 0.007303679943084717, 0.007419904232025146, 0.007321599960327148, 0.007360511779785156, 0.007342080116271973, 0.007278592109680176, 0.007260159969329834, 0.007253664016723633, 0.007309663772583008, 0.007322976112365723, 0.007337984085083008, 0.007251743793487549, 0.007227935791015625, 0.007311583995819092, 0.007303296089172363, 0.007274496078491211, 0.007243743896484375, 0.007235968112945556, 0.00723740816116333, 0.007286399841308594, 0.007305471897125244, 0.00729702377319336, 0.007417664051055908, 0.0072726402282714845, 0.007262207984924316, 0.007278592109680176, 0.007294816017150879, 0.007280223846435547, 0.0072585282325744625, 0.00729094409942627, 0.007336031913757324, 0.007323488235473633, 0.0074035201072692874, 0.007270559787750244, 0.007285888195037842, 0.00725708818435669, 0.006989727973937989, 0.007406879901885986, 0.007295711994171143, 0.0073175039291381834, 0.0073400321006774905, 0.007231488227844239, 0.007275551795959473, 0.007283679962158203, 0.007327744007110596, 0.007318560123443603, 0.007285088062286377, 0.0072464637756347655, 0.0072379522323608395, 0.0073192319869995115, 0.007301280021667481, 0.0073705921173095705, 0.0072707200050354005, 0.007219232082366943, 0.007372447967529297, 0.007390880107879639, 0.007371103763580323, 0.007325632095336914, 0.007258175849914551, 0.0072308478355407714, 0.007297311782836914, 0.007291232109069824, 0.0077712640762329106, 0.00738156795501709, 0.007342400074005127, 0.007278592109680176, 0.007245696067810058, 0.00728275203704834, 0.007332191944122314, 0.007371744155883789, 0.007297215938568115, 0.007222015857696534, 0.007313024044036865, 0.007354368209838867, 0.007311520099639893, 0.007309055805206298, 0.007233823776245117, 0.00721340799331665, 0.007355264186859131, 0.007269152164459228, 0.007309311866760254, 0.007261375904083252, 0.007277088165283203, 0.0072358717918396, 0.007292031764984131, 0.007306111812591553, 0.007295231819152832, 0.0072680959701538084, 0.007276000022888184, 0.007309855937957764, 0.007341311931610107, 0.007314176082611084, 0.007346176147460938, 0.007252096176147461, 0.0072887039184570315, 0.007310495853424072, 0.00728707218170166, 0.007308127880096435, 0.007259744167327881, 0.007014336109161377, 0.007266687870025635, 0.007254271984100342, 0.007383039951324463, 0.007354688167572021, 0.007360256195068359, 0.007339968204498291, 0.007243328094482422, 0.007266751766204834, 0.007358463764190673, 0.007393248081207275, 0.007344319820404053, 0.0073480639457702635, 0.007305215835571289, 0.007269760131835937, 0.007352960109710693, 0.007301119804382325, 0.007346176147460938, 0.007286784172058106, 0.0072072319984436035, 0.007345856189727783, 0.007350143909454346, 0.007305280208587646, 0.007292992115020752, 0.007249216079711914, 0.007247968196868897, 0.007341983795166015, 0.007309855937957764, 0.007297183990478516, 0.007329631805419922, 0.007287968158721924, 0.0072594242095947266, 0.007323359966278076, 0.007294976234436036, 0.00767145586013794, 0.007331200122833252, 0.007285280227661133, 0.007283135890960694, 0.007300960063934326, 0.007319327831268311, 0.007303552150726318, 0.007263455867767334, 0.007262815952301025, 0.007263904094696045, 0.007334432125091553, 0.007299071788787842, 0.0072822079658508305, 0.007438303947448731, 0.007332543849945069, 0.007257919788360595, 0.0073218560218811036, 0.00733568000793457, 0.007278656005859375, 0.007337823867797851, 0.007265664100646972, 0.007346784114837647, 0.007339295864105225, 0.00728710412979126, 0.00737113618850708, 0.0072828478813171385, 0.007217152118682861, 0.0073194561004638675, 0.008033984184265137, 0.0069838399887084965, 0.007331999778747558, 0.0072991042137146, 0.007337535858154297, 0.007280416011810302, 0.007277184009552002, 0.00727785587310791, 0.00732419204711914, 0.007335999965667725, 0.007315584182739258, 0.007242976188659668, 0.007308063983917236, 0.007273695945739746, 0.007294079780578613, 0.0072670397758483884, 0.007300064086914062, 0.007258080005645752, 0.007234943866729736, 0.007239327907562256, 0.007349215984344483, 0.007249760150909424, 0.007206783771514892, 0.007249663829803467, 0.007292799949645996, 0.0076005120277404786, 0.007297311782836914, 0.007264256000518799, 0.007315455913543701, 0.007279615879058838, 0.007271423816680909, 0.0073177280426025395, 0.007270112037658692, 0.007288832187652588, 0.007278048038482666, 0.0073283519744873045, 0.007299071788787842, 0.007360064029693604, 0.007301599979400635, 0.0072706880569458005, 0.007219264030456543, 0.007294591903686524, 0.007277952194213867, 0.007286399841308594, 0.0072468481063842774, 0.007262207984924316, 0.007223296165466309, 0.007323040008544922, 0.00726691198348999, 0.007251232147216797, 0.007230495929718018, 0.007226367950439453, 0.0073491201400756835, 0.007296000003814697, 0.007364416122436523, 0.00724399995803833, 0.007215904235839844, 0.007269728183746338, 0.007344799995422363, 0.007308800220489502, 0.00728710412979126, 0.007295231819152832, 0.007214752197265625, 0.00737440013885498, 0.007156544208526612, 0.007325823783874512, 0.0074832639694213865, 0.0073175358772277835, 0.007353439807891846, 0.0073218240737915035, 0.007309567928314209, 0.0073257598876953125, 0.007320191860198975, 0.007341440200805664, 0.00727452802658081, 0.007292672157287598, 0.007285312175750732, 0.007288127899169922, 0.007353024005889892, 0.007349472045898437, 0.007328000068664551, 0.007262752056121826, 0.0073723201751708985, 0.007372831821441651, 0.007522751808166504, 0.007444128036499024, 0.007381247997283936, 0.007333727836608886, 0.007365151882171631, 0.0074268798828125, 0.007365248203277588, 0.007373248100280762, 0.007354335784912109, 0.007290815830230713, 0.0072353601455688475, 0.007389344215393066, 0.007389567852020264, 0.007400383949279785, 0.007484032154083252, 0.007356063842773437, 0.0073787522315979, 0.00740780782699585, 0.007384768009185791, 0.007397151947021484, 0.007387167930603027, 0.007334815979003906, 0.007371903896331787, 0.007307392120361328, 0.007350336074829102, 0.007353184223175049, 0.007310463905334473, 0.00728707218170166, 0.007217599868774414, 0.007284255981445312, 0.007360864162445069, 0.007405759811401368, 0.00738431978225708, 0.007316160202026367, 0.007496831893920898, 0.00722208023071289, 0.0072888960838317874, 0.007501183986663818, 0.007338624000549316, 0.007353439807891846, 0.007342976093292236, 0.00734006404876709, 0.007369855880737305, 0.006930431842803955, 0.007294879913330078, 0.007301023960113525, 0.007313344001770019, 0.007463168144226074, 0.0073640961647033695, 0.007297440052032471, 0.007309408187866211, 0.007329152107238769, 0.007322239875793457, 0.007407616138458252, 0.007417856216430664, 0.007290880203247071, 0.007343711853027343, 0.007339615821838379, 0.007326528072357178, 0.007301375865936279, 0.007253664016723633, 0.007386655807495117, 0.007313983917236328, 0.007315008163452148, 0.007311071872711182, 0.00728275203704834, 0.0072912960052490235, 0.007255551815032959, 0.007301568031311035, 0.007331711769104004, 0.00730079984664917, 0.007385856151580811, 0.007252255916595459, 0.007316448211669922, 0.007320511817932129, 0.0073029761314392086, 0.0072724480628967286, 0.007256063938140869, 0.007286784172058106, 0.007383039951324463, 0.007364607810974121, 0.007355936050415039, 0.007325632095336914, 0.007313439846038819, 0.007324160099029541, 0.007364607810974121, 0.007341472148895264, 0.007305823802947998, 0.007288127899169922, 0.007268511772155762, 0.007277120113372803, 0.007308640003204346, 0.0073079361915588375, 0.007325664043426514, 0.007299071788787842, 0.007271679878234863, 0.00728275203704834, 0.007306079864501953, 0.007337952136993408, 0.00731279993057251, 0.007287263870239258, 0.007210015773773193, 0.007277535915374756, 0.007314911842346191, 0.007363103866577149, 0.007300352096557617, 0.007080575942993164, 0.007353792190551758, 0.00723964786529541, 0.007326399803161621, 0.007358367919921875, 0.007464992046356201, 0.007366623878479004, 0.007298272132873535, 0.007222335815429687, 0.007355999946594238, 0.007295104026794433, 0.007352511882781982, 0.007311168193817138, 0.00729702377319336, 0.007255231857299805, 0.007295807838439941, 0.00734335994720459, 0.007387904167175293, 0.007413760185241699, 0.007253024101257324, 0.007555456161499024, 0.007348671913146972, 0.007316959857940674, 0.007373631954193115, 0.007346047878265381, 0.007340288162231446, 0.0073784317970275876, 0.007280608177185058, 0.007315743923187256, 0.007307263851165771, 0.007327936172485352, 0.007287871837615967, 0.007177055835723877, 0.007329696178436279, 0.007346176147460938, 0.007337984085083008, 0.007340320110321045, 0.007416672229766845, 0.007291359901428223, 0.00735916805267334, 0.007362271785736084, 0.007377056121826172, 0.007621823787689209, 0.007338272094726562, 0.007297408103942871, 0.0074477758407592775, 0.00739359998703003, 0.007312960147857666, 0.007320479869842529, 0.007288447856903076, 0.007298783779144287, 0.007332511901855469, 0.007346176147460938, 0.007372799873352051, 0.0073373122215271, 0.007329504013061524, 0.007269440174102783, 0.007286655902862549, 0.007295104026794433, 0.00730508804321289, 0.007331999778747558, 0.0072763838768005375, 0.007243008136749268]",tokens/s,136.3876986479409,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,dbrx,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1234, in __init__ self.transformer = DbrxModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1007, in __init__ self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1007, in self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 787, in __init__ self.ffn = DbrxFFN(config=config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 764, in __init__ self.experts = DbrxExperts( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 703, in __init__ self.mlp = DbrxExpertGLU( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 681, in __init__ self.w1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.97 GiB. GPU 0 has a total capacity of 14.74 GiB of which 1.17 GiB is free. Process 111012 has 13.57 GiB memory in use. Of the allocated memory 13.45 GiB is allocated by PyTorch, and 1.36 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,783.159296,1133.44512,0.0,738.197504,715.772928,s,1,7.06663818359375,7.06663818359375,0.0,7.06663818359375,7.06663818359375,7.06663818359375,7.06663818359375,[7.06663818359375],,kWh,3.0683363375070863e-06,3.3134657421837375e-07,9.327785240043074e-07,4.332461435729768e-06,,MB,1147.338752,1173.291008,0.0,767.557632,723.637248,s,11,0.6937036476135254,0.06306396796486595,0.0010367258932583786,0.06303084945678711,0.06340774536132812,0.0646856803894043,0.06570802841186524,"[0.06596361541748047, 0.06277628707885742, 0.062066654205322265, 0.06303247833251953, 0.061806304931640625, 0.06340774536132812, 0.062698974609375, 0.06335663986206054, 0.062423137664794924, 0.06314096069335938, 0.06303084945678711]",tokens/s,4059.3703228858376,kWh,2.0431546406759623e-06,2.251474102397912e-07,1.3615395507692388e-06,3.6298416016849926e-06,tokens/kWh,70526493.46493891,MB,1172.320256,1213.136896,0.0,807.40352,735.775744,s,11,9.432381652832031,0.8574892411665483,0.002954941198204269,0.858698486328125,0.8597750854492188,0.8612584533691406,0.8624451477050782,"[0.8552522583007812, 0.8554146118164062, 0.8523182983398437, 0.8535504150390625, 0.8597698974609375, 0.858861083984375, 0.8591412353515625, 0.8597750854492188, 0.8627418212890625, 0.858698486328125, 0.8568584594726563]",tokens/s,73.47030956830821,kWh,2.4743069268035864e-05,2.7288963556497834e-06,1.1863748807231034e-05,3.933571443091668e-05,tokens/kWh,1601597.9603127257,,s,693,9.426552733421326,0.01360252919685617,0.00023421402319323897,0.013552384376525879,0.013768626976013184,0.013935711860656739,0.014409163513183595,"[0.013556032180786133, 0.01360867214202881, 0.013643168449401855, 0.013607808113098144, 0.013897727966308594, 0.013780896186828612, 0.013569439888000488, 0.013677248001098633, 0.013581727981567383, 0.013580767631530762, 0.013491552352905273, 0.013515104293823242, 0.01357209587097168, 0.013429183959960938, 0.013487199783325195, 0.013463616371154785, 0.013419424057006836, 0.013576128005981446, 0.013453696250915527, 0.013432095527648926, 0.013537631988525391, 0.013701120376586913, 0.013501536369323731, 0.013560447692871094, 0.013496543884277344, 0.01355577564239502, 0.013422592163085938, 0.013420736312866211, 0.013576000213623048, 0.013495519638061523, 0.013654111862182617, 0.013584575653076171, 0.01352467155456543, 0.014236703872680664, 0.013633312225341797, 0.013686783790588379, 0.013621248245239258, 0.01368892765045166, 0.013557184219360351, 0.013543904304504395, 0.013649920463562011, 0.013537280082702637, 0.013489407539367676, 0.013580927848815918, 0.013553631782531739, 0.01371894359588623, 0.013517151832580567, 0.013500415802001953, 0.01354793643951416, 0.013451264381408692, 0.013613056182861329, 0.013500415802001953, 0.013490367889404296, 0.01363657569885254, 0.013552127838134765, 0.013656415939331056, 0.013567999839782715, 0.013522368431091308, 0.013539775848388672, 0.013377951622009278, 0.013418208122253418, 0.013526304244995117, 0.013456128120422363, 0.013297280311584473, 0.013674976348876954, 0.013577471733093262, 0.013691295623779296, 0.013680992126464843, 0.013742143630981446, 0.01377683162689209, 0.013554783821105957, 0.013631936073303222, 0.013457887649536133, 0.01415708827972412, 0.013691743850708009, 0.01367852783203125, 0.013649855613708496, 0.013482239723205567, 0.013604607582092285, 0.013459263801574707, 0.01344438362121582, 0.013597599983215332, 0.01349238395690918, 0.01378105640411377, 0.013592351913452148, 0.013514368057250977, 0.013615488052368164, 0.01350211238861084, 0.013508992195129394, 0.013545503616333008, 0.013444895744323731, 0.013527199745178223, 0.0135697603225708, 0.013493951797485351, 0.013578847885131836, 0.013469023704528809, 0.013508416175842286, 0.01353600025177002, 0.013377056121826172, 0.013496895790100098, 0.01356326389312744, 0.013900032043457031, 0.013701248168945312, 0.013561599731445313, 0.013674976348876954, 0.01350864028930664, 0.013592864036560058, 0.013526752471923828, 0.013393183708190919, 0.013515487670898437, 0.013495967864990235, 0.013547871589660644, 0.01375382423400879, 0.013484576225280761, 0.013595840454101563, 0.013462016105651856, 0.01343507194519043, 0.013498496055603028, 0.013480159759521484, 0.013495391845703125, 0.013486751556396484, 0.01341875171661377, 0.013522047996520997, 0.013865632057189941, 0.013502559661865234, 0.01352070426940918, 0.013373215675354004, 0.013569279670715332, 0.013509599685668946, 0.01344540786743164, 0.013448384284973145, 0.01351529598236084, 0.013539104461669922, 0.01356208038330078, 0.013615103721618652, 0.013464608192443848, 0.013549856185913086, 0.013511360168457031, 0.013445119857788086, 0.013667360305786132, 0.013450207710266114, 0.013592160224914551, 0.01354793643951416, 0.013403615951538085, 0.013936767578125, 0.013773440361022949, 0.013564991950988769, 0.01358512020111084, 0.01351471996307373, 0.013674304008483887, 0.013461759567260742, 0.013497407913208009, 0.013537983894348144, 0.013449376106262206, 0.013522815704345704, 0.01353916835784912, 0.013471839904785156, 0.01360307216644287, 0.013428735733032226, 0.013398015975952148, 0.013472031593322754, 0.01336515235900879, 0.0136145601272583, 0.01343727970123291, 0.013407808303833008, 0.013479616165161133, 0.013441951751708984, 0.013457247734069824, 0.013542464256286621, 0.013415360450744629, 0.013567999839782715, 0.01381772804260254, 0.013456992149353027, 0.013455967903137207, 0.013420479774475098, 0.01352899169921875, 0.013512800216674805, 0.013367136001586915, 0.013463168144226075, 0.013469471931457519, 0.013492351531982421, 0.013480223655700684, 0.013484383583068848, 0.01375641632080078, 0.013678624153137206, 0.013485983848571777, 0.0135414400100708, 0.013495871543884277, 0.013496959686279297, 0.013339232444763184, 0.013522720336914063, 0.013553152084350586, 0.013628064155578613, 0.013455424308776855, 0.013434880256652832, 0.01348624038696289, 0.013373279571533203, 0.013475839614868163, 0.01343283176422119, 0.013404159545898438, 0.013578335762023925, 0.01344054412841797, 0.01339395236968994, 0.013486432075500489, 0.0133754243850708, 0.013420607566833496, 0.013500415802001953, 0.01343280029296875, 0.01352883243560791, 0.01345952033996582, 0.013418720245361329, 0.013619199752807617, 0.013436927795410156, 0.013423904418945313, 0.013564031600952148, 0.01359727954864502, 0.014243295669555664, 0.014405920028686523, 0.014350784301757813, 0.013569055557250976, 0.013648672103881836, 0.013567584037780762, 0.013482399940490723, 0.013524991989135742, 0.01345910358428955, 0.013573472023010253, 0.01347481632232666, 0.013389823913574218, 0.013499872207641601, 0.013460000038146973, 0.013514752388000489, 0.013450528144836426, 0.013445440292358399, 0.013495967864990235, 0.013451456069946289, 0.013426431655883789, 0.013529024124145507, 0.013380031585693359, 0.013482239723205567, 0.013893343925476075, 0.013512415885925293, 0.013607423782348632, 0.013541407585144043, 0.01356822395324707, 0.013553791999816895, 0.013488224029541016, 0.013600704193115234, 0.013578399658203125, 0.013479295730590821, 0.013603424072265625, 0.013450976371765136, 0.013508447647094727, 0.013562432289123535, 0.013839360237121581, 0.013609472274780274, 0.01367910385131836, 0.013600895881652832, 0.013494144439697266, 0.013610783576965333, 0.01345967960357666, 0.013525343894958497, 0.013534879684448243, 0.01369324779510498, 0.01360863971710205, 0.015853407859802247, 0.013883551597595216, 0.013639679908752441, 0.013628543853759766, 0.01354377555847168, 0.013548064231872558, 0.013503968238830566, 0.013558303833007813, 0.013504544258117675, 0.013549375534057616, 0.013512864112854003, 0.013500415802001953, 0.013611007690429687, 0.013562208175659179, 0.013480799674987793, 0.013568832397460937, 0.013500415802001953, 0.01345315170288086, 0.013508768081665038, 0.01347379207611084, 0.014075648307800294, 0.013514880180358887, 0.013555839538574218, 0.013854207992553711, 0.013648384094238282, 0.01358614444732666, 0.013479583740234375, 0.013598752021789551, 0.013549280166625977, 0.013503264427185059, 0.013543328285217286, 0.013467840194702149, 0.013452768325805664, 0.013504032135009766, 0.013437952041625977, 0.013496319770812988, 0.013426688194274903, 0.013477343559265137, 0.013676799774169923, 0.013648159980773926, 0.013596672058105469, 0.013549568176269532, 0.01362339210510254, 0.013535200119018554, 0.01354304027557373, 0.013863583564758301, 0.01356275177001953, 0.013450016021728515, 0.013529439926147462, 0.014190239906311035, 0.01471014404296875, 0.013615103721618652, 0.014029984474182128, 0.01356272029876709, 0.013633536338806153, 0.013504159927368165, 0.013507136344909668, 0.013647647857666015, 0.013728032112121582, 0.013745823860168456, 0.01355065631866455, 0.013442048072814941, 0.013684479713439942, 0.013565471649169922, 0.013595487594604492, 0.013486144065856933, 0.013535039901733398, 0.013630559921264648, 0.013678591728210449, 0.013591456413269042, 0.013512895584106446, 0.013418304443359374, 0.013604928016662597, 0.01346275234222412, 0.013662976264953613, 0.013527327537536622, 0.013479616165161133, 0.014118304252624512, 0.013556320190429688, 0.013535231590270995, 0.013625344276428223, 0.013730079650878906, 0.01365782356262207, 0.013461759567260742, 0.013782303810119629, 0.013610655784606934, 0.01350489616394043, 0.013564191818237304, 0.013535391807556153, 0.01377280044555664, 0.013622976303100586, 0.013629759788513184, 0.013801471710205078, 0.013550623893737793, 0.01363475227355957, 0.013446399688720703, 0.013556511878967285, 0.013501440048217773, 0.013552384376525879, 0.013626879692077636, 0.013484800338745117, 0.013538784027099609, 0.013709152221679687, 0.013726143836975098, 0.013758336067199707, 0.013740480422973633, 0.013620927810668945, 0.013527039527893067, 0.01345638370513916, 0.013455904006958008, 0.013492704391479492, 0.013489727973937988, 0.013608927726745606, 0.014916288375854491, 0.013785152435302735, 0.013815584182739258, 0.013614303588867187, 0.013490559577941895, 0.013904735565185547, 0.015267552375793457, 0.014446463584899902, 0.01364185619354248, 0.01358233642578125, 0.013496319770812988, 0.013557760238647461, 0.013705216407775878, 0.013434623718261719, 0.013664064407348632, 0.013443679809570312, 0.01350380802154541, 0.013660832405090332, 0.013413344383239746, 0.013466879844665528, 0.013475040435791015, 0.013380031585693359, 0.013505760192871094, 0.013535584449768066, 0.01348038387298584, 0.013501536369323731, 0.013593152046203613, 0.013469504356384278, 0.01359280014038086, 0.013457728385925292, 0.013668383598327637, 0.013778911590576173, 0.013677887916564942, 0.013496447563171386, 0.01351689624786377, 0.01353286361694336, 0.013462431907653808, 0.013551487922668456, 0.01433568000793457, 0.013592608451843262, 0.013508864402770996, 0.0134202241897583, 0.013438336372375488, 0.013437376022338868, 0.013462047576904296, 0.014327391624450684, 0.013492639541625977, 0.013769951820373535, 0.01373468780517578, 0.013450559616088867, 0.013687616348266601, 0.01347980785369873, 0.013639967918395996, 0.013571935653686524, 0.013657983779907226, 0.0135098876953125, 0.013538047790527344, 0.013492223739624023, 0.01347379207611084, 0.013479935646057128, 0.013737792015075684, 0.013559743881225586, 0.013537535667419434, 0.01372163200378418, 0.01360636806488037, 0.014370783805847168, 0.013732416152954102, 0.01363702392578125, 0.013486080169677735, 0.013498016357421875, 0.013437888145446778, 0.01345644760131836, 0.013657024383544922, 0.013501472473144531, 0.013460288047790528, 0.014229663848876953, 0.013506112098693847, 0.013533503532409667, 0.013484160423278808, 0.013602463722229004, 0.013711711883544923, 0.01356390380859375, 0.013704992294311524, 0.013576288223266602, 0.013789312362670898, 0.013578240394592284, 0.013844703674316406, 0.013860639572143554, 0.013588831901550294, 0.01363321590423584, 0.01358784008026123, 0.013615167617797852, 0.013594240188598632, 0.01368899154663086, 0.013669119834899903, 0.013576512336730956, 0.013610560417175293, 0.013611136436462402, 0.013538944244384765, 0.013836095809936524, 0.014023232460021972, 0.014206496238708496, 0.013935008049011231, 0.013930303573608398, 0.013758496284484863, 0.013613280296325683, 0.013380800247192383, 0.013679712295532227, 0.013554464340209961, 0.01334992027282715, 0.013492128372192384, 0.013506943702697755, 0.013421695709228515, 0.013550080299377442, 0.013433888435363769, 0.01356278419494629, 0.013715519905090331, 0.013567999839782715, 0.013665375709533691, 0.013612256050109864, 0.01364345645904541, 0.013694560050964356, 0.01349891185760498, 0.01357376003265381, 0.013457216262817383, 0.01339027214050293, 0.013645824432373046, 0.013316672325134277, 0.013495424270629882, 0.013538175582885743, 0.013456543922424317, 0.013488991737365723, 0.01349836826324463, 0.014232704162597656, 0.013593855857849122, 0.013465279579162598, 0.015788064002990723, 0.015582592010498046, 0.01374028778076172, 0.013781087875366211, 0.013642208099365234, 0.013458463668823242, 0.013510944366455079, 0.013443584442138673, 0.013588383674621582, 0.013643199920654298, 0.013728320121765137, 0.013558879852294922, 0.013515680313110352, 0.013538911819458007, 0.013589216232299804, 0.013446847915649414, 0.013645600318908692, 0.01360256004333496, 0.013805312156677246, 0.013556127548217773, 0.013539392471313477, 0.013538847923278809, 0.013598912239074707, 0.013754912376403809, 0.013739711761474609, 0.013825823783874511, 0.014125599861145019, 0.013623295783996582, 0.01356118392944336, 0.01405404758453369, 0.01374944019317627, 0.013544256210327149, 0.013685888290405273, 0.01356214427947998, 0.013407135963439941, 0.013455231666564942, 0.013483039855957031, 0.013749024391174317, 0.013723775863647461, 0.01359654426574707, 0.013676544189453126, 0.013571328163146972, 0.013763327598571778, 0.013523039817810058, 0.013457088470458985, 0.013598496437072755, 0.013422880172729492, 0.01358358383178711, 0.013542143821716309, 0.014073472023010253, 0.013711872100830079, 0.013549599647521973, 0.013632543563842773, 0.013540032386779786, 0.013492351531982421, 0.013695648193359375, 0.01356227207183838, 0.0137576322555542, 0.013758591651916504, 0.01353983974456787, 0.01366972827911377, 0.013532959938049316, 0.013599360466003418, 0.013473952293395996, 0.013462719917297363, 0.013650848388671874, 0.014149632453918457, 0.013674495697021484, 0.013740032196044923, 0.013854240417480469, 0.013668064117431641, 0.013615776062011718, 0.013684127807617187, 0.01358028793334961, 0.013591232299804688, 0.013491904258728028, 0.013503040313720703, 0.01363327980041504, 0.013512703895568847, 0.013575327873229981, 0.013586784362792969, 0.013636416435241699, 0.013653696060180664, 0.013450688362121582, 0.013603391647338868, 0.013813535690307617, 0.014044768333435058, 0.013981568336486816, 0.013904640197753906, 0.013791359901428223, 0.013729887962341309, 0.013659232139587403, 0.013565952301025391, 0.013736543655395507, 0.013584159851074218, 0.013622591972351075, 0.013671520233154297, 0.013536383628845215, 0.013671199798583984, 0.013549056053161621, 0.013607423782348632, 0.013701120376586913, 0.013537088394165038, 0.013578335762023925, 0.01366256046295166, 0.013428031921386719, 0.013576640129089355, 0.013367391586303711, 0.013402015686035156, 0.01351193618774414, 0.013484864234924317, 0.013475711822509766, 0.013438816070556641, 0.01348761558532715, 0.013702048301696777, 0.013442015647888184, 0.013484895706176758, 0.013399200439453125, 0.013638527870178222, 0.013588095664978027, 0.013707615852355958, 0.013645759582519531, 0.013723775863647461, 0.013538463592529297, 0.013648799896240234, 0.013532608032226563, 0.013521023750305176, 0.013729280471801757, 0.01359177589416504, 0.013604063987731934, 0.013546272277832032, 0.01345529556274414, 0.013507648468017578, 0.013445728302001953, 0.013684864044189454, 0.013615167617797852, 0.013416031837463378, 0.013664735794067382, 0.013746399879455567, 0.013702879905700684, 0.013813695907592773, 0.013629055976867676, 0.013563712120056153, 0.013429311752319336, 0.013528127670288086, 0.013661375999450684, 0.01360051155090332, 0.013623295783996582, 0.013541376113891602, 0.013626655578613282, 0.013630175590515136, 0.013462944030761719, 0.013544032096862793, 0.013438976287841797, 0.013447296142578126, 0.013491104125976563, 0.013450400352478027, 0.013465503692626953, 0.013468671798706054, 0.013419424057006836, 0.013379584312438965, 0.013355008125305176, 0.013522239685058593, 0.013638208389282227, 0.01351471996307373, 0.014046624183654785, 0.01411689567565918, 0.014015199661254883, 0.01394611167907715, 0.014023712158203125, 0.013598431587219238, 0.013592255592346192, 0.013680480003356933, 0.0135316162109375, 0.013569952011108399, 0.013488256454467773, 0.013467616081237792, 0.013527199745178223, 0.013412192344665527, 0.01340556812286377]",tokens/s,73.51574001628468,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 634, in __init__ self.attention = GPT_NEOX_ATTENTION_CLASSES[config._attn_implementation](config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 102, in __init__ self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 150.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 132.12 MiB is free. Process 40838 has 14.61 GiB memory in use. Of the allocated memory 14.47 GiB is allocated by PyTorch, and 21.89 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt2,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,837.378048,14689.435648,0.0,14294.188032,14284.158464,s,1,7.67521337890625,7.67521337890625,0.0,7.67521337890625,7.67521337890625,7.67521337890625,7.67521337890625,[7.67521337890625],,kWh,1.4913201391709664e-05,1.6374225206308957e-06,7.240561347987562e-06,2.379118526032812e-05,,MB,1108.60288,14993.522688,0.0,14587.789312,14512.892416,s,10,13.831203735351563,1.3831203735351563,0.005871257155461055,1.3818245849609374,1.391693359375,1.3923574829101562,1.3928887817382811,"[1.3721275634765624, 1.3819266357421875, 1.3801014404296874, 1.3817225341796875, 1.37926953125, 1.3808548583984375, 1.3878416748046876, 1.3827921142578126, 1.3915457763671875, 1.3930216064453125]",tokens/s,185.08873479007644,kWh,4.046693066208491e-05,4.4630393216569606e-06,2.6789104764601834e-05,7.17190747483437e-05,tokens/kWh,3569482.747766655,MB,1123.889152,15098.380288,0.0,14692.646912,14646.153216,s,10,43.86718408203125,4.386718408203125,0.0031396886923479163,4.385417236328125,4.38997939453125,4.391894970703125,4.3934274316406245,"[4.3893564453125, 4.383873046875, 4.38734375, 4.38417919921875, 4.38458154296875, 4.38401171875, 4.38422119140625, 4.3862529296875, 4.3895537109375, 4.393810546875]",tokens/s,14.36153273075166,kWh,0.000128290075229163,1.4151362859655802e-05,8.529765157139767e-05,0.00022773908966021648,tokens/kWh,276632.3519339395,,s,630,43.86357635498046,0.06962472437298486,0.0003836243782883348,0.06962299346923828,0.06999763946533202,0.0701092010498047,0.07131899414062501,"[0.07148953247070312, 0.06933856201171874, 0.06915724945068359, 0.06906285095214844, 0.06904985809326172, 0.06947686767578125, 0.06943856048583984, 0.06923971557617188, 0.06963814544677735, 0.06922444915771485, 0.06935346984863282, 0.06929730987548828, 0.06950313568115235, 0.06970639801025391, 0.06972013092041016, 0.06969136047363281, 0.06957833862304688, 0.06917491149902344, 0.069153564453125, 0.06951094055175781, 0.06960326385498047, 0.06940262603759766, 0.06939826965332031, 0.06927823638916016, 0.06958080291748046, 0.06958284759521484, 0.06937728118896484, 0.06945049285888671, 0.0696258544921875, 0.0697630386352539, 0.06975081634521485, 0.06960521697998047, 0.06968335723876953, 0.0696975326538086, 0.06953369903564453, 0.07010099029541016, 0.069984130859375, 0.06956633758544922, 0.069604736328125, 0.06987436676025391, 0.06936790466308594, 0.0693853759765625, 0.06999468994140624, 0.06988992309570312, 0.06990275573730469, 0.07011484527587891, 0.07140643310546875, 0.06964166259765625, 0.06981903839111328, 0.06985507202148437, 0.06988339233398437, 0.06975350189208984, 0.06977913665771485, 0.0696671371459961, 0.0697891845703125, 0.06981683349609374, 0.06974435424804687, 0.06986959838867188, 0.06980226898193359, 0.06995555114746094, 0.06989209747314454, 0.06975667572021485, 0.06962217712402344, 0.07135222625732422, 0.06936370849609375, 0.06899712371826172, 0.06900297546386719, 0.06910348510742187, 0.06912380981445312, 0.06887699127197265, 0.06901145935058593, 0.069146240234375, 0.06937580871582032, 0.06944620513916015, 0.06926335906982421, 0.06919071960449219, 0.06935561370849609, 0.06974345397949219, 0.06968038177490235, 0.06923545837402344, 0.06927696228027344, 0.06910435485839844, 0.06937190246582031, 0.06935247802734375, 0.06953398132324219, 0.06913504028320312, 0.06951692962646484, 0.06967539215087891, 0.06966585540771485, 0.06957766723632812, 0.06952140808105468, 0.06944153594970703, 0.06963552093505859, 0.06984665679931641, 0.06970841979980469, 0.06940499114990234, 0.06934912109375, 0.06944576263427735, 0.06943142700195312, 0.06958451080322266, 0.06940300750732421, 0.06932275390625, 0.069570556640625, 0.06950819396972656, 0.06963292694091797, 0.06971596527099609, 0.06979366302490235, 0.06987789154052734, 0.069914306640625, 0.06977158355712891, 0.06962947082519531, 0.06972259521484375, 0.06952345275878906, 0.06967295837402344, 0.06967478179931641, 0.06976051330566406, 0.06990643310546875, 0.07005027008056641, 0.06974899291992187, 0.06984422302246093, 0.07026262664794922, 0.0700560302734375, 0.07003014373779297, 0.07040204620361327, 0.06994944000244141, 0.06991667175292969, 0.07123763275146484, 0.06943475341796874, 0.06907564544677734, 0.06919366455078126, 0.06899251556396484, 0.06901401519775391, 0.0690847396850586, 0.06907129669189453, 0.06923209381103515, 0.06926595306396484, 0.06939647674560546, 0.06921398162841796, 0.06941907501220704, 0.06978166198730469, 0.07022502136230468, 0.06957965087890625, 0.06956031799316406, 0.06957875061035156, 0.0694824981689453, 0.06914662170410156, 0.06923878479003906, 0.0692462387084961, 0.06963228607177735, 0.06935750579833984, 0.07023056030273438, 0.06960739135742187, 0.06967622375488282, 0.06983763122558594, 0.06990348815917968, 0.06985552215576171, 0.0697534408569336, 0.06964019012451172, 0.06963404846191407, 0.069316162109375, 0.06940624237060547, 0.06959401702880859, 0.06942924499511718, 0.06940672302246094, 0.06938540649414063, 0.06959801483154297, 0.0694988784790039, 0.06971548461914062, 0.06986799621582031, 0.0699669418334961, 0.06987257385253906, 0.069846435546875, 0.06980172729492187, 0.06991545867919922, 0.06973849487304687, 0.0696627197265625, 0.06974771118164062, 0.0695367660522461, 0.06954179382324219, 0.0698345947265625, 0.06991487884521484, 0.0698490219116211, 0.07006623840332031, 0.0699901123046875, 0.07022783660888672, 0.06992694091796875, 0.07000511932373046, 0.06994287872314453, 0.06979145812988281, 0.07158169555664062, 0.0693616943359375, 0.06920598602294922, 0.06920396423339843, 0.06907904052734375, 0.06913433837890624, 0.069123779296875, 0.0690643539428711, 0.06907766723632812, 0.06913200378417969, 0.06921449279785157, 0.06922022247314454, 0.06925865936279296, 0.06963385772705079, 0.06965862274169922, 0.06957711791992187, 0.06964889526367188, 0.06946406555175781, 0.06913228607177735, 0.06930786895751953, 0.06925965118408203, 0.06913606262207031, 0.06927613067626953, 0.0692674560546875, 0.06921401977539063, 0.06956050872802734, 0.06967910766601562, 0.06985731506347656, 0.06983881378173828, 0.06957846069335938, 0.07005983734130859, 0.06970825958251953, 0.06968112182617188, 0.06942912292480469, 0.0693814697265625, 0.06960006713867188, 0.06935266876220703, 0.06939523315429688, 0.07006963348388671, 0.06970406341552735, 0.06964864349365234, 0.06967091369628907, 0.06994310760498047, 0.06971206665039062, 0.0698502426147461, 0.06966675567626954, 0.06977632141113281, 0.06981427001953125, 0.06956963348388671, 0.06976092529296875, 0.06970265960693359, 0.06981807708740234, 0.06962579345703125, 0.06952339172363281, 0.06967132568359374, 0.06972402954101563, 0.0699024658203125, 0.06981836700439453, 0.06987558746337891, 0.0698694076538086, 0.07016067504882813, 0.06986547088623046, 0.0697092514038086, 0.07101286315917969, 0.06932505798339844, 0.06958454132080077, 0.06906095886230469, 0.06921193695068359, 0.0694151382446289, 0.06912409973144532, 0.06899468994140626, 0.06902742767333984, 0.06910975646972656, 0.06946431732177734, 0.06959926605224609, 0.06925772857666015, 0.069615234375, 0.06980032348632813, 0.069644287109375, 0.06918527984619141, 0.06913459014892578, 0.06914457702636718, 0.06926239776611329, 0.06924143981933593, 0.06921660614013672, 0.06917027282714844, 0.06918646240234375, 0.06943949127197266, 0.0693446044921875, 0.06938848114013672, 0.06991209411621094, 0.06993196868896484, 0.06977651214599609, 0.06958684539794922, 0.06940499114990234, 0.06962246704101563, 0.06975389099121093, 0.06944242858886719, 0.06974470520019531, 0.06949478149414062, 0.0693511962890625, 0.06948681640625, 0.06940643310546875, 0.06951350402832031, 0.06969139099121094, 0.07001910400390625, 0.06987158203125, 0.06981171417236329, 0.06973900604248047, 0.06990227508544922, 0.0697242202758789, 0.06982450866699219, 0.06977065277099609, 0.06951382446289063, 0.06979379272460938, 0.0696844482421875, 0.06960822296142578, 0.0696627197265625, 0.06997401428222656, 0.07002835083007812, 0.07021231842041016, 0.06982383728027344, 0.06993106842041015, 0.07039046478271484, 0.0699920654296875, 0.0699148178100586, 0.07136966705322266, 0.06942924499511718, 0.06906060791015625, 0.06910361480712891, 0.06933229064941407, 0.06928864288330078, 0.06911385345458984, 0.06926950073242187, 0.0690268783569336, 0.06917113494873046, 0.06912716674804688, 0.06924214172363281, 0.06921062469482422, 0.06965443420410156, 0.06963641357421875, 0.06942896270751953, 0.06951760101318359, 0.06914662170410156, 0.06940057373046875, 0.06948770904541016, 0.06956256103515625, 0.06950166320800781, 0.069168701171875, 0.0692040023803711, 0.06946173095703125, 0.06963629150390625, 0.06932077026367188, 0.06954000091552734, 0.06968144226074219, 0.06971139526367187, 0.06969391632080078, 0.06949874877929688, 0.06948876953125, 0.06937737274169922, 0.06966521453857422, 0.06973190307617187, 0.06942991638183593, 0.06932473754882812, 0.06936991882324219, 0.06970687866210938, 0.06935142517089844, 0.06942604827880859, 0.0697343978881836, 0.06979763031005859, 0.06985343933105469, 0.06974259185791015, 0.06971600341796876, 0.06965245056152344, 0.06945331573486328, 0.06983238220214844, 0.06994412994384766, 0.06974022674560547, 0.06960364532470703, 0.07042864227294922, 0.0698120346069336, 0.06976448059082031, 0.0698499526977539, 0.0700211181640625, 0.06990233612060547, 0.06990636444091797, 0.06999660491943359, 0.070076416015625, 0.06994944000244141, 0.07112908935546874, 0.06944153594970703, 0.06910771179199218, 0.06920396423339843, 0.06904994964599609, 0.06911138916015624, 0.06896636962890625, 0.06906124877929687, 0.06908902740478516, 0.06913686370849609, 0.06932479858398438, 0.06919891357421876, 0.06932572937011719, 0.06940879821777343, 0.06940467071533203, 0.06931635284423829, 0.06919602966308594, 0.06920191955566406, 0.06977519989013672, 0.06944579315185546, 0.06919782257080079, 0.06916268920898437, 0.069281982421875, 0.06962351989746093, 0.06941903686523437, 0.0693905258178711, 0.06978169250488281, 0.06978678131103516, 0.06952582550048828, 0.06979843139648438, 0.06958258819580078, 0.06958220672607422, 0.06942400360107422, 0.06928793334960938, 0.06970982360839843, 0.06955964660644531, 0.06970774078369141, 0.0696951675415039, 0.07006060791015625, 0.06964268493652344, 0.06992870330810547, 0.06993536376953124, 0.06962588500976563, 0.06974848175048828, 0.06974281311035156, 0.069930908203125, 0.06965257263183594, 0.06965042877197265, 0.06936083221435548, 0.06958573150634766, 0.06957164764404297, 0.06999750518798828, 0.06988777923583984, 0.06984111785888672, 0.06988582611083985, 0.0699208984375, 0.06986281585693359, 0.06980258941650391, 0.06999244689941406, 0.0698936996459961, 0.06990892791748046, 0.07008016204833985, 0.06992316436767577, 0.07142601776123046, 0.06943334197998047, 0.06899472045898437, 0.06901996612548827, 0.06916909027099609, 0.06907810974121094, 0.06906963348388671, 0.06919522857666016, 0.06920054626464844, 0.06921382141113282, 0.06952540588378907, 0.06939907073974609, 0.06955741119384766, 0.06974140930175782, 0.0699513931274414, 0.06965567779541015, 0.069333984375, 0.06922835540771484, 0.06917129516601563, 0.06928115081787109, 0.06926972961425781, 0.06931097412109374, 0.06932246398925782, 0.06922882843017578, 0.06941081237792969, 0.06967446136474609, 0.06946604919433594, 0.069552734375, 0.06974854278564453, 0.06982470703125, 0.06980515289306641, 0.07046377563476562, 0.06951705932617187, 0.06967724609375, 0.06934188842773438, 0.06961357116699218, 0.06940876770019531, 0.06930355072021484, 0.06956639862060547, 0.06951200103759765, 0.06944563293457032, 0.06945996856689453, 0.0700967025756836, 0.07010230255126954, 0.0700384292602539, 0.06978150177001953, 0.06976102447509766, 0.0696556167602539, 0.06966368103027344, 0.0696094741821289, 0.06994329833984375, 0.06966067504882813, 0.06963404846191407, 0.06972608184814454, 0.06978892517089844, 0.06986953735351563, 0.06990873718261718, 0.07002713775634765, 0.06994818878173828, 0.07004774475097657, 0.07004364776611328, 0.06999654388427734, 0.07003472137451172, 0.07095539093017578, 0.06944541168212891, 0.06913184356689453, 0.06909008026123047, 0.06914252471923828, 0.06910361480712891, 0.06931660461425782, 0.06918553924560547, 0.06922147369384765, 0.06920694732666016, 0.06938371276855469, 0.06932720184326172, 0.06940275573730469, 0.06963404846191407, 0.06965846252441406, 0.0699024658203125, 0.06981145477294921, 0.06921218872070313, 0.06909625244140626, 0.0693656997680664, 0.06919782257080079, 0.06940009307861328, 0.06948912048339843, 0.0693780517578125, 0.06926131439208984, 0.06955830383300782, 0.06982176208496094, 0.06976934051513672, 0.06990617370605469, 0.06990723419189453, 0.06957465362548829, 0.06962995147705078, 0.06959913635253906, 0.06938419342041016, 0.06941295623779296, 0.0693759994506836, 0.06954300689697265, 0.06951209259033203, 0.06935955047607421, 0.06955219268798828, 0.0697548828125, 0.07003103637695313, 0.06999884796142578, 0.06997772979736328, 0.0697041244506836, 0.06974463653564453, 0.06983270263671874, 0.06979923248291016, 0.0697946548461914, 0.06991241455078125, 0.07024832153320312, 0.06991462707519532, 0.06990563201904297, 0.06985932922363282, 0.07044528198242188, 0.07016313934326172, 0.07026467132568359, 0.0701822738647461, 0.07001372528076172, 0.07036431884765625, 0.0700681915283203, 0.06992371368408203, 0.07003529357910156, 0.07164012908935546, 0.06991149139404297, 0.06931251525878906, 0.06922374725341797, 0.06925142669677735, 0.06909372711181641, 0.06908665466308593, 0.06913286590576172, 0.06979174041748047, 0.06960694122314454, 0.06955260467529296, 0.0693759994506836, 0.06929129791259765, 0.06982886505126953, 0.06971849822998047, 0.06948863983154296, 0.06930809783935547, 0.06935078430175781, 0.06947936248779298, 0.06957997131347657, 0.07076537322998047, 0.06935529327392578, 0.06926771545410157, 0.06966614532470704, 0.06944217681884765, 0.0693207015991211, 0.06960511779785156, 0.06945613098144532, 0.06966681671142579, 0.07002480316162109, 0.07021609497070312, 0.06984633636474609, 0.06961017608642578, 0.06972621154785157, 0.06979993438720702, 0.07004080200195313, 0.06964304351806641, 0.069607421875, 0.06955548858642578, 0.06996355438232423, 0.06996399688720703, 0.06979452514648438, 0.06999244689941406, 0.06994124603271484, 0.06991462707519532, 0.0700145263671875, 0.06962630462646484, 0.06962179565429688, 0.07027247619628907, 0.06970829010009766, 0.06970982360839843, 0.06992272186279297, 0.06955836486816407, 0.06988390350341797, 0.06996355438232423, 0.06986774444580078, 0.06993852996826172, 0.06986953735351563, 0.070008544921875, 0.07031084442138671, 0.0700203857421875, 0.0699411849975586, 0.06998713684082031]",tokens/s,14.362713949759069,, bfloat16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,815.403008,1326.383104,0.0,931.135488,917.648384,s,1,7.63307861328125,7.63307861328125,0.0,7.63307861328125,7.63307861328125,7.63307861328125,7.63307861328125,[7.63307861328125],,kWh,1.0338465666666252e-05,1.13285999688864e-06,3.105280261997412e-06,1.4576605925552304e-05,,MB,1135.603712,1456.406528,0.0,1050.673152,1018.330112,s,10,0.7034482269287109,0.0703448226928711,0.0008076623861901718,0.07017057418823242,0.0707837059020996,0.0716950527191162,0.07242413017272949,"[0.0726063995361328, 0.07038086700439453, 0.06963465881347657, 0.07012895965576171, 0.06993052673339843, 0.07021218872070313, 0.07058118438720704, 0.06974800109863281, 0.07038400268554687, 0.06984143829345703]",tokens/s,3639.21593942611,kWh,2.329240217592651e-06,2.56763201417403e-07,1.5366215996666443e-06,4.122625018676698e-06,tokens/kWh,62096358.228130154,MB,1162.858496,1473.183744,0.0,1067.450368,1032.767488,s,10,13.302551025390624,1.3302551025390623,0.024940005579764144,1.3159708251953126,1.3628881225585936,1.3655794982910157,1.367732598876953,"[1.3622900390625, 1.3682708740234375, 1.3511224365234376, 1.3586226806640624, 1.3164345703125, 1.3095928955078124, 1.307552978515625, 1.302308349609375, 1.315507080078125, 1.31084912109375]",tokens/s,47.3593372276879,kWh,3.8109842997824186e-05,4.20321723531936e-06,1.767769932733434e-05,5.999075956047789e-05,tokens/kWh,1050161.7325996421,,s,630,13.296805097579947,0.0211060398374285,0.0005385663482820034,0.020997008323669436,0.02172949161529541,0.021857902526855467,0.02261669342041016,"[0.022597631454467772, 0.021526527404785157, 0.02134342384338379, 0.0214182071685791, 0.021647872924804686, 0.02165353584289551, 0.02230284881591797, 0.021929983139038087, 0.02179680061340332, 0.02147532844543457, 0.02156470489501953, 0.021756288528442382, 0.02178492736816406, 0.02179836845397949, 0.021703359603881835, 0.02156732749938965, 0.021453855514526367, 0.021554143905639648, 0.021456480026245117, 0.021507711410522462, 0.021325952529907228, 0.02159174346923828, 0.021931072235107422, 0.02183065605163574, 0.021742431640625, 0.021707103729248046, 0.02154863929748535, 0.021587648391723634, 0.021436864852905274, 0.021700927734375, 0.0222096004486084, 0.02158451271057129, 0.02149177551269531, 0.02155232048034668, 0.021584127426147463, 0.021605056762695314, 0.021738880157470702, 0.0214136962890625, 0.021658239364624025, 0.021723455429077148, 0.02163596725463867, 0.021720191955566407, 0.021691583633422853, 0.02162259292602539, 0.021740224838256834, 0.02165555191040039, 0.02157583999633789, 0.021528032302856444, 0.021591615676879884, 0.021457056045532226, 0.021041183471679686, 0.02081046485900879, 0.02141584014892578, 0.021598207473754884, 0.021302688598632814, 0.021457504272460938, 0.021532447814941406, 0.021798208236694337, 0.021652383804321287, 0.021726272583007813, 0.021573631286621094, 0.02139814376831055, 0.021291328430175782, 0.021510143280029297, 0.02159119987487793, 0.02144470405578613, 0.021570304870605468, 0.02223308753967285, 0.02168012809753418, 0.021338111877441408, 0.02104876708984375, 0.021000288009643556, 0.02151641654968262, 0.021782655715942383, 0.022624479293823243, 0.02234339141845703, 0.021600831985473634, 0.02215228843688965, 0.02167788887023926, 0.02157401657104492, 0.021508895874023437, 0.021968544006347655, 0.021540319442749024, 0.02161292839050293, 0.02156764793395996, 0.021411584854125976, 0.021298944473266603, 0.021227136611938476, 0.02191244888305664, 0.021729280471801758, 0.021763744354248046, 0.02145110321044922, 0.021521856307983398, 0.021525056838989257, 0.021354496002197267, 0.021484735488891602, 0.021832319259643556, 0.021975200653076173, 0.022322656631469727, 0.021938751220703125, 0.022347776412963868, 0.022716415405273437, 0.021846048355102538, 0.021401567459106444, 0.021297407150268555, 0.021462783813476563, 0.021796863555908205, 0.021540864944458008, 0.02166988754272461, 0.021497856140136717, 0.021683328628540038, 0.02194428825378418, 0.02155788803100586, 0.02177872085571289, 0.021589311599731445, 0.021657440185546876, 0.021940288543701173, 0.02181427192687988, 0.021816511154174805, 0.022708831787109376, 0.021864511489868163, 0.021682111740112305, 0.0216964168548584, 0.02168025588989258, 0.021612512588500978, 0.021380096435546874, 0.021208703994750975, 0.021369375228881837, 0.02177039909362793, 0.021630655288696288, 0.021644607543945312, 0.022151872634887694, 0.021448703765869142, 0.021169919967651368, 0.02114358329772949, 0.021694143295288085, 0.021748191833496095, 0.021297536849975585, 0.021289888381958007, 0.021183263778686522, 0.021206111907958985, 0.02091859245300293, 0.021012351989746093, 0.0214268798828125, 0.021451967239379883, 0.021248863220214843, 0.0211267204284668, 0.0213222713470459, 0.02145849609375, 0.0216210880279541, 0.02145280075073242, 0.021587039947509764, 0.02152579116821289, 0.021505279541015623, 0.02154319953918457, 0.021606496810913086, 0.021522432327270507, 0.021383167266845703, 0.02147532844543457, 0.021537919998168946, 0.021441408157348633, 0.02217513656616211, 0.021218048095703126, 0.021415359497070314, 0.021092800140380858, 0.021483488082885742, 0.021340383529663085, 0.021753631591796874, 0.02155264091491699, 0.021606016159057616, 0.021639711380004884, 0.0217545280456543, 0.021277952194213866, 0.020963903427124023, 0.020832128524780273, 0.021217279434204102, 0.02180499267578125, 0.02173139190673828, 0.021690271377563478, 0.021427871704101563, 0.02144095993041992, 0.02148953628540039, 0.021319807052612303, 0.02125619125366211, 0.02129305648803711, 0.021514240264892577, 0.021602304458618164, 0.02127667236328125, 0.021186559677124024, 0.02140812873840332, 0.02176576042175293, 0.021624191284179688, 0.021646656036376954, 0.021587648391723634, 0.021403648376464843, 0.021587968826293946, 0.02150918388366699, 0.021399648666381835, 0.02099292755126953, 0.02099510383605957, 0.021535648345947265, 0.02160867118835449, 0.02149558448791504, 0.021563135147094726, 0.021566848754882812, 0.021711936950683595, 0.022163040161132814, 0.021571807861328125, 0.021524511337280273, 0.021698816299438477, 0.021481184005737303, 0.02207043266296387, 0.024928895950317383, 0.02184982490539551, 0.021383167266845703, 0.02158233642578125, 0.021397504806518555, 0.021315616607666017, 0.02128700828552246, 0.0214649600982666, 0.02128291130065918, 0.02143577575683594, 0.020889888763427733, 0.021646751403808593, 0.02177680015563965, 0.02154745674133301, 0.02135264015197754, 0.02127177619934082, 0.0215347843170166, 0.021653215408325197, 0.021590656280517578, 0.021583999633789062, 0.021612607955932617, 0.021534719467163087, 0.02271027183532715, 0.021413888931274414, 0.020996095657348633, 0.021243743896484375, 0.02168764877319336, 0.021784959793090822, 0.0214881591796875, 0.0211691837310791, 0.021033504486083984, 0.021164384841918946, 0.021284799575805664, 0.02158006477355957, 0.021384992599487306, 0.021288415908813477, 0.021391904830932618, 0.021606399536132814, 0.021489664077758788, 0.02142617607116699, 0.02091663932800293, 0.021643264770507813, 0.021413888931274414, 0.021665023803710937, 0.022551551818847656, 0.021619808197021483, 0.0214800968170166, 0.02152889633178711, 0.021487295150756838, 0.0211494083404541, 0.02095337677001953, 0.020762624740600585, 0.020727807998657227, 0.020707359313964845, 0.020774879455566407, 0.02126665687561035, 0.021325056076049804, 0.021209983825683593, 0.021097152709960938, 0.020837503433227537, 0.020583904266357422, 0.020625791549682616, 0.020488000869750975, 0.02047609519958496, 0.02048723220825195, 0.020454336166381835, 0.020557695388793946, 0.020559999465942384, 0.020563968658447264, 0.020561759948730468, 0.020437152862548828, 0.02056972885131836, 0.020474239349365233, 0.020502527236938475, 0.020598688125610352, 0.020615455627441406, 0.020645727157592775, 0.02071548843383789, 0.020731903076171874, 0.02085068893432617, 0.020609024047851563, 0.020658176422119142, 0.020764671325683593, 0.020694623947143553, 0.020728031158447267, 0.021235071182250976, 0.02084947204589844, 0.02065328025817871, 0.020948991775512696, 0.02064259147644043, 0.020862464904785157, 0.02090991973876953, 0.02174131202697754, 0.020972000122070313, 0.020951007843017577, 0.020821855545043944, 0.02077743911743164, 0.020721824645996093, 0.020710655212402344, 0.020760799407958986, 0.020799488067626954, 0.020748832702636718, 0.020717567443847656, 0.02096758460998535, 0.021202623367309572, 0.020926624298095702, 0.020901023864746095, 0.020617696762084962, 0.020652416229248047, 0.020700639724731445, 0.020554271697998047, 0.020690944671630858, 0.020692991256713866, 0.020738048553466795, 0.020572160720825194, 0.020590591430664062, 0.020768768310546876, 0.02099612808227539, 0.021086463928222655, 0.02112483215332031, 0.021112831115722656, 0.020860576629638673, 0.020709888458251953, 0.023066272735595705, 0.020792959213256836, 0.020821920394897463, 0.02054742431640625, 0.020437183380126952, 0.02080620765686035, 0.020719680786132812, 0.021372127532958984, 0.020670944213867188, 0.020645343780517578, 0.0210565128326416, 0.020676448822021486, 0.020586496353149415, 0.020554784774780274, 0.02155766487121582, 0.0205963191986084, 0.02075894355773926, 0.020826688766479494, 0.020780799865722656, 0.02061747169494629, 0.02046976089477539, 0.020463615417480468, 0.020597856521606447, 0.02041529655456543, 0.020491424560546874, 0.020487104415893555, 0.020418560028076172, 0.020600128173828124, 0.020888256072998046, 0.020961280822753905, 0.021006080627441408, 0.020869312286376954, 0.020778751373291014, 0.02073017692565918, 0.020817920684814452, 0.02062745666503906, 0.020590591430664062, 0.020485248565673828, 0.020646976470947265, 0.02061497688293457, 0.020662559509277343, 0.02057366371154785, 0.02053116798400879, 0.020390527725219727, 0.020537343978881836, 0.020815872192382814, 0.020912128448486327, 0.021594112396240234, 0.020979007720947265, 0.02063350486755371, 0.02062214469909668, 0.020557792663574218, 0.020448959350585938, 0.020511039733886717, 0.020639999389648438, 0.0205185604095459, 0.020424800872802733, 0.020496383666992187, 0.02066201591491699, 0.02184217643737793, 0.021061632156372072, 0.020510879516601563, 0.020465696334838867, 0.02052012825012207, 0.020386432647705077, 0.02046063995361328, 0.020568992614746092, 0.020609024047851563, 0.02061484718322754, 0.02051718330383301, 0.02067036819458008, 0.0205164794921875, 0.02058243179321289, 0.020588991165161132, 0.020508607864379882, 0.02056608009338379, 0.023451648712158202, 0.020735712051391603, 0.02062735939025879, 0.020516544342041015, 0.02051862335205078, 0.020495328903198242, 0.02046281623840332, 0.02062345504760742, 0.020520832061767576, 0.02062745666503906, 0.02058336067199707, 0.020694143295288087, 0.02105187225341797, 0.020827423095703124, 0.020581344604492187, 0.020508703231811524, 0.021874624252319334, 0.02118662452697754, 0.020649984359741212, 0.020619264602661135, 0.021360095977783204, 0.020636192321777345, 0.020743711471557617, 0.020643455505371094, 0.020519775390625, 0.02053513526916504, 0.02164486312866211, 0.02097417640686035, 0.02055561637878418, 0.020544864654541015, 0.020424671173095703, 0.020645151138305663, 0.020695808410644532, 0.020649984359741212, 0.020510719299316405, 0.02052412796020508, 0.02068355178833008, 0.020743871688842775, 0.020494783401489258, 0.020450912475585937, 0.020611488342285156, 0.020564096450805664, 0.020563840866088867, 0.020756832122802736, 0.020581695556640626, 0.020576608657836913, 0.02047177505493164, 0.02052092742919922, 0.02062339210510254, 0.020449312210083007, 0.020463615417480468, 0.020404096603393554, 0.020804895401000976, 0.020849760055541993, 0.020788991928100586, 0.020620479583740234, 0.020656095504760743, 0.020458240509033204, 0.020463712692260744, 0.020602880477905275, 0.020561920166015626, 0.020619264602661135, 0.020553407669067384, 0.02051513671875, 0.020653663635253908, 0.020644256591796875, 0.020707328796386718, 0.02069196891784668, 0.0206812801361084, 0.020532800674438478, 0.02058464050292969, 0.020918975830078124, 0.020563968658447264, 0.02050214385986328, 0.020504255294799805, 0.02041516876220703, 0.022337535858154296, 0.020785280227661133, 0.02076201629638672, 0.020655616760253907, 0.020655071258544922, 0.020642879486083985, 0.020847551345825194, 0.021036096572875976, 0.021221855163574218, 0.02116399955749512, 0.020859392166137695, 0.02081558418273926, 0.02051100730895996, 0.020512767791748047, 0.02049843215942383, 0.02058639907836914, 0.020586591720581054, 0.02040652847290039, 0.02061235237121582, 0.020551551818847658, 0.020430912017822267, 0.020560447692871093, 0.020539392471313478, 0.021753984451293944, 0.020602176666259766, 0.020643903732299806, 0.02060873603820801, 0.020570560455322264, 0.020472095489501952, 0.020466943740844727, 0.0204083194732666, 0.020564800262451173, 0.020482303619384766, 0.02060406494140625, 0.020533855438232423, 0.02086092758178711, 0.021056575775146483, 0.020751615524291993, 0.020930143356323243, 0.02113545608520508, 0.021727231979370116, 0.021716543197631836, 0.021051296234130858, 0.021044767379760743, 0.020877504348754884, 0.02225663948059082, 0.021180416107177736, 0.020877119064331054, 0.020776960372924806, 0.020705087661743164, 0.020738239288330077, 0.02072812843322754, 0.02070319938659668, 0.020997888565063478, 0.02068191909790039, 0.020789087295532225, 0.020587455749511718, 0.020760576248168947, 0.02087500762939453, 0.020519168853759765, 0.02087731170654297, 0.02064588737487793, 0.02083839988708496, 0.021583520889282226, 0.021025119781494142, 0.02166374397277832, 0.02077401542663574, 0.02108095932006836, 0.020578304290771485, 0.020857887268066408, 0.02072675132751465, 0.02066431999206543, 0.02059644889831543, 0.02176950454711914, 0.021230527877807617, 0.021084224700927735, 0.02123366355895996, 0.021002464294433594, 0.020777055740356445, 0.0208155517578125, 0.02128892707824707, 0.02117635154724121, 0.021127168655395507, 0.021153087615966796, 0.021492576599121092, 0.021489503860473633, 0.021152095794677736, 0.020925151824951173, 0.02084566307067871, 0.021243999481201172, 0.021345983505249022, 0.021276191711425783, 0.02126902389526367, 0.02118396759033203, 0.02096623992919922, 0.020848320007324218, 0.020796800613403322, 0.020834943771362305, 0.020602880477905275, 0.020587776184082033, 0.02049420738220215, 0.020490816116333008, 0.020631296157836914, 0.02058425521850586, 0.02077568054199219, 0.02062131118774414, 0.020572160720825194, 0.020752384185791017, 0.020981760025024415, 0.02136412811279297, 0.021004095077514648, 0.020795200347900392, 0.020568735122680665, 0.020582304000854493, 0.02071139144897461, 0.02068115234375, 0.020676383972167967, 0.020512256622314453, 0.0205599365234375, 0.020578975677490233, 0.02048204803466797, 0.020570112228393556, 0.020520959854125977, 0.02051024055480957, 0.02057881546020508, 0.020772512435913087, 0.020777280807495118, 0.020813215255737306, 0.020719648361206055, 0.02123404884338379, 0.020660415649414062, 0.02060492706298828, 0.020510656356811523, 0.020465728759765624, 0.020989952087402345, 0.02068604850769043, 0.020591392517089843, 0.020531200408935548, 0.020551136016845703, 0.020476415634155275, 0.020449312210083007, 0.020600223541259767, 0.020673023223876954]",tokens/s,47.37980254479786,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 68.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 26.12 MiB is free. Process 64955 has 14.71 GiB memory in use. Of the allocated memory 14.60 GiB is allocated by PyTorch, and 47.00 KiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm2,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 1138, in __init__ self.model = InternLM2Model(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 918, in __init__ [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 918, in [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 709, in __init__ self.feed_forward = InternLM2MLP(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 205, in __init__ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 180.12 MiB is free. Process 151943 has 14.56 GiB memory in use. Of the allocated memory 14.45 GiB is allocated by PyTorch, and 1.62 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,deci,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: DeciLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 288, in __init__ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 270.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 98.12 MiB is free. Process 166661 has 14.64 GiB memory in use. Of the allocated memory 14.53 GiB is allocated by PyTorch, and 1.56 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,phi,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: RecurrentGemmaForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gptj,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: GPTJForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 268.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 180.12 MiB is free. Process 96913 has 14.56 GiB memory in use. Of the allocated memory 14.45 GiB is allocated by PyTorch, and 1.06 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 217, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 536.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 452.12 MiB is free. Process 84903 has 14.30 GiB memory in use. Of the allocated memory 14.18 GiB is allocated by PyTorch, and 1.57 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 287, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 172.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 150.12 MiB is free. Process 159170 has 14.59 GiB memory in use. Of the allocated memory 14.48 GiB is allocated by PyTorch, and 1.43 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mixtral,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2_moe,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 1203, in __init__ self.model = Qwen2MoeModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 977, in __init__ [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 977, in [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 755, in __init__ self.mlp = Qwen2MoeSparseMoeBlock(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 693, in __init__ [Qwen2MoeMLP(config, intermediate_size=config.moe_intermediate_size) for _ in range(self.num_experts)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 693, in [Qwen2MoeMLP(config, intermediate_size=config.moe_intermediate_size) for _ in range(self.num_experts)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 294, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 12.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 8.12 MiB is free. Process 93944 has 14.73 GiB memory in use. Of the allocated memory 14.60 GiB is allocated by PyTorch, and 14.93 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,815.878144,6174.998528,0.0,5779.750912,5773.960192,s,1,7.529166015625,7.529166015625,0.0,7.529166015625,7.529166015625,7.529166015625,7.529166015625,[7.529166015625],,kWh,9.614256604165423e-06,1.0533241153822993e-06,3.4061138360005905e-06,1.4073694555548313e-05,,MB,1105.555456,6491.66848,0.0,6085.935104,6038.345728,s,10,2.1597591094970703,0.21597591094970703,0.0036829909604721837,0.21662503814697265,0.21944928131103517,0.21986086349487305,0.22019012924194337,"[0.2079114227294922, 0.22027244567871093, 0.21362310791015626, 0.21935781860351564, 0.21618031311035157, 0.21913043212890626, 0.21372621154785157, 0.21706976318359375, 0.2131793975830078, 0.21930819702148438]",tokens/s,1185.3173757864743,kWh,6.226532404787322e-06,6.86674918086594e-07,4.1377515371491e-06,1.1050958860023016e-05,tokens/kWh,23165410.643784337,MB,1110.44608,6512.64,0.0,6106.906624,6086.544896,s,10,16.33959387207031,1.633959387207031,0.0051381663713000875,1.6338790893554687,1.6407128662109374,1.640982470703125,1.641198154296875,"[1.63083251953125, 1.6313094482421875, 1.62900927734375, 1.6296138916015626, 1.636846923828125, 1.6254072265625, 1.63644873046875, 1.6412520751953126, 1.6406529541015624, 1.6382208251953125]",tokens/s,38.556649873463215,kWh,4.7937475727713365e-05,5.287167085089536e-06,3.1846027249850915e-05,8.50706700626538e-05,tokens/kWh,740560.7591147579,,s,630,16.336016490936288,0.025930184906248065,0.0004121603329365757,0.02585750389099121,0.02618778533935547,0.026375424003601076,0.02839885004043579,"[0.028554208755493166, 0.02700819206237793, 0.02650809669494629, 0.025849376678466797, 0.026167327880859376, 0.02565996742248535, 0.025659263610839842, 0.02553856086730957, 0.02552182388305664, 0.025471328735351562, 0.02551807975769043, 0.02555084800720215, 0.025553983688354494, 0.025490367889404297, 0.025875808715820313, 0.025686559677124025, 0.025657472610473634, 0.02591744041442871, 0.025706144332885743, 0.02560047912597656, 0.025612159729003905, 0.025671680450439452, 0.025697887420654295, 0.025631135940551757, 0.02568191909790039, 0.025675519943237305, 0.025996992111206055, 0.025712608337402344, 0.025807455062866212, 0.025778175354003906, 0.02591139221191406, 0.02567977523803711, 0.025651199340820312, 0.025674816131591796, 0.025709503173828124, 0.025656671524047853, 0.025999839782714845, 0.026155231475830078, 0.026337087631225584, 0.02622480010986328, 0.026170560836791992, 0.02613667106628418, 0.025944543838500977, 0.025921152114868163, 0.025809535980224608, 0.025774080276489256, 0.0258121280670166, 0.02577008056640625, 0.026023712158203125, 0.025981632232666016, 0.025785856246948242, 0.025925600051879882, 0.025856447219848634, 0.025973119735717774, 0.02585740852355957, 0.02588035202026367, 0.025958560943603517, 0.025852319717407226, 0.02582044792175293, 0.025735488891601564, 0.025868288040161135, 0.02577631950378418, 0.026087392807006837, 0.028281280517578125, 0.02699679946899414, 0.026230783462524415, 0.025883647918701173, 0.026042848587036132, 0.025707040786743164, 0.025827007293701174, 0.025631040573120118, 0.025598016738891602, 0.025558464050292967, 0.025530879974365234, 0.025577472686767577, 0.025629888534545897, 0.025606048583984374, 0.025574304580688476, 0.025511072158813475, 0.02555788803100586, 0.02591542434692383, 0.02561836814880371, 0.025786304473876955, 0.025772096633911133, 0.02561193656921387, 0.025598304748535156, 0.02568560028076172, 0.025692575454711913, 0.025655616760253908, 0.025673023223876955, 0.025727359771728516, 0.02566774368286133, 0.02599510383605957, 0.025839616775512695, 0.02592086410522461, 0.025905759811401367, 0.025720767974853516, 0.025736640930175782, 0.025845855712890626, 0.026042816162109374, 0.026171552658081056, 0.026214527130126952, 0.026075008392333985, 0.0261529598236084, 0.026364927291870118, 0.026214527130126952, 0.02597318458557129, 0.025978912353515626, 0.025825696945190428, 0.025835647583007812, 0.025876352310180664, 0.025810943603515626, 0.025823232650756835, 0.025884096145629882, 0.025770559310913085, 0.02588387107849121, 0.026081151962280273, 0.025921472549438475, 0.025901952743530274, 0.0259400634765625, 0.02574336051940918, 0.025851743698120117, 0.02586025619506836, 0.025772031784057618, 0.025788415908813478, 0.02607251167297363, 0.02840150451660156, 0.026957984924316405, 0.0263372802734375, 0.0258306884765625, 0.025880319595336914, 0.026266143798828124, 0.02564358329772949, 0.025802112579345702, 0.025628480911254883, 0.025569280624389647, 0.02564908790588379, 0.02578505516052246, 0.02563484764099121, 0.025533567428588866, 0.025705343246459962, 0.025609695434570312, 0.025878591537475584, 0.025913408279418945, 0.025803167343139647, 0.0257860164642334, 0.02572118377685547, 0.025740991592407225, 0.025637184143066406, 0.025599264144897462, 0.02575200080871582, 0.025769535064697265, 0.025713184356689452, 0.025652671813964845, 0.0259520320892334, 0.02580886459350586, 0.02580534362792969, 0.02564143943786621, 0.025701759338378906, 0.025709184646606445, 0.025677824020385744, 0.02571392059326172, 0.025899776458740233, 0.025980031967163086, 0.026053279876708985, 0.026046688079833985, 0.026025215148925782, 0.025963520050048827, 0.02591414451599121, 0.025856992721557618, 0.025817087173461914, 0.025803808212280274, 0.025800735473632812, 0.025758047103881836, 0.025769887924194337, 0.025745664596557617, 0.025753664016723632, 0.025756160736083986, 0.025872447967529296, 0.025802560806274414, 0.02573107147216797, 0.0257126407623291, 0.025830751419067384, 0.025850175857543945, 0.025792863845825194, 0.02572287940979004, 0.02572697639465332, 0.025778175354003906, 0.025771039962768555, 0.028329984664916992, 0.026820608139038086, 0.026093568801879883, 0.0257574405670166, 0.025628992080688476, 0.025628511428833007, 0.025511455535888673, 0.0254715518951416, 0.0255633602142334, 0.025519039154052733, 0.025509792327880858, 0.02546988868713379, 0.0255644474029541, 0.0256212158203125, 0.025630720138549806, 0.025587263107299803, 0.025622047424316407, 0.025605056762695314, 0.02558153533935547, 0.025534080505371093, 0.025586048126220704, 0.025558464050292967, 0.025516607284545897, 0.025593856811523437, 0.025677824020385744, 0.025632383346557618, 0.025646848678588866, 0.02560233688354492, 0.025637216567993164, 0.025594112396240234, 0.025655040740966795, 0.025659040451049806, 0.025633119583129884, 0.025612384796142577, 0.025595808029174806, 0.025696287155151366, 0.025866207122802735, 0.025892288208007812, 0.026063104629516602, 0.02611801528930664, 0.025981184005737304, 0.026070880889892577, 0.02657417678833008, 0.026955968856811525, 0.025932607650756837, 0.0259421443939209, 0.026011520385742188, 0.025829376220703124, 0.0261724796295166, 0.025999807357788087, 0.025917919158935546, 0.02618704032897949, 0.026061727523803712, 0.0261363525390625, 0.02583763122558594, 0.026006975173950196, 0.026034751892089845, 0.02612633514404297, 0.025894912719726562, 0.02585759925842285, 0.025887071609497072, 0.025996448516845704, 0.0259399356842041, 0.02850204849243164, 0.027066335678100586, 0.026425344467163086, 0.025944063186645508, 0.025855167388916016, 0.02579756736755371, 0.0259050235748291, 0.0258950080871582, 0.025751455307006836, 0.025608192443847655, 0.025875999450683595, 0.025665407180786134, 0.025721439361572264, 0.025896383285522462, 0.02572496032714844, 0.025782976150512695, 0.025859935760498047, 0.026048511505126954, 0.02581711959838867, 0.02576585578918457, 0.025765663146972657, 0.025781856536865235, 0.02578019142150879, 0.025774751663208008, 0.025761119842529295, 0.025901695251464844, 0.025933088302612303, 0.025743104934692382, 0.02583843231201172, 0.025792608261108397, 0.025810272216796874, 0.025844480514526365, 0.02579452705383301, 0.02575971221923828, 0.02599020767211914, 0.025943008422851563, 0.02605241584777832, 0.02610736083984375, 0.026150880813598634, 0.026276063919067384, 0.026128927230834962, 0.026125600814819336, 0.026063392639160157, 0.025907392501831054, 0.02632089614868164, 0.02609916877746582, 0.02595484733581543, 0.025851743698120117, 0.026177183151245117, 0.025895423889160156, 0.02585379219055176, 0.025914880752563478, 0.025897632598876952, 0.026113567352294923, 0.026114751815795898, 0.02588035202026367, 0.025965984344482423, 0.025907487869262696, 0.025905471801757812, 0.026064895629882814, 0.025882623672485353, 0.02586934471130371, 0.02584227180480957, 0.028392351150512696, 0.02694313621520996, 0.026177984237670898, 0.025800575256347658, 0.025653472900390627, 0.025547840118408202, 0.02547804832458496, 0.02550092887878418, 0.02551456069946289, 0.025540607452392578, 0.02547711944580078, 0.02566713523864746, 0.025676223754882814, 0.02555904006958008, 0.025543872833251952, 0.025508192062377928, 0.02557084846496582, 0.025559999465942382, 0.025638912200927736, 0.02568191909790039, 0.025673728942871094, 0.025636863708496094, 0.025579008102416992, 0.02556889533996582, 0.025627519607543944, 0.025656959533691407, 0.02564499282836914, 0.025665983200073243, 0.025601408004760743, 0.02561724853515625, 0.025614112854003907, 0.025638912200927736, 0.025686016082763673, 0.025665536880493164, 0.02570240020751953, 0.02574950408935547, 0.02592767906188965, 0.02609561538696289, 0.026201631546020506, 0.026130655288696288, 0.026071199417114256, 0.02599888038635254, 0.02594054412841797, 0.02585795211791992, 0.025870431900024415, 0.02573846435546875, 0.025715328216552733, 0.025793792724609375, 0.025772287368774415, 0.02576358413696289, 0.02576278305053711, 0.02586310386657715, 0.025833759307861328, 0.025803487777709962, 0.02579020881652832, 0.0258272647857666, 0.025801183700561524, 0.025748735427856446, 0.025941631317138673, 0.02579555130004883, 0.025767936706542968, 0.02570569610595703, 0.025832223892211913, 0.028497695922851562, 0.0270296630859375, 0.026333248138427735, 0.025767936706542968, 0.025632896423339845, 0.025534175872802736, 0.025747615814208983, 0.02611609649658203, 0.025558303833007813, 0.025531103134155273, 0.025566783905029297, 0.025541343688964845, 0.025577184677124023, 0.02558998489379883, 0.025657312393188476, 0.025593215942382813, 0.025573471069335937, 0.025653600692749023, 0.02572697639465332, 0.025681535720825197, 0.025627103805541993, 0.025661312103271484, 0.02572496032714844, 0.025613632202148438, 0.025596704483032227, 0.025683456420898438, 0.026134944915771483, 0.025990560531616212, 0.02590985679626465, 0.02599504089355469, 0.026085535049438478, 0.02596665573120117, 0.02602947235107422, 0.025977439880371093, 0.025800703048706054, 0.02611404800415039, 0.026351680755615236, 0.026268768310546874, 0.026346303939819335, 0.02637775993347168, 0.026368192672729492, 0.026153280258178712, 0.026177536010742186, 0.026241024017333983, 0.026055744171142578, 0.026186687469482422, 0.026197887420654296, 0.025946239471435546, 0.025994815826416016, 0.025949888229370117, 0.025839935302734374, 0.025913791656494142, 0.02595020866394043, 0.02611177635192871, 0.026031999588012694, 0.025866592407226562, 0.026093568801879883, 0.025956352233886718, 0.026082752227783203, 0.025913568496704103, 0.025943904876708983, 0.02597337532043457, 0.025966688156127928, 0.02856547164916992, 0.027140127182006837, 0.026556127548217772, 0.02602217674255371, 0.02590732765197754, 0.025788480758666993, 0.025646751403808593, 0.025686176300048828, 0.025915456771850587, 0.025747264862060547, 0.025820352554321288, 0.025879648208618163, 0.025964384078979493, 0.025719871520996095, 0.025795391082763672, 0.025703840255737305, 0.02575174331665039, 0.02566352081298828, 0.025834016799926758, 0.025976160049438476, 0.02579315185546875, 0.025982271194458006, 0.02581724739074707, 0.025866783142089844, 0.025955711364746094, 0.02593791961669922, 0.02600204849243164, 0.025987071990966795, 0.025809024810791014, 0.0260053768157959, 0.025792032241821288, 0.025943872451782226, 0.025879199981689454, 0.025845760345458983, 0.02602556800842285, 0.0261976318359375, 0.026444608688354493, 0.02642521667480469, 0.02637628746032715, 0.02632908821105957, 0.026306144714355467, 0.02617305564880371, 0.02617545509338379, 0.02625619125366211, 0.02608252716064453, 0.026158143997192383, 0.026058240890502928, 0.02601558494567871, 0.02581747245788574, 0.02611155128479004, 0.026071487426757814, 0.025965856552124023, 0.025998048782348633, 0.026004608154296876, 0.026076032638549806, 0.025914783477783202, 0.025903615951538086, 0.02615920066833496, 0.026163040161132814, 0.025933631896972655, 0.02593564796447754, 0.02605708885192871, 0.02601900863647461, 0.028486623764038085, 0.027301759719848634, 0.02667747116088867, 0.026177440643310547, 0.025956352233886718, 0.02584547233581543, 0.025848352432250976, 0.02577791976928711, 0.025794559478759766, 0.025776128768920898, 0.025659391403198242, 0.02570444869995117, 0.02582032012939453, 0.025903968811035155, 0.025986976623535156, 0.025792608261108397, 0.025741024017333983, 0.026015775680541992, 0.025765695571899415, 0.026016191482543947, 0.025963680267333984, 0.02584441566467285, 0.025974943161010743, 0.025956031799316406, 0.02572447967529297, 0.025847936630249025, 0.025872127532958984, 0.025827999114990233, 0.025835744857788084, 0.025923072814941408, 0.026091775894165038, 0.026136831283569337, 0.025914623260498048, 0.02598784065246582, 0.025886720657348632, 0.025878528594970703, 0.026306560516357422, 0.026330463409423827, 0.026077856063842775, 0.026118303298950197, 0.026105312347412108, 0.02629465675354004, 0.025995264053344725, 0.02608332824707031, 0.026060991287231446, 0.026003263473510743, 0.025853952407836913, 0.025916704177856444, 0.025940223693847655, 0.02584009552001953, 0.026173152923583985, 0.02605036735534668, 0.026021408081054687, 0.025934783935546876, 0.02595840072631836, 0.02618742370605469, 0.025977344512939454, 0.026177215576171874, 0.025952415466308595, 0.025972736358642577, 0.02648828887939453, 0.025903648376464843, 0.025839616775512695, 0.028528608322143555, 0.027115264892578126, 0.026390783309936522, 0.026191871643066408, 0.025841663360595703, 0.02581817626953125, 0.02572319984436035, 0.025821535110473633, 0.02594793510437012, 0.025824928283691408, 0.025737119674682618, 0.025678783416748046, 0.02570444869995117, 0.025841663360595703, 0.02568806457519531, 0.025815040588378906, 0.025708608627319336, 0.025767871856689453, 0.025783519744873046, 0.02588912010192871, 0.025936128616333008, 0.025722528457641603, 0.025920032501220703, 0.025869983673095703, 0.025952512741088868, 0.025785791397094728, 0.0257542724609375, 0.025703584671020508, 0.025892831802368163, 0.02575971221923828, 0.025790687561035155, 0.026021951675415038, 0.02575833511352539, 0.02591974449157715, 0.02577961540222168, 0.02623910331726074, 0.026374368667602538, 0.026347232818603517, 0.02615247917175293, 0.02613324737548828, 0.026042367935180662, 0.026042367935180662, 0.026071008682250978, 0.02627743911743164, 0.02599977684020996, 0.026169408798217775, 0.0261910400390625, 0.02604047966003418, 0.025903615951538086, 0.02603843116760254, 0.02609766387939453, 0.025853952407836913, 0.02588057518005371, 0.025878528594970703, 0.025912832260131836, 0.025872896194458008, 0.02585420799255371, 0.02593356704711914, 0.026064895629882814, 0.025911296844482422, 0.02593187141418457, 0.026150175094604492, 0.026067583084106446]",tokens/s,38.56509329245249,, float32-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,815.08352,6174.998528,0.0,5779.750912,5773.960192,s,1,7.7395419921875,7.7395419921875,0.0,7.7395419921875,7.7395419921875,7.7395419921875,7.7395419921875,[7.7395419921875],,kWh,9.994903391674369e-06,1.0953041804092718e-06,3.4397249740053537e-06,1.4529932546088994e-05,,MB,1095.151616,6491.66848,0.0,6085.935104,6038.345728,s,10,2.1448580932617185,0.2144858093261719,0.0026452678682763126,0.21521057891845702,0.21694376525878906,0.21700848846435547,0.2170602670288086,"[0.2076636505126953, 0.21692938232421874, 0.21582981872558593, 0.2149775390625, 0.21544361877441406, 0.21384474182128907, 0.2147804412841797, 0.21227523803710938, 0.21707321166992188, 0.21604045104980468]",tokens/s,1193.5521552882635,kWh,6.232499810460658e-06,6.873281304016718e-07,4.159891034765951e-06,1.107971897562828e-05,tokens/kWh,23105279.16485205,MB,1099.776,6512.64,0.0,6106.906624,6086.544896,s,10,16.34459362792969,1.6344593627929687,0.005604136420545625,1.6363401489257812,1.6394989379882812,1.6408669006347656,1.641961270751953,"[1.6247216796875, 1.636993408203125, 1.6390897216796876, 1.6391949462890625, 1.6359698486328125, 1.634955322265625, 1.627091064453125, 1.62763232421875, 1.63671044921875, 1.64223486328125]",tokens/s,38.54485552479287,kWh,4.784965462412298e-05,5.277586740818806e-06,3.1805276626234714e-05,8.493251799117652e-05,tokens/kWh,741765.3625498888,,s,630,16.341073549270607,0.02593821198296925,0.0004003684958193192,0.02587648010253906,0.02615531234741211,0.02629103021621704,0.028321831398010255,"[0.028504127502441405, 0.026898399353027343, 0.026089408874511718, 0.02574118423461914, 0.025610015869140624, 0.02552422332763672, 0.025497119903564455, 0.02549238395690918, 0.025530527114868164, 0.02555001640319824, 0.02552511978149414, 0.025526016235351563, 0.025544704437255858, 0.02552217674255371, 0.02555084800720215, 0.025491455078125, 0.025591455459594726, 0.025532768249511718, 0.025536512374877928, 0.025540607452392578, 0.02569148826599121, 0.025616992950439454, 0.02561840057373047, 0.025754751205444334, 0.0256212158203125, 0.025647424697875978, 0.025589696884155272, 0.025595327377319337, 0.025629247665405273, 0.0256856632232666, 0.025683935165405274, 0.025722848892211915, 0.025692575454711913, 0.025634815216064453, 0.025727136611938477, 0.02568284797668457, 0.025804864883422853, 0.025985919952392578, 0.026102975845336916, 0.02615113639831543, 0.026013376235961914, 0.026021024703979493, 0.025937536239624023, 0.02591961669921875, 0.025876352310180664, 0.02587392044067383, 0.025856767654418945, 0.02578761672973633, 0.025791135787963868, 0.02573311996459961, 0.025728607177734376, 0.025786783218383787, 0.025790464401245116, 0.025784320831298828, 0.025776128768920898, 0.025827392578125, 0.025849023818969728, 0.025817951202392577, 0.025812671661376952, 0.025790847778320313, 0.025710432052612305, 0.025745407104492187, 0.025769279479980468, 0.028258304595947265, 0.026853376388549805, 0.026139808654785157, 0.025758560180664063, 0.02566124725341797, 0.025710527420043944, 0.025781856536865235, 0.025791135787963868, 0.02577987289428711, 0.025882976531982422, 0.025825279235839844, 0.02570444869995117, 0.02587238311767578, 0.025820608139038085, 0.025772127151489257, 0.025956832885742187, 0.02571628761291504, 0.0257043514251709, 0.025907264709472657, 0.025809375762939454, 0.0258306884765625, 0.025844448089599608, 0.02579462432861328, 0.025888032913208008, 0.025910112380981447, 0.02596147155761719, 0.02587116813659668, 0.025858047485351563, 0.025937824249267577, 0.025958719253540038, 0.025874208450317383, 0.02575564765930176, 0.025968639373779297, 0.02588073539733887, 0.025882463455200195, 0.025862144470214843, 0.02609891128540039, 0.026186527252197264, 0.026232831954956053, 0.026042272567749023, 0.02619196891784668, 0.025995647430419922, 0.02600297546386719, 0.025996992111206055, 0.02592767906188965, 0.025993824005126953, 0.02593168067932129, 0.026070943832397463, 0.02613212776184082, 0.025948511123657227, 0.026040319442749024, 0.02595430374145508, 0.02598422431945801, 0.026015680313110353, 0.026076095581054688, 0.025995168685913086, 0.026041343688964845, 0.026024959564208985, 0.02612838363647461, 0.02586537551879883, 0.02601046371459961, 0.026011648178100585, 0.025948160171508788, 0.028299264907836914, 0.027129056930541993, 0.026391040802001952, 0.026112287521362305, 0.02572457695007324, 0.025762144088745116, 0.025656320571899413, 0.025699392318725586, 0.025771520614624024, 0.025801151275634766, 0.025634815216064453, 0.025831424713134765, 0.025807008743286133, 0.02568191909790039, 0.02580463981628418, 0.02586400032043457, 0.025733312606811522, 0.025832639694213868, 0.02566022491455078, 0.02572287940979004, 0.02587238311767578, 0.025968608856201173, 0.02602191925048828, 0.025835519790649415, 0.025784320831298828, 0.025738815307617187, 0.025850303649902345, 0.026075263977050782, 0.02616511917114258, 0.025911296844482422, 0.025979936599731444, 0.025959455490112304, 0.025847679138183595, 0.025878591537475584, 0.026015743255615235, 0.026089471817016603, 0.026183135986328127, 0.026545888900756837, 0.02611078453063965, 0.02634880065917969, 0.026229503631591797, 0.026226688385009765, 0.02604252815246582, 0.02597052764892578, 0.0260316162109375, 0.026122560501098634, 0.025904895782470704, 0.02593631935119629, 0.026060991287231446, 0.026068864822387697, 0.025902496337890626, 0.02609724807739258, 0.026115007400512695, 0.02601945686340332, 0.02591097640991211, 0.025891519546508788, 0.02591744041442871, 0.025957759857177735, 0.026071680068969726, 0.026137599945068358, 0.025967872619628907, 0.025921279907226563, 0.026077280044555663, 0.02840553665161133, 0.027213951110839844, 0.02630441665649414, 0.026099903106689453, 0.02587353515625, 0.02575961685180664, 0.0259102725982666, 0.025827520370483397, 0.025784128189086913, 0.02561561584472656, 0.025879295349121093, 0.025785472869873045, 0.02571558380126953, 0.02593388748168945, 0.025875680923461913, 0.025754335403442383, 0.025845760345458983, 0.025822751998901366, 0.02577574348449707, 0.025911584854125976, 0.02576646423339844, 0.02595756721496582, 0.025946975708007813, 0.02580886459350586, 0.026021600723266602, 0.025749439239501952, 0.025960800170898437, 0.02575334358215332, 0.025772287368774415, 0.025951616287231444, 0.025858688354492187, 0.025964544296264647, 0.025861568450927734, 0.02592972755432129, 0.025958335876464844, 0.025971328735351563, 0.026123743057250976, 0.026065439224243165, 0.026187776565551758, 0.02625846481323242, 0.026104799270629885, 0.026171072006225586, 0.02627382469177246, 0.026079519271850586, 0.026087104797363283, 0.026245664596557618, 0.026100576400756834, 0.026006080627441405, 0.025921920776367187, 0.026044639587402343, 0.02590492820739746, 0.026089471817016603, 0.025990848541259767, 0.02596281623840332, 0.026066144943237304, 0.025803552627563477, 0.025836736679077148, 0.02607823944091797, 0.025966367721557616, 0.02588572883605957, 0.026189823150634766, 0.025929952621459963, 0.02612505531311035, 0.0286167049407959, 0.027272960662841798, 0.026245376586914063, 0.02609561538696289, 0.025882623672485353, 0.02592064094543457, 0.025670175552368165, 0.025641311645507814, 0.025651391983032228, 0.025636512756347655, 0.025614688873291016, 0.025890623092651367, 0.025790111541748047, 0.025695615768432618, 0.025656095504760744, 0.025692352294921873, 0.02572902488708496, 0.02593507194519043, 0.026022111892700196, 0.025846336364746095, 0.025710048675537108, 0.025600223541259765, 0.025647424697875978, 0.02583296012878418, 0.025762304306030274, 0.02592767906188965, 0.025724159240722657, 0.025682687759399414, 0.025806848526000976, 0.02580611228942871, 0.02602057647705078, 0.025757696151733397, 0.025997312545776367, 0.02575564765930176, 0.025806848526000976, 0.025958208084106444, 0.026136831283569337, 0.026128320693969725, 0.02615500831604004, 0.02612428855895996, 0.02615910339355469, 0.026038528442382813, 0.02606787109375, 0.026158048629760743, 0.02597260856628418, 0.02589695930480957, 0.025932992935180664, 0.02603091239929199, 0.026149120330810547, 0.02593142318725586, 0.02588035202026367, 0.025922143936157226, 0.02586595153808594, 0.02587388801574707, 0.025873023986816405, 0.02586614418029785, 0.026094911575317382, 0.02614143943786621, 0.026158912658691406, 0.02587660789489746, 0.025918527603149413, 0.025977792739868163, 0.0259051513671875, 0.028317695617675782, 0.02716806411743164, 0.02651215934753418, 0.026007455825805666, 0.025974239349365234, 0.02576643180847168, 0.02564240074157715, 0.0257030086517334, 0.0256777286529541, 0.025659488677978515, 0.0257475528717041, 0.02586614418029785, 0.0256777286529541, 0.025908319473266602, 0.025847999572753907, 0.025786176681518554, 0.025965503692626953, 0.025910655975341798, 0.025733823776245116, 0.025941951751708985, 0.025769567489624022, 0.02566806411743164, 0.025636863708496094, 0.025860095977783205, 0.026001407623291017, 0.02590105628967285, 0.026011743545532227, 0.02604003143310547, 0.025884000778198243, 0.025789024353027344, 0.02601907157897949, 0.025882783889770507, 0.025807712554931642, 0.02579654312133789, 0.025901119232177736, 0.02584351921081543, 0.025964736938476562, 0.026060800552368164, 0.026232831954956053, 0.0260928955078125, 0.026402496337890626, 0.026239967346191405, 0.025970111846923827, 0.02584783935546875, 0.025794944763183593, 0.025792863845825194, 0.02580851173400879, 0.02585737609863281, 0.02587923240661621, 0.025862144470214843, 0.02590086364746094, 0.02597702407836914, 0.025931167602539062, 0.02600956726074219, 0.02582966423034668, 0.025795072555541993, 0.025796607971191408, 0.025855552673339843, 0.02577043151855469, 0.025816543579101563, 0.025844255447387696, 0.025849119186401367, 0.025848543167114258, 0.028672000885009766, 0.027183103561401366, 0.026251264572143555, 0.02586604881286621, 0.025708736419677733, 0.02574950408935547, 0.02556620788574219, 0.02550886344909668, 0.025683967590332032, 0.025622528076171876, 0.025734975814819337, 0.025660608291625978, 0.025647647857666017, 0.025546592712402345, 0.02551849555969238, 0.02553059196472168, 0.025544704437255858, 0.025561088562011718, 0.025613920211791992, 0.025638431549072267, 0.025668479919433593, 0.025665536880493164, 0.025634111404418944, 0.025596128463745118, 0.025610719680786133, 0.025747583389282225, 0.02568383979797363, 0.025675775527954102, 0.02558118438720703, 0.02560576057434082, 0.025622720718383788, 0.025607744216918946, 0.025689088821411132, 0.025708511352539064, 0.025778207778930664, 0.02576383972167969, 0.026013696670532226, 0.02612633514404297, 0.02600137519836426, 0.025987104415893556, 0.026062847137451172, 0.02599068832397461, 0.025960735321044922, 0.025888160705566408, 0.02579862403869629, 0.025823328018188478, 0.025795263290405275, 0.025769983291625977, 0.025759487152099608, 0.025751583099365233, 0.02582966423034668, 0.025830911636352538, 0.026020191192626954, 0.02585523223876953, 0.025770143508911134, 0.025720863342285155, 0.02580768013000488, 0.025728864669799803, 0.02577952003479004, 0.025787103652954103, 0.02580672073364258, 0.02580454444885254, 0.025872768402099608, 0.028495744705200197, 0.027072288513183593, 0.026278240203857422, 0.02599443244934082, 0.025718687057495117, 0.025629600524902343, 0.025589792251586915, 0.025525535583496094, 0.025537216186523437, 0.02551535987854004, 0.02561724853515625, 0.0256135368347168, 0.02559619140625, 0.025547071456909178, 0.025600000381469725, 0.02564233589172363, 0.0256529598236084, 0.025649728775024413, 0.025663616180419922, 0.02569651222229004, 0.025657344818115234, 0.0256646728515625, 0.025614368438720704, 0.025671552658081055, 0.02563987159729004, 0.025645055770874024, 0.025638912200927736, 0.025716703414916994, 0.02572496032714844, 0.025741119384765625, 0.025744640350341796, 0.025713600158691407, 0.025774080276489256, 0.025694208145141603, 0.02570240020751953, 0.025734495162963868, 0.02592425537109375, 0.02604035186767578, 0.026072256088256834, 0.026082080841064455, 0.025980768203735353, 0.025905311584472655, 0.025993215560913087, 0.02590105628967285, 0.025832511901855468, 0.02584419250488281, 0.025744863510131836, 0.025789440155029295, 0.025778175354003906, 0.025826719284057616, 0.025789024353027344, 0.025852928161621092, 0.02584582328796387, 0.02581190490722656, 0.025829376220703124, 0.025792512893676758, 0.025781696319580077, 0.025999807357788087, 0.025897087097167967, 0.025841312408447267, 0.025860448837280274, 0.025802751541137696, 0.025827327728271485, 0.028323520660400392, 0.027041791915893554, 0.026205184936523438, 0.025771936416625976, 0.025613983154296874, 0.025598207473754884, 0.025546335220336915, 0.025534975051879884, 0.025536672592163086, 0.025793567657470703, 0.025671968460083006, 0.02557792091369629, 0.025574880599975584, 0.0256231689453125, 0.02572902488708496, 0.025783903121948244, 0.025860511779785156, 0.025847583770751952, 0.02596441650390625, 0.025874784469604492, 0.025960447311401368, 0.025960447311401368, 0.025784320831298828, 0.025927072525024415, 0.025969247817993164, 0.02581667137145996, 0.025909664154052735, 0.0260032958984375, 0.026056863784790038, 0.025993215560913087, 0.025960447311401368, 0.025917600631713868, 0.02595737648010254, 0.025731231689453123, 0.025838272094726562, 0.025939968109130858, 0.026060895919799806, 0.026015647888183592, 0.026161151885986327, 0.026101024627685546, 0.026034271240234375, 0.026212991714477538, 0.026013696670532226, 0.026281984329223632, 0.025974079132080077, 0.02599740791320801, 0.02590166473388672, 0.02613603210449219, 0.026298431396484374, 0.026027904510498048, 0.02613279914855957, 0.025962783813476564, 0.02590105628967285, 0.02592576026916504, 0.026054399490356445, 0.025946239471435546, 0.026108928680419922, 0.026035200119018553, 0.02595756721496582, 0.026013792037963866, 0.025859807968139647, 0.0261146240234375, 0.025868255615234374, 0.028612672805786134, 0.027265024185180665, 0.02637151908874512, 0.026057279586791993, 0.025996959686279297, 0.025694784164428712, 0.02592131233215332, 0.025842784881591797, 0.02577440071105957, 0.025743967056274415, 0.025887807846069335, 0.02587676811218262, 0.0259072322845459, 0.025735807418823243, 0.02571820831298828, 0.025987232208251953, 0.025881216049194335, 0.0259434871673584, 0.025950559616088865, 0.025857152938842772, 0.026002304077148437, 0.026009599685668947, 0.02599920082092285, 0.02601308822631836, 0.025946495056152343, 0.026027616500854493, 0.0260053768157959, 0.02588083267211914, 0.02580956840515137, 0.0258602237701416, 0.025824256896972656, 0.025835712432861327, 0.026052480697631837, 0.02590755271911621, 0.025847871780395507, 0.0259465274810791, 0.02638047981262207, 0.026145792007446288, 0.02649078369140625, 0.026422176361083984, 0.026275840759277344, 0.026229856491088867, 0.026230752944946287, 0.02623583984375, 0.025980287551879883, 0.02598361587524414, 0.026034175872802736, 0.02609971237182617, 0.025837568283081053, 0.026021888732910156, 0.026193920135498046, 0.02589004707336426, 0.02596735954284668, 0.025970239639282227, 0.02589753532409668, 0.026238847732543945, 0.02634774398803711, 0.026011423110961916, 0.02611814308166504, 0.026003456115722655, 0.025941984176635742, 0.025982208251953125, 0.02591209602355957]",tokens/s,38.5531585853562,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 286, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 560.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 8.12 MiB is free. Process 22312 has 14.73 GiB memory in use. Of the allocated memory 14.62 GiB is allocated by PyTorch, and 1.67 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 608, in __init__ self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 400.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 316.12 MiB is free. Process 46114 has 14.43 GiB memory in use. Of the allocated memory 14.30 GiB is allocated by PyTorch, and 13.04 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 268.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 180.12 MiB is free. Process 81932 has 14.56 GiB memory in use. Of the allocated memory 14.45 GiB is allocated by PyTorch, and 1.06 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 248, in __init__ self.model = DeciCoderModel(config) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 215, in __init__ self.layers = nn.ModuleList([DeciCoderDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 215, in self.layers = nn.ModuleList([DeciCoderDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 181, in __init__ self.self_attn = DeciCoderAttention(config=config) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 54, in __init__ self._init_rope() File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1729, in __getattr__ raise AttributeError(f""'{type(self).__name__}' object has no attribute '{name}'"") AttributeError: 'DeciCoderAttention' object has no attribute '_init_rope' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 614, in __init__ self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 271, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 142.12 MiB is free. Process 88005 has 14.60 GiB memory in use. Of the allocated memory 14.48 GiB is allocated by PyTorch, and 1.53 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 906, in __init__ self.model = InternLMModel(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in __init__ self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 545, in __init__ self.self_attn = INTERNLM_ATTENTION_CLASSES[config.attn_implementation](config=config) KeyError: 'sdpa' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 219, in __init__ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.50 GiB. GPU 0 has a total capacity of 14.74 GiB of which 1.30 GiB is free. Process 90972 has 13.44 GiB memory in use. Of the allocated memory 13.33 GiB is allocated by PyTorch, and 1.86 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt2,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 286, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 688.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 598.12 MiB is free. Process 172261 has 14.15 GiB memory in use. Of the allocated memory 14.04 GiB is allocated by PyTorch, and 1.75 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 288, in __init__ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 456.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 280.12 MiB is free. Process 169464 has 14.46 GiB memory in use. Of the allocated memory 14.35 GiB is allocated by PyTorch, and 3.19 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 172.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 80.12 MiB is free. Process 67370 has 14.66 GiB memory in use. Of the allocated memory 14.55 GiB is allocated by PyTorch, and 791.00 KiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-9b,google/recurrentgemma-9b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: RecurrentGemmaForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 609, in __init__ self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 576.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 500.12 MiB is free. Process 38362 has 14.25 GiB memory in use. Of the allocated memory 14.13 GiB is allocated by PyTorch, and 8.58 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mixtral,mistralai/Mixtral-8x22B-v0.1,mistralai/Mixtral-8x22B-v0.1,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 689, in __init__ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 356, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 30.12 MiB is free. Process 19898 has 14.71 GiB memory in use. Of the allocated memory 14.51 GiB is allocated by PyTorch, and 85.33 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 959, in __init__ self.model = MistralModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 711, in __init__ [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 711, in [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 510, in __init__ self.mlp = MistralMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 150, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 224.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 170.12 MiB is free. Process 108440 has 14.57 GiB memory in use. Of the allocated memory 14.46 GiB is allocated by PyTorch, and 1.46 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,811.966464,1129.250816,0.0,734.0032,709.336064,s,1,7.4012548828125,7.4012548828125,0.0,7.4012548828125,7.4012548828125,7.4012548828125,7.4012548828125,[7.4012548828125],,kWh,5.018227141677774e-06,5.464397925686503e-07,1.0041674700089764e-06,6.568834404255401e-06,,MB,1117.376512,1276.051456,0.0,870.31808,809.960448,s,19,0.2845489587783813,0.01497626098833586,0.000721354646664666,0.01482044792175293,0.014997305488586425,0.01537096910476684,0.017479082736968996,"[0.018006111145019533, 0.014694175720214843, 0.014658592224121093, 0.014844799995422363, 0.014743328094482422, 0.014737407684326171, 0.01477455997467041, 0.014862208366394044, 0.01482044792175293, 0.014907584190368653, 0.01497708797454834, 0.014729791641235352, 0.015078175544738769, 0.014839903831481933, 0.014872063636779785, 0.014734848022460938, 0.014711680412292481, 0.01483948802947998, 0.014716704368591309]",tokens/s,17093.719199964766,kWh,5.896171635690091e-07,6.502351689316556e-08,3.9073656399191194e-07,1.0453772444540865e-06,tokens/kWh,244887672.2332783,MB,1127.317504,1309.605888,0.0,905.969664,809.963008,s,19,9.883693817138672,0.5201944114283512,0.007087630848022105,0.52034814453125,0.5285178955078126,0.5290438171386719,0.5304746325683594,"[0.5003568115234375, 0.5235473022460938, 0.5206721801757812, 0.518958984375, 0.5252100219726562, 0.5308323364257812, 0.527358642578125, 0.5236458740234375, 0.5288450927734375, 0.5238328247070313, 0.5284360961914063, 0.5189959106445312, 0.5198388061523438, 0.5151084594726563, 0.52034814453125, 0.5106662902832031, 0.5172429809570313, 0.5129843139648438, 0.516812744140625]",tokens/s,121.10856752000551,kWh,1.4459999236431325e-05,1.594679690931747e-06,7.439825256008322e-06,2.3494504183371386e-05,tokens/kWh,2681478.166480707,,s,1197,9.87563265323639,0.008250319676889214,0.0002649751535341334,0.008231072425842286,0.008551398658752441,0.008621772575378418,0.008864796257019043,"[0.007893343925476075, 0.007861472129821778, 0.007827648162841797, 0.0078115520477294925, 0.007755648136138916, 0.007863840103149415, 0.007809216022491455, 0.007858719825744629, 0.007843423843383789, 0.007976895809173584, 0.007849631786346435, 0.007805344104766846, 0.007824992179870606, 0.007926464080810547, 0.007839263916015625, 0.007803487777709961, 0.007813119888305664, 0.007804927825927735, 0.0079584641456604, 0.007798208236694336, 0.007791232109069824, 0.00779859209060669, 0.007766208171844482, 0.0077844481468200685, 0.00777785587310791, 0.007813600063323975, 0.007848991870880126, 0.007807936191558838, 0.007755360126495361, 0.00779699182510376, 0.007785920143127441, 0.0077749438285827635, 0.0077844481468200685, 0.007790048122406006, 0.0078032960891723634, 0.007833727836608887, 0.007806015968322754, 0.007857279777526855, 0.007810880184173584, 0.007821568012237549, 0.007825151920318603, 0.007868319988250732, 0.007917664051055907, 0.007870463848114014, 0.007855519771575928, 0.007848896026611329, 0.007898784160614014, 0.008034175872802734, 0.008136832237243652, 0.008252575874328613, 0.008133472442626953, 0.00814675235748291, 0.008493247985839844, 0.008154208183288575, 0.008208992004394532, 0.008403264045715331, 0.008435711860656739, 0.008345600128173827, 0.008331263542175293, 0.00829644775390625, 0.008318976402282715, 0.008258975982666016, 0.008069727897644043, 0.007967040061950684, 0.008228927612304688, 0.008381855964660645, 0.008514080047607422, 0.008398847579956055, 0.008409088134765624, 0.008484383583068848, 0.008565216064453126, 0.008537343978881836, 0.008313599586486817, 0.008328895568847656, 0.008457728385925293, 0.008162112236022949, 0.008193792343139649, 0.008510784149169922, 0.008345919609069824, 0.008247072219848633, 0.008231391906738281, 0.00831116771697998, 0.008439647674560546, 0.008395071983337402, 0.008331104278564453, 0.008305952072143555, 0.00849782371520996, 0.008475744247436523, 0.008368800163269043, 0.008397120475769043, 0.008384511947631837, 0.008136704444885253, 0.008265855789184571, 0.008190848350524903, 0.008176639556884765, 0.008426912307739258, 0.008436320304870605, 0.008615936279296875, 0.008404255867004395, 0.008436127662658692, 0.008482687950134278, 0.008280447959899902, 0.008165184020996094, 0.008310720443725586, 0.008370112419128418, 0.008553888320922852, 0.008442848205566407, 0.008437760353088379, 0.008281696319580078, 0.008396448135375977, 0.0084933443069458, 0.008259679794311523, 0.008149408340454101, 0.008048895835876466, 0.008050399780273438, 0.007923295974731445, 0.008352160453796387, 0.007975264072418213, 0.0080480318069458, 0.008184063911437988, 0.008363519668579102, 0.0083189115524292, 0.008245823860168457, 0.008046048164367676, 0.007946591854095459, 0.007879039764404298, 0.007845503807067871, 0.007882847785949706, 0.007893856048583985, 0.007968128204345703, 0.008161439895629882, 0.008217056274414063, 0.008203519821166991, 0.008290495872497559, 0.008127391815185547, 0.00802569580078125, 0.008048992156982421, 0.008435423851013184, 0.008085344314575195, 0.008283712387084962, 0.00825551986694336, 0.008249216079711914, 0.008295104026794434, 0.008364031791687012, 0.008305983543395996, 0.008198431968688965, 0.008036767959594727, 0.007948287963867188, 0.008017056465148926, 0.007942048072814942, 0.007928768157958984, 0.00800767993927002, 0.00848796844482422, 0.008551360130310059, 0.00869379234313965, 0.008538111686706543, 0.008468416213989258, 0.0085665283203125, 0.008523872375488281, 0.008462559700012208, 0.008455360412597656, 0.008371007919311524, 0.008291680335998535, 0.0082008638381958, 0.008112159729003907, 0.008010880470275879, 0.008014687538146973, 0.008093695640563964, 0.008437760353088379, 0.008528127670288085, 0.008328960418701173, 0.008343551635742187, 0.008365504264831543, 0.008278592109680176, 0.008408512115478516, 0.008274496078491211, 0.008278016090393067, 0.008184831619262695, 0.008113375663757324, 0.008284031867980957, 0.008564640045166015, 0.008697855949401855, 0.00841318416595459, 0.008391776084899903, 0.0085097599029541, 0.008290528297424316, 0.00822105598449707, 0.008324831962585448, 0.008116064071655273, 0.00847436809539795, 0.008275967597961426, 0.00808291244506836, 0.008046751976013183, 0.008059264183044434, 0.008085503578186035, 0.007964672088623047, 0.007993343830108643, 0.008001055717468262, 0.008038368225097656, 0.008157695770263672, 0.008253439903259278, 0.008138751983642578, 0.008196096420288086, 0.008193087577819825, 0.00810694408416748, 0.008030207633972167, 0.007966720104217529, 0.00798467206954956, 0.007971360206604003, 0.008165311813354493, 0.008267200469970704, 0.008436287879943848, 0.008556223869323731, 0.008446271896362306, 0.00830835247039795, 0.008552831649780273, 0.008658304214477539, 0.00851417636871338, 0.008351743698120117, 0.008291647911071778, 0.008297183990478515, 0.00825712013244629, 0.008360320091247559, 0.008189824104309082, 0.008130496025085449, 0.008180224418640136, 0.008197823524475097, 0.008269824028015137, 0.008309920310974122, 0.008174528121948242, 0.008161375999450684, 0.008107487678527831, 0.008431743621826172, 0.008214752197265624, 0.00818825626373291, 0.00803395175933838, 0.00808140754699707, 0.008119808197021485, 0.008130559921264649, 0.00838912010192871, 0.008478719711303711, 0.008484864234924316, 0.008355839729309082, 0.008289695739746094, 0.008280672073364258, 0.008333312034606934, 0.008519680023193359, 0.00829212760925293, 0.00808777618408203, 0.00809779167175293, 0.008170783996582031, 0.008368864059448242, 0.00807372760772705, 0.008327168464660644, 0.008491007804870606, 0.008148991584777832, 0.008132287979125977, 0.008038080215454102, 0.00799014377593994, 0.008025856018066406, 0.008228863716125488, 0.008476256370544433, 0.00838419246673584, 0.008294976234436036, 0.008198304176330566, 0.008206175804138184, 0.00829974365234375, 0.008547264099121094, 0.008525504112243652, 0.008403264045715331, 0.008376607894897461, 0.008361408233642578, 0.008531455993652343, 0.008562975883483887, 0.00856713581085205, 0.00840886402130127, 0.008364671707153321, 0.008375200271606445, 0.008358495712280273, 0.008333567619323731, 0.008259455680847167, 0.008468544006347656, 0.008330656051635741, 0.008266400337219239, 0.008178943634033204, 0.00832579231262207, 0.008216671943664551, 0.00854412841796875, 0.008306112289428711, 0.008290719985961915, 0.008437952041625977, 0.00832316780090332, 0.008240480422973633, 0.00841590404510498, 0.008347935676574707, 0.008347040176391601, 0.00865328025817871, 0.008306528091430664, 0.008287232398986816, 0.008217599868774414, 0.008336735725402831, 0.008370528221130371, 0.008427712440490722, 0.008331392288208008, 0.008293888092041016, 0.00841983985900879, 0.008529919624328614, 0.008481056213378906, 0.008519200325012207, 0.008364224433898925, 0.008295680046081543, 0.008223487854003906, 0.008154111862182617, 0.00812339210510254, 0.008159135818481445, 0.008236448287963867, 0.008600128173828126, 0.008493056297302246, 0.008465503692626953, 0.008273088455200195, 0.008203007698059083, 0.008550463676452636, 0.008588191986083984, 0.010002752304077149, 0.00867296028137207, 0.008240287780761718, 0.008157471656799316, 0.008440320014953612, 0.008505279541015626, 0.008552576065063476, 0.008591168403625489, 0.008485055923461915, 0.008316448211669922, 0.008450528144836426, 0.008347647666931152, 0.00828006362915039, 0.008299903869628906, 0.008428319931030274, 0.008572256088256836, 0.008470623970031739, 0.00844979190826416, 0.008491616249084472, 0.008536383628845215, 0.008495903968811036, 0.00866198444366455, 0.00853219223022461, 0.008431391716003418, 0.008480832099914551, 0.008421119689941406, 0.008550592422485351, 0.008783552169799804, 0.008365440368652343, 0.008335871696472168, 0.00822316837310791, 0.008155136108398438, 0.008136704444885253, 0.008103167533874512, 0.008094464302062988, 0.008187904357910156, 0.008322079658508301, 0.00836297607421875, 0.008487135887145995, 0.008410016059875488, 0.008301440238952637, 0.008353792190551757, 0.008359456062316894, 0.008275456428527832, 0.00817046356201172, 0.008167136192321777, 0.008337696075439454, 0.008477760314941405, 0.008567744255065918, 0.008835071563720704, 0.008524160385131836, 0.00831436824798584, 0.008167360305786133, 0.008154560089111328, 0.008239647865295411, 0.007981023788452148, 0.00805337619781494, 0.008075424194335937, 0.007984352111816407, 0.0080250244140625, 0.008019807815551758, 0.008181759834289551, 0.008272928237915039, 0.008317503929138183, 0.008543935775756836, 0.008490719795227052, 0.008501279830932617, 0.008325471878051757, 0.008342144012451171, 0.008417280197143554, 0.008378368377685547, 0.008416864395141601, 0.008936863899230957, 0.008348671913146973, 0.008507391929626466, 0.008493056297302246, 0.008456000328063965, 0.008521984100341797, 0.008660927772521972, 0.008773856163024903, 0.008524736404418946, 0.008498016357421876, 0.008807583808898926, 0.008489824295043946, 0.008476287841796874, 0.008496671676635743, 0.008440192222595216, 0.008616543769836426, 0.008331135749816894, 0.008194047927856446, 0.008173567771911621, 0.00827625560760498, 0.008230112075805663, 0.008634880065917968, 0.008355392456054687, 0.00826358413696289, 0.008108575820922852, 0.008154751777648926, 0.008067456245422364, 0.008034272193908691, 0.00803228759765625, 0.008056832313537597, 0.008468480110168456, 0.008479935646057129, 0.008289216041564941, 0.00835142421722412, 0.008232640266418458, 0.008229120254516602, 0.008286687850952148, 0.008476448059082032, 0.008456192016601562, 0.008443903923034669, 0.00850483226776123, 0.008499520301818848, 0.008613311767578125, 0.008526080131530762, 0.008360447883605958, 0.008357888221740722, 0.008232928276062012, 0.0083853759765625, 0.008403008460998534, 0.008356863975524903, 0.008250368118286134, 0.008292351722717285, 0.008486559867858887, 0.008591135978698731, 0.00847110366821289, 0.008386560440063476, 0.008230912208557128, 0.008144895553588867, 0.008285696029663087, 0.008130144119262696, 0.00812662410736084, 0.008098591804504394, 0.008072383880615234, 0.00818665599822998, 0.008347455978393554, 0.008509056091308594, 0.008597824096679687, 0.008417535781860351, 0.008417280197143554, 0.008645888328552245, 0.008354559898376464, 0.008396127700805663, 0.00839033603668213, 0.008549344062805176, 0.008593119621276856, 0.00849948787689209, 0.00844934368133545, 0.008407744407653808, 0.008566783905029298, 0.008455231666564941, 0.008331775665283203, 0.008417599678039551, 0.008460384368896484, 0.008302623748779298, 0.008165375709533691, 0.008308159828186034, 0.008319135665893554, 0.008290975570678712, 0.008187647819519042, 0.008077312469482421, 0.008122400283813476, 0.00819315242767334, 0.00810649585723877, 0.008220352172851563, 0.00801587200164795, 0.008063167572021484, 0.0080164155960083, 0.008062911987304687, 0.007990816116333007, 0.007985631942749023, 0.008064000129699708, 0.00842240047454834, 0.008576319694519044, 0.00855519962310791, 0.008228992462158203, 0.008252511978149414, 0.008172287940979003, 0.008324735641479493, 0.008303071975708008, 0.008181599617004395, 0.008525376319885253, 0.008513728141784667, 0.0084235200881958, 0.008639840126037598, 0.008487903594970703, 0.008484864234924316, 0.008605695724487305, 0.008460288047790527, 0.008486847877502441, 0.008362048149108887, 0.008273920059204102, 0.00830463981628418, 0.008208383560180664, 0.008187456130981445, 0.008864128112792968, 0.00864998435974121, 0.00861676788330078, 0.009211999893188477, 0.008236960411071777, 0.008302592277526855, 0.008456192016601562, 0.008475872039794921, 0.00861673641204834, 0.00847606372833252, 0.008650367736816406, 0.008737983703613282, 0.008650015830993653, 0.008571264266967773, 0.008437888145446777, 0.008568256378173829, 0.008350111961364747, 0.008177824020385742, 0.008120223999023438, 0.00813417625427246, 0.008196576118469238, 0.008304991722106934, 0.008441216468811035, 0.008232895851135253, 0.00831942367553711, 0.00852121639251709, 0.008184384346008301, 0.008292287826538085, 0.008134655952453614, 0.008112128257751466, 0.008132448196411133, 0.008179295539855956, 0.008274496078491211, 0.008304320335388183, 0.008236800193786621, 0.008333632469177246, 0.008198399543762207, 0.008365823745727538, 0.00832921600341797, 0.008423616409301758, 0.008585056304931641, 0.008304032325744629, 0.008250176429748535, 0.008218175888061523, 0.008159680366516113, 0.008155136108398438, 0.008089599609375, 0.008546303749084473, 0.008078528404235839, 0.008096927642822266, 0.008194496154785156, 0.007995007991790771, 0.008026495933532714, 0.008001440048217774, 0.008232864379882812, 0.00834598445892334, 0.008450048446655273, 0.008591391563415528, 0.008654815673828125, 0.008589311599731446, 0.008564736366271973, 0.008566271781921387, 0.008468159675598145, 0.008812383651733398, 0.008422368049621582, 0.008356127738952637, 0.008275679588317871, 0.008263360023498536, 0.008216896057128907, 0.00828758430480957, 0.00841983985900879, 0.008331423759460449, 0.00828611183166504, 0.008232416152954102, 0.008276063919067383, 0.00833795166015625, 0.008241151809692383, 0.008034303665161132, 0.007924799919128417, 0.007915552139282227, 0.008047136306762695, 0.008191519737243653, 0.008090047836303712, 0.008049056053161622, 0.008033760070800781, 0.008239359855651855, 0.008652928352355958, 0.008412991523742676, 0.008470175743103027, 0.008372063636779786, 0.008317184448242188, 0.00832380771636963, 0.008177536010742188, 0.008122367858886719, 0.008002943992614746, 0.007998079776763915, 0.007978367805480956, 0.008300224304199218, 0.008360256195068359, 0.0081844482421875, 0.00820019245147705, 0.009277440071105958, 0.008279871940612794, 0.00808569622039795, 0.008163328170776368, 0.008333312034606934, 0.008546431541442872, 0.008609663963317872, 0.008595680236816406, 0.008615488052368165, 0.008722559928894043, 0.008186847686767577, 0.008368127822875977, 0.00819200038909912, 0.008048192024230957, 0.008068896293640137, 0.008684255599975587, 0.008110015869140626, 0.008671232223510742, 0.008306112289428711, 0.009097151756286621, 0.008798848152160645, 0.008244288444519044, 0.00821446418762207, 0.008372575759887695, 0.008743583679199219, 0.008548352241516113, 0.008304032325744629, 0.008849856376647949, 0.008466591835021972, 0.008455391883850097, 0.008193920135498047, 0.008168352127075196, 0.008011743545532227, 0.008216608047485351, 0.00807913589477539, 0.008062687873840332, 0.008203071594238281, 0.008142144203186034, 0.008132991790771484, 0.008484864234924316, 0.00833743953704834, 0.008362175941467286, 0.008283967971801759, 0.008486880302429198, 0.008244447708129883, 0.008339327812194824, 0.008360447883605958, 0.008481184005737304, 0.008665087699890137, 0.008570879936218261, 0.00840294361114502, 0.008417280197143554, 0.008826848030090331, 0.0086212158203125, 0.008470720291137695, 0.008880831718444825, 0.011236672401428222, 0.00931059169769287, 0.008454463958740234, 0.008196096420288086, 0.00810153579711914, 0.008171456336975098, 0.008034111976623536, 0.007997727870941163, 0.008010047912597656, 0.00807919979095459, 0.00840719985961914, 0.008341504096984862, 0.008046208381652832, 0.007915616035461426, 0.007931968212127686, 0.00785814380645752, 0.00784819221496582, 0.00840499210357666, 0.008392543792724609, 0.008231072425842286, 0.008404352188110352, 0.00820844841003418, 0.008217151641845704, 0.008535264015197754, 0.008381216049194336, 0.008258624076843262, 0.008239680290222168, 0.008194432258605958, 0.008219903945922851, 0.008194815635681153, 0.008148991584777832, 0.007991551876068115, 0.007947264194488525, 0.007922080039978028, 0.007887167930603027, 0.007928224086761474, 0.00800921630859375, 0.008417407989501953, 0.008666624069213867, 0.008603424072265624, 0.008616095542907714, 0.00857363224029541, 0.008460160255432128, 0.008380415916442872, 0.00828166389465332, 0.008448543548583985, 0.008463616371154786, 0.008170080184936524, 0.008065088272094727, 0.007980576038360596, 0.007960608005523681, 0.007971263885498047, 0.008167424201965333, 0.00831488037109375, 0.008226816177368163, 0.008178688049316407, 0.008449024200439453, 0.008407039642333984, 0.008070624351501465, 0.008073760032653808, 0.008359935760498047, 0.008291711807250976, 0.00817625617980957, 0.008065376281738281, 0.008107680320739746, 0.00825260829925537, 0.008116479873657226, 0.008038975715637208, 0.008048992156982421, 0.007956128120422363, 0.008148063659667968, 0.008534879684448242, 0.008304703712463378, 0.008199551582336425, 0.008147295951843261, 0.008075263977050781, 0.008067487716674804, 0.008081119537353515, 0.008183296203613282, 0.00852560043334961, 0.008423359870910644, 0.008521920204162597, 0.008351552009582519, 0.008386655807495117, 0.008320704460144043, 0.008333632469177246, 0.008140800476074218, 0.008011775970458984, 0.008249343872070313, 0.007929855823516846, 0.007964672088623047, 0.007979008197784423, 0.00820633602142334, 0.008935423851013183, 0.00862003231048584, 0.008289823532104492, 0.008305215835571289, 0.0084683837890625, 0.00825654411315918, 0.008097920417785644, 0.008061216354370118, 0.008040384292602539, 0.008004511833190918, 0.008230624198913574, 0.008390175819396972, 0.008348128318786622, 0.008115424156188964, 0.008161312103271484, 0.008471296310424805, 0.008167327880859375, 0.008062080383300781, 0.008191136360168457, 0.008146719932556152, 0.008073247909545899, 0.00833676815032959, 0.008116352081298827, 0.007987711906433105, 0.007921664237976075, 0.007921664237976075, 0.008173824310302735, 0.008551456451416016, 0.008560832023620606, 0.008646719932556153, 0.00862399959564209, 0.008491616249084472, 0.00848908805847168, 0.008255359649658203, 0.00830787181854248, 0.008190784454345703, 0.008233023643493651, 0.008042624473571777, 0.00812399959564209, 0.008027711868286132, 0.007998144149780274, 0.007976960182189942, 0.008002911567687988, 0.00812713623046875, 0.008550016403198243, 0.00856112003326416, 0.00820576000213623, 0.008137184143066406, 0.008199423789978027, 0.008426112174987793, 0.00812880039215088, 0.008356063842773438, 0.008142848014831543, 0.008099136352539062, 0.00818239974975586, 0.00812992000579834, 0.008083744049072266, 0.008203840255737305, 0.008388928413391113, 0.008256031990051269, 0.008214112281799316, 0.008565152168273926, 0.008335200309753418, 0.008150527954101563, 0.008063936233520507, 0.008044256210327148, 0.007970464229583741, 0.007915872097015381, 0.00790502405166626, 0.008302783966064453, 0.008859231948852539, 0.008552927970886231, 0.008525216102600097, 0.008458847999572755, 0.008341407775878907, 0.008337504386901855, 0.00820019245147705, 0.008064800262451172, 0.00802019214630127, 0.008025728225708007, 0.008016256332397461, 0.007983104228973388, 0.007948287963867188, 0.007999743938446045, 0.007988096237182617, 0.008270272254943848, 0.008196543693542481, 0.007996992111206054, 0.00811411190032959, 0.008144895553588867, 0.00809177589416504, 0.008313216209411622, 0.008396544456481934, 0.008177472114562987, 0.00800812816619873, 0.007985151767730713, 0.007974080085754395, 0.008003487586975097, 0.007978208065032959, 0.007951648235321044, 0.008077247619628906, 0.00804911994934082, 0.00791756820678711, 0.007942143917083741, 0.008171520233154296, 0.008089632034301757, 0.007984384059906006, 0.008079551696777343, 0.008093695640563964, 0.008130208015441894, 0.008411328315734863, 0.008708800315856934, 0.008506367683410645, 0.008454143524169922, 0.00865884780883789, 0.008448127746582032, 0.00828822422027588, 0.00819200038909912, 0.008239104270935058, 0.008218624114990235, 0.008334495544433594, 0.008170175552368163, 0.008070816040039062, 0.008052255630493164, 0.008004608154296875, 0.007892960071563721, 0.00820633602142334, 0.008373503684997558, 0.008169568061828614, 0.008089599609375, 0.008493696212768555, 0.00831491184234619, 0.008093695640563964, 0.008099840164184571, 0.008072511672973633, 0.008121024131774903, 0.008099519729614257, 0.007995359897613526, 0.007963263988494873, 0.008063839912414552, 0.008090208053588867, 0.008007807731628418, 0.008288000106811523, 0.008364447593688965, 0.008232704162597656, 0.008270079612731934, 0.008054783821105957, 0.007943967819213867, 0.00787663984298706, 0.007902751922607422, 0.007883423805236817, 0.007914783954620362, 0.008302335739135741, 0.008564864158630371, 0.008680224418640137, 0.008549951553344726, 0.008594143867492675, 0.008519455909729004, 0.008575072288513183, 0.008613759994506837, 0.00842959976196289, 0.008267775535583496, 0.008349920272827148, 0.008248448371887207, 0.008104063987731934, 0.008280608177185058, 0.008378656387329101, 0.00829206371307373, 0.008140800476074218, 0.008396800041198731, 0.008746623992919922, 0.008175775527954102, 0.008378591537475586, 0.008978431701660156, 0.008488960266113281, 0.007985151767730713, 0.008249279975891113, 0.008201727867126465, 0.008133184432983399, 0.008124416351318359, 0.008108256340026855, 0.008061984062194823, 0.008010496139526367, 0.007982624053955079, 0.007936480045318604, 0.007929408073425293, 0.007891200065612792, 0.007823552131652832, 0.008043999671936036, 0.008509984016418457, 0.008179455757141114, 0.008226207733154297, 0.008029024124145507, 0.008134655952453614, 0.008047840118408204, 0.008176416397094726, 0.008130559921264649, 0.008011199951171876, 0.007973440170288086, 0.007966495990753174, 0.008197759628295899, 0.008629983901977539, 0.008559488296508789, 0.008609919548034669, 0.008513216018676759, 0.008305952072143555, 0.008380319595336914, 0.008340352058410645, 0.008226271629333495, 0.008026080131530762, 0.0080513916015625, 0.007966720104217529, 0.007896992206573486, 0.008033632278442383, 0.008243295669555664, 0.008204959869384765, 0.008069120407104492, 0.008114175796508789, 0.008463744163513184, 0.008304448127746581, 0.008116448402404785, 0.007993408203125, 0.008055359840393066, 0.008008735656738281, 0.00798528003692627, 0.007956384181976318, 0.007905759811401368, 0.007999584197998047, 0.008100064277648925, 0.008003583908081055, 0.007946368217468261, 0.007911424160003662, 0.008095711708068847, 0.007929887771606445, 0.007823359966278077, 0.007791711807250977, 0.007845920085906982, 0.007817440032958985, 0.008020832061767577, 0.008016448020935058, 0.008191264152526856, 0.008037088394165039, 0.007976960182189942, 0.00798089599609375, 0.007878431797027588, 0.007895423889160156, 0.007921664237976075, 0.008054783821105957, 0.008519680023193359, 0.008683775901794434, 0.008574720382690429, 0.00854422378540039, 0.008513567924499511, 0.008310784339904785, 0.00821350383758545, 0.008184831619262695, 0.008077280044555664, 0.00793398380279541, 0.00801091194152832, 0.008084320068359374, 0.00799948787689209, 0.007918784141540527, 0.007942751884460449, 0.008067584037780762, 0.00801529598236084, 0.009736063957214356, 0.010015135765075683, 0.008671232223510742, 0.008746272087097167, 0.008314784049987794, 0.008313023567199707, 0.00828604793548584, 0.008320863723754884, 0.00812947177886963, 0.008040224075317383, 0.008100159645080566, 0.008004960060119628, 0.008047264099121093, 0.008218015670776367, 0.00814095973968506, 0.008052767753601075, 0.007964735984802246, 0.007909887790679932, 0.007898880004882812, 0.007847936153411865, 0.00786787223815918, 0.008053088188171386, 0.008134016036987305, 0.008071904182434081, 0.008062047958374024, 0.007986239910125733, 0.008013216018676758, 0.007948639869689942, 0.00790118408203125, 0.007892288208007813, 0.007910272121429444, 0.007943999767303467, 0.008232224464416503, 0.00857795238494873, 0.0085731840133667, 0.008666303634643555, 0.008530495643615722, 0.00810086441040039, 0.008224767684936523, 0.008120256423950195, 0.008083104133605957, 0.0080797758102417, 0.008028287887573243, 0.00818284797668457, 0.008061984062194823, 0.008080256462097169, 0.008491359710693359, 0.008476799964904785, 0.00821292781829834, 0.008077312469482421, 0.008114175796508789, 0.008019935607910157, 0.008079392433166504, 0.007921664237976075, 0.007870816230773925, 0.007877823829650878, 0.007954271793365478, 0.00816316795349121, 0.0081081600189209, 0.00799180793762207, 0.007944352149963379, 0.007925439834594726, 0.007937471866607666, 0.00790822410583496, 0.008116543769836426, 0.008072319984436036, 0.008022591590881348, 0.007999167919158936, 0.00786198377609253, 0.007845536231994629, 0.007854047775268555, 0.008104415893554687, 0.008836768150329589, 0.00863702392578125, 0.00854860782623291, 0.00856454372406006, 0.008382528305053712, 0.008247424125671386, 0.008433664321899414, 0.00832431983947754, 0.008137503623962402, 0.008054847717285157, 0.008040063858032227, 0.007966432094573974, 0.007985023975372315, 0.00820911979675293, 0.007979008197784423, 0.008433759689331055, 0.008546015739440919, 0.008310815811157227, 0.008165696144104003, 0.00819388771057129, 0.008173567771911621, 0.008044544219970704, 0.00827187156677246, 0.008140800476074218, 0.007962175846099854, 0.007987552165985108, 0.008020064353942872, 0.008130559921264649, 0.007943999767303467, 0.008036607742309571, 0.007968512058258057, 0.007925280094146728, 0.00794159984588623, 0.008189151763916016, 0.008091423988342285, 0.008025631904602051, 0.007999328136444092, 0.007933631896972656, 0.008051648139953613, 0.00819974422454834, 0.008421152114868165, 0.008501343727111817, 0.0084137601852417, 0.00841318416595459, 0.008475872039794921, 0.008506048202514648, 0.008560480117797852, 0.008425727844238281, 0.008361087799072266, 0.008130496025085449, 0.008211392402648926, 0.008130304336547852, 0.00799564790725708, 0.007981056213378907, 0.007982624053955079, 0.008571136474609374, 0.008288479804992676, 0.008104127883911133, 0.008101471900939941, 0.008231167793273925, 0.008155103683471679, 0.008447999954223634, 0.008294400215148925, 0.008199839591979981, 0.008261088371276856, 0.008442239761352539, 0.008205120086669921, 0.008139552116394043, 0.008012096405029296, 0.007983712196350098, 0.008044544219970704, 0.008105376243591308, 0.007918176174163818, 0.008075136184692383, 0.008065152168273925, 0.008039423942565918, 0.007978303909301758, 0.008029888153076172, 0.008065024375915527, 0.007975135803222656, 0.007892159938812256, 0.008155743598937988, 0.007886847972869874, 0.007906911849975586, 0.00841801643371582, 0.008842944145202637, 0.00868556785583496, 0.00871014404296875, 0.00861184024810791, 0.0085032958984375, 0.008278016090393067]",tokens/s,121.20742458031037,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 608, in __init__ self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 14.12 MiB is free. Process 51494 has 14.72 GiB memory in use. Of the allocated memory 14.61 GiB is allocated by PyTorch, and 4.70 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,815.47264,11724.06272,0.0,11328.815104,11314.254848,s,1,7.47275341796875,7.47275341796875,0.0,7.47275341796875,7.47275341796875,7.47275341796875,7.47275341796875,[7.47275341796875],,kWh,1.2082180279158667e-05,1.3250766185224244e-06,4.895559471987387e-06,1.830281636966848e-05,,MB,1093.189632,12166.561792,0.0,11760.828416,11713.906688,s,10,4.051521362304687,0.40515213623046875,0.008479341193698546,0.40764956665039065,0.4102277038574219,0.4112820343017578,0.4121254986572266,"[0.3810806579589844, 0.4031009521484375, 0.40672128295898435, 0.4038128662109375, 0.409993408203125, 0.4085778503417969, 0.406339111328125, 0.409971435546875, 0.41233636474609375, 0.40958743286132815]",tokens/s,631.8614098442657,kWh,1.1751291458666704e-05,1.295934292239087e-06,7.827084039440102e-06,2.087430979034589e-05,tokens/kWh,12263878.545981761,MB,1097.920512,12271.419392,0.0,11865.686016,11828.952576,s,10,30.397986328125,3.0397986328125,0.004010404397557613,3.0387587890625003,3.044893994140625,3.045714453125,3.0463708203125,"[3.033953125, 3.03819580078125, 3.038205810546875, 3.040492919921875, 3.039311767578125, 3.03443017578125, 3.03797314453125, 3.046534912109375, 3.044711669921875, 3.044177001953125]",tokens/s,20.725057021856337,kWh,8.89646126238327e-05,9.81164368429653e-06,5.905577502235942e-05,0.00015783203133048863,tokens/kWh,399158.51978159393,,s,630,30.39387789535523,0.048244250627547974,0.00035791633083775157,0.0481997127532959,0.048510780334472654,0.048626995277404786,0.050413185539245606,"[0.05025820922851563, 0.04848777770996094, 0.04789548873901367, 0.04802080154418945, 0.04798847961425781, 0.04777388763427735, 0.047736351013183596, 0.047752128601074216, 0.047713409423828124, 0.04776025772094727, 0.048244735717773435, 0.04807475280761719, 0.047892478942871096, 0.04774092864990234, 0.04773023986816406, 0.047827262878417966, 0.04793363189697265, 0.04795180892944336, 0.04808499145507812, 0.048080894470214845, 0.048648094177246096, 0.04863945770263672, 0.048427486419677736, 0.048218273162841795, 0.04809081649780273, 0.048199745178222654, 0.04799929428100586, 0.047961215972900394, 0.04790345764160156, 0.04789052963256836, 0.04802886581420898, 0.04800518417358399, 0.04820156860351563, 0.048116416931152345, 0.04798396682739258, 0.048184192657470704, 0.048148574829101565, 0.04809104156494141, 0.04803379058837891, 0.04824198532104492, 0.04828639984130859, 0.0483061752319336, 0.048287391662597656, 0.04832092666625976, 0.04823139190673828, 0.04823139190673828, 0.04825398254394531, 0.04825187301635742, 0.04818700790405273, 0.04809971237182617, 0.04806646347045898, 0.048070209503173825, 0.048142879486083985, 0.04819968032836914, 0.048336894989013675, 0.04815462493896484, 0.04833484649658203, 0.04807884979248047, 0.04811174392700195, 0.04833443069458008, 0.04824092864990234, 0.04854988861083984, 0.04851007843017578, 0.05042982482910156, 0.04864176177978516, 0.04799939346313477, 0.04797030258178711, 0.048057376861572264, 0.04798358535766602, 0.04780441665649414, 0.047728641510009766, 0.04773231887817383, 0.048008865356445315, 0.048036830902099606, 0.04782057571411133, 0.04802377700805664, 0.04803152084350586, 0.047826335906982424, 0.04792995071411133, 0.04795619201660156, 0.048086814880371094, 0.04801945495605469, 0.0485478401184082, 0.048543262481689456, 0.0483988151550293, 0.048291519165039064, 0.048360992431640625, 0.04814934539794922, 0.048083038330078126, 0.048151424407958984, 0.04804022216796875, 0.04797328186035156, 0.047903648376464845, 0.04806335830688477, 0.048060352325439454, 0.04801337432861328, 0.0482529296875, 0.048395423889160155, 0.04804473495483398, 0.04804828643798828, 0.048263168334960936, 0.04834643173217774, 0.04841036987304687, 0.04859795379638672, 0.04849868774414062, 0.04835737609863281, 0.04838195037841797, 0.0483061752319336, 0.04830003356933594, 0.048146430969238284, 0.048390209197998045, 0.04827078247070313, 0.04807727813720703, 0.04813827133178711, 0.048252609252929686, 0.048222526550292966, 0.04818473434448242, 0.04814089584350586, 0.04831027221679687, 0.04818329620361328, 0.04819148635864258, 0.04832771301269531, 0.04837295913696289, 0.048623390197753906, 0.04854508972167969, 0.04850960159301758, 0.050522113800048826, 0.048534591674804686, 0.047973312377929685, 0.048004798889160157, 0.04782070541381836, 0.04812035369873047, 0.04784332656860352, 0.04790361785888672, 0.04788326263427734, 0.04785561752319336, 0.04790288162231445, 0.04789807891845703, 0.048116031646728515, 0.04795779037475586, 0.04791116714477539, 0.04797407913208008, 0.048148448944091794, 0.0480852165222168, 0.04799488067626953, 0.0485233268737793, 0.04866044616699219, 0.04848633575439453, 0.04825644683837891, 0.04825369644165039, 0.04816691207885742, 0.048121471405029294, 0.04831907272338867, 0.048086273193359376, 0.04797289657592774, 0.04831155014038086, 0.04797443389892578, 0.04801327896118164, 0.04802227020263672, 0.04821724700927734, 0.04820780944824219, 0.0481901741027832, 0.048156768798828124, 0.04820195388793945, 0.048178752899169924, 0.04844169616699219, 0.048465599060058595, 0.048425247192382816, 0.04848035049438477, 0.04834703826904297, 0.04825702285766602, 0.04835091018676758, 0.0483515510559082, 0.04815462493896484, 0.04808246231079102, 0.04814806365966797, 0.048208545684814454, 0.04814172744750977, 0.04812883377075195, 0.04803596878051758, 0.04808832168579102, 0.048171615600585936, 0.04814448165893555, 0.04833708953857422, 0.04837964630126953, 0.04840240097045898, 0.048459808349609376, 0.04846092987060547, 0.04851801681518555, 0.050372447967529294, 0.048853408813476565, 0.048236286163330075, 0.04806051254272461, 0.048004192352294923, 0.04792822265625, 0.047925247192382815, 0.04789433670043945, 0.04807228851318359, 0.04803039932250976, 0.04795587158203125, 0.047951873779296876, 0.047927520751953126, 0.047914783477783204, 0.048173057556152345, 0.04814438247680664, 0.04819686508178711, 0.04829782485961914, 0.0480285758972168, 0.048346656799316406, 0.04845001602172851, 0.048482017517089845, 0.048433441162109375, 0.0484983024597168, 0.04829363250732422, 0.04826995086669922, 0.04801126480102539, 0.048099552154541016, 0.04808272171020508, 0.048009407043457034, 0.04827936172485352, 0.048205825805664064, 0.04827545547485351, 0.04812595367431641, 0.04803583908081055, 0.048205825805664064, 0.048121856689453124, 0.048356830596923826, 0.048200225830078124, 0.04826726531982422, 0.04843110275268555, 0.04854988861083984, 0.04842291259765625, 0.0484453125, 0.048400062561035156, 0.04843376159667969, 0.0481769905090332, 0.04807680130004883, 0.04816252899169922, 0.04822428894042969, 0.04807500839233399, 0.048254718780517576, 0.04803631973266602, 0.04817049789428711, 0.04822367858886719, 0.0481247673034668, 0.04855398559570313, 0.04826521682739258, 0.04849868774414062, 0.04833884811401367, 0.04844348907470703, 0.048367038726806644, 0.04840300750732422, 0.05048524856567383, 0.04894502258300781, 0.04827971267700195, 0.047988895416259766, 0.04782489776611328, 0.04800511932373047, 0.04788169479370117, 0.048143009185791015, 0.04801715087890625, 0.0479725456237793, 0.04782483291625977, 0.047875358581542966, 0.04790140914916992, 0.04807884979248047, 0.047876094818115236, 0.048228351593017575, 0.048078655242919925, 0.04811747360229492, 0.04812169647216797, 0.048390785217285154, 0.04864521789550781, 0.04863001632690429, 0.04846454238891602, 0.04832665634155273, 0.048140289306640625, 0.0481954231262207, 0.04821539306640625, 0.04807267379760742, 0.04822512054443359, 0.0481743049621582, 0.047988639831542966, 0.04798137664794922, 0.048029281616210937, 0.04796057510375976, 0.04806409454345703, 0.048068191528320314, 0.04826598358154297, 0.04811779022216797, 0.04839984130859375, 0.04847875213623047, 0.04861539077758789, 0.04860742568969727, 0.04852035140991211, 0.04838576126098633, 0.048399326324462894, 0.04830003356933594, 0.04820326232910156, 0.048236446380615236, 0.048192031860351564, 0.04823046493530273, 0.04803379058837891, 0.04808201599121094, 0.04823855972290039, 0.04810028839111328, 0.048196895599365235, 0.04811849594116211, 0.048162849426269534, 0.048162849426269534, 0.04822537612915039, 0.04838896179199219, 0.048347137451171876, 0.048402431488037106, 0.048363521575927736, 0.050638721466064456, 0.048599422454833986, 0.04799897766113281, 0.04786175918579102, 0.04782815933227539, 0.04777558517456055, 0.04788528060913086, 0.047783935546875, 0.047869697570800784, 0.0477861442565918, 0.04775740814208984, 0.04782227325439453, 0.04783161544799805, 0.04800307083129883, 0.04794572830200195, 0.047925247192382815, 0.048080192565917966, 0.0480447998046875, 0.04801059341430664, 0.0482861442565918, 0.048424991607666015, 0.04845375823974609, 0.04836284637451172, 0.04806630325317383, 0.04800723266601563, 0.047936065673828125, 0.047908958435058595, 0.04790707015991211, 0.0479536018371582, 0.0481794548034668, 0.04801945495605469, 0.04806054306030273, 0.047998847961425783, 0.04797030258178711, 0.047916961669921876, 0.048162368774414065, 0.04808348846435547, 0.048246784210205076, 0.048130046844482424, 0.048323841094970704, 0.048487327575683595, 0.04846115112304687, 0.048374080657958986, 0.04828387069702148, 0.04832662582397461, 0.048508926391601564, 0.04816876983642578, 0.048025440216064454, 0.04806009674072265, 0.0480951042175293, 0.0481280632019043, 0.04808319854736328, 0.04814281463623047, 0.04811980819702148, 0.048113662719726565, 0.048233470916748046, 0.04822732925415039, 0.04841632080078125, 0.04840275192260742, 0.04828387069702148, 0.04851004791259766, 0.04840284729003906, 0.04841292953491211, 0.05049379348754883, 0.048779422760009766, 0.048067008972167966, 0.04790182495117187, 0.047860607147216794, 0.047811969757080075, 0.04779052734375, 0.047917247772216794, 0.04789657592773437, 0.04801887893676758, 0.04807123184204101, 0.04798463821411133, 0.04791484832763672, 0.04782505416870117, 0.047905792236328126, 0.04792348861694336, 0.047943519592285155, 0.04802150344848633, 0.04800806427001953, 0.04818467330932617, 0.04860550308227539, 0.04842940902709961, 0.04838809585571289, 0.04822630310058594, 0.04813833618164062, 0.04801865768432617, 0.0480959358215332, 0.0481300163269043, 0.048265056610107424, 0.04803193664550781, 0.04801126480102539, 0.04798681640625, 0.04807462310791016, 0.04804118347167969, 0.04814313507080078, 0.04811980819702148, 0.048277408599853515, 0.04822844696044922, 0.0482979850769043, 0.04827344131469727, 0.04846588897705078, 0.048494590759277346, 0.04838195037841797, 0.048428192138671874, 0.04827827072143555, 0.04829193496704102, 0.0481710090637207, 0.048247806549072264, 0.04824335861206055, 0.04820556640625, 0.04811008071899414, 0.0483328971862793, 0.04821212768554688, 0.048166751861572266, 0.048132095336914066, 0.04828521728515625, 0.04823731231689453, 0.04836748886108398, 0.048371551513671875, 0.04851507186889648, 0.048429153442382813, 0.048607135772705076, 0.04847206497192383, 0.05049971389770508, 0.04876697540283203, 0.048233566284179685, 0.048142398834228516, 0.04804390335083008, 0.04808156967163086, 0.0479747200012207, 0.048138240814208984, 0.048121631622314455, 0.04812412643432617, 0.04811775970458984, 0.04814438247680664, 0.04803193664550781, 0.048213024139404294, 0.048183361053466794, 0.048186080932617184, 0.048129470825195315, 0.04823068618774414, 0.04825494384765625, 0.04849407958984375, 0.048651073455810545, 0.048637664794921875, 0.048498977661132814, 0.04840179061889648, 0.04821868896484375, 0.048213760375976564, 0.04818483352661133, 0.048081600189208984, 0.04815679931640625, 0.0481341438293457, 0.04832172775268555, 0.04818937683105469, 0.04828351974487305, 0.04837273788452148, 0.04830374526977539, 0.048293888092041014, 0.04819782257080078, 0.048363712310791014, 0.04839833450317383, 0.04849478530883789, 0.04867862319946289, 0.04858848190307617, 0.048578144073486325, 0.048476993560791014, 0.04839846420288086, 0.0484466552734375, 0.04835187149047852, 0.048363582611083984, 0.0483279037475586, 0.04829990386962891, 0.04817523193359375, 0.048481056213378906, 0.04835548782348633, 0.04829964828491211, 0.04829177474975586, 0.04821430587768555, 0.04818124771118164, 0.048388031005859374, 0.04844345474243164, 0.04855795288085937, 0.048600383758544925, 0.048608062744140625, 0.048465503692626956, 0.05048566436767578, 0.04885488128662109, 0.04823484802246094, 0.04803023910522461, 0.048045921325683597, 0.04798463821411133, 0.04814233779907227, 0.048112735748291016, 0.04800604629516601, 0.047994686126708985, 0.048115455627441406, 0.04803414535522461, 0.04786118316650391, 0.048036128997802734, 0.047978527069091795, 0.04826556777954102, 0.04811161422729492, 0.04812799835205078, 0.048151775360107424, 0.048239391326904295, 0.04866457748413086, 0.048568286895751954, 0.04847824096679688, 0.04830003356933594, 0.04833280181884766, 0.048220321655273436, 0.04810736083984375, 0.04820787048339844, 0.04817824172973633, 0.04807980728149414, 0.048154048919677735, 0.04814652633666992, 0.04809366226196289, 0.04816486358642578, 0.04820787048339844, 0.048271358489990236, 0.04827859115600586, 0.04832147216796875, 0.04843270492553711, 0.048372161865234374, 0.04862118530273438, 0.04849638366699219, 0.04850956726074219, 0.04838358306884766, 0.048449951171875, 0.04844748687744141, 0.04832406234741211, 0.048364063262939454, 0.04831350326538086, 0.04825548934936524, 0.048195934295654295, 0.04824476623535156, 0.0483430061340332, 0.04852345657348633, 0.048365375518798825, 0.048467967987060545, 0.04841267013549805, 0.048457534790039065, 0.04852134323120117, 0.04848646545410156, 0.048502880096435545, 0.04852918243408203, 0.048648319244384765, 0.050347999572753904, 0.04873532867431641, 0.048140865325927734, 0.04796627044677734, 0.047962432861328126, 0.0479021110534668, 0.04787891387939453, 0.04796921539306641, 0.04789715194702148, 0.04791289520263672, 0.04789712142944336, 0.04788611221313477, 0.04799065780639648, 0.04790879821777344, 0.04801523208618164, 0.0479378547668457, 0.04794169616699219, 0.048041248321533205, 0.04804867172241211, 0.04844972610473633, 0.0486297607421875, 0.04842623901367187, 0.048445758819580076, 0.04827932739257813, 0.04811439895629883, 0.04824825668334961, 0.048187904357910157, 0.04820787048339844, 0.04819046401977539, 0.04812083053588867, 0.04815420913696289, 0.04818179321289062, 0.04826217651367187, 0.04825174331665039, 0.04816864013671875, 0.048322879791259765, 0.04829100799560547, 0.04830495834350586, 0.04839136123657226, 0.04845036697387695, 0.048642047882080076, 0.04893199920654297, 0.04854460906982422, 0.04861030578613281, 0.04846899032592773, 0.048500415802001956, 0.04844326400756836, 0.04832505416870117, 0.048358497619628904, 0.04830915069580078, 0.048256992340087894, 0.04828131103515625, 0.04831468963623047, 0.04848796844482422, 0.04844182586669922, 0.04843110275268555, 0.0483749771118164, 0.048509281158447264, 0.04844182586669922, 0.04851030349731445, 0.04864886474609375, 0.048623615264892575, 0.04879359817504883]",tokens/s,20.72785849074811,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 614, in __init__ self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 271, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 142.12 MiB is free. Process 100115 has 14.60 GiB memory in use. Of the allocated memory 14.48 GiB is allocated by PyTorch, and 1.53 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,835.82976,3354.329088,0.0,2959.081472,2957.493248,s,1,7.60441064453125,7.60441064453125,0.0,7.60441064453125,7.60441064453125,7.60441064453125,7.60441064453125,[7.60441064453125],,kWh,1.005276507085379e-05,1.1015301663254118e-06,4.153892212005461e-06,1.5308187449184663e-05,,MB,1128.615936,3423.535104,0.0,3017.801728,2552.885248,s,10,0.5859242820739747,0.058592428207397476,0.002362301742255165,0.05809035110473633,0.05996758232116699,0.06253839855194092,0.06459505153656006,"[0.06510921478271485, 0.0585645751953125, 0.05581372833251953, 0.05712700653076172, 0.05939628982543945, 0.058537055969238284, 0.057635486602783205, 0.05768281555175781, 0.05849788665771485, 0.05756022262573242]",tokens/s,4369.1652288900905,kWh,2.154151239307669e-06,2.3743067485282434e-07,1.4369149567204602e-06,3.828496870880954e-06,tokens/kWh,66866973.8108192,MB,1138.286592,3423.535104,0.0,3017.801728,2552.887808,s,10,12.852337768554687,1.285233776855469,0.012224236546737058,1.289853271484375,1.2956299560546873,1.2969684204101561,1.298039191894531,"[1.298306884765625, 1.29533251953125, 1.294235595703125, 1.293533203125, 1.2904178466796874, 1.2892886962890624, 1.275995849609375, 1.2716734619140626, 1.2858623046875, 1.25769140625]",tokens/s,49.01831957306602,kWh,3.715348410902399e-05,4.097759460257526e-06,2.1655742406280632e-05,6.290698597556217e-05,tokens/kWh,1001478.5961049536,,s,630,12.84996529006958,0.020396770301697745,0.00037085017510198466,0.020403215408325195,0.020714876365661623,0.020847481441497805,0.02165227920532227,"[0.021066112518310545, 0.02083488082885742, 0.02062531280517578, 0.02076054382324219, 0.020461727142333984, 0.02046553611755371, 0.020426752090454102, 0.020465215682983397, 0.02067840003967285, 0.02053590393066406, 0.020598527908325195, 0.020515167236328125, 0.020353023529052734, 0.02046953582763672, 0.020455135345458984, 0.020515327453613282, 0.020817920684814452, 0.020729312896728514, 0.02049430465698242, 0.020668800354003907, 0.020670047760009767, 0.020471839904785155, 0.02052355194091797, 0.020469696044921874, 0.020738143920898438, 0.020580352783203124, 0.020473407745361327, 0.020440927505493166, 0.020510751724243163, 0.020568639755249023, 0.0203505916595459, 0.02026697540283203, 0.020344831466674804, 0.02058608055114746, 0.02115839958190918, 0.02113260841369629, 0.022361087799072265, 0.02051584053039551, 0.020597152709960938, 0.020817695617675783, 0.021066560745239257, 0.0205614070892334, 0.02032614326477051, 0.02053606414794922, 0.020586496353149415, 0.02038374328613281, 0.020475839614868162, 0.02048543930053711, 0.020498592376708983, 0.020699743270874024, 0.020553728103637696, 0.02041651153564453, 0.020514463424682616, 0.020670816421508788, 0.020668415069580077, 0.020525056838989256, 0.020358400344848634, 0.02049305534362793, 0.020557823181152343, 0.020657760620117187, 0.020686464309692384, 0.020398880004882814, 0.020418560028076172, 0.02129913520812988, 0.02044937515258789, 0.02044313621520996, 0.020438335418701173, 0.020499135971069334, 0.020596736907958983, 0.020344831466674804, 0.020529151916503906, 0.020545536041259766, 0.02068070411682129, 0.020444320678710937, 0.020466527938842773, 0.020559871673583984, 0.020563968658447264, 0.020537343978881836, 0.020682752609252928, 0.02056188774108887, 0.020637727737426757, 0.021139455795288087, 0.020524543762207033, 0.02073855972290039, 0.02047385597229004, 0.0210984001159668, 0.020659360885620117, 0.02035807991027832, 0.02040403175354004, 0.02050886344909668, 0.020812864303588866, 0.02082419204711914, 0.020410879135131836, 0.020457855224609377, 0.02056185531616211, 0.020596736907958983, 0.020531200408935548, 0.02075823974609375, 0.020402368545532228, 0.020547679901123047, 0.02059587287902832, 0.020553728103637696, 0.02042678451538086, 0.020369535446166993, 0.0203885440826416, 0.020549631118774413, 0.02048793601989746, 0.020549888610839843, 0.020465375900268555, 0.020435136795043947, 0.020608768463134766, 0.020525407791137696, 0.020568063735961914, 0.020458656311035155, 0.0205296630859375, 0.020626943588256837, 0.02035593605041504, 0.02057027244567871, 0.020567264556884766, 0.020607616424560545, 0.020518911361694335, 0.02039193534851074, 0.020479999542236327, 0.020534751892089843, 0.020465503692626952, 0.02038240051269531, 0.02088243293762207, 0.020664575576782227, 0.02041484832763672, 0.020543872833251955, 0.020746240615844725, 0.020398080825805662, 0.020849727630615236, 0.02044380760192871, 0.020334880828857423, 0.020512767791748047, 0.020389888763427736, 0.021529727935791016, 0.020369760513305663, 0.020412960052490235, 0.020612096786499022, 0.020242719650268554, 0.020423391342163085, 0.02060633659362793, 0.020472448348999025, 0.020578304290771485, 0.020781248092651368, 0.020649791717529297, 0.02050048065185547, 0.02042265510559082, 0.020436607360839843, 0.020599168777465822, 0.020567039489746093, 0.02037820816040039, 0.02026460838317871, 0.02044326400756836, 0.02032633590698242, 0.020087135314941405, 0.02034320068359375, 0.020228031158447266, 0.02033203125, 0.020213760375976563, 0.021139968872070314, 0.020799488067626954, 0.020573631286621093, 0.020531776428222657, 0.020448671340942384, 0.02056867218017578, 0.020701183319091796, 0.02047385597229004, 0.02041609573364258, 0.020422624588012694, 0.020314815521240235, 0.02025651168823242, 0.02041651153564453, 0.020320287704467775, 0.0203504638671875, 0.020083168029785155, 0.020351999282836913, 0.02077289581298828, 0.020705408096313476, 0.020458335876464843, 0.020699392318725585, 0.022826751708984374, 0.020645696640014647, 0.02057360076904297, 0.020406911849975586, 0.020424032211303712, 0.020321088790893553, 0.02088960075378418, 0.020375520706176757, 0.020336639404296874, 0.020813535690307618, 0.020738336563110353, 0.02062745666503906, 0.02045283126831055, 0.020380191802978516, 0.020395488739013673, 0.02068675231933594, 0.020378240585327147, 0.02040415954589844, 0.020387903213500976, 0.02037881660461426, 0.020322240829467774, 0.02026723289489746, 0.020404064178466796, 0.020703712463378907, 0.020490591049194335, 0.020297727584838866, 0.02039948844909668, 0.020417152404785158, 0.020733951568603515, 0.020858816146850586, 0.020471872329711913, 0.02045747184753418, 0.02034876823425293, 0.020319807052612306, 0.02026691246032715, 0.02046636772155762, 0.02065203285217285, 0.020466815948486327, 0.020539264678955078, 0.020494335174560546, 0.02041548728942871, 0.020412479400634766, 0.02055776023864746, 0.0204466552734375, 0.02082259178161621, 0.020447231292724608, 0.020410367965698242, 0.020369407653808593, 0.02038374328613281, 0.020798847198486327, 0.020638336181640626, 0.0203855037689209, 0.020336927413940428, 0.020356832504272462, 0.02049849510192871, 0.020762847900390624, 0.020410367965698242, 0.0204977912902832, 0.020458112716674803, 0.020467039108276366, 0.020286111831665038, 0.020400224685668947, 0.020483999252319335, 0.020504159927368162, 0.020430816650390624, 0.020422975540161134, 0.020510719299316405, 0.021272031784057618, 0.022427616119384767, 0.020874624252319337, 0.02043996810913086, 0.020322303771972656, 0.020555776596069338, 0.020563968658447264, 0.020361215591430663, 0.02037555122375488, 0.02037555122375488, 0.020426816940307617, 0.020391744613647463, 0.02035036849975586, 0.020415199279785155, 0.02046883201599121, 0.020540447235107423, 0.020559743881225587, 0.020361120223999024, 0.02067875289916992, 0.020927743911743166, 0.02074025535583496, 0.020564479827880858, 0.02065417671203613, 0.020415552139282228, 0.020495296478271485, 0.02044313621520996, 0.020551263809204103, 0.020318784713745118, 0.020387104034423828, 0.020437568664550782, 0.020215808868408205, 0.020375455856323242, 0.020284799575805663, 0.020392671585083007, 0.020576255798339844, 0.020168319702148437, 0.02047433662414551, 0.020367040634155273, 0.020367584228515624, 0.020745311737060547, 0.020517791748046875, 0.02040233612060547, 0.02052079963684082, 0.020455423355102538, 0.020440927505493166, 0.020528703689575194, 0.020400480270385744, 0.020340959548950197, 0.02033433532714844, 0.020318496704101564, 0.021116895675659178, 0.020486175537109377, 0.02063564872741699, 0.020516511917114257, 0.020412832260131835, 0.020492223739624022, 0.020350976943969725, 0.020206975936889648, 0.020854560852050782, 0.020509536743164063, 0.02059676742553711, 0.02047792053222656, 0.020379520416259764, 0.020434240341186523, 0.020489023208618163, 0.02088640022277832, 0.020379520416259764, 0.020236415863037108, 0.020536352157592773, 0.020687135696411132, 0.020585119247436525, 0.020477983474731447, 0.020431968688964845, 0.020341663360595702, 0.02047385597229004, 0.020628639221191406, 0.020433536529541017, 0.020408384323120116, 0.02032451248168945, 0.020545440673828123, 0.02067465591430664, 0.020461856842041017, 0.02064067268371582, 0.020521631240844728, 0.02047369575500488, 0.020277568817138672, 0.020316160202026368, 0.020928512573242186, 0.020516159057617188, 0.020480287551879882, 0.020394176483154298, 0.020347103118896485, 0.02036636734008789, 0.02031622314453125, 0.0204705924987793, 0.0208155517578125, 0.020304288864135742, 0.020307968139648438, 0.020391424179077147, 0.02025507164001465, 0.020297887802124024, 0.020365312576293947, 0.020338687896728515, 0.020197376251220703, 0.02053638458251953, 0.020701887130737305, 0.020522335052490234, 0.020585023880004882, 0.020396095275878906, 0.0204716796875, 0.02042255973815918, 0.02035353660583496, 0.02069708824157715, 0.020436992645263673, 0.020387840270996094, 0.02026905632019043, 0.020415552139282228, 0.02056604766845703, 0.020157344818115236, 0.02027724838256836, 0.020641183853149413, 0.02080214309692383, 0.020518911361694335, 0.0205897274017334, 0.02038256072998047, 0.02049238395690918, 0.020385696411132814, 0.02022604751586914, 0.02081875228881836, 0.020418336868286133, 0.02046175956726074, 0.020223648071289062, 0.02026473617553711, 0.02034262466430664, 0.020339424133300782, 0.02002943992614746, 0.020116607666015626, 0.01990950393676758, 0.020244768142700195, 0.020332256317138673, 0.02036735916137695, 0.020353023529052734, 0.020308063507080077, 0.020321279525756835, 0.020239263534545898, 0.020141439437866213, 0.02008127975463867, 0.020015104293823242, 0.019920896530151368, 0.019986080169677733, 0.020010879516601562, 0.01982512092590332, 0.021702335357666015, 0.02112544059753418, 0.020215808868408205, 0.020246143341064452, 0.02060736083984375, 0.02007859230041504, 0.020531200408935548, 0.02005731201171875, 0.020046144485473632, 0.019919008255004884, 0.020033855438232422, 0.02020966339111328, 0.020714559555053712, 0.020298688888549805, 0.020106592178344727, 0.02007107162475586, 0.020136959075927736, 0.020173824310302735, 0.02011039924621582, 0.020013311386108398, 0.02024323272705078, 0.020260768890380858, 0.020298912048339845, 0.020278112411499023, 0.020484256744384765, 0.020156160354614257, 0.020084320068359376, 0.020166976928710938, 0.019982143402099608, 0.020182432174682616, 0.020291872024536133, 0.020503231048583984, 0.020256767272949217, 0.020186656951904296, 0.020084768295288085, 0.020695232391357423, 0.02007046318054199, 0.019983936309814453, 0.020088544845581056, 0.020717727661132813, 0.020153375625610353, 0.02018604850769043, 0.020221439361572266, 0.0199616641998291, 0.019862016677856444, 0.020035776138305664, 0.020262912750244142, 0.020312000274658203, 0.020231231689453125, 0.020261215209960937, 0.02011408042907715, 0.019976192474365235, 0.019995744705200196, 0.02014668846130371, 0.020264991760253905, 0.01996633529663086, 0.01989017677307129, 0.02005638313293457, 0.02026652717590332, 0.019949216842651368, 0.019876224517822266, 0.01999488067626953, 0.019996543884277344, 0.019900224685668946, 0.019879552841186525, 0.019929664611816406, 0.01988096046447754, 0.019993024826049803, 0.020518943786621092, 0.019972192764282228, 0.02005990409851074, 0.019971839904785155, 0.02012460708618164, 0.02036729621887207, 0.02080508804321289, 0.02080419158935547, 0.020658079147338866, 0.020574304580688478, 0.020661279678344725, 0.02052102470397949, 0.020721759796142578, 0.02085487937927246, 0.020675296783447265, 0.02048409652709961, 0.020155967712402342, 0.02002579116821289, 0.02020672035217285, 0.01999875259399414, 0.019850080490112304, 0.01988582420349121, 0.019799808502197265, 0.0199869441986084, 0.019927040100097656, 0.019869632720947265, 0.020035648345947267, 0.020189184188842774, 0.020275136947631837, 0.020230207443237305, 0.0202128963470459, 0.020095775604248047, 0.020451391220092773, 0.020184320449829103, 0.021155391693115234, 0.02065043258666992, 0.02047529602050781, 0.020656864166259767, 0.020289535522460937, 0.020059808731079102, 0.020040031433105468, 0.02002707290649414, 0.020166976928710938, 0.020197376251220703, 0.020105215072631837, 0.020153440475463868, 0.02010745620727539, 0.02019606399536133, 0.0200392951965332, 0.020093311309814454, 0.020641759872436525, 0.021180448532104493, 0.020551679611206054, 0.020414464950561522, 0.02025494384765625, 0.020300575256347656, 0.020220928192138672, 0.019963903427124022, 0.01983692741394043, 0.019812351226806642, 0.020319520950317384, 0.022896383285522463, 0.020020191192626952, 0.020242240905761717, 0.020376928329467775, 0.02020796775817871, 0.020017759323120117, 0.020375200271606445, 0.020583776473999022, 0.020418495178222657, 0.02068070411682129, 0.021214176177978515, 0.02055276870727539, 0.020251583099365235, 0.020213056564331054, 0.021889759063720704, 0.023609024047851562, 0.020303808212280273, 0.02025904083251953, 0.020203039169311522, 0.020273632049560546, 0.020357248306274413, 0.020189184188842774, 0.019868736267089845, 0.020318464279174806, 0.020626111984252928, 0.02025267219543457, 0.0202259521484375, 0.0200479679107666, 0.01987993621826172, 0.019869695663452147, 0.019916479110717773, 0.0198590087890625, 0.020060928344726562, 0.020844736099243165, 0.020325439453125, 0.020484384536743165, 0.020815040588378905, 0.020240703582763673, 0.020048383712768555, 0.020106719970703124, 0.01999523162841797, 0.019959487915039063, 0.01983513641357422, 0.019748544692993163, 0.019869888305664062, 0.020027103424072264, 0.0198756160736084, 0.01991468811035156, 0.019755712509155275, 0.01980191993713379, 0.01981273651123047, 0.019928159713745116, 0.0199769287109375, 0.01981439971923828, 0.019974143981933593, 0.01995110321044922, 0.01984355163574219, 0.019891616821289062, 0.020498176574707032, 0.019849279403686523, 0.019995456695556642, 0.01989414405822754, 0.020402399063110352, 0.01985526466369629, 0.01974675178527832, 0.020035648345947267, 0.02002124786376953, 0.019998655319213868, 0.019843135833740234, 0.01981955146789551, 0.02006524848937988, 0.020015104293823242, 0.020245983123779298, 0.019849760055541992, 0.01994710350036621, 0.019967744827270508, 0.02000543975830078, 0.01996735954284668, 0.019847904205322266, 0.019860992431640623, 0.019906335830688477, 0.019872095108032225, 0.019827072143554687, 0.019736576080322265, 0.01998361587524414, 0.019966720581054687, 0.01983283233642578, 0.019861631393432617, 0.019925952911376953, 0.01978191947937012, 0.01995779228210449, 0.020001312255859376, 0.019867551803588866, 0.019775680541992188, 0.020377023696899414, 0.01984979248046875, 0.020045440673828126, 0.01998476791381836, 0.019994623184204103]",tokens/s,49.027369784948945,, float32-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,835.735552,8760.786944,0.0,8365.539328,8230.228992,s,1,7.5355458984375,7.5355458984375,0.0,7.5355458984375,7.5355458984375,7.5355458984375,7.5355458984375,[7.5355458984375],,kWh,1.1459933887461678e-05,1.2341689698212937e-06,3.4725027780041495e-06,1.616660563528712e-05,,MB,1149.796352,8951.627776,0.0,8545.8944,8499.295232,s,10,2.679052764892578,0.2679052764892578,0.010860641831617654,0.2712129821777344,0.27328599548339844,0.2738173904418945,0.2742425064086914,"[0.2356790771484375, 0.27014712524414064, 0.27174835205078124, 0.27090145874023436, 0.26872930908203124, 0.2731679077148437, 0.2715245056152344, 0.2729480285644531, 0.27434878540039065, 0.26985821533203125]",tokens/s,955.5616199678128,kWh,7.3679221284370055e-06,8.121571587166401e-07,4.902892811200002e-06,1.3082972098353649e-05,tokens/kWh,19567419.243538313,MB,1154.797568,8953.724928,0.0,8547.991552,8499.297792,s,10,18.936921508789062,1.8936921508789062,0.005111415589837481,1.89559033203125,1.8990034301757812,1.8996725524902343,1.900207850341797,"[1.8848922119140625, 1.8963909912109376, 1.894943603515625, 1.892427734375, 1.885875732421875, 1.898854736328125, 1.8976529541015625, 1.896237060546875, 1.8893048095703124, 1.9003416748046875]",tokens/s,33.26834299374386,kWh,5.593598999989695e-05,6.169981117973483e-06,3.6891668402201307e-05,9.899763952007175e-05,tokens/kWh,636378.8096909802,,s,630,18.934200822830196,0.030054287020365396,0.000419725913338335,0.029986000061035155,0.030328757858276368,0.03050526542663574,0.0327036884689331,"[0.03242416000366211, 0.030667360305786134, 0.030141727447509765, 0.02985203170776367, 0.029776224136352537, 0.02967897605895996, 0.02964748764038086, 0.02971238327026367, 0.029749248504638674, 0.02972390365600586, 0.029741855621337892, 0.029601503372192382, 0.02968310356140137, 0.029616992950439455, 0.029657087326049804, 0.02959974479675293, 0.02976518440246582, 0.029729215621948243, 0.029764671325683594, 0.02981091117858887, 0.029688543319702148, 0.029853696823120116, 0.02996428871154785, 0.02980454444885254, 0.029784063339233398, 0.02978816032409668, 0.029814016342163085, 0.029776639938354492, 0.0298024959564209, 0.029878271102905272, 0.029820928573608397, 0.029859840393066408, 0.03020595169067383, 0.03010527992248535, 0.030054719924926757, 0.02996553611755371, 0.030034719467163087, 0.02991923141479492, 0.029914335250854494, 0.02989481544494629, 0.02987446403503418, 0.029851999282836914, 0.029911039352416992, 0.030033119201660158, 0.030029951095581056, 0.029911712646484376, 0.029937664031982423, 0.029884416580200194, 0.029866016387939454, 0.0299233283996582, 0.029976287841796876, 0.02992767906188965, 0.030025279998779297, 0.029931968688964843, 0.02997248077392578, 0.02997452735900879, 0.029962175369262694, 0.029883615493774413, 0.029870559692382812, 0.029886848449707033, 0.02982809638977051, 0.029907264709472657, 0.029999807357788087, 0.03290230560302734, 0.03099091148376465, 0.03013043212890625, 0.02987932777404785, 0.029702239990234375, 0.029717536926269533, 0.029621728897094725, 0.029688192367553712, 0.029620223999023438, 0.029624319076538085, 0.02974652862548828, 0.029745311737060548, 0.029775455474853517, 0.029754495620727538, 0.02989641571044922, 0.029706144332885744, 0.02975257682800293, 0.029741376876831056, 0.029698047637939453, 0.029844127655029296, 0.02996832084655762, 0.030048255920410157, 0.03000934410095215, 0.030011392593383788, 0.030007167816162108, 0.029967487335205076, 0.030071807861328126, 0.030019584655761718, 0.029916351318359374, 0.030004032135009767, 0.03016703987121582, 0.03041279983520508, 0.030543872833251953, 0.030498559951782227, 0.03054751968383789, 0.03041299247741699, 0.030374176025390626, 0.030316768646240236, 0.03024460792541504, 0.029997312545776367, 0.03013222312927246, 0.030242816925048828, 0.02996643257141113, 0.03014851188659668, 0.030123008728027343, 0.030043136596679686, 0.029932863235473634, 0.03013497543334961, 0.030253055572509766, 0.029961536407470703, 0.030270015716552735, 0.03019379234313965, 0.030119935989379884, 0.030228479385375977, 0.03021993637084961, 0.03014486312866211, 0.03008064079284668, 0.03000556755065918, 0.029921279907226563, 0.03004195213317871, 0.0303287353515625, 0.030200128555297853, 0.030318431854248047, 0.03271088027954101, 0.030930816650390627, 0.030321407318115234, 0.029898752212524415, 0.02976483154296875, 0.02975823974609375, 0.029944896697998047, 0.0296847038269043, 0.02999465560913086, 0.03007689666748047, 0.0297903995513916, 0.030206111907958983, 0.029803871154785156, 0.029818559646606447, 0.029751903533935548, 0.029932960510253907, 0.029704704284667968, 0.029819488525390625, 0.029714303970336912, 0.02979840087890625, 0.02978201675415039, 0.030007295608520508, 0.029859840393066408, 0.029837312698364257, 0.02976153564453125, 0.029734912872314452, 0.030007295608520508, 0.029826400756835937, 0.03021683120727539, 0.02993769645690918, 0.03018060874938965, 0.030399168014526367, 0.030398527145385743, 0.030492671966552733, 0.030305791854858398, 0.030429695129394533, 0.030385215759277343, 0.030120351791381835, 0.030062911987304687, 0.029926847457885743, 0.030183263778686523, 0.03015776062011719, 0.030044160842895507, 0.030097408294677733, 0.030070783615112305, 0.030005247116088866, 0.02993152046203613, 0.02992265510559082, 0.030134944915771483, 0.030225791931152345, 0.030245216369628906, 0.030140703201293945, 0.030291967391967774, 0.030013439178466796, 0.029976160049438476, 0.030105472564697266, 0.02993404769897461, 0.030019039154052733, 0.030037631988525392, 0.029876319885253907, 0.02994470405578613, 0.030137760162353516, 0.030101503372192383, 0.032686080932617184, 0.03074835205078125, 0.03022265625, 0.029915391921997072, 0.029895679473876953, 0.029819648742675783, 0.029845312118530275, 0.029944255828857423, 0.029928895950317384, 0.02967977523803711, 0.029718687057495117, 0.0296342716217041, 0.03002191925048828, 0.02975948715209961, 0.02978358459472656, 0.029948383331298827, 0.029847103118896483, 0.029849151611328124, 0.03005939292907715, 0.029984256744384766, 0.029870464324951173, 0.030093439102172853, 0.029841407775878907, 0.02986400032043457, 0.030054336547851564, 0.029869504928588867, 0.029872703552246093, 0.029870080947875976, 0.02983526420593262, 0.030052352905273437, 0.030082944869995118, 0.030328960418701173, 0.03038617515563965, 0.03034217643737793, 0.030172096252441407, 0.030150047302246095, 0.03005504035949707, 0.030192703247070313, 0.03009836769104004, 0.030039552688598634, 0.030101024627685546, 0.02992438316345215, 0.029999040603637697, 0.030089216232299806, 0.030052352905273437, 0.02998240089416504, 0.02999942398071289, 0.02992505645751953, 0.029970048904418945, 0.02995065689086914, 0.0299005126953125, 0.029832576751708983, 0.030040512084960936, 0.030007360458374023, 0.03006096076965332, 0.02997452735900879, 0.029969919204711915, 0.029929983139038087, 0.030109695434570313, 0.030003200531005858, 0.029990943908691406, 0.03002774429321289, 0.02998681640625, 0.032603233337402344, 0.030684064865112305, 0.03004140853881836, 0.029840063095092774, 0.02968329620361328, 0.029661600112915038, 0.02966281509399414, 0.02962499237060547, 0.029615583419799803, 0.02959347152709961, 0.02964521598815918, 0.029741056442260744, 0.029663103103637695, 0.029699935913085937, 0.029720863342285155, 0.029724128723144533, 0.02969215965270996, 0.02972217559814453, 0.029764320373535155, 0.029749248504638674, 0.029683391571044923, 0.029750783920288085, 0.02972329521179199, 0.02967302322387695, 0.029723039627075197, 0.029726911544799804, 0.029710336685180663, 0.029766975402832033, 0.02976633644104004, 0.029838560104370117, 0.030062400817871093, 0.03022332763671875, 0.030457632064819336, 0.030341344833374022, 0.03026460838317871, 0.03008995246887207, 0.03002572822570801, 0.030078975677490235, 0.029988224029541016, 0.029864576339721678, 0.029861440658569337, 0.02985004806518555, 0.02983103942871094, 0.029830400466918944, 0.02986073684692383, 0.029867488861083983, 0.029866527557373047, 0.029865983963012696, 0.029999103546142578, 0.029935039520263673, 0.02998963165283203, 0.029988319396972656, 0.029974880218505858, 0.02994175910949707, 0.029963903427124024, 0.029892192840576173, 0.029883167266845704, 0.030040063858032227, 0.029994047164916993, 0.03010825538635254, 0.030009183883666992, 0.030086816787719725, 0.03007369613647461, 0.03281955337524414, 0.03074662399291992, 0.030135583877563477, 0.029820959091186525, 0.02976838493347168, 0.029669376373291017, 0.029577215194702147, 0.029666784286499024, 0.02970889663696289, 0.029832927703857422, 0.030029504776000977, 0.029959903717041016, 0.030077760696411132, 0.030029823303222656, 0.029988704681396486, 0.030019744873046875, 0.02986537551879883, 0.03053219223022461, 0.030080320358276368, 0.029802431106567384, 0.0299400634765625, 0.03007263946533203, 0.029846176147460938, 0.030010911941528322, 0.03023094367980957, 0.029868032455444334, 0.03013327980041504, 0.02998179244995117, 0.030080896377563476, 0.030143680572509764, 0.03019830322265625, 0.030246463775634766, 0.030637983322143555, 0.030320671081542967, 0.03040336036682129, 0.03040870475769043, 0.030295040130615233, 0.030166015625, 0.030208000183105467, 0.030064640045166017, 0.03004787254333496, 0.029991296768188475, 0.030097408294677733, 0.030220287322998047, 0.030228479385375977, 0.030211231231689454, 0.03019206428527832, 0.03019817543029785, 0.030150400161743165, 0.030161151885986327, 0.030173248291015625, 0.03008505630493164, 0.030076927185058593, 0.030192640304565428, 0.03001241683959961, 0.03015065574645996, 0.03026915168762207, 0.03019411277770996, 0.03006857681274414, 0.029982591629028322, 0.030068864822387697, 0.030271488189697264, 0.03012777519226074, 0.03287305450439453, 0.0310064640045166, 0.030153087615966797, 0.030005247116088866, 0.029834400177001952, 0.029749536514282228, 0.029909568786621092, 0.02979430389404297, 0.029931167602539062, 0.029920927047729494, 0.029889215469360353, 0.030170591354370117, 0.029907487869262697, 0.02982649612426758, 0.029801023483276366, 0.029863199234008788, 0.029909727096557617, 0.029963327407836915, 0.029929695129394532, 0.03004899215698242, 0.029968095779418946, 0.029905055999755858, 0.029780096054077148, 0.029824447631835938, 0.02997920036315918, 0.029880319595336914, 0.03091654396057129, 0.030005216598510742, 0.02981488037109375, 0.03011686325073242, 0.030108671188354492, 0.0304202880859375, 0.03053228759765625, 0.03054128074645996, 0.030340639114379883, 0.03015920066833496, 0.030106239318847657, 0.030010976791381837, 0.02999545669555664, 0.029995008468627928, 0.030051776885986328, 0.029990976333618163, 0.03012444877624512, 0.029941408157348633, 0.030095008850097655, 0.03025315284729004, 0.03013907241821289, 0.02993561553955078, 0.030212095260620117, 0.030166816711425782, 0.029878496170043945, 0.03001651191711426, 0.030071456909179686, 0.030226783752441408, 0.030082975387573242, 0.030163040161132814, 0.030067840576171876, 0.029979103088378905, 0.030257568359375, 0.030275583267211914, 0.030216192245483397, 0.03019161605834961, 0.03012403106689453, 0.03308038330078125, 0.03097078323364258, 0.03037593650817871, 0.029882368087768556, 0.029797439575195313, 0.03003049659729004, 0.030408992767333984, 0.029917184829711913, 0.029773279190063475, 0.029830911636352538, 0.02995631980895996, 0.030059072494506837, 0.029949951171875, 0.030040063858032227, 0.029937599182128908, 0.02988425636291504, 0.02980067253112793, 0.030151775360107422, 0.02994883155822754, 0.029895967483520507, 0.029985504150390627, 0.0301527042388916, 0.029839359283447265, 0.030089216232299806, 0.030035968780517577, 0.02997657585144043, 0.029869407653808595, 0.029860511779785156, 0.029824256896972656, 0.029934335708618164, 0.03021004867553711, 0.030216192245483397, 0.03031804847717285, 0.030484672546386718, 0.030242399215698244, 0.030431999206542968, 0.030390335083007813, 0.030268928527832032, 0.030029951095581056, 0.029960512161254883, 0.030228479385375977, 0.029945951461791992, 0.029902624130249023, 0.029919359207153322, 0.029949951171875, 0.029965599060058593, 0.02992201614379883, 0.030099456787109374, 0.030189535140991212, 0.029957792282104493, 0.03001910400390625, 0.029997919082641603, 0.02994528007507324, 0.029986495971679687, 0.030022527694702147, 0.029952096939086913, 0.0299703369140625, 0.029988000869750977, 0.029958976745605468, 0.0299704647064209, 0.030044000625610353, 0.03005766487121582, 0.030186464309692383, 0.03293356704711914, 0.031051231384277345, 0.030247711181640626, 0.029863967895507812, 0.029722015380859376, 0.02969251251220703, 0.029677568435668947, 0.029628416061401368, 0.029765695571899415, 0.02968364715576172, 0.029885759353637697, 0.029809343338012696, 0.029818431854248047, 0.029802944183349608, 0.029773567199707033, 0.029773759841918945, 0.029729087829589843, 0.02975103950500488, 0.029899072647094727, 0.02981216049194336, 0.029796512603759765, 0.02971683120727539, 0.029829120635986327, 0.02978611183166504, 0.029841312408447264, 0.029800287246704103, 0.029804319381713868, 0.029765504837036133, 0.029790815353393556, 0.029845504760742186, 0.029930559158325196, 0.030208959579467773, 0.030510751724243165, 0.03034761619567871, 0.030334304809570313, 0.030233247756958008, 0.030117151260375976, 0.03006057548522949, 0.030079679489135744, 0.029976415634155273, 0.02997395133972168, 0.029997791290283203, 0.029951007843017578, 0.029905311584472655, 0.02990342330932617, 0.029892032623291015, 0.029827648162841797, 0.029855743408203125, 0.03000044822692871, 0.0298187198638916, 0.029948415756225585, 0.02991958427429199, 0.02997039985656738, 0.029968416213989258, 0.029906944274902345, 0.02991823959350586, 0.029927839279174806, 0.029976543426513673, 0.030095840454101564, 0.029976703643798827, 0.030035295486450196, 0.030077472686767578, 0.030111295700073242, 0.03284787368774414, 0.030930944442749023, 0.030246496200561523, 0.029925119400024413, 0.029825696945190428, 0.02974048042297363, 0.029772287368774415, 0.029750879287719727, 0.02976358413696289, 0.029780288696289063, 0.029792192459106446, 0.029762943267822264, 0.029709152221679688, 0.02976972770690918, 0.02976563262939453, 0.02976972770690918, 0.02977996826171875, 0.029838399887084963, 0.029847679138183595, 0.029764608383178712, 0.02987615966796875, 0.029941631317138673, 0.03006073570251465, 0.0300664005279541, 0.030038112640380858, 0.030145856857299806, 0.03008787155151367, 0.03019161605834961, 0.030012639999389648, 0.030761760711669923, 0.030089216232299806, 0.03032035255432129, 0.030791967391967774, 0.030568384170532228, 0.030522687911987305, 0.030348255157470704, 0.030376928329467773, 0.030362432479858398, 0.030300159454345704, 0.030242816925048828, 0.0303636474609375, 0.030300159454345704, 0.029994848251342774, 0.030375648498535156, 0.03017568016052246, 0.030074527740478516, 0.030249311447143556, 0.030121984481811522, 0.030176448822021484, 0.030276416778564453, 0.03013222312927246, 0.030121376037597656, 0.03034396743774414, 0.03032806396484375, 0.03026531219482422, 0.030003583908081055, 0.030066911697387694, 0.03020185661315918, 0.030023263931274413, 0.030156383514404295, 0.03029203224182129, 0.03025177574157715, 0.0302259521484375]",tokens/s,33.273123375789275,, float32-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,814.362624,718.209024,0.0,322.961408,314.743808,s,1,7.12930908203125,7.12930908203125,0.0,7.12930908203125,7.12930908203125,7.12930908203125,7.12930908203125,[7.12930908203125],,kWh,4.444330741659997e-06,4.831028945992709e-07,9.975007979889927e-07,5.92493443424826e-06,,MB,1093.103616,810.483712,0.0,404.750336,391.119872,s,33,0.2363698244094849,0.007162721951802572,0.00012241536813872747,0.007113791942596435,0.007291059112548828,0.007445760154724121,0.007545480937957764,"[0.007535232067108154, 0.0070817599296569824, 0.0070991358757019046, 0.007550303936004639, 0.00729257583618164, 0.007106944084167481, 0.007197567939758301, 0.007075488090515137, 0.0072849922180175785, 0.007142528057098389, 0.007201119899749756, 0.007128448009490967, 0.007084000110626221, 0.007113791942596435, 0.007054240226745606, 0.007386112213134765, 0.007106272220611573, 0.00710313606262207, 0.007114751815795899, 0.007225279808044434, 0.007111711978912354, 0.007164415836334229, 0.007107615947723389, 0.0071018881797790525, 0.007068384170532227, 0.007080031871795654, 0.007123487949371338, 0.007161632061004639, 0.007251999855041504, 0.007114175796508789, 0.007083936214447022, 0.007061151981353759, 0.0070557122230529784]",tokens/s,35740.60276562529,kWh,2.3613727125809281e-07,2.6041602155796568e-08,1.5620697501942162e-07,4.1838584843331104e-07,tokens/kWh,611875380.007757,MB,1103.044608,825.163776,0.0,419.4304,391.122432,s,33,9.878880798339848,0.2993600241921165,0.024886758566057144,0.29488934326171873,0.30042205810546874,0.3044090698242187,0.3966516906738281,"[0.3088450927734375, 0.4379724426269531, 0.2999659729003906, 0.30038250732421873, 0.29915423583984374, 0.30145172119140623, 0.30043194580078125, 0.29284234619140626, 0.2969441223144531, 0.297340087890625, 0.29619937133789065, 0.2939107666015625, 0.29546102905273436, 0.2950823974609375, 0.29575534057617187, 0.29818655395507815, 0.29488934326171873, 0.2978695983886719, 0.2899470825195313, 0.29282321166992187, 0.29323248291015624, 0.29367416381835937, 0.2936785888671875, 0.2941048278808594, 0.29431427001953125, 0.29127127075195314, 0.29567034912109375, 0.29308224487304685, 0.29094442749023436, 0.28820068359375, 0.29039175415039065, 0.2868695068359375, 0.28799105834960936]",tokens/s,210.44894076962422,kWh,8.313185671241867e-06,9.168013610817225e-07,3.856812108409e-06,1.3086799140732585e-05,tokens/kWh,4814011.3806677805,,s,2079,9.863568037509914,0.004744380970423241,0.002985095676152631,0.00461740779876709,0.0049251838684082035,0.005016031885147094,0.005280369215011594,"[0.0054271998405456545, 0.00501145601272583, 0.005853248119354248, 0.004840735912322998, 0.004856544017791748, 0.004894815921783448, 0.004773024082183838, 0.00497705602645874, 0.005105343818664551, 0.004977344036102295, 0.004967455863952637, 0.005010528087615967, 0.005041728019714356, 0.00487446403503418, 0.004938943862915039, 0.004944704055786133, 0.004922976016998291, 0.004884031772613526, 0.004895391941070556, 0.005371776103973389, 0.004817344188690185, 0.004728415966033936, 0.004704192161560059, 0.004755807876586914, 0.0048558077812194825, 0.004992320060729981, 0.0050817918777465824, 0.004976640224456787, 0.004951231956481934, 0.0050020480155944826, 0.00499507188796997, 0.005085184097290039, 0.005083392143249512, 0.005064703941345215, 0.004931327819824219, 0.0049268479347229005, 0.004891039848327637, 0.004878560066223145, 0.004812640190124512, 0.004823200225830078, 0.0047309122085571285, 0.004699456214904785, 0.004698783874511719, 0.00466534423828125, 0.0046976637840271, 0.004804800033569336, 0.00509772777557373, 0.004915520191192627, 0.0050438718795776365, 0.004933055877685547, 0.004915711879730225, 0.004849023818969726, 0.004784800052642822, 0.004679999828338623, 0.004675392150878906, 0.004644192218780517, 0.004754015922546387, 0.004597760200500488, 0.004640768051147461, 0.004640768051147461, 0.004712448120117187, 0.004659488201141358, 0.004640480041503906, 0.004346464157104492, 0.004624256134033203, 0.004651008129119873, 0.0046629438400268555, 0.004768095970153809, 0.004857215881347656, 0.0050267200469970704, 0.0048947839736938475, 0.004871327877044678, 0.004870336055755615, 0.004734720230102539, 0.004693568229675293, 0.0046622719764709475, 0.004664735794067383, 0.140567138671875, 0.005075200080871582, 0.004854847908020019, 0.004851456165313721, 0.004910272121429443, 0.0050009598731994625, 0.004939072132110596, 0.004868224143981934, 0.004806335926055908, 0.00479091215133667, 0.0047801599502563475, 0.004822432041168213, 0.004737567901611328, 0.0047391681671142575, 0.004729951858520508, 0.004794943809509278, 0.004886047840118408, 0.004967296123504638, 0.004894336223602295, 0.004933055877685547, 0.004927999973297119, 0.004934112071990967, 0.005045536041259765, 0.005038815975189209, 0.004927135944366455, 0.004842016220092773, 0.004803487777709961, 0.00483571195602417, 0.0048781437873840336, 0.004803296089172363, 0.004674784183502197, 0.004645760059356689, 0.004601759910583496, 0.00459980821609497, 0.004632607936859131, 0.004689888000488281, 0.004840479850769043, 0.004864992141723633, 0.004793983936309814, 0.004798079967498779, 0.004684544086456298, 0.00467683219909668, 0.004678207874298096, 0.004645088195800781, 0.004609951972961426, 0.004647264003753662, 0.004709695816040039, 0.004702720165252685, 0.004698016166687012, 0.00436633586883545, 0.004623360157012939, 0.004641791820526123, 0.004632575988769531, 0.004603903770446777, 0.004593311786651611, 0.004701695919036865, 0.004627295970916748, 0.004640768051147461, 0.004750720024108887, 0.004719232082366943, 0.004966015815734863, 0.005053919792175293, 0.0050861120223999025, 0.005030111789703369, 0.005089216232299805, 0.005037951946258545, 0.005050528049468994, 0.005042272090911865, 0.004902400016784668, 0.004804831981658935, 0.0047223038673400875, 0.004736767768859863, 0.004696127891540528, 0.004724607944488525, 0.004743872165679931, 0.004793856143951416, 0.004770304203033447, 0.004709983825683594, 0.004679999828338623, 0.004659296035766602, 0.004631711959838867, 0.004653952121734619, 0.00465503978729248, 0.004622208118438721, 0.004608160018920899, 0.004673056125640869, 0.004641248226165772, 0.004605247974395752, 0.0046906242370605465, 0.0046564159393310545, 0.004661983966827392, 0.0046284799575805665, 0.004689792156219483, 0.004696191787719727, 0.004817152023315429, 0.004884223937988281, 0.004910816192626953, 0.004743743896484375, 0.004673408031463623, 0.004665184020996094, 0.004640384197235108, 0.004741504192352295, 0.004614143848419189, 0.004610047817230224, 0.004609504222869873, 0.004592160224914551, 0.004642303943634033, 0.0047779521942138675, 0.004925439834594727, 0.005044767856597901, 0.005058623790740967, 0.005099455833435059, 0.004639071941375732, 0.00496614408493042, 0.00498803186416626, 0.004862143993377686, 0.004855904102325439, 0.004809311866760254, 0.004765567779541016, 0.0047842559814453125, 0.0046910080909729, 0.004682688236236572, 0.004636672019958496, 0.00473302412033081, 0.0047634878158569335, 0.004751423835754395, 0.004689919948577881, 0.004644864082336426, 0.004615488052368164, 0.004622208118438721, 0.0045773439407348635, 0.004598176002502442, 0.004591968059539795, 0.004663296222686767, 0.004601856231689453, 0.004599232196807862, 0.004616767883300781, 0.004734079837799072, 0.004846720218658447, 0.004667136192321777, 0.004623360157012939, 0.004663936138153076, 0.004721280097961426, 0.004754303932189941, 0.004710944175720215, 0.004663392066955567, 0.004663648128509522, 0.004683680057525634, 0.00467142391204834, 0.0046633281707763674, 0.0046633281707763674, 0.004810751914978028, 0.004825183868408203, 0.004755360126495361, 0.004773183822631836, 0.004721343994140625, 0.004726784229278564, 0.004724736213684082, 0.0048204798698425295, 0.0050078721046447755, 0.004905055999755859, 0.004833183765411377, 0.0048446722030639645, 0.004829696178436279, 0.004823616027832031, 0.004742847919464111, 0.00477836799621582, 0.0048371200561523435, 0.004908703804016114, 0.004950143814086914, 0.004929183959960937, 0.004976672172546387, 0.005000927925109863, 0.004964896202087402, 0.0048941121101379395, 0.0045896959304809574, 0.004904160022735596, 0.004854112148284912, 0.004882688045501709, 0.004801631927490235, 0.004753568172454834, 0.004736959934234619, 0.004745279788970947, 0.004731135845184326, 0.004684447765350342, 0.0046386241912841795, 0.004667136192321777, 0.004665599822998047, 0.004724063873291016, 0.0048196158409118655, 0.004843776226043701, 0.0048596482276916505, 0.004803967952728271, 0.0049251198768615724, 0.004864448070526123, 0.004831744194030762, 0.004773312091827393, 0.004749824047088623, 0.004779679775238037, 0.004709983825683594, 0.004707136154174805, 0.004679200172424317, 0.00466377592086792, 0.004620287895202637, 0.004640768051147461, 0.004643167972564697, 0.004730207920074463, 0.004595424175262451, 0.004658783912658691, 0.00464793586730957, 0.004785408020019531, 0.004794112205505371, 0.004975264072418213, 0.004994815826416016, 0.004855455875396729, 0.004934783935546875, 0.004947328090667725, 0.004945536136627197, 0.004858047962188721, 0.004784992218017578, 0.004834784030914307, 0.004784448146820068, 0.004727968215942383, 0.004674399852752685, 0.004639935970306396, 0.004651936054229736, 0.004636352062225342, 0.004661471843719483, 0.004644864082336426, 0.004644768238067627, 0.0046449599266052246, 0.00466326379776001, 0.004628064155578614, 0.00462278413772583, 0.004571231842041015, 0.004614048004150391, 0.004579328060150147, 0.0046769919395446774, 0.0043779520988464354, 0.004636384010314941, 0.004629248142242431, 0.0046386241912841795, 0.0045825281143188476, 0.004565887928009034, 0.004624383926391602, 0.004632575988769531, 0.004611839771270752, 0.00461030387878418, 0.004620160102844238, 0.004642111778259277, 0.004612448215484619, 0.004655295848846435, 0.00466921615600586, 0.005441823959350586, 0.0048949441909790035, 0.00497049617767334, 0.005312511920928955, 0.005462016105651855, 0.005805312156677246, 0.004981503963470459, 0.00506060791015625, 0.005040256023406983, 0.005023359775543213, 0.004972383975982666, 0.00495465612411499, 0.0049847040176391605, 0.004952095985412598, 0.004825056076049805, 0.0047964158058166504, 0.004769536018371582, 0.004860447883605957, 0.0046566081047058104, 0.0046369280815124515, 0.004639776229858399, 0.0046080961227416995, 0.004614496231079101, 0.004757535934448242, 0.004717152118682861, 0.004672544002532959, 0.004721536159515381, 0.004693088054656983, 0.004660128116607666, 0.004730879783630371, 0.004724991798400879, 0.0046787199974060055, 0.004856063842773438, 0.004811264038085937, 0.004687424182891846, 0.004661632061004639, 0.004579328060150147, 0.004597760200500488, 0.004663296222686767, 0.004599232196807862, 0.004588096141815185, 0.004589824199676513, 0.004573984146118164, 0.004588511943817139, 0.004657120227813721, 0.0050802559852600095, 0.004856448173522949, 0.004821216106414795, 0.00451584005355835, 0.005016608238220215, 0.005290527820587158, 0.005105855941772461, 0.004919551849365235, 0.004872191905975342, 0.004913023948669434, 0.004888703823089599, 0.004745215892791748, 0.004716639995574951, 0.004701759815216065, 0.004692512035369873, 0.0046590080261230465, 0.004670656204223632, 0.004676415920257569, 0.00461033582687378, 0.004638175964355468, 0.004595967769622802, 0.004566976070404053, 0.004601920127868652, 0.004869728088378906, 0.004843999862670898, 0.004688864231109619, 0.004625376224517822, 0.00459884786605835, 0.004724800109863281, 0.004631423950195312, 0.004614143848419189, 0.004603903770446777, 0.004618336200714111, 0.004582784175872803, 0.004571135997772217, 0.004546271800994873, 0.004567935943603516, 0.004583360195159912, 0.004636672019958496, 0.0046382398605346676, 0.004717023849487305, 0.004863967895507812, 0.00497983980178833, 0.0049919037818908696, 0.0050087041854858395, 0.005182144165039063, 0.005055615901947022, 0.004999135971069336, 0.004893599987030029, 0.004996511936187744, 0.0050653119087219235, 0.004980735778808594, 0.0049409279823303225, 0.004889760017395019, 0.00478384017944336, 0.004758624076843262, 0.004677599906921387, 0.004656064033508301, 0.004601984024047851, 0.0047717118263244625, 0.004777984142303467, 0.004662975788116455, 0.004692287921905518, 0.004598944187164306, 0.004541279792785645, 0.004572800159454346, 0.0043023681640625, 0.00457366418838501, 0.004571135997772217, 0.004585023880004883, 0.0045879678726196286, 0.004567039966583252, 0.004579328060150147, 0.00460364818572998, 0.004598015785217285, 0.0045640959739685055, 0.004565599918365478, 0.004593215942382813, 0.004567264080047607, 0.004572800159454346, 0.00457532787322998, 0.00461407995223999, 0.0047829442024230956, 0.004877664089202881, 0.004852384090423584, 0.004838496208190918, 0.004744095802307129, 0.004800320148468018, 0.00466323184967041, 0.0046657600402832036, 0.004662303924560547, 0.00474399995803833, 0.004709983825683594, 0.0046739521026611325, 0.004646560192108154, 0.004661600112915039, 0.0047894401550292965, 0.005268288135528564, 0.004748288154602051, 0.004684544086456298, 0.004663008213043213, 0.004622464179992676, 0.004601823806762695, 0.004565440177917481, 0.004597760200500488, 0.004596799850463867, 0.004586143970489502, 0.004583712100982666, 0.004595104217529297, 0.004618847846984863, 0.0046178560256958006, 0.004640927791595459, 0.004601151943206787, 0.004554687976837158, 0.004932576179504394, 0.004599199771881103, 0.004554463863372803, 0.004598656177520752, 0.004681727886199951, 0.004655104160308838, 0.004554751873016357, 0.004577280044555664, 0.00456492805480957, 0.004556384086608887, 0.004553184032440185, 0.0045240321159362796, 0.004540319919586182, 0.004554848194122315, 0.0046284799575805665, 0.004928127765655517, 0.0050787200927734375, 0.005093696117401123, 0.005097472190856934, 0.00505241584777832, 0.0050769920349121095, 0.005005311965942383, 0.004978303909301758, 0.005055007934570313, 0.004829279899597168, 0.00483622407913208, 0.004807295799255371, 0.00471011209487915, 0.004667200088500976, 0.0046286721229553225, 0.0046044478416442875, 0.004605984210968018, 0.004560863971710205, 0.00459980821609497, 0.00459555196762085, 0.004581151962280273, 0.004577600002288819, 0.004581408023834228, 0.004581247806549072, 0.0045610561370849605, 0.004582431793212891, 0.0045577921867370605, 0.004575232028961182, 0.004552256107330322, 0.004608448028564453, 0.0049946560859680175, 0.004942399978637695, 0.004848671913146973, 0.004757952213287353, 0.004659167766571045, 0.0046063680648803715, 0.00457040023803711, 0.004754303932189941, 0.004581215858459472, 0.00459980821609497, 0.0045649919509887695, 0.004591616153717041, 0.00466534423828125, 0.004846752166748047, 0.0047329277992248535, 0.004711391925811767, 0.0046854400634765625, 0.004663551807403564, 0.004612095832824707, 0.004593215942382813, 0.004595295906066894, 0.00464572811126709, 0.004607840061187744, 0.004580575942993164, 0.004642879962921143, 0.004647039890289307, 0.0046128640174865725, 0.0045875201225280765, 0.00457260799407959, 0.004559423923492432, 0.004570432186126709, 0.004625088214874268, 0.004681727886199951, 0.004541567802429199, 0.004821887969970703, 0.004742591857910156, 0.004809216022491455, 0.004694079875946045, 0.004673535823822021, 0.004632063865661621, 0.004636159896850586, 0.004684160232543946, 0.004589983940124512, 0.004579552173614502, 0.004616447925567627, 0.00465670394897461, 0.004628320217132568, 0.0048925762176513675, 0.00461568021774292, 0.004567391872406006, 0.0049725441932678225, 0.004581471920013428, 0.00457369613647461, 0.004627871990203858, 0.0046962881088256836, 0.005204351902008056, 0.005133440017700195, 0.0050672321319580075, 0.005015967845916748, 0.005072127819061279, 0.005046527862548828, 0.005003776073455811, 0.005041728019714356, 0.004941887855529785, 0.004917632102966309, 0.004840767860412597, 0.0047942399978637695, 0.004639039993286133, 0.004611968040466308, 0.004579967975616455, 0.004606304168701172, 0.004592607975006104, 0.00458409595489502, 0.004607935905456543, 0.00458351993560791, 0.004605184078216553, 0.004647679805755615, 0.004593440055847168, 0.004546783924102783, 0.004562335968017578, 0.004546144008636475, 0.004565695762634278, 0.004577216148376465, 0.004555136203765869, 0.004701791763305664, 0.004660639762878418, 0.004631552219390869, 0.004589568138122559, 0.004646719932556153, 0.004720287799835205, 0.004699935913085937, 0.004646815776824951, 0.004621151924133301, 0.004624383926391602, 0.004769792079925537, 0.004640768051147461, 0.00467145586013794, 0.004927487850189209, 0.0049205441474914555, 0.004856095790863037, 0.0047291841506958004, 0.004773952007293701, 0.004746431827545166, 0.004704736232757569, 0.004736447811126709, 0.004672287940979004, 0.004614016056060791, 0.004632927894592285, 0.004577280044555664, 0.004575168132781983, 0.004649024009704589, 0.004585472106933594, 0.004589600086212158, 0.004653056144714355, 0.004753376007080078, 0.0046696319580078124, 0.004597568035125733, 0.004582752227783203, 0.004571904182434082, 0.0045559039115905765, 0.004685855865478515, 0.00460649585723877, 0.004581600189208984, 0.004589568138122559, 0.0046284799575805665, 0.004685184001922607, 0.004621151924133301, 0.004572319984436035, 0.004553343772888184, 0.004581344127655029, 0.004630144119262695, 0.0046473278999328614, 0.004576704025268555, 0.0045809922218322755, 0.004616608142852783, 0.0045873279571533206, 0.004676320075988769, 0.004573152065277099, 0.004579360008239746, 0.004534272193908692, 0.004564064025878906, 0.0045454401969909665, 0.004533984184265137, 0.00454915189743042, 0.004673279762268066, 0.004794367790222168, 0.005001215934753418, 0.005238751888275147, 0.00516918420791626, 0.005040128231048584, 0.004908063888549805, 0.004940767765045166, 0.00499507188796997, 0.004900320053100586, 0.004837600231170655, 0.004718368053436279, 0.004676127910614013, 0.00459065580368042, 0.0046150717735290525, 0.0043361282348632815, 0.0046284799575805665, 0.0045853757858276365, 0.004814112186431884, 0.004553120136260986, 0.004599711894989014, 0.004581888198852539, 0.004589568138122559, 0.004612127780914307, 0.004566207885742187, 0.004561696052551269, 0.004554751873016357, 0.0045424637794494625, 0.004668831825256348, 0.004602079868316651, 0.0049155840873718265, 0.00501910400390625, 0.00490777587890625, 0.0049641280174255375, 0.004929535865783692, 0.004743167877197266, 0.00471449613571167, 0.004614304065704346, 0.004636127948760987, 0.004603456020355225, 0.004616960048675537, 0.004583487987518311, 0.00457696008682251, 0.004554143905639648, 0.0047093119621276856, 0.004579616069793701, 0.004566400051116943, 0.004594240188598633, 0.004620351791381836, 0.004588255882263184, 0.004592512130737305, 0.00468828821182251, 0.0045965762138366695, 0.004561759948730469, 0.004562943935394287, 0.004550367832183838, 0.004550943851470948, 0.0045240321159362796, 0.004532383918762207, 0.004581344127655029, 0.004583295822143555, 0.004595263957977295, 0.004676032066345215, 0.004668416023254395, 0.004669536113739014, 0.004693120002746582, 0.004761375904083252, 0.004667712211608887, 0.0046711678504943845, 0.004655104160308838, 0.004683775901794434, 0.004618239879608154, 0.0046694397926330565, 0.004603616237640381, 0.004569375991821289, 0.0055808000564575196, 0.004869503974914551, 0.004661888122558594, 0.004327424049377441, 0.004560544013977051, 0.004563168048858642, 0.004561024188995361, 0.004534272193908692, 0.004536320209503173, 0.004567039966583252, 0.004562367916107177, 0.004577760219573975, 0.004596831798553466, 0.004673823833465576, 0.004940415859222412, 0.005058656215667725, 0.005117951869964599, 0.00506060791015625, 0.0050566082000732425, 0.004956096172332764, 0.0049417920112609865, 0.004884479999542236, 0.0049541440010070804, 0.004840703964233398, 0.004762527942657471, 0.004677248001098633, 0.004622528076171875, 0.004585536003112793, 0.004567999839782715, 0.004577727794647217, 0.0045994877815246586, 0.004639840126037598, 0.004595424175262451, 0.004586559772491455, 0.004570079803466797, 0.004581408023834228, 0.004652895927429199, 0.004716703891754151, 0.004593887805938721, 0.004595136165618897, 0.004589087963104248, 0.004600607872009278, 0.004567423820495606, 0.004904607772827149, 0.0047288317680358885, 0.0047636480331420894, 0.004603903770446777, 0.004582592010498047, 0.0045617280006408694, 0.004564544200897217, 0.004599743843078613, 0.004871679782867432, 0.004821407794952393, 0.004911712169647217, 0.004806848049163819, 0.004814112186431884, 0.004620607852935791, 0.004585887908935547, 0.004589568138122559, 0.004584671974182129, 0.00457747220993042, 0.004612512111663818, 0.004568480014801026, 0.004611711978912353, 0.004604159832000732, 0.0045718722343444824, 0.004315904140472412, 0.004589791774749756, 0.004595776081085205, 0.004628416061401367, 0.004621568202972412, 0.004604671955108643, 0.004611264228820801, 0.004642975807189941, 0.004596384048461914, 0.004591296195983887, 0.004580927848815918, 0.0046806402206420895, 0.004656960010528564, 0.004595967769622802, 0.004564383983612061, 0.004626783847808838, 0.004583424091339112, 0.004688960075378418, 0.004572095870971679, 0.0045875201225280765, 0.004631743907928467, 0.004618368148803711, 0.004593887805938721, 0.00455072021484375, 0.0045428800582885745, 0.004558976173400879, 0.0045443840026855465, 0.004546559810638427, 0.004581600189208984, 0.004562719821929932, 0.005248672008514405, 0.004553055763244629, 0.004534207820892334, 0.004572927951812744, 0.004554719924926758, 0.004683231830596924, 0.005129407882690429, 0.0048512001037597655, 0.004702400207519531, 0.004882368087768554, 0.005003007888793945, 0.0051653761863708495, 0.005128191947937012, 0.0050421757698059086, 0.005015583992004394, 0.004923359870910644, 0.004878335952758789, 0.004821280002593994, 0.004742847919464111, 0.00471395206451416, 0.00467628812789917, 0.0046826558113098144, 0.004608992099761963, 0.004593664169311523, 0.004562431812286377, 0.0045593600273132326, 0.0045281281471252445, 0.00455679988861084, 0.004550496101379395, 0.004610208034515381, 0.004713535785675049, 0.004615104198455811, 0.004581376075744629, 0.004315199851989746, 0.004556032180786132, 0.004541183948516846, 0.004544544219970703, 0.004671743869781494, 0.0049927358627319335, 0.004935808181762695, 0.0047628159523010255, 0.004868800163269043, 0.004576543807983399, 0.004557472229003906, 0.004773087978363037, 0.004786399841308594, 0.004589471817016601, 0.004573056221008301, 0.004684639930725098, 0.00731056022644043, 0.0051495041847229, 0.00467964792251587, 0.004637887954711914, 0.004588607788085937, 0.004558591842651367, 0.004574240207672119, 0.004803743839263916, 0.004593247890472412, 0.0046061758995056155, 0.004589568138122559, 0.004601600170135498, 0.004609568119049072, 0.004611008167266846, 0.004570496082305908, 0.004565408229827881, 0.004546271800994873, 0.0045632319450378414, 0.004537568092346191, 0.004543263912200928, 0.004556447982788086, 0.004570943832397461, 0.004586016178131104, 0.004871520042419433, 0.0048393278121948245, 0.004804416179656983, 0.0047441282272338865, 0.004744575977325439, 0.004663936138153076, 0.004630527973175049, 0.004590720176696777, 0.0045866560935974125, 0.00461740779876709, 0.004629119873046875, 0.004603231906890869, 0.004563360214233398, 0.0045610561370849605, 0.004540224075317383, 0.004533472061157226, 0.00454911994934082, 0.004530655860900879, 0.0045240321159362796, 0.0045281281471252445, 0.004523488044738769, 0.004566559791564942, 0.004754144191741944, 0.004999199867248535, 0.005045760154724121, 0.0050488319396972655, 0.00496127986907959, 0.00496127986907959, 0.004919072151184082, 0.004845791816711425, 0.004921599864959717, 0.0048865280151367185, 0.004755008220672608, 0.004653151988983154, 0.00461033582687378, 0.004642623901367188, 0.0053779840469360355, 0.006050015926361084, 0.00570527982711792, 0.004651296138763428, 0.004655104160308838, 0.004640768051147461, 0.004585696220397949, 0.004599584102630615, 0.004593760013580322, 0.00457692813873291, 0.004542943954467774, 0.0046113600730896, 0.004665855884552002, 0.004634463787078857, 0.004582719802856445, 0.004561791896820069, 0.0045977277755737305, 0.004597439765930176, 0.004583327770233154, 0.004731296062469482, 0.004689919948577881, 0.004642816066741944, 0.004591263771057129, 0.004575583934783935, 0.00454860782623291, 0.0045500478744506835, 0.004534880161285401, 0.004541888236999512, 0.004575808048248291, 0.0047205758094787595, 0.004916768074035644, 0.004830783843994141, 0.004729951858520508, 0.004783999919891357, 0.004700096130371094, 0.004667232036590576, 0.004618463993072509, 0.004571135997772217, 0.004591360092163086, 0.004618495941162109, 0.004614143848419189, 0.00460368013381958, 0.00471289587020874, 0.004770912170410156, 0.0046926078796386715, 0.004621471881866455, 0.004571616172790527, 0.004548863887786865, 0.004608191967010498, 0.004641791820526123, 0.004570112228393554, 0.004348639965057373, 0.004595263957977295, 0.004600128173828125, 0.004592127799987793, 0.004575071811676025, 0.004599711894989014, 0.004631648063659668, 0.004609024047851563, 0.004593599796295166, 0.004578976154327392, 0.004575647830963135, 0.004562367916107177, 0.0045874881744384765, 0.004545119762420655, 0.004554751873016357, 0.004579328060150147, 0.004550655841827392, 0.004584640026092529, 0.00466377592086792, 0.004841824054718017, 0.004941535949707031, 0.005077151775360107, 0.004902304172515869, 0.0048585920333862305, 0.004970176219940186, 0.0050302081108093265, 0.005031199932098389, 0.005069536209106445, 0.0049500160217285155, 0.0049235520362854, 0.004853536128997802, 0.004826655864715576, 0.004848159790039062, 0.004761792182922363, 0.004699647903442383, 0.0047288317680358885, 0.004651328086853027, 0.004632575988769531, 0.004601215839385987, 0.0045756158828735355, 0.004563168048858642, 0.00455404806137085, 0.004601664066314697, 0.004756383895874024, 0.004734975814819336, 0.00466534423828125, 0.004599199771881103, 0.0045840320587158204, 0.004576735973358155, 0.0045716800689697265, 0.004587456226348877, 0.004562560081481933, 0.004548575878143311, 0.004530655860900879, 0.0045649919509887695, 0.004583392143249512, 0.004560351848602295, 0.0045717120170593265, 0.004562943935394287, 0.0045418238639831545, 0.0045512962341308595, 0.004648320198059082, 0.004676224231719971, 0.004329631805419922, 0.004621920108795166, 0.004598112106323242, 0.004618175983428955, 0.004728096008300781, 0.0048873920440673825, 0.004847616195678711, 0.00473199987411499, 0.004670368194580078, 0.004631807804107666, 0.004604671955108643, 0.0046592001914978025, 0.00475551986694336, 0.004724063873291016, 0.004672095775604248, 0.004712448120117187, 0.0046542401313781736, 0.004627295970916748, 0.004650176048278809, 0.00467142391204834, 0.004598656177520752, 0.004632575988769531, 0.004652383804321289, 0.004632575988769531, 0.004581503868103028, 0.0045716800689697265, 0.004551712036132812, 0.00456928014755249, 0.004606751918792724, 0.004583168029785156, 0.004587584018707276, 0.0045651841163635255, 0.004557951927185059, 0.0045577921867370605, 0.005312255859375, 0.005375487804412842, 0.00538316822052002, 0.0046501121520996095, 0.0047803521156311035, 0.004970719814300537, 0.00495033597946167, 0.004912831783294678, 0.004779007911682129, 0.0047562880516052244, 0.004681280136108398, 0.004700352191925048, 0.004682047843933106, 0.004632031917572022, 0.004587264060974121, 0.004565919876098633, 0.004583424091339112, 0.0046267518997192385, 0.004806335926055908, 0.0049780158996582035, 0.004942431926727295, 0.004894527912139892, 0.004835775852203369, 0.004759359836578369, 0.004777120113372803, 0.004789087772369385, 0.004775296211242676, 0.004678271770477295, 0.004624383926391602, 0.004498591899871826, 0.004705215930938721, 0.004601856231689453, 0.004549888134002686, 0.004571904182434082, 0.004562655925750733, 0.004561183929443359, 0.004583263874053955, 0.004554912090301514, 0.0045359678268432615, 0.004528480052947998, 0.004527200222015381, 0.004561823844909668, 0.004627840042114258, 0.004659840106964111, 0.004663584232330323, 0.004622399806976318, 0.004564640045166016, 0.004583712100982666, 0.00457862377166748, 0.004569119930267334, 0.00454204797744751, 0.004534656047821045, 0.004569375991821289, 0.0045686402320861816, 0.004592351913452149, 0.004556640148162842, 0.00456444787979126, 0.004571904182434082, 0.004648736000061035, 0.0046459841728210445, 0.0046843838691711425, 0.004701759815216065, 0.004647744178771973, 0.004575168132781983, 0.004569087982177734, 0.004562943935394287, 0.004579135894775391, 0.004798655986785889, 0.004659135818481445, 0.004644927978515625, 0.004611680030822754, 0.0045931520462036135, 0.004577824115753174, 0.004585279941558838, 0.0045799040794372555, 0.004585472106933594, 0.004579328060150147, 0.004601024150848389, 0.004573760032653809, 0.004574783802032471, 0.004610752105712891, 0.004579328060150147, 0.0046459841728210445, 0.00458025598526001, 0.004560031890869141, 0.0045392317771911625, 0.0045519680976867675, 0.004617152214050293, 0.004699935913085937, 0.004634624004364014, 0.004562943935394287, 0.004601535797119141, 0.004674015998840332, 0.005090752124786377, 0.005066912174224853, 0.005022496223449707, 0.004954976081848144, 0.004960800170898437, 0.004839839935302734, 0.004761568069458008, 0.004729919910430909, 0.004731455802917481, 0.004665631771087647, 0.004618080139160157, 0.004608255863189697, 0.0045649919509887695, 0.004793407917022705, 0.004585792064666748, 0.004679999828338623, 0.004575551986694336, 0.004536320209503173, 0.004571135997772217, 0.00460316801071167, 0.004637407779693604, 0.004596928119659424, 0.004569920063018798, 0.004579328060150147, 0.004550591945648193, 0.004556863784790039, 0.0045640959739685055, 0.004553408145904541, 0.0045426559448242185, 0.004603903770446777, 0.004585472106933594, 0.0045378880500793455, 0.004581855773925781, 0.004552095890045166, 0.004560959815979004, 0.004588064193725586, 0.004726784229278564, 0.00466534423828125, 0.004615968227386475, 0.004591392040252685, 0.004573472023010254, 0.004656832218170166, 0.004660768032073975, 0.004611008167266846, 0.004595647811889649, 0.0046590399742126466, 0.004609248161315918, 0.004590591907501221, 0.004583424091339112, 0.004567359924316406, 0.004570015907287598, 0.004555552005767822, 0.00456876802444458, 0.004540736198425293, 0.0045567359924316405, 0.004545983791351319, 0.004694015979766846, 0.004577919960021972, 0.004554240226745605, 0.00459007978439331, 0.004567039966583252, 0.0045763840675354, 0.004323328018188476, 0.004667327880859375, 0.004732895851135254, 0.004680064201354981, 0.004619999885559082, 0.0045649919509887695, 0.004558847904205322, 0.004530176162719727, 0.0045240001678466795, 0.004555967807769776, 0.0045389761924743656, 0.004554880142211914, 0.004558976173400879, 0.004552703857421875, 0.004562784194946289, 0.004552224159240723, 0.004579967975616455, 0.004530176162719727, 0.004673535823822021, 0.004545567989349365, 0.0045349440574646, 0.004520256042480469, 0.004517888069152832, 0.004558847904205322, 0.00459980821609497, 0.004868192195892334, 0.00491100788116455, 0.005000895977020263, 0.004931903839111328, 0.004906432151794433, 0.004871903896331787, 0.0048607678413391114, 0.004890016078948975, 0.0049560642242431644, 0.004829887866973877, 0.0047381119728088375, 0.004650944232940673, 0.004677663803100586, 0.004672800064086914, 0.004675263881683349, 0.004613632202148437, 0.004591104030609131, 0.004572192192077637, 0.004558815956115723, 0.004552127838134766, 0.004601888179779053, 0.0046003518104553226, 0.004591839790344238, 0.0045504322052001955, 0.004553760051727295, 0.004555744171142578, 0.004552864074707032, 0.0046525120735168455, 0.004730559825897217, 0.004639423847198486, 0.004675583839416504, 0.004574687957763672, 0.004563488006591797, 0.004580416202545166, 0.00456390380859375, 0.004689919948577881, 0.004777984142303467, 0.004757503986358643, 0.004428671836853027, 0.004574592113494873, 0.004565631866455078, 0.004580863952636719, 0.004653567790985107, 0.004648255825042725, 0.004612607955932617, 0.004663487911224365, 0.004642816066741944, 0.0046451201438903805, 0.004636223793029785, 0.004581567764282227, 0.004593664169311523, 0.004664480209350586, 0.004829535961151123, 0.00470633602142334, 0.004632895946502686, 0.004759712219238281, 0.004705535888671875, 0.004550879955291748, 0.004604127883911133, 0.004560927867889405, 0.004565279960632324, 0.004576511859893799, 0.004567808151245118, 0.004539455890655518, 0.0045598077774047854, 0.0046319360733032226, 0.0045905599594116215, 0.00460972785949707, 0.004583104133605957, 0.004648447990417481, 0.00460041618347168, 0.004589151859283447, 0.004763743877410889, 0.004561408042907715, 0.004569087982177734, 0.004571455955505371, 0.00456057596206665, 0.004535776138305664, 0.004565087795257569, 0.004571584224700928, 0.004538368225097656, 0.004566207885742187, 0.004540544033050537, 0.0045203838348388675, 0.004524288177490235, 0.004537568092346191, 0.004569888114929199, 0.004556479930877685, 0.004664639949798584, 0.004975615978240967, 0.005093376159667969, 0.005156864166259765, 0.0050094079971313476, 0.004920576095581055, 0.004865920066833496, 0.005006207942962647, 0.004878015995025635, 0.004720831871032715, 0.0046859197616577145, 0.004632607936859131, 0.004661087989807129, 0.004303264141082764, 0.00460364818572998, 0.004556320190429688, 0.004555776119232178, 0.004532192230224609, 0.004535808086395264, 0.004620800018310547, 0.0046731200218200685, 0.004602272033691407, 0.004566559791564942, 0.004540895938873291, 0.00456492805480957, 0.004565055847167969, 0.004543903827667236, 0.004561183929443359, 0.004573503971099854, 0.004612095832824707, 0.004677375793457031, 0.004582816123962402, 0.004559679985046387, 0.004552735805511475, 0.004595392227172852, 0.004543968200683594, 0.004565536022186279, 0.004575039863586426, 0.00454915189743042, 0.004661119937896728, 0.004867455959320068, 0.004848351955413818, 0.0048692159652709965, 0.004738239765167236, 0.004691679954528808, 0.00458735990524292, 0.004778143882751465, 0.004667391777038574, 0.004684095859527588, 0.004644544124603272, 0.0046547198295593265, 0.004725344181060791, 0.004617440223693848, 0.004634624004364014, 0.004630815982818603, 0.004613471984863281, 0.005613823890686035, 0.004693759918212891, 0.004651743888854981, 0.0047017278671264645, 0.0049749441146850586, 0.005277503967285156, 0.004643360137939453, 0.004682975769042969, 0.004692255973815918, 0.0046228480339050295, 0.004577280044555664, 0.004605823993682861, 0.004640672206878662, 0.004632800102233887, 0.004607999801635742, 0.004591584205627441, 0.004558144092559814, 0.004565728187561035, 0.004585472106933594, 0.004664415836334228, 0.0043786239624023435, 0.00466534423828125, 0.004576704025268555, 0.004544960021972656, 0.004538496017456054, 0.004550399780273437, 0.004560448169708252, 0.0045303359031677246, 0.0045483198165893555, 0.004528160095214844, 0.004540607929229736, 0.004687776088714599, 0.004887296199798584, 0.00517523193359375, 0.005143648147583008, 0.005184447765350342, 0.005152991771697998, 0.005060351848602295, 0.0048558077812194825, 0.004846752166748047, 0.004794303894042969, 0.004700255870819092, 0.004663871765136719, 0.004604095935821533, 0.004588863849639893, 0.004565087795257569, 0.004530399799346924, 0.004571584224700928, 0.004554944038391113, 0.004613952159881592, 0.0045236158370971676, 0.004536736011505127, 0.004545760154724121, 0.004660192012786865, 0.004655136108398438, 0.004629951953887939, 0.004661600112915039, 0.004575104236602783, 0.004556287765502929, 0.004544223785400391, 0.004571392059326172, 0.004545184135437011, 0.004619584083557129, 0.004598176002502442, 0.004615647792816162, 0.004639008045196533, 0.004577824115753174, 0.004596960067749023, 0.0045939841270446775, 0.004676064014434814, 0.004759552001953125, 0.004709568023681641, 0.004663871765136719, 0.0045775361061096195, 0.004558784008026123, 0.0045784001350402835, 0.004551648139953613, 0.004568128108978271, 0.004627232074737549, 0.004806816101074219, 0.004821248054504394, 0.004718400001525879, 0.004651072025299072, 0.004319583892822266, 0.004555103778839112, 0.004560512065887451, 0.004581503868103028, 0.004583295822143555, 0.004632575988769531, 0.004626431941986084, 0.004602176189422607, 0.004554431915283203, 0.004558847904205322, 0.004562111854553222, 0.004685952186584473, 0.00478275203704834, 0.004697984218597412, 0.0045998401641845705, 0.004577407836914063, 0.004613120079040528, 0.004659679889678955, 0.004716959953308106, 0.004710495948791504, 0.00470198392868042, 0.004858304023742676, 0.004687679767608643, 0.004648096084594726, 0.00463753604888916, 0.0045874881744384765, 0.004582655906677246, 0.004579967975616455, 0.004710559844970703, 0.004664512157440186, 0.004662208080291748, 0.004592735767364502, 0.004584224224090576, 0.004560224056243897, 0.0045511040687561035, 0.004542751789093018, 0.004572896003723145, 0.004544735908508301, 0.004577280044555664, 0.004538464069366455, 0.004530079841613769, 0.00454204797744751, 0.004724512100219727, 0.004912831783294678, 0.005063072204589843, 0.0051140799522399905, 0.005103040218353272, 0.004967296123504638, 0.004891871929168701, 0.004944287776947022, 0.004966400146484375, 0.004835072040557861, 0.004722847938537598, 0.004653535842895508, 0.004638720035552979, 0.004630527973175049, 0.004609312057495117, 0.0045677762031555175, 0.004611839771270752, 0.004548863887786865, 0.0045649919509887695, 0.00458128023147583, 0.004579423904418945, 0.00434003210067749, 0.004636672019958496, 0.004583104133605957, 0.0045914239883422855, 0.004566592216491699, 0.004520319938659668, 0.0045749440193176266, 0.004722879886627197, 0.004649631977081299, 0.004572319984436035, 0.004577695846557617, 0.004547008037567139, 0.0045483198165893555, 0.004550943851470948, 0.004550655841827392, 0.004577216148376465, 0.004535744190216065, 0.004567552089691162, 0.004626560211181641, 0.0047226881980895995, 0.004663296222686767, 0.0046267518997192385, 0.004599040031433106, 0.004596096038818359, 0.004571199893951416, 0.004561984062194825, 0.004587584018707276, 0.0048336639404296874, 0.004863679885864258, 0.0047890558242797854, 0.004681727886199951, 0.004628064155578614, 0.004630623817443847, 0.004650464057922363, 0.004616799831390381, 0.004616447925567627, 0.004596928119659424, 0.004618080139160157, 0.004589856147766113, 0.004565055847167969, 0.0046143999099731445, 0.004671103954315185, 0.004791391849517822, 0.004652416229248047, 0.0045632319450378414, 0.00455679988861084, 0.00455452823638916, 0.004587615966796875, 0.004613376140594482, 0.004632575988769531, 0.004656000137329102, 0.00459980821609497, 0.0045994877815246586, 0.004624671936035156, 0.004581408023834228, 0.0046592001914978025, 0.004636159896850586, 0.004661375999450683, 0.0046391038894653324, 0.004741087913513183, 0.004600992202758789, 0.004589759826660157, 0.004565695762634278, 0.004333568096160889, 0.004584544181823731, 0.00456387186050415, 0.004560895919799805, 0.004675136089324951, 0.004827744007110596, 0.004904255867004394, 0.004909408092498779, 0.00498092794418335, 0.004904160022735596, 0.004987328052520752, 0.005027711868286133, 0.004995552062988282, 0.004902912139892578, 0.0048364481925964355, 0.004758431911468506, 0.004761536121368409, 0.004775392055511475, 0.004686431884765625, 0.00466534423828125, 0.004612095832824707, 0.004667744159698486, 0.004599199771881103, 0.004583680152893067, 0.004585472106933594, 0.004533472061157226, 0.004563744068145752, 0.004577280044555664, 0.004570752143859863, 0.004574816226959228, 0.004547359943389892, 0.004583424091339112, 0.004595071792602539, 0.004593472003936768, 0.004792640209197998, 0.004699935913085937, 0.00462499189376831, 0.004632031917572022, 0.00458409595489502, 0.004644576072692871, 0.00481331205368042, 0.004923168182373047, 0.004837376117706299, 0.004709824085235596, 0.004678336143493653, 0.004651999950408935, 0.004596735954284668, 0.004635680198669434, 0.004762495994567871, 0.004780032157897949, 0.004705887794494629, 0.00468620777130127, 0.004642848014831543, 0.004569087982177734, 0.004572512149810791, 0.00457206392288208, 0.004570943832397461, 0.004639999866485596, 0.004633279800415039, 0.004634624004364014, 0.004591360092163086, 0.004581632137298584, 0.004627679824829102, 0.004416031837463379, 0.004639039993286133, 0.004542367935180664, 0.004536608219146729, 0.0045483198165893555, 0.004565343856811523, 0.004576863765716553, 0.004526144027709961, 0.004538368225097656, 0.004646912097930909, 0.004631775856018067, 0.004655903816223145, 0.0047185921669006346, 0.004628736019134522, 0.004629248142242431, 0.00460214376449585, 0.004604640007019043, 0.004554751873016357, 0.004550655841827392, 0.004591616153717041, 0.004593664169311523, 0.004621376037597656, 0.004570047855377197, 0.004569024085998535, 0.004536384105682373, 0.004539743900299072, 0.004563551902770996, 0.004524159908294678, 0.004577216148376465, 0.0045424637794494625, 0.0045829439163208, 0.004624864101409912, 0.004812352180480957, 0.00506873607635498, 0.005022496223449707, 0.004994783878326416, 0.004984831809997559, 0.004946176052093506, 0.0049697279930114744, 0.004861855983734131, 0.00473967981338501, 0.004707712173461914, 0.004971136093139648, 0.004643104076385498, 0.0046293439865112305, 0.004589632034301758, 0.004592383861541748, 0.00461027193069458, 0.004581215858459472, 0.004578976154327392, 0.004560927867889405, 0.004567359924316406, 0.004553791999816895, 0.004539328098297119, 0.004595200061798096, 0.0045409278869628904, 0.004568448066711426, 0.004663936138153076, 0.004671487808227539, 0.004590879917144775, 0.004581727981567383, 0.004596096038818359, 0.004673535823822021, 0.00449894380569458, 0.004710912227630615, 0.004632160186767578, 0.004581215858459472, 0.004620863914489746, 0.004616191864013672, 0.004593408107757569, 0.004614016056060791, 0.004610432147979736, 0.004603392124176026, 0.004563488006591797, 0.00462230396270752, 0.004640992164611816, 0.0046529917716979985, 0.0046262722015380855, 0.004652800083160401, 0.004675839900970459, 0.00462662410736084, 0.004611904144287109, 0.004611104011535644, 0.00479695987701416, 0.004804287910461426, 0.00465177583694458, 0.004591872215270996, 0.004599552154541015, 0.004567039966583252, 0.00451584005355835, 0.004532224178314209, 0.004544511795043945, 0.004544159889221191, 0.004567391872406006, 0.004543968200683594, 0.0045081920623779295, 0.004557151794433594, 0.0045519680976867675, 0.004626560211181641, 0.004606207847595215, 0.00462063980102539, 0.004600927829742431, 0.004563519954681397, 0.004579135894775391, 0.004546751976013183, 0.004571135997772217, 0.004570591926574707, 0.004547008037567139, 0.004573472023010254, 0.004544320106506347, 0.004554656028747559, 0.004527967929840088, 0.004566336154937744, 0.004533215999603272, 0.00457260799407959, 0.004565536022186279, 0.004534304141998291, 0.004581344127655029, 0.004624576091766358, 0.004674975872039795, 0.004759967803955078, 0.0048355841636657714, 0.004765088081359863, 0.004735199928283691, 0.0047079682350158695, 0.004731264114379883, 0.004346047878265381, 0.004556159973144531, 0.004554495811462402, 0.004553919792175293, 0.004539072036743164, 0.004508992195129394, 0.004544064044952393, 0.004507232189178467, 0.004518432140350342, 0.004522336006164551, 0.005264832019805908, 0.004890848159790039, 0.0045730237960815425, 0.0045361919403076175, 0.0045857601165771485, 0.004593664169311523, 0.004761151790618897, 0.00456112003326416, 0.004579552173614502, 0.004591616153717041, 0.004550655841827392, 0.004583263874053955, 0.004560128211975097, 0.004576159954071045, 0.004536320209503173, 0.004545983791351319, 0.004542399883270263, 0.00455452823638916, 0.004563807964324951, 0.004569087982177734, 0.004529376029968262, 0.00463318395614624, 0.004556992053985596, 0.004550848007202148, 0.0045353279113769535, 0.004573344230651855, 0.004553567886352539, 0.0045606718063354494, 0.0045305280685424805, 0.004525599956512451, 0.00452243185043335, 0.004550335884094238, 0.0045788798332214355, 0.004561344146728516, 0.004533440113067627, 0.0045574398040771485, 0.004542240142822266, 0.004551072120666504, 0.0045281281471252445, 0.004517183780670166, 0.004524096012115479, 0.004512383937835694, 0.004517888069152832, 0.004566783905029297, 0.004608255863189697, 0.004519328117370606, 0.004522592067718506, 0.004615808010101318, 0.004565375804901123, 0.004534272193908692, 0.004567359924316406, 0.004531904220581055, 0.004536543846130371, 0.0042871999740600585, 0.004513792037963867, 0.004525087833404541, 0.00452732801437378, 0.004529920101165772, 0.00451584005355835, 0.004546559810638427, 0.004539999961853027, 0.00452239990234375, 0.004533919811248779, 0.0045138559341430665, 0.0058017921447753905, 0.0058475518226623535, 0.0048090238571167, 0.004603551864624023, 0.004546559810638427, 0.004534272193908692, 0.004534272193908692, 0.004544511795043945, 0.004560512065887451, 0.004570752143859863, 0.004526527881622314, 0.004546527862548828, 0.004548960208892823, 0.004542751789093018, 0.004519648075103759, 0.004536128044128418, 0.004581823825836182, 0.004574975967407227, 0.004539711952209473, 0.004573887825012207, 0.004530176162719727, 0.004569087982177734, 0.004534016132354737, 0.004628736019134522, 0.004628767967224121, 0.004533215999603272, 0.004552864074707032, 0.0045493760108947755, 0.004517280101776123, 0.0045101442337036135, 0.004530367851257325, 0.004536128044128418, 0.004533728122711181, 0.004550271987915039, 0.00452291202545166, 0.004532320022583008, 0.0045259838104248044, 0.0045240321159362796, 0.0045281281471252445, 0.00454207992553711, 0.00453056001663208, 0.00456057596206665, 0.004512063980102539, 0.004542111873626709, 0.004528831958770752, 0.004548128128051758, 0.004573311805725098, 0.005467840194702148, 0.004655392169952393, 0.004575263977050781, 0.004538176059722901, 0.00466921615600586, 0.004292704105377197, 0.004561823844909668, 0.004674560070037842, 0.00455679988861084, 0.004554751873016357, 0.0045424637794494625, 0.004545951843261719, 0.004541088104248047, 0.004569024085998535, 0.00455679988861084, 0.004554751873016357, 0.004541759967803955, 0.004526783943176269, 0.004530176162719727, 0.004534560203552246, 0.004582304000854492, 0.004533055782318115, 0.004546559810638427, 0.004537375926971435, 0.004524288177490235, 0.004532639980316162, 0.004552800178527832, 0.004567488193511963, 0.004521759986877441, 0.004575232028961182, 0.0045424637794494625, 0.004522143840789795, 0.0045586562156677245, 0.004517920017242431, 0.004519807815551758, 0.004557087898254395, 0.004543392181396484, 0.004542623996734619, 0.00453331184387207, 0.004534080028533936, 0.004528031826019287, 0.004517888069152832, 0.004558559894561768, 0.004548895835876465, 0.004563199996948242, 0.004555744171142578, 0.004538591861724854, 0.004547135829925537, 0.004518112182617187, 0.004569920063018798, 0.004541408061981201, 0.004571135997772217, 0.004567039966583252, 0.004544511795043945, 0.004558847904205322, 0.0045424637794494625, 0.004546559810638427, 0.004588575839996338, 0.004548736095428467, 0.004563615798950195, 0.004549920082092285, 0.004549536228179931, 0.004577280044555664, 0.004567039966583252, 0.004571135997772217, 0.004588960170745849, 0.0045447998046875, 0.004542784214019775, 0.004333631992340088, 0.004554368019104004, 0.0045344319343566895, 0.004541920185089111, 0.004579584121704102, 0.004540800094604492, 0.004561024188995361, 0.004538047790527344, 0.0045382399559021, 0.004538815975189209, 0.004547808170318603, 0.004552735805511475, 0.004543231964111328, 0.004571455955505371, 0.004549312114715576, 0.004533247947692871, 0.004552703857421875, 0.004527584075927734, 0.00456876802444458, 0.004618624210357666, 0.004559648036956787, 0.004581056118011475, 0.004577216148376465, 0.004571424007415771, 0.0045463361740112306, 0.004564671993255615, 0.004573503971099854, 0.004552703857421875, 0.004568384170532226, 0.004547264099121094, 0.004536320209503173, 0.004533919811248779, 0.004553055763244629, 0.004577280044555664, 0.004530176162719727, 0.004554751873016357, 0.004538271903991699, 0.004598144054412842, 0.004548384189605713, 0.0050236802101135255, 0.004588863849639893, 0.004729536056518555, 0.0045892162322998045, 0.0045994877815246586, 0.004569503784179687, 0.004617887973785401, 0.004566751956939698, 0.0045710082054138184, 0.004580063819885254, 0.004573472023010254, 0.0045649919509887695, 0.004533792018890381, 0.004594143867492676, 0.004571135997772217, 0.004552703857421875, 0.004568607807159424, 0.004520415782928467, 0.0045240321159362796, 0.004552703857421875, 0.0045223040580749515, 0.0045864639282226565, 0.004512479782104492, 0.004530176162719727]",tokens/s,210.77565360666875,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,937.55392,12518.883328,0.0,12123.635712,12121.851904,s,1,7.04834765625,7.04834765625,0.0,7.04834765625,7.04834765625,7.04834765625,7.04834765625,[7.04834765625],,kWh,6.074994333350029e-06,6.6222967911361e-07,2.7161132840070046e-06,9.453337296470643e-06,,MB,1266.823168,12544.049152,0.0,12138.315776,10311.21664,s,10,3.5694169006347654,0.35694169006347654,0.008989654410543094,0.36016143798828126,0.36241114501953126,0.36265688171386723,0.36285347106933596,"[0.33080865478515625, 0.35555950927734375, 0.36139324951171875, 0.36035760498046876, 0.3623565368652344, 0.35996527099609377, 0.36061227416992186, 0.35897454833984377, 0.36290261840820315, 0.35648663330078123]",tokens/s,717.2039779227648,kWh,9.846605048194559e-06,1.0858904184954239e-06,6.535199672599394e-06,1.7467695139289376e-05,tokens/kWh,14655625.596773189,MB,1296.187392,12550.340608,0.0,12144.607232,10311.2192,s,10,27.902214599609376,2.7902214599609376,0.0016507280407052072,2.7901104736328124,2.792058764648438,2.7924627319335937,2.792785905761719,"[2.79008203125, 2.788056640625, 2.79286669921875, 2.7877890625, 2.791530517578125, 2.790138916015625, 2.791968994140625, 2.788630615234375, 2.789557373046875, 2.79159375]",tokens/s,22.578852934806825,kWh,8.205444702389034e-05,9.05076906624156e-06,5.4490515814601306e-05,0.0001455957319047332,tokens/kWh,432704.99193769234,,s,630,27.899994796752935,0.04428570602659195,0.0003147776694465258,0.04423612785339355,0.044469379425048826,0.044581004714965816,0.046426925430297854,"[0.04643603134155273, 0.04465087890625, 0.04418755340576172, 0.04413030242919922, 0.04411097717285156, 0.044069217681884765, 0.04399772644042969, 0.04406854248046875, 0.044176929473876955, 0.04406079864501953, 0.04406531143188477, 0.04401574325561523, 0.0442592658996582, 0.044219520568847655, 0.04408620834350586, 0.04409868621826172, 0.04410047912597656, 0.044009471893310545, 0.044184768676757816, 0.044159809112548826, 0.044199935913085936, 0.04441215896606445, 0.044477088928222656, 0.04446319961547852, 0.04437094497680664, 0.044279487609863284, 0.04431430435180664, 0.044240734100341794, 0.04422934341430664, 0.044272960662841795, 0.04418860626220703, 0.044356414794921875, 0.044186622619628906, 0.04428799819946289, 0.04431980895996094, 0.04422480010986328, 0.04416579055786133, 0.044154560089111325, 0.04408553695678711, 0.04418134307861328, 0.04436191940307617, 0.044246273040771486, 0.04424985504150391, 0.0443043212890625, 0.04454364776611328, 0.04459766387939453, 0.04446928024291992, 0.04436067199707031, 0.044349441528320314, 0.04424649429321289, 0.04431721496582031, 0.04445180892944336, 0.044204063415527343, 0.044290046691894534, 0.04438227081298828, 0.044359615325927734, 0.04424892807006836, 0.044179615020751954, 0.04419321441650391, 0.044302783966064456, 0.044338623046875, 0.04415558242797851, 0.0442174072265625, 0.04638636779785156, 0.04460166549682617, 0.044208641052246096, 0.044077056884765625, 0.04406832122802734, 0.044019775390625, 0.04403804779052734, 0.04411040115356445, 0.0442081298828125, 0.04414467239379883, 0.04407068634033203, 0.04402604675292969, 0.044002464294433594, 0.044027774810791016, 0.04414972686767578, 0.04406486511230469, 0.0440544319152832, 0.04405619049072266, 0.04403033447265625, 0.04425471878051758, 0.04438175964355469, 0.044393566131591795, 0.04451926422119141, 0.04434124755859375, 0.04436572647094727, 0.044281024932861325, 0.044233631134033204, 0.04411910247802735, 0.044165470123291015, 0.04414022445678711, 0.04424182510375976, 0.04427734375, 0.04412403106689453, 0.04413254547119141, 0.04410771179199219, 0.04421791839599609, 0.04418595123291016, 0.04407868957519531, 0.04412508773803711, 0.04407068634033203, 0.04430665588378906, 0.04429619216918945, 0.04424499130249023, 0.044382209777832034, 0.04435279846191406, 0.04445404815673828, 0.04465926361083984, 0.04436095809936524, 0.0442289924621582, 0.04416915130615234, 0.044282241821289064, 0.04424505615234375, 0.044170719146728515, 0.04413040161132813, 0.04424467086791992, 0.04429436874389649, 0.04427804946899414, 0.044206336975097654, 0.04422041702270508, 0.04414838409423828, 0.04419401550292969, 0.04442678451538086, 0.04442892837524414, 0.04642937469482422, 0.04480694580078125, 0.044371967315673826, 0.044068862915039066, 0.04410121536254883, 0.0440733757019043, 0.04420403289794922, 0.04431257629394531, 0.04420608139038086, 0.04425027084350586, 0.04417225646972656, 0.044197662353515625, 0.044048095703125, 0.04409971237182617, 0.044445953369140624, 0.04457062530517578, 0.04419152069091797, 0.04420735931396484, 0.04416611099243164, 0.04433660888671875, 0.04467510223388672, 0.04458752059936524, 0.04446319961547852, 0.04436630249023438, 0.04446047973632813, 0.04459648132324219, 0.04430105590820312, 0.04416921615600586, 0.04414054489135742, 0.044470272064208984, 0.04430819320678711, 0.044179744720458984, 0.044197887420654294, 0.04410947036743164, 0.04428835296630859, 0.04439654541015625, 0.04426342391967773, 0.044126209259033204, 0.04407295989990234, 0.04423680114746094, 0.04442867279052734, 0.04433369445800781, 0.044269630432128906, 0.044385887145996096, 0.044582271575927736, 0.04453884887695313, 0.044335105895996096, 0.04421200180053711, 0.044191967010498046, 0.044158977508544923, 0.04428160095214844, 0.04419964981079102, 0.04428035354614258, 0.044205726623535155, 0.04411836624145508, 0.04425507354736328, 0.044368030548095704, 0.04440662384033203, 0.04429225540161133, 0.044186847686767575, 0.044294944763183595, 0.04434479904174805, 0.04430201721191406, 0.046306270599365235, 0.044703102111816405, 0.04419392013549805, 0.04403660964965821, 0.04406476974487305, 0.04402380752563476, 0.044001022338867185, 0.04390915298461914, 0.0441223373413086, 0.04409907150268555, 0.04402159881591797, 0.04402447891235352, 0.04394911956787109, 0.044217281341552735, 0.0440648307800293, 0.04407904052734375, 0.04402694320678711, 0.044062782287597656, 0.044022655487060545, 0.044251136779785157, 0.04428819274902344, 0.0444147834777832, 0.04444569778442383, 0.04447641754150391, 0.04437606430053711, 0.04432896041870117, 0.044170848846435545, 0.04414710235595703, 0.04421814346313477, 0.044187137603759766, 0.044187934875488284, 0.0441506233215332, 0.044160865783691404, 0.04418841552734375, 0.044219615936279294, 0.04421712112426758, 0.04418560028076172, 0.044143646240234376, 0.04425356674194336, 0.044084991455078125, 0.04433980941772461, 0.04427814483642578, 0.04431232070922852, 0.044329086303710935, 0.04441619110107422, 0.044449951171875, 0.04437801742553711, 0.04429286575317383, 0.04432896041870117, 0.044228321075439454, 0.044281761169433595, 0.04427609634399414, 0.04424703979492187, 0.04420608139038086, 0.04409958267211914, 0.04422598266601562, 0.04431465530395508, 0.04426531219482422, 0.04426607894897461, 0.04423689651489258, 0.04429808044433594, 0.04428518295288086, 0.04419631958007812, 0.04642092895507813, 0.044677120208740234, 0.04419686508178711, 0.044398944854736326, 0.044170974731445316, 0.044092094421386716, 0.04401996612548828, 0.044085247039794925, 0.0441712646484375, 0.04412380981445312, 0.04415667343139648, 0.04401417541503906, 0.044128257751464846, 0.0441343994140625, 0.04420169448852539, 0.04410531234741211, 0.044076831817626956, 0.0440266227722168, 0.04424252700805664, 0.044353439331054685, 0.044407455444335935, 0.044470272064208984, 0.04444569778442383, 0.044401664733886716, 0.044380382537841795, 0.04434143829345703, 0.04421718215942383, 0.04427763366699219, 0.04411782455444336, 0.044381343841552734, 0.044209056854248044, 0.04413849639892578, 0.04406697463989258, 0.04407689666748047, 0.04434124755859375, 0.04421222305297851, 0.04419136047363281, 0.044321151733398435, 0.04417705535888672, 0.044154911041259765, 0.04436742401123047, 0.04436454391479492, 0.04430438232421875, 0.04431222534179687, 0.04429654312133789, 0.04451900863647461, 0.044501407623291016, 0.044414497375488284, 0.044404640197753906, 0.04437974548339844, 0.04449993515014648, 0.04424038314819336, 0.0442147216796875, 0.044205406188964846, 0.04413433456420898, 0.04431248092651367, 0.044589950561523435, 0.044355583190917966, 0.04422246551513672, 0.04480819320678711, 0.04435968017578125, 0.0442259521484375, 0.04414441680908203, 0.04650243377685547, 0.04470924758911133, 0.04436275100708008, 0.04415235137939453, 0.044068641662597656, 0.04405660629272461, 0.044011966705322265, 0.04415692901611328, 0.044179393768310544, 0.0440832633972168, 0.044043807983398436, 0.04398128128051758, 0.04397999954223633, 0.044122142791748045, 0.04416707229614258, 0.04403647994995117, 0.04408982467651367, 0.044060672760009766, 0.044146625518798825, 0.04425324630737305, 0.044290046691894534, 0.04452297592163086, 0.044491294860839845, 0.044453887939453124, 0.044542049407958986, 0.044437408447265625, 0.044290046691894534, 0.04434860610961914, 0.044249919891357424, 0.04417536163330078, 0.044142593383789064, 0.04409673690795898, 0.04412211227416992, 0.04412643051147461, 0.04427167892456055, 0.044176929473876955, 0.04415996932983399, 0.04412588882446289, 0.04411151885986328, 0.04420470428466797, 0.044404159545898436, 0.04428803253173828, 0.044372318267822265, 0.04442736053466797, 0.04442531204223633, 0.0445030403137207, 0.04448160171508789, 0.04440121459960938, 0.044321151733398435, 0.044297534942626955, 0.04423545455932617, 0.0442716178894043, 0.04461977767944336, 0.04421017456054688, 0.04420544052124024, 0.04429225540161133, 0.044335391998291014, 0.0441426887512207, 0.04418764877319336, 0.04412985610961914, 0.04428188705444336, 0.04433097457885742, 0.0442578239440918, 0.046436321258544924, 0.044775806427001956, 0.04426710510253906, 0.04414505767822265, 0.044060672760009766, 0.044041759490966795, 0.044130847930908206, 0.04404012680053711, 0.04416921615600586, 0.04414668655395508, 0.044068862915039066, 0.044134273529052734, 0.044066272735595706, 0.04422892761230469, 0.04420595169067383, 0.044136287689208985, 0.044182144165039065, 0.04417536163330078, 0.044058624267578124, 0.04416694259643555, 0.044343521118164066, 0.04453324890136719, 0.04440934371948242, 0.04435696029663086, 0.044466846466064455, 0.04440019226074219, 0.044299808502197266, 0.044290046691894534, 0.04407814407348633, 0.044229503631591796, 0.04418860626220703, 0.04414656066894531, 0.044168800354003904, 0.044165409088134766, 0.04423299026489258, 0.04431372833251953, 0.04440550231933594, 0.044224639892578126, 0.04415692901611328, 0.04417232131958008, 0.044241470336914064, 0.044265857696533205, 0.04438224029541016, 0.04466483306884766, 0.04437811279296875, 0.04475904083251953, 0.044543998718261715, 0.04455833435058594, 0.04449801635742188, 0.044211105346679686, 0.04440659332275391, 0.04428787231445312, 0.04441120147705078, 0.044313663482666014, 0.044243167877197266, 0.04425939178466797, 0.04422268676757812, 0.04418195343017578, 0.044267520904541016, 0.044184959411621094, 0.0445794563293457, 0.044365825653076174, 0.04430368041992187, 0.046508384704589845, 0.04454550552368164, 0.04416780853271484, 0.044150047302246094, 0.044087135314941406, 0.043938591003417966, 0.04394598388671875, 0.043979808807373046, 0.04408419036865235, 0.044027904510498046, 0.04408028793334961, 0.04404291152954101, 0.044017921447753905, 0.043982784271240236, 0.04417523193359375, 0.04417958450317383, 0.044025856018066405, 0.044025856018066405, 0.044082847595214844, 0.04423920059204101, 0.0444026870727539, 0.04436345672607422, 0.044410400390625, 0.04440348815917969, 0.04442726516723633, 0.04432691192626953, 0.044203136444091795, 0.04412707138061524, 0.044137950897216796, 0.044224288940429686, 0.04412044906616211, 0.04407923126220703, 0.04401587295532226, 0.04409552001953125, 0.04404608154296875, 0.04421769714355469, 0.044252063751220705, 0.04417331314086914, 0.04417536163330078, 0.04413577651977539, 0.04426387023925781, 0.04433670425415039, 0.044352161407470704, 0.04448863983154297, 0.04445724868774414, 0.04454275131225586, 0.0445030403137207, 0.044437503814697264, 0.044339199066162106, 0.04425475311279297, 0.04425932693481445, 0.04437859344482422, 0.044273662567138675, 0.04423884963989258, 0.044214046478271485, 0.04420828628540039, 0.04441510391235352, 0.04425286483764648, 0.044448001861572266, 0.04422796630859375, 0.04424505615234375, 0.04429062271118164, 0.04434124755859375, 0.04647647857666016, 0.04498470306396484, 0.04424105453491211, 0.04410195159912109, 0.044063743591308595, 0.04395008087158203, 0.043953121185302736, 0.04398694229125977, 0.04405657577514648, 0.04424246215820313, 0.044042720794677734, 0.043993087768554685, 0.04402175903320313, 0.04411801528930664, 0.044230430603027344, 0.044041759490966795, 0.04411052703857422, 0.04405593490600586, 0.04408163070678711, 0.044140705108642576, 0.044206241607666015, 0.044448673248291014, 0.04467705535888672, 0.04444672012329102, 0.04441497421264649, 0.04430995178222656, 0.044269630432128906, 0.0441671028137207, 0.04412438583374023, 0.04412451171875, 0.04422860717773437, 0.04414611053466797, 0.04408787155151367, 0.0440945930480957, 0.04404723358154297, 0.04416668701171875, 0.04414614486694336, 0.04417843246459961, 0.04410966491699219, 0.044087390899658206, 0.044367393493652346, 0.04447043228149414, 0.04443142318725586, 0.044373664855957035, 0.04434396743774414, 0.04441244888305664, 0.044521953582763674, 0.04438204956054687, 0.04428201675415039, 0.04424703979492187, 0.04432486343383789, 0.04430412673950195, 0.04426764678955078, 0.044366142272949216, 0.04426681518554688, 0.044300960540771483, 0.04451107025146484, 0.04432393646240235, 0.04434991836547852, 0.04417990493774414, 0.04423884963989258, 0.04434739303588867, 0.04432486343383789, 0.046456222534179685, 0.044665470123291015, 0.044198238372802734, 0.0441610221862793, 0.04430207824707031, 0.04428547286987305, 0.044217056274414065, 0.04419184112548828, 0.04404624176025391, 0.044184734344482425, 0.04430115127563477, 0.044214271545410154, 0.044148735046386715, 0.044093441009521485, 0.04424428939819336, 0.044313278198242184, 0.044439552307128906, 0.04416716766357422, 0.0443449592590332, 0.04426176071166992, 0.04443695831298828, 0.044712127685546874, 0.04454435348510742, 0.04436326217651367, 0.044275806427001956, 0.04428371047973633, 0.04425283050537109, 0.0441572494506836, 0.04424483108520508, 0.04424185562133789, 0.044171104431152346, 0.04422649765014648, 0.04423276901245117, 0.044085247039794925, 0.04414892959594727, 0.044334911346435545, 0.044298240661621094, 0.044222400665283206, 0.04415628814697266, 0.04415353775024414, 0.04425523376464844, 0.04444979095458984, 0.04450867080688477, 0.04444416046142578, 0.04451942443847656, 0.04437782287597656, 0.04444803237915039, 0.04439859390258789, 0.044333057403564455, 0.04431814575195313, 0.04421817779541016, 0.04429395294189453, 0.044165599822998045, 0.0441673583984375, 0.04411763381958008, 0.044171199798583985, 0.04424687957763672, 0.044166015625, 0.04423884963989258, 0.04417327880859375, 0.044136672973632815, 0.04413216018676758, 0.04431849670410156]",tokens/s,22.580649372498126,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 1001, in __init__ self.model = GemmaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 780, in __init__ [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 780, in [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 571, in __init__ self.mlp = GemmaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 166, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 288.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 166.12 MiB is free. Process 140770 has 14.58 GiB memory in use. Of the allocated memory 14.46 GiB is allocated by PyTorch, and 1.74 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,dbrx,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1234, in __init__ self.transformer = DbrxModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1007, in __init__ self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1007, in self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 783, in __init__ self.norm_attn_norm = DbrxNormAttentionNorm( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 595, in __init__ self.attn = DBRX_ATTENTION_CLASSES[config._attn_implementation]( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 287, in __init__ self.Wqkv = nn.Linear( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 192.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 190.12 MiB is free. Process 111344 has 14.55 GiB memory in use. Of the allocated memory 14.44 GiB is allocated by PyTorch, and 1.55 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 609, in __init__ self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 400.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 312.12 MiB is free. Process 41209 has 14.43 GiB memory in use. Of the allocated memory 14.31 GiB is allocated by PyTorch, and 12.96 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt2,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,814.235648,2127.495168,0.0,1732.247552,1728.316416,s,1,7.494126953125,7.494126953125,0.0,7.494126953125,7.494126953125,7.494126953125,7.494126953125,[7.494126953125],,kWh,9.68461827082289e-06,1.0611642310189389e-06,4.302503442007999e-06,1.5048285943849828e-05,,MB,1107.70176,2328.82176,0.0,1923.088384,1891.2,s,11,0.4685140800476074,0.042592189095237036,0.003926996687913523,0.04137561416625977,0.04316851043701172,0.04874103927612305,0.05319906234741212,"[0.05431356811523438, 0.03801161575317383, 0.040621376037597655, 0.04316851043701172, 0.04131808090209961, 0.04131238555908203, 0.04130863952636719, 0.04286995315551758, 0.041873439788818356, 0.042340896606445313, 0.04137561416625977]",tokens/s,6010.491722498193,kWh,1.7661555776105405e-06,1.940468376263582e-07,1.16911405443373e-06,3.1293164696706284e-06,tokens/kWh,81807002.41767012,MB,1117.642752,2328.82176,0.0,1923.088384,1895.80032,s,11,10.273246093749998,0.9339314630681816,0.004601488466255629,0.93250439453125,0.939381103515625,0.9407118835449219,0.9417765075683594,"[0.9289093627929688, 0.93250439453125, 0.939381103515625, 0.9280496826171875, 0.9309269409179688, 0.9381678466796874, 0.9389963989257812, 0.9330540771484375, 0.9307843627929687, 0.9304292602539063, 0.9420426635742187]",tokens/s,67.45677010712369,kWh,2.6926773923902357e-05,2.9703234128768476e-06,1.599403098920306e-05,4.589112832598225e-05,tokens/kWh,1372814.3608169074,,s,693,10.270677665710455,0.014820602692222868,0.00037578824727001534,0.014731040000915527,0.015048230171203613,0.015191097450256347,0.016418733444213875,"[0.015498559951782226, 0.015063743591308593, 0.014892288208007812, 0.01481833553314209, 0.01478012752532959, 0.014735360145568848, 0.014867487907409669, 0.014663968086242676, 0.014787263870239258, 0.014648703575134278, 0.014684639930725097, 0.014583135604858398, 0.01581753635406494, 0.015015935897827149, 0.014782464027404785, 0.01469644832611084, 0.01491763210296631, 0.014620672225952149, 0.014581952095031738, 0.014794495582580567, 0.014727231979370117, 0.014692352294921876, 0.014645376205444337, 0.014677248001098632, 0.014613375663757325, 0.014599295616149902, 0.014619263648986816, 0.014577664375305176, 0.014755328178405762, 0.014710432052612304, 0.014722111701965333, 0.014655263900756835, 0.01466534423828125, 0.014629247665405274, 0.014617664337158203, 0.01479526424407959, 0.01461683177947998, 0.014622912406921387, 0.014985216140747071, 0.014940159797668457, 0.014796799659729003, 0.014663680076599121, 0.014673439979553223, 0.01463548755645752, 0.014587840080261231, 0.014778431892395019, 0.014650752067565918, 0.014575231552124023, 0.01461350440979004, 0.014645248413085938, 0.014620672225952149, 0.01459404754638672, 0.014607839584350586, 0.01471951961517334, 0.014577504158020019, 0.01457577610015869, 0.014611935615539551, 0.014742048263549804, 0.01476198387145996, 0.014876319885253906, 0.014836064338684082, 0.014735360145568848, 0.014689599990844727, 0.014716352462768555, 0.014578240394592285, 0.014592000007629394, 0.014694399833679199, 0.014569472312927247, 0.014691328048706055, 0.014739520072937011, 0.01469644832611084, 0.01472003173828125, 0.014605600357055664, 0.01851798439025879, 0.014973600387573243, 0.014905344009399414, 0.014911487579345703, 0.01552128028869629, 0.014874464035034179, 0.014854016304016114, 0.014725919723510741, 0.014745183944702148, 0.014657952308654786, 0.014601728439331055, 0.014766592025756836, 0.014609472274780273, 0.014563679695129395, 0.014537311553955079, 0.014645248413085938, 0.014650495529174804, 0.014691200256347656, 0.014681568145751953, 0.014647839546203613, 0.014704416275024414, 0.014622943878173828, 0.014581567764282226, 0.014588095664978028, 0.014667967796325683, 0.014759743690490722, 0.01464748764038086, 0.014624575614929199, 0.014622079849243163, 0.014627455711364746, 0.014720128059387208, 0.014791551589965821, 0.014905344009399414, 0.014962688446044922, 0.014825247764587402, 0.014799072265625, 0.014699935913085938, 0.01470524787902832, 0.014561280250549317, 0.014733311653137206, 0.014657535552978516, 0.01470464038848877, 0.01463100814819336, 0.014720864295959472, 0.014832799911499023, 0.014930848121643067, 0.014774463653564452, 0.014648960113525391, 0.01515443229675293, 0.015434687614440917, 0.01466163158416748, 0.014608384132385254, 0.014684160232543946, 0.014941887855529785, 0.01491811180114746, 0.014723072052001953, 0.014741344451904297, 0.014659487724304199, 0.014606592178344726, 0.014649344444274901, 0.014655488014221191, 0.014751744270324708, 0.01489305591583252, 0.014804991722106933, 0.01467801570892334, 0.014683520317077637, 0.014592639923095703, 0.01461017608642578, 0.014699775695800782, 0.014664287567138673, 0.01495081615447998, 0.01474732780456543, 0.014873920440673828, 0.014982144355773925, 0.01477222442626953, 0.015073280334472656, 0.014868415832519532, 0.015034432411193848, 0.014731264114379883, 0.01475984001159668, 0.014876607894897462, 0.014890368461608888, 0.014884703636169434, 0.014758848190307617, 0.014720416069030762, 0.014807135581970214, 0.014834176063537598, 0.014928895950317383, 0.01477734375, 0.015099040031433105, 0.014801440238952636, 0.014649632453918458, 0.01473459243774414, 0.014773247718811035, 0.014685055732727052, 0.014818207740783691, 0.014790656089782715, 0.014638976097106933, 0.01463923168182373, 0.014618623733520507, 0.014606240272521973, 0.014977375984191894, 0.017809152603149414, 0.01989017677307129, 0.015123647689819336, 0.014771007537841796, 0.014790656089782715, 0.014600192070007324, 0.014711039543151855, 0.014597887992858887, 0.014559231758117675, 0.014872575759887695, 0.014771360397338867, 0.014676992416381835, 0.014686047554016113, 0.014897151947021485, 0.015046336174011231, 0.014784000396728515, 0.014740480422973632, 0.014780223846435547, 0.01460223960876465, 0.015560704231262207, 0.01657823944091797, 0.014774592399597167, 0.014700511932373046, 0.014555040359497071, 0.014641280174255372, 0.014798272132873535, 0.014623104095458984, 0.014600383758544921, 0.014612480163574219, 0.0145830078125, 0.014584128379821776, 0.014715007781982422, 0.014640959739685058, 0.014842399597167969, 0.01477129554748535, 0.01472383975982666, 0.014670207977294921, 0.01468393611907959, 0.014548992156982422, 0.014618111610412597, 0.01464575958251953, 0.014619903564453125, 0.014664447784423829, 0.014673919677734374, 0.014796640396118164, 0.01468227195739746, 0.014929920196533204, 0.014632960319519044, 0.014648991584777832, 0.01456982421875, 0.014573568344116212, 0.014663680076599121, 0.014632896423339843, 0.014594112396240234, 0.014582880020141601, 0.014637984275817872, 0.014655488014221191, 0.01465664005279541, 0.015078399658203125, 0.014714431762695313, 0.014611935615539551, 0.014667648315429688, 0.01458790397644043, 0.014695327758789062, 0.014727456092834473, 0.014665504455566407, 0.014702591896057129, 0.014730879783630371, 0.014680447578430176, 0.014589952468872071, 0.014643487930297851, 0.014649056434631347, 0.014727168083190918, 0.01469644832611084, 0.014682111740112304, 0.014706687927246094, 0.014624544143676758, 0.014831616401672363, 0.014730208396911621, 0.014741503715515136, 0.014724767684936524, 0.014689888000488281, 0.014727295875549317, 0.014957183837890626, 0.01470809555053711, 0.014700672149658204, 0.01476863956451416, 0.01479916763305664, 0.01523475170135498, 0.014870176315307617, 0.014926176071166992, 0.014736800193786622, 0.014673983573913574, 0.014704895973205566, 0.014723360061645508, 0.014720128059387208, 0.015069664001464844, 0.014917759895324708, 0.015108384132385255, 0.014791999816894531, 0.014798912048339843, 0.014836352348327636, 0.014687487602233887, 0.014852864265441895, 0.01480294418334961, 0.014663680076599121, 0.014628864288330079, 0.014628288269042968, 0.014692416191101074, 0.014713376045227052, 0.01487664031982422, 0.014839936256408691, 0.014665599822998046, 0.014694399833679199, 0.014665727615356445, 0.014691840171813965, 0.014782976150512696, 0.01481935977935791, 0.014659487724304199, 0.014710335731506348, 0.014707200050354004, 0.01459404754638672, 0.01465334415435791, 0.01511843204498291, 0.01482652759552002, 0.014750656127929687, 0.01485580825805664, 0.014780832290649413, 0.014679231643676759, 0.0147542724609375, 0.014711135864257813, 0.014652576446533203, 0.014715423583984375, 0.014698816299438476, 0.014684160232543946, 0.014696576118469239, 0.014636672019958497, 0.014678272247314453, 0.014796192169189454, 0.015120991706848145, 0.01546656036376953, 0.015187359809875489, 0.0149302396774292, 0.015048447608947755, 0.01488700771331787, 0.014885343551635743, 0.014739456176757813, 0.014681568145751953, 0.01460860824584961, 0.014584128379821776, 0.014897151947021485, 0.014731072425842285, 0.01477552032470703, 0.014667872428894044, 0.0147010555267334, 0.01490777587890625, 0.014693440437316895, 0.014705120086669922, 0.014797280311584473, 0.014809087753295898, 0.014917183876037597, 0.015276288032531738, 0.01499289608001709, 0.014787263870239258, 0.015539551734924316, 0.01778755187988281, 0.015519743919372558, 0.014776320457458495, 0.014895071983337402, 0.014782496452331543, 0.014692352294921876, 0.014671872138977051, 0.014749695777893066, 0.01472697639465332, 0.014683903694152832, 0.014746047973632813, 0.01519820785522461, 0.01469983959197998, 0.014809632301330566, 0.014779840469360352, 0.01479139232635498, 0.014702591896057129, 0.014673919677734374, 0.014656671524047852, 0.01471564769744873, 0.01472707176208496, 0.014672063827514648, 0.015119744300842284, 0.015082112312316895, 0.014788607597351074, 0.014712575912475587, 0.014852352142333984, 0.014710559844970703, 0.014702176094055176, 0.015079104423522949, 0.015038463592529297, 0.014687359809875488, 0.014681920051574707, 0.014794015884399414, 0.01468489646911621, 0.014658687591552734, 0.014814080238342285, 0.014856191635131836, 0.014937984466552734, 0.014757375717163086, 0.014722751617431641, 0.015066047668457032, 0.014750847816467285, 0.01461952018737793, 0.01459404754638672, 0.014735360145568848, 0.014730527877807617, 0.014848608016967774, 0.015125696182250976, 0.014913951873779297, 0.014783007621765137, 0.01498259162902832, 0.014770751953125, 0.015138815879821778, 0.015023551940917968, 0.016580863952636717, 0.016404863357543945, 0.015110079765319823, 0.014892095565795899, 0.01483193588256836, 0.015051103591918946, 0.015292703628540039, 0.014703840255737304, 0.014749567985534668, 0.014644000053405761, 0.014759455680847168, 0.014762592315673829, 0.014968832015991211, 0.015050751686096191, 0.01470620822906494, 0.014612544059753417, 0.014690367698669434, 0.014712608337402344, 0.014612192153930665, 0.014715744018554687, 0.014743552207946778, 0.014728287696838378, 0.014719903945922852, 0.01491977596282959, 0.01506704044342041, 0.014935839653015136, 0.015369536399841309, 0.014918496131896972, 0.014718463897705078, 0.015339776039123535, 0.014767999649047852, 0.014821696281433105, 0.015124608039855957, 0.015025152206420898, 0.01480191993713379, 0.01478649616241455, 0.014687616348266602, 0.014731040000915527, 0.014723999977111817, 0.014757696151733399, 0.01494035243988037, 0.014726719856262206, 0.014757951736450196, 0.014858176231384277, 0.014704768180847167, 0.014727487564086914, 0.014962656021118164, 0.01484553623199463, 0.014786975860595703, 0.01475699234008789, 0.014899488449096679, 0.014897279739379883, 0.014789088249206543, 0.014858240127563477, 0.014880767822265625, 0.014774271965026856, 0.014749695777893066, 0.014723072052001953, 0.014702079772949218, 0.014688480377197265, 0.014767904281616211, 0.014966336250305176, 0.014889920234680176, 0.015042112350463868, 0.01531481647491455, 0.014983327865600585, 0.01514742374420166, 0.014841856002807617, 0.014904895782470702, 0.014888863563537597, 0.015196703910827636, 0.014999551773071289, 0.01470464038848877, 0.014673727989196778, 0.01463929557800293, 0.014675840377807618, 0.014787903785705566, 0.014777152061462403, 0.014993535995483398, 0.014759807586669922, 0.014551039695739745, 0.01469587230682373, 0.014703167915344238, 0.01485209560394287, 0.015103039741516113, 0.014960672378540039, 0.015010592460632324, 0.0147640323638916, 0.014640607833862306, 0.014639776229858398, 0.014710783958435059, 0.014773856163024903, 0.014629280090332031, 0.014735360145568848, 0.014667776107788086, 0.014784511566162109, 0.01493507194519043, 0.01462166404724121, 0.014671872138977051, 0.014796799659729003, 0.014661408424377442, 0.014702560424804688, 0.014624128341674805, 0.0148090238571167, 0.014683072090148925, 0.014669280052185058, 0.014708959579467773, 0.014761311531066895, 0.014689472198486328, 0.014790111541748047, 0.014873120307922363, 0.014700544357299805, 0.0147640323638916, 0.01468825626373291, 0.014669568061828613, 0.014659839630126953, 0.014712832450866698, 0.014643199920654297, 0.014722623825073243, 0.014659551620483399, 0.014628735542297364, 0.014715167999267578, 0.014686528205871583, 0.014632543563842774, 0.014666144371032714, 0.014654687881469727, 0.014635807991027832, 0.014630911827087402, 0.014721023559570312, 0.015084575653076172, 0.014773216247558594, 0.01469155216217041, 0.01477507209777832, 0.01466982364654541, 0.014735360145568848, 0.014698495864868164, 0.01527990436553955, 0.014732576370239258, 0.014726079940795899, 0.014654687881469727, 0.014756159782409668, 0.01479043197631836, 0.014762687683105468, 0.014680064201354981, 0.0148602876663208, 0.014804991722106933, 0.014725119590759277, 0.014796480178833008, 0.014729087829589843, 0.014690752029418946, 0.014825471878051758, 0.014854080200195312, 0.014673536300659179, 0.01470736026763916, 0.014780032157897948, 0.014764287948608398, 0.014671775817871094, 0.014731264114379883, 0.014790656089782715, 0.01472111988067627, 0.014710304260253906, 0.014829952239990235, 0.014716320037841797, 0.014742112159729004, 0.014753791809082031, 0.014892831802368164, 0.015126272201538086, 0.015077823638916016, 0.015091744422912598, 0.01495257568359375, 0.014948224067687988, 0.014907391548156738, 0.014872544288635254, 0.014878848075866698, 0.014788736343383789, 0.014872447967529297, 0.014742752075195313, 0.014779168128967285, 0.01460204792022705, 0.01468230438232422, 0.014610431671142577, 0.014695712089538574, 0.014678688049316406, 0.014669343948364258, 0.014643551826477051, 0.014600383758544921, 0.014827520370483398, 0.01459609603881836, 0.014698016166687011, 0.014633440017700195, 0.014583807945251465, 0.01464089584350586, 0.014704895973205566, 0.015078623771667481, 0.01504736042022705, 0.014864480018615723, 0.014800127983093261, 0.01464361572265625, 0.014682463645935059, 0.014636863708496093, 0.014825823783874512, 0.014767264366149902, 0.014744256019592285, 0.014841407775878905, 0.014785120010375977, 0.014831456184387207, 0.014732640266418457, 0.01470736026763916, 0.014714879989624024, 0.014730239868164062, 0.014707615852355957, 0.014675264358520507, 0.014635807991027832, 0.014733311653137206, 0.014774271965026856, 0.014855487823486328, 0.014703295707702636, 0.014728192329406739, 0.014655872344970703, 0.014623231887817383, 0.014604415893554688, 0.01467369556427002, 0.014705056190490723, 0.014767935752868652, 0.01473737621307373, 0.014743583679199219, 0.015027392387390136, 0.014891712188720704, 0.015210304260253906, 0.01563811206817627, 0.014886943817138672, 0.014805439949035645, 0.014782719612121582, 0.014687295913696288, 0.014713983535766601, 0.015320480346679688, 0.015183775901794434, 0.015125184059143067, 0.01496678352355957, 0.01495587158203125, 0.014879391670227051, 0.014899200439453125, 0.015009792327880859, 0.017104352951049805, 0.015395232200622559, 0.014792192459106445, 0.014868800163269042, 0.014770496368408203, 0.015015935897827149, 0.015674816131591798, 0.016312351226806642, 0.014946368217468262, 0.015055328369140626, 0.014984736442565918, 0.015106528282165528, 0.014891008377075195, 0.014927871704101562, 0.01556275177001953, 0.015281279563903809, 0.015017120361328126, 0.014738176345825195, 0.01463593578338623, 0.014647359848022462, 0.015914912223815917, 0.014717023849487304, 0.01547379207611084, 0.014780608177185059, 0.01478112030029297, 0.014693408012390137, 0.014664640426635742, 0.014716959953308106, 0.014716927528381347, 0.014733311653137206, 0.014640159606933593, 0.01467619228363037, 0.014680031776428223, 0.014713184356689453, 0.014993856430053711, 0.014791680335998534, 0.01481328010559082, 0.0146844482421875, 0.014867391586303711, 0.014716480255126953, 0.014591808319091798, 0.01465775966644287, 0.014661120414733888, 0.014701151847839355, 0.01466982364654541, 0.014695615768432617, 0.014711935997009278, 0.014687007904052734, 0.015067968368530273, 0.014706080436706542, 0.01479695987701416, 0.014688799858093262, 0.014696703910827637, 0.01465727996826172, 0.014972800254821778]",tokens/s,67.47363928221026,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 890, in __init__ self.model = OPTModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 822, in __init__ self.decoder = OPTDecoder(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in __init__ self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 373, in __init__ self.self_attn = OPT_ATTENTION_CLASSES[config._attn_implementation](config=config, is_decoder=True) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 252, in __init__ super().__init__(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 116, in __init__ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 120.12 MiB is free. Process 130580 has 14.62 GiB memory in use. Of the allocated memory 14.51 GiB is allocated by PyTorch, and 2.29 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 865, in forward transformer_outputs = self.transformer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 732, in forward outputs = block( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 459, in forward attn_outputs = self.attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 411, in forward return self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 358, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1104, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 915, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 655, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 484, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm2,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 1138, in __init__ self.model = InternLM2Model(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 918, in __init__ [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 918, in [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 709, in __init__ self.feed_forward = InternLM2MLP(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 205, in __init__ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 192.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 136.12 MiB is free. Process 153481 has 14.61 GiB memory in use. Of the allocated memory 14.49 GiB is allocated by PyTorch, and 3.07 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,deci,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,810.139648,14639.104,0.0,14243.856384,14221.3376,s,1,7.5382119140625,7.5382119140625,0.0,7.5382119140625,7.5382119140625,7.5382119140625,7.5382119140625,[7.5382119140625],,kWh,1.5008527887503457e-05,1.6481913225325745e-06,8.933062701999006e-06,2.558978191203504e-05,,MB,1123.958784,14735.572992,0.0,14329.839616,14290.688,s,10,14.040768432617188,1.4040768432617188,0.0048848589672792955,1.405280517578125,1.4091292724609374,1.4101729736328126,1.4110079345703126,"[1.3953970947265626, 1.399153076171875, 1.3992520751953126, 1.400876953125, 1.404310302734375, 1.4079962158203125, 1.40741796875, 1.4112166748046875, 1.4088973388671875, 1.406250732421875]",tokens/s,182.32620331897448,kWh,4.105210496041688e-05,4.5276012484695975e-06,2.716368839760005e-05,7.274339460648653e-05,tokens/kWh,3519219.873981142,MB,1152.958464,14750.253056,0.0,14344.51968,14290.69056,s,10,39.413060791015624,3.9413060791015617,0.003247624827919594,3.9413275146484374,3.943664404296875,3.946299365234375,3.948407333984375,"[3.9380703125, 3.93835595703125, 3.936633544921875, 3.941100830078125, 3.94066552734375, 3.94183056640625, 3.94155419921875, 3.942836669921875, 3.943078857421875, 3.948934326171875]",tokens/s,15.984548963109491,kWh,0.00011535337135291625,1.2724405187126664e-05,7.679317254560004e-05,0.00020487094908564293,tokens/kWh,307510.65625055454,,s,630,39.40928758239751,0.0625544247339642,0.0002290329818859967,0.06253827095031739,0.0628556354522705,0.06295140991210937,0.06317164352416993,"[0.06301465606689453, 0.062229217529296874, 0.062402591705322266, 0.062215137481689456, 0.06197545623779297, 0.06248233413696289, 0.062167102813720704, 0.06237936019897461, 0.06253241729736328, 0.06231763076782226, 0.062069793701171876, 0.062396289825439454, 0.06242675018310547, 0.06287807846069336, 0.06252073669433594, 0.06271958541870117, 0.062311424255371096, 0.06230534362792969, 0.06220233535766601, 0.062204383850097654, 0.061972415924072266, 0.0622490234375, 0.06250291061401367, 0.062382080078125, 0.06239846420288086, 0.06239641571044922, 0.062407936096191406, 0.062497535705566404, 0.06253321456909179, 0.0627347526550293, 0.06249676895141602, 0.06255820846557616, 0.06289801788330078, 0.06245977783203125, 0.062368030548095706, 0.06234294509887695, 0.062488800048828126, 0.06255193710327149, 0.062400192260742185, 0.06242566299438477, 0.06238422393798828, 0.06246377563476563, 0.06233283233642578, 0.06340208053588867, 0.0627231674194336, 0.06289497756958008, 0.06259478378295899, 0.06267526245117187, 0.06269132614135742, 0.06253772735595703, 0.06240256118774414, 0.06249628829956055, 0.062396030426025394, 0.0631099853515625, 0.06281798553466797, 0.06265478515625, 0.06256028747558594, 0.0625909423828125, 0.06259423828125, 0.06275360107421875, 0.0624189453125, 0.06265862274169921, 0.06274041748046875, 0.06332227325439453, 0.06269110488891602, 0.0620689582824707, 0.062261280059814454, 0.062285247802734374, 0.06233961486816406, 0.061960193634033205, 0.06228124618530274, 0.06250294494628907, 0.0627242546081543, 0.06233660888671875, 0.06266336059570313, 0.06259219360351563, 0.06235638427734375, 0.06241059112548828, 0.06237571334838867, 0.062286113739013674, 0.06242502212524414, 0.062356990814208986, 0.0627116470336914, 0.06240943908691406, 0.06232835388183594, 0.06231497573852539, 0.062282783508300785, 0.06221676635742188, 0.06266307067871094, 0.062443519592285154, 0.0624947509765625, 0.06279727935791016, 0.06278505706787109, 0.06251824188232422, 0.062410751342773435, 0.06253500747680664, 0.06250358581542968, 0.06235033416748047, 0.06241094589233399, 0.062329662322998046, 0.06229756927490234, 0.062376480102539066, 0.062328865051269534, 0.06246329498291016, 0.06270383834838868, 0.0628023681640625, 0.06274662399291993, 0.06262764739990234, 0.06250617599487304, 0.06235855865478516, 0.06241494369506836, 0.06248767852783203, 0.06250777435302735, 0.062912353515625, 0.06270582580566406, 0.06268313598632813, 0.06253263854980469, 0.06242201614379883, 0.06253769683837891, 0.06255599975585938, 0.06254784011840821, 0.06275305557250976, 0.0627856330871582, 0.0629466552734375, 0.06270601654052735, 0.0625539207458496, 0.06293852615356445, 0.0622372817993164, 0.06213014221191406, 0.062183521270751954, 0.06217932891845703, 0.0624202880859375, 0.06216099166870117, 0.06233967971801758, 0.06250086212158203, 0.06250627136230469, 0.0625650863647461, 0.062306304931640626, 0.06214041519165039, 0.06239231872558594, 0.06254991912841797, 0.06258899307250977, 0.06262543869018555, 0.06276729583740234, 0.06234857559204102, 0.06225603103637695, 0.06215238571166992, 0.06246368026733398, 0.06224140930175781, 0.06246604919433594, 0.062273536682128906, 0.06258892822265626, 0.06288544082641602, 0.062472640991210936, 0.06227305603027344, 0.06248291015625, 0.06254959869384766, 0.06262214279174805, 0.06241891098022461, 0.06261759948730469, 0.06264774322509765, 0.06248883056640625, 0.06232633590698242, 0.062416831970214845, 0.06231865692138672, 0.06256921768188477, 0.062316574096679685, 0.06247222518920898, 0.0625458869934082, 0.06247529602050781, 0.06251820755004883, 0.0627094383239746, 0.06255791854858399, 0.06266684722900391, 0.06259107208251953, 0.06271590423583985, 0.0625115852355957, 0.06242720031738281, 0.062319583892822265, 0.06252022552490234, 0.06263001632690429, 0.06289395141601563, 0.06253158569335937, 0.06262707138061524, 0.06262246322631836, 0.06255324935913086, 0.062499679565429685, 0.06261350250244141, 0.06258483123779297, 0.0634106559753418, 0.06242652893066406, 0.06216953659057617, 0.062212032318115236, 0.062185630798339844, 0.06234511947631836, 0.062220287322998044, 0.06227507019042969, 0.06251718521118164, 0.062281982421875, 0.06216633605957031, 0.06251417541503906, 0.06242230224609375, 0.06253846359252929, 0.062394367218017575, 0.06223388671875, 0.062405441284179686, 0.06263596725463867, 0.06250086212158203, 0.06238819122314453, 0.06207078552246094, 0.062227680206298826, 0.06280047988891602, 0.06242700958251953, 0.06267939376831054, 0.06247366333007812, 0.06235087966918945, 0.06262790298461914, 0.06261238479614258, 0.06269286346435547, 0.06244972610473633, 0.062419296264648434, 0.0627276496887207, 0.06273500823974609, 0.06277072143554688, 0.06293532943725585, 0.06271811294555664, 0.062312095642089844, 0.062371711730957034, 0.06251772689819336, 0.06245587158203125, 0.06246118545532227, 0.06244966506958008, 0.0627207374572754, 0.06277228927612305, 0.06295641708374024, 0.062644287109375, 0.06251484680175781, 0.06247663879394531, 0.06255516815185547, 0.06256940841674805, 0.06266652679443359, 0.062486785888671875, 0.06263391876220703, 0.06278729629516601, 0.06276335906982422, 0.06284297561645508, 0.06266979217529296, 0.06253577423095703, 0.06285523223876953, 0.06299523162841797, 0.06285286331176758, 0.06290422439575195, 0.06305772781372071, 0.06225526428222656, 0.062169281005859375, 0.06220800018310547, 0.062195358276367185, 0.062406368255615234, 0.06218937683105469, 0.06230307388305664, 0.0623595199584961, 0.062455329895019535, 0.062519775390625, 0.06225823974609375, 0.062292831420898434, 0.06233715057373047, 0.062488544464111326, 0.06287062454223633, 0.06252803039550782, 0.06259955215454102, 0.06234112167358399, 0.062304031372070315, 0.062333152770996096, 0.06255820846557616, 0.062216159820556644, 0.06237392044067383, 0.06270083236694336, 0.06277548980712891, 0.06260377502441407, 0.06266643142700196, 0.06256880187988281, 0.06241689682006836, 0.062470142364501956, 0.06276300811767578, 0.06253673553466797, 0.062388225555419924, 0.06237216186523437, 0.06257251358032226, 0.06256438446044922, 0.06264284896850586, 0.06272735977172851, 0.0626102409362793, 0.0626684799194336, 0.06266502380371093, 0.06284672164916992, 0.06243318557739258, 0.06276108932495117, 0.062619873046875, 0.06270115280151367, 0.06265078353881835, 0.062437374114990236, 0.06260265731811523, 0.062473857879638675, 0.06240262222290039, 0.06235023880004883, 0.06258470535278321, 0.06271603012084961, 0.06295142364501953, 0.06271753692626954, 0.06297027206420898, 0.06266060638427734, 0.06264012908935547, 0.06292835235595703, 0.0626849594116211, 0.06275513458251954, 0.0631978874206543, 0.062252639770507816, 0.06214083099365234, 0.06196364974975586, 0.06255007934570313, 0.062578369140625, 0.062434177398681644, 0.06225715255737305, 0.06245580673217774, 0.06233695983886719, 0.062390335083007814, 0.062473342895507815, 0.06230499267578125, 0.06231260681152344, 0.06221619033813477, 0.06243260955810547, 0.06287635040283203, 0.06271996688842774, 0.06230220794677734, 0.06239004898071289, 0.062288127899169925, 0.06266249465942383, 0.06271603012084961, 0.06234521484375, 0.062416927337646484, 0.0625656967163086, 0.06255683135986329, 0.06266470336914062, 0.06252044677734375, 0.06263897705078125, 0.06251849746704101, 0.06256105422973633, 0.06273843383789063, 0.06262086486816407, 0.06225132751464844, 0.06250342559814454, 0.06252748870849609, 0.06261356735229492, 0.06278953552246094, 0.0625316162109375, 0.06254182434082031, 0.06255785751342774, 0.06260976028442383, 0.0626319351196289, 0.06247219085693359, 0.06250495910644531, 0.06271491241455078, 0.06287980651855468, 0.06284281539916992, 0.06256534576416016, 0.06244895935058594, 0.062576416015625, 0.06257977676391602, 0.06276889419555665, 0.06302278518676757, 0.0627729606628418, 0.0628037109375, 0.06280239868164063, 0.06281036758422852, 0.06300227355957032, 0.06278204727172852, 0.0626769905090332, 0.06248239898681641, 0.06316787338256837, 0.06242889785766602, 0.06221030426025391, 0.062058368682861326, 0.06238063812255859, 0.06222652816772461, 0.062117889404296876, 0.06243673706054687, 0.0625814094543457, 0.06250492858886719, 0.0627732810974121, 0.062349281311035155, 0.06234454345703125, 0.06228044891357422, 0.06233216094970703, 0.06267337417602539, 0.06269318389892578, 0.06286374282836914, 0.06248448181152344, 0.062339038848876954, 0.062426944732666016, 0.06212944030761719, 0.06226220703125, 0.062386207580566407, 0.06247011184692383, 0.06273833465576172, 0.06254131317138673, 0.06270550537109375, 0.06250576019287109, 0.06247625732421875, 0.06254771041870118, 0.06278374481201172, 0.0625860481262207, 0.06286214447021485, 0.06241628646850586, 0.06263868713378906, 0.06245775985717773, 0.06260528182983398, 0.0625830078125, 0.06261955261230469, 0.06253363037109375, 0.06256633758544922, 0.062475841522216795, 0.0625558090209961, 0.0625590705871582, 0.0626770896911621, 0.06266668701171875, 0.06276006317138672, 0.06269369506835938, 0.06278355026245117, 0.06251375961303711, 0.06251660919189453, 0.06242969512939453, 0.06260943984985351, 0.0630123519897461, 0.0627163848876953, 0.06255759811401367, 0.06290697479248047, 0.06272819137573242, 0.0628592643737793, 0.062740478515625, 0.06270361709594727, 0.06262979125976563, 0.06318255996704102, 0.062269599914550784, 0.06216511917114258, 0.062209022521972655, 0.06236656188964844, 0.0624901123046875, 0.06224137496948242, 0.06230227279663086, 0.0625541114807129, 0.0627276496887207, 0.062277568817138675, 0.06256646347045898, 0.06241535949707031, 0.06251087951660156, 0.06259875106811523, 0.06269161605834961, 0.06253948974609375, 0.06244572830200195, 0.06253807830810547, 0.06231670379638672, 0.062205951690673826, 0.06230809783935547, 0.06222441482543945, 0.06222396850585937, 0.06266329574584961, 0.0627691535949707, 0.06263603210449219, 0.0628326416015625, 0.06250675201416016, 0.06260268783569337, 0.06282118225097656, 0.06252953720092773, 0.06229196929931641, 0.06249679946899414, 0.06246806335449219, 0.06257664108276367, 0.062349342346191404, 0.062487583160400394, 0.062446529388427735, 0.06250230407714844, 0.06258544158935547, 0.06250291061401367, 0.06247622299194336, 0.06269343948364257, 0.06265651321411132, 0.06283065414428711, 0.06296979141235351, 0.06273027038574219, 0.06263804626464843, 0.0625885124206543, 0.06251356887817383, 0.06255401611328125, 0.062304031372070315, 0.06287308883666992, 0.06284371185302734, 0.06287360000610352, 0.06291254425048828, 0.06288927841186523, 0.06267878341674804, 0.06300969696044922, 0.06287926483154296, 0.06291215896606445, 0.06317318344116211, 0.06300243377685547, 0.0621956787109375, 0.062082942962646485, 0.062284286499023435, 0.062397823333740235, 0.06235529708862304, 0.06255081558227539, 0.06257459259033203, 0.062467838287353514, 0.06260966491699219, 0.06244147109985351, 0.062281726837158206, 0.06223427200317383, 0.062494686126708984, 0.06245974349975586, 0.06258848190307617, 0.06235030364990234, 0.06236735916137695, 0.06239401626586914, 0.062362335205078126, 0.062255104064941405, 0.06236511993408203, 0.06247436904907227, 0.06276959991455078, 0.06257254409790039, 0.06281126403808594, 0.0627534065246582, 0.0625973777770996, 0.06246745681762695, 0.06252108764648437, 0.062473087310791015, 0.06248432159423828, 0.06224297714233398, 0.06265856170654296, 0.06258480072021484, 0.06259238433837891, 0.06244419097900391, 0.06264012908935547, 0.06264403152465821, 0.06293318557739258, 0.06257600021362304, 0.06259779357910156, 0.06295139312744141, 0.06298009490966797, 0.06270361709594727, 0.062814208984375, 0.06276451110839844, 0.06250345611572265, 0.06233705520629883, 0.0624964485168457, 0.06267516708374024, 0.06274208068847656, 0.06265292739868164, 0.06295062255859375, 0.06288668823242187, 0.06278963088989258, 0.06269337463378906, 0.0628056640625, 0.06295695877075196, 0.06284384155273437, 0.06281795120239257, 0.06277155303955079, 0.06258483123779297, 0.06310518264770508, 0.06265372848510742, 0.06231711959838867, 0.06251929473876953, 0.062287200927734376, 0.06242355346679687, 0.062416702270507815, 0.06248483276367187, 0.062740478515625, 0.06252953720092773, 0.06231449508666992, 0.06223180770874023, 0.06230435180664062, 0.0627344970703125, 0.06274054336547852, 0.06266518402099609, 0.0627421760559082, 0.06252988815307617, 0.06260451126098633, 0.062488414764404296, 0.06236662292480469, 0.062422271728515624, 0.06280476760864258, 0.06304111862182617, 0.06304764938354492, 0.06302102279663085, 0.0627204475402832, 0.062461952209472656, 0.06250086212158203, 0.06234483337402344, 0.06247257614135742, 0.06258428955078126, 0.06279363250732421, 0.06295971298217773, 0.0624686393737793, 0.06277088165283203, 0.06257430267333984, 0.0625547218322754, 0.0627476806640625, 0.06265472030639649, 0.06250979232788086, 0.06255567932128907, 0.06261759948730469, 0.06296134567260742, 0.06260406494140625, 0.06279116821289063, 0.06278927993774414, 0.06263040161132813, 0.0630071029663086, 0.06263123321533202, 0.06268175888061524, 0.06276265716552734, 0.06282070541381836, 0.06276857757568359, 0.06290899276733398, 0.06280944061279296, 0.06292752075195313, 0.06318694305419922, 0.06268928146362304, 0.06277260971069336, 0.06304412841796875, 0.06288790512084962, 0.06301507186889649]",tokens/s,15.986079390112998,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 689, in __init__ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 466, in __init__ super().__init__(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 357, in __init__ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 18.12 MiB is free. Process 168051 has 14.72 GiB memory in use. Of the allocated memory 14.60 GiB is allocated by PyTorch, and 3.02 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1011, in forward outputs = self.model.decoder( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 777, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 418, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 342, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,phi,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1556, in _autoset_attn_implementation cls._check_and_enable_flash_attn_2( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1647, in _check_and_enable_flash_attn_2 raise ValueError( ValueError: RecurrentGemmaForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmp2kht0_v1/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gptj,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 1015, in forward transformer_outputs = self.transformer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 840, in forward outputs = block( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 467, in forward attn_outputs = self.attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 397, in forward attn_weights = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 252, in _flash_attention_forward attn_output_unpad = flash_attn_varlen_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 1124, in flash_attn_varlen_func return FlashAttnVarlenFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 620, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_varlen_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 90, in _flash_attn_varlen_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.varlen_fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 134.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 52.12 MiB is free. Process 98439 has 14.69 GiB memory in use. Of the allocated memory 14.47 GiB is allocated by PyTorch, and 108.93 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 614, in __init__ self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 367, in __init__ super().__init__(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 274, in __init__ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 30.12 MiB is free. Process 86447 has 14.71 GiB memory in use. Of the allocated memory 14.37 GiB is allocated by PyTorch, and 229.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 865, in forward transformer_outputs = self.transformer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 732, in forward outputs = block( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 459, in forward attn_outputs = self.attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 411, in forward return self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 358, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1556, in _autoset_attn_implementation cls._check_and_enable_flash_attn_2( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1647, in _check_and_enable_flash_attn_2 raise ValueError( ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpd2s9773m/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1189, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1001, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 734, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 556, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 865, in forward transformer_outputs = self.transformer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 732, in forward outputs = block( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 459, in forward attn_outputs = self.attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 411, in forward return self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 358, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mixtral,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 890, in __init__ self.model = OPTModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 822, in __init__ self.decoder = OPTDecoder(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in __init__ self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 373, in __init__ self.self_attn = OPT_ATTENTION_CLASSES[config._attn_implementation](config=config, is_decoder=True) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 252, in __init__ super().__init__(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 115, in __init__ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 98.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 44.12 MiB is free. Process 127577 has 14.70 GiB memory in use. Of the allocated memory 14.58 GiB is allocated by PyTorch, and 3.80 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2_moe,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 1203, in __init__ self.model = Qwen2MoeModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 977, in __init__ [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 977, in [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 750, in __init__ self.self_attn = QWEN2MOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 446, in __init__ super().__init__(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 349, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 12.12 MiB is free. Process 95407 has 14.73 GiB memory in use. Of the allocated memory 12.32 GiB is allocated by PyTorch, and 2.30 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 989, in forward outputs = self.gpt_neox( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 880, in forward outputs = layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 647, in forward attention_layer_outputs = self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 369, in forward attn_weights = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 989, in forward outputs = self.gpt_neox( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 880, in forward outputs = layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 647, in forward attention_layer_outputs = self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 369, in forward attn_weights = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 286, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 280.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 42.12 MiB is free. Process 23747 has 14.70 GiB memory in use. Of the allocated memory 14.58 GiB is allocated by PyTorch, and 1.64 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 609, in __init__ self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 200.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 164.12 MiB is free. Process 47622 has 14.58 GiB memory in use. Of the allocated memory 14.46 GiB is allocated by PyTorch, and 4.94 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1556, in _autoset_attn_implementation cls._check_and_enable_flash_attn_2( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1647, in _check_and_enable_flash_attn_2 raise ValueError( ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpq1epcfyj/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1556, in _autoset_attn_implementation cls._check_and_enable_flash_attn_2( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1647, in _check_and_enable_flash_attn_2 raise ValueError( ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpulkz96ot/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 134.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 52.12 MiB is free. Process 83413 has 14.69 GiB memory in use. Of the allocated memory 14.47 GiB is allocated by PyTorch, and 108.93 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 248, in __init__ self.model = DeciCoderModel(config) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 215, in __init__ self.layers = nn.ModuleList([DeciCoderDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 215, in self.layers = nn.ModuleList([DeciCoderDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 181, in __init__ self.self_attn = DeciCoderAttention(config=config) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 54, in __init__ self._init_rope() File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1729, in __getattr__ raise AttributeError(f""'{type(self).__name__}' object has no attribute '{name}'"") AttributeError: 'DeciCoderAttention' object has no attribute '_init_rope' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 217, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 258.12 MiB is free. Process 89375 has 14.49 GiB memory in use. Of the allocated memory 14.32 GiB is allocated by PyTorch, and 53.40 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 906, in __init__ self.model = InternLMModel(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in __init__ self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 547, in __init__ self.mlp = InternLMMLP( File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 276, in __init__ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 136.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 18.12 MiB is free. Process 150411 has 14.72 GiB memory in use. Of the allocated memory 14.60 GiB is allocated by PyTorch, and 9.56 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 219, in __init__ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 768.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 286.12 MiB is free. Process 92417 has 14.46 GiB memory in use. Of the allocated memory 14.30 GiB is allocated by PyTorch, and 41.77 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1556, in _autoset_attn_implementation cls._check_and_enable_flash_attn_2( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1647, in _check_and_enable_flash_attn_2 raise ValueError( ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpx_awodlz/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt2,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 286, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 344.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 66.12 MiB is free. Process 173645 has 14.67 GiB memory in use. Of the allocated memory 14.56 GiB is allocated by PyTorch, and 1.71 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 689, in __init__ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 466, in __init__ super().__init__(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 358, in __init__ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 2.12 MiB is free. Process 170818 has 14.74 GiB memory in use. Of the allocated memory 14.53 GiB is allocated by PyTorch, and 90.39 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1032, in __init__ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.16 GiB. GPU 0 has a total capacity of 14.74 GiB of which 774.12 MiB is free. Process 68840 has 13.98 GiB memory in use. Of the allocated memory 13.72 GiB is allocated by PyTorch, and 148.73 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-9b,google/recurrentgemma-9b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1556, in _autoset_attn_implementation cls._check_and_enable_flash_attn_2( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1647, in _check_and_enable_flash_attn_2 raise ValueError( ValueError: RecurrentGemmaForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpyj5q71r2/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 608, in __init__ self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 288.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 182.12 MiB is free. Process 39804 has 14.56 GiB memory in use. Of the allocated memory 14.43 GiB is allocated by PyTorch, and 13.08 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mixtral,mistralai/Mixtral-8x22B-v0.1,mistralai/Mixtral-8x22B-v0.1,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1189, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1001, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 734, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 556, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 959, in __init__ self.model = MistralModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 711, in __init__ [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 711, in [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 508, in __init__ self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 278, in __init__ super().__init__(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 199, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 24.12 MiB is free. Process 109907 has 14.71 GiB memory in use. Of the allocated memory 14.46 GiB is allocated by PyTorch, and 141.44 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 989, in forward outputs = self.gpt_neox( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 880, in forward outputs = layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 647, in forward attention_layer_outputs = self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 369, in forward attn_weights = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 989, in forward outputs = self.gpt_neox( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 880, in forward outputs = layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 647, in forward attention_layer_outputs = self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 369, in forward attn_weights = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 890, in __init__ self.model = OPTModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 822, in __init__ self.decoder = OPTDecoder(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in __init__ self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 373, in __init__ self.self_attn = OPT_ATTENTION_CLASSES[config._attn_implementation](config=config, is_decoder=True) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 252, in __init__ super().__init__(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 115, in __init__ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 8.12 MiB is free. Process 124542 has 14.73 GiB memory in use. Of the allocated memory 14.61 GiB is allocated by PyTorch, and 3.97 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1011, in forward outputs = self.model.decoder( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 777, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 418, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 342, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 989, in forward outputs = self.gpt_neox( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 880, in forward outputs = layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 647, in forward attention_layer_outputs = self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 369, in forward attn_weights = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 217, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 258.12 MiB is free. Process 101686 has 14.49 GiB memory in use. Of the allocated memory 14.32 GiB is allocated by PyTorch, and 53.40 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1104, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 915, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 655, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 484, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1104, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 915, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 655, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 484, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 989, in forward outputs = self.gpt_neox( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 880, in forward outputs = layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 647, in forward attention_layer_outputs = self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 369, in forward attn_weights = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 1074, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 888, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 610, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 447, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 1001, in __init__ self.model = GemmaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 780, in __init__ [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 780, in [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 571, in __init__ self.mlp = GemmaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 167, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 144.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 34.12 MiB is free. Process 142329 has 14.71 GiB memory in use. Of the allocated memory 14.59 GiB is allocated by PyTorch, and 1.69 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1011, in forward outputs = self.model.decoder( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 777, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 418, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 342, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,dbrx,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1234, in __init__ self.transformer = DbrxModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1007, in __init__ self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1007, in self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 787, in __init__ self.ffn = DbrxFFN(config=config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 764, in __init__ self.experts = DbrxExperts( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 703, in __init__ self.mlp = DbrxExpertGLU( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 681, in __init__ self.w1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.97 GiB. GPU 0 has a total capacity of 14.74 GiB of which 1.17 GiB is free. Process 112818 has 13.57 GiB memory in use. Of the allocated memory 13.45 GiB is allocated by PyTorch, and 1.36 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1011, in forward outputs = self.model.decoder( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 777, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 418, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 342, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 634, in __init__ self.attention = GPT_NEOX_ATTENTION_CLASSES[config._attn_implementation](config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 306, in __init__ super().__init__(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 102, in __init__ self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 150.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 132.12 MiB is free. Process 42643 has 14.61 GiB memory in use. Of the allocated memory 14.47 GiB is allocated by PyTorch, and 21.89 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt2,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1556, in _autoset_attn_implementation cls._check_and_enable_flash_attn_2( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1647, in _check_and_enable_flash_attn_2 raise ValueError( ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpaszj85yv/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,,bfloat16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 989, in forward outputs = self.gpt_neox( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 880, in forward outputs = layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 647, in forward attention_layer_outputs = self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 369, in forward attn_weights = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 890, in __init__ self.model = OPTModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 822, in __init__ self.decoder = OPTDecoder(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in __init__ self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 373, in __init__ self.self_attn = OPT_ATTENTION_CLASSES[config._attn_implementation](config=config, is_decoder=True) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 252, in __init__ super().__init__(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 116, in __init__ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 120.12 MiB is free. Process 130181 has 14.62 GiB memory in use. Of the allocated memory 14.51 GiB is allocated by PyTorch, and 2.29 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 865, in forward transformer_outputs = self.transformer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 732, in forward outputs = block( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 459, in forward attn_outputs = self.attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 411, in forward return self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 358, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1104, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 915, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 655, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 484, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm2,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 1138, in __init__ self.model = InternLM2Model(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 918, in __init__ [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 918, in [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 709, in __init__ self.feed_forward = InternLM2MLP(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 205, in __init__ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 192.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 136.12 MiB is free. Process 153078 has 14.61 GiB memory in use. Of the allocated memory 14.49 GiB is allocated by PyTorch, and 3.07 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,deci,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,810.217472,14639.104,0.0,14243.856384,14221.3376,s,1,7.73187548828125,7.73187548828125,0.0,7.73187548828125,7.73187548828125,7.73187548828125,7.73187548828125,[7.73187548828125],,kWh,1.5289258250001583e-05,1.583704214532396e-06,5.663893419999809e-06,2.2536855884533787e-05,,MB,1176.8832,14737.670144,0.0,14329.839616,14290.688,s,10,2.162870071411133,0.2162870071411133,0.004696034653436737,0.2166063461303711,0.21995816955566405,0.22030833129882813,0.22058846069335938,"[0.20358029174804687, 0.21567996215820312, 0.21597410583496093, 0.21516217041015626, 0.21971200561523438, 0.2152815399169922, 0.21988035583496093, 0.21723858642578125, 0.21970256042480468, 0.2206584930419922]",tokens/s,1183.6124757738062,kWh,6.414262803894934e-06,7.073772449779575e-07,4.258982875782576e-06,1.1380622924655468e-05,tokens/kWh,22494375.017503712,MB,1197.019136,14752.350208,0.0,14344.51968,14290.69056,s,10,38.786872070312505,3.8786872070312506,0.006007349949207754,3.878911254882812,3.8850998779296875,3.8858206909179684,3.8863973413085935,"[3.86822705078125, 3.869866455078125, 3.8762998046875, 3.877141845703125, 3.875823974609375, 3.8806806640625, 3.884939697265625, 3.8824814453125, 3.88486962890625, 3.88654150390625]",tokens/s,16.24260906777792,kWh,0.0001135623148202716,1.2526194901041918e-05,7.550227537761758e-05,0.00020159078509893112,tokens/kWh,312514.2846637688,,s,630,38.78313149261476,0.06156052617875356,0.0005346627059583197,0.06147313499450684,0.06187085227966308,0.06209518413543701,0.0648411915588379,"[0.06455510711669922, 0.06257535934448243, 0.06161743927001953, 0.06133129501342773, 0.061139488220214845, 0.061219169616699216, 0.06158134460449219, 0.06133699035644531, 0.061130943298339846, 0.061174144744873045, 0.06128025436401367, 0.06136217498779297, 0.0612044792175293, 0.06106524658203125, 0.06133139038085938, 0.06137859344482422, 0.06139206314086914, 0.06144492721557617, 0.061488929748535155, 0.06133782577514649, 0.06118403244018555, 0.06113894271850586, 0.06117375946044922, 0.06125088119506836, 0.06095276641845703, 0.060787166595458984, 0.06112774276733399, 0.06120284652709961, 0.06129103851318359, 0.06122003173828125, 0.06128067016601563, 0.06118431854248047, 0.061415519714355465, 0.061571071624755856, 0.06145539093017578, 0.061434879302978515, 0.06140860748291015, 0.06142851257324219, 0.061468513488769534, 0.06149478530883789, 0.06123344039916992, 0.06148284912109375, 0.0613359375, 0.06105878448486328, 0.061403423309326174, 0.061265918731689455, 0.06129375839233398, 0.061341663360595704, 0.06132003021240234, 0.06149529647827148, 0.06137855911254883, 0.06113075256347656, 0.06128844833374023, 0.06150656127929687, 0.06157619094848633, 0.061556190490722654, 0.06131974411010742, 0.06125129699707031, 0.06128873443603516, 0.06154441452026367, 0.06125721740722656, 0.061409248352050784, 0.061698497772216795, 0.06434092712402344, 0.062304031372070315, 0.06152624130249024, 0.061203712463378905, 0.06103731155395508, 0.06134912109375, 0.06124364852905274, 0.06118761444091797, 0.061062175750732424, 0.06103238296508789, 0.061246910095214845, 0.0609285774230957, 0.06118915176391602, 0.06125609588623047, 0.06131974411010742, 0.06176358413696289, 0.06177785491943359, 0.061806655883789065, 0.06161324691772461, 0.06151046371459961, 0.061158462524414064, 0.061487041473388675, 0.0612567024230957, 0.06126572799682617, 0.061120704650878904, 0.06131916809082031, 0.06121273422241211, 0.061240863800048825, 0.06153667068481445, 0.06138675308227539, 0.06132534408569336, 0.06155875015258789, 0.061679615020751956, 0.061949600219726564, 0.06196012878417969, 0.061442462921142575, 0.061431774139404295, 0.061354015350341795, 0.061317119598388675, 0.06128844833374023, 0.06114508819580078, 0.06104403305053711, 0.060979774475097656, 0.061040000915527345, 0.06113766479492187, 0.06111983871459961, 0.06120515060424805, 0.061298561096191403, 0.06165843200683594, 0.06163497543334961, 0.06179471969604492, 0.0616357421875, 0.06159600067138672, 0.06145280075073242, 0.06136217498779297, 0.061341697692871094, 0.06113455963134766, 0.06125187301635742, 0.06138880157470703, 0.06128787231445312, 0.06129439926147461, 0.06137420654296875, 0.06135903930664063, 0.06497280120849609, 0.06270124816894532, 0.0614475212097168, 0.06150243377685547, 0.06108918380737305, 0.06117161560058594, 0.06119625473022461, 0.06116835021972656, 0.06128752136230469, 0.061094814300537106, 0.06107046508789062, 0.06114355087280274, 0.061059455871582034, 0.06107340621948242, 0.0612086067199707, 0.06176716613769531, 0.062091136932373045, 0.06186044692993164, 0.062132225036621094, 0.06180835342407227, 0.06179459381103516, 0.06145347213745117, 0.06143881607055664, 0.06113894271850586, 0.06113203048706055, 0.061105983734130856, 0.06141753768920898, 0.061752193450927736, 0.06111641693115234, 0.06166732788085937, 0.061087745666503906, 0.06137247848510742, 0.06146451187133789, 0.06138265609741211, 0.061337406158447266, 0.06145248031616211, 0.06176358413696289, 0.061572128295898435, 0.061512321472167966, 0.06148745727539062, 0.06116556930541992, 0.06127734375, 0.06176387023925781, 0.0615810546875, 0.0616640625, 0.06151504135131836, 0.06169055938720703, 0.061642784118652344, 0.06146047973632812, 0.06162163162231445, 0.06157171249389649, 0.061626399993896484, 0.061961822509765625, 0.061585182189941405, 0.061354591369628904, 0.06123519897460938, 0.06117382431030274, 0.06122284698486328, 0.061427391052246094, 0.06141513442993164, 0.06147126388549805, 0.061599807739257814, 0.061499393463134766, 0.06485810852050782, 0.06280556869506836, 0.06165139389038086, 0.06140447998046875, 0.06123180770874023, 0.061483009338378906, 0.06133481597900391, 0.06139344024658203, 0.06123097610473633, 0.06165126419067383, 0.061233150482177735, 0.06119619369506836, 0.061102176666259764, 0.06113663864135742, 0.061502784729003904, 0.06193657684326172, 0.06183939361572265, 0.061894622802734375, 0.061911041259765626, 0.06155820846557617, 0.06128662490844727, 0.06136441421508789, 0.06156508636474609, 0.061443775177001954, 0.06119456100463867, 0.06146662521362305, 0.061387966156005856, 0.06130771255493164, 0.06130207824707031, 0.06130505752563477, 0.06170057678222656, 0.061906017303466794, 0.061792415618896486, 0.061750049591064456, 0.06167958450317383, 0.0618535041809082, 0.061475006103515625, 0.06122905731201172, 0.061325183868408205, 0.06130476760864258, 0.06113299179077149, 0.06110620880126953, 0.06113481521606445, 0.06113894271850586, 0.061334945678710937, 0.06106534576416016, 0.06141331100463867, 0.06172079849243164, 0.06158367919921875, 0.06189056015014648, 0.06192079925537109, 0.061860321044921875, 0.06176540756225586, 0.06155699157714844, 0.06146214294433594, 0.061406623840332034, 0.06121696090698242, 0.06122918319702148, 0.06133414459228516, 0.061308895111083984, 0.06128236770629883, 0.06133695983886719, 0.061571678161621096, 0.06479977416992187, 0.0625940170288086, 0.06150147247314453, 0.061335521697998045, 0.06113689422607422, 0.06141929626464844, 0.061219039916992186, 0.061222942352294925, 0.0612856330871582, 0.06125641632080078, 0.06145769500732422, 0.061313758850097655, 0.06142761611938476, 0.06130239868164063, 0.0614354248046875, 0.06183417510986328, 0.06192127990722656, 0.06180454254150391, 0.06169715118408203, 0.06140607833862305, 0.06144316864013672, 0.06119247817993164, 0.06118390274047852, 0.06116985702514648, 0.061034271240234375, 0.061115135192871095, 0.061128097534179686, 0.06116364669799805, 0.061321727752685545, 0.06137200164794922, 0.061380992889404296, 0.06159769439697266, 0.06174720001220703, 0.06175539016723633, 0.06166678237915039, 0.06157561492919922, 0.06173295974731445, 0.061521953582763675, 0.06157104110717773, 0.061321247100830076, 0.061273887634277345, 0.061319103240966795, 0.061093441009521486, 0.06113542556762695, 0.061314849853515624, 0.061303009033203126, 0.06138044738769531, 0.06152582550048828, 0.06143600082397461, 0.06169843292236328, 0.061555774688720706, 0.0614901123046875, 0.06170217514038086, 0.06184483337402344, 0.06157513427734375, 0.061556640625, 0.06180326461791992, 0.061423614501953126, 0.06156224060058594, 0.06172713470458984, 0.06127017593383789, 0.061502655029296874, 0.06160406494140625, 0.06554598236083985, 0.06342863845825196, 0.06211376190185547, 0.06147715377807617, 0.06130265426635742, 0.061231006622314454, 0.06128271865844727, 0.06133964920043945, 0.06121065521240234, 0.06126793670654297, 0.061231136322021484, 0.061065185546875, 0.060947711944580076, 0.06101174545288086, 0.0613078727722168, 0.06163587188720703, 0.06171311950683594, 0.06195513534545898, 0.06190095901489258, 0.06173740768432617, 0.06152431869506836, 0.06144553756713867, 0.06122761535644531, 0.061284320831298825, 0.06124755096435547, 0.061269153594970704, 0.06145267105102539, 0.061560478210449215, 0.061413280487060545, 0.06125600051879883, 0.0614356803894043, 0.061494049072265626, 0.0617155532836914, 0.061578174591064454, 0.06181600189208984, 0.06171065521240234, 0.06176816177368164, 0.06145792007446289, 0.06157980728149414, 0.06180659103393555, 0.061689823150634766, 0.061394878387451175, 0.061454017639160155, 0.06149363327026367, 0.061400062561035154, 0.061321247100830076, 0.061468830108642576, 0.06176403045654297, 0.061731231689453124, 0.06167958450317383, 0.06171852874755859, 0.06180659103393555, 0.06156595230102539, 0.06129971313476563, 0.061287742614746094, 0.061440704345703125, 0.06165673446655273, 0.06137216186523437, 0.061603839874267576, 0.061506145477294924, 0.061530113220214844, 0.06177382278442383, 0.06155632019042969, 0.06560559844970704, 0.06320329666137696, 0.062007328033447266, 0.061638656616210936, 0.06126387023925781, 0.061445568084716795, 0.061432384490966795, 0.06149324798583984, 0.061290496826171874, 0.06150348663330078, 0.06137036895751953, 0.06156412887573242, 0.06140396881103516, 0.06138876724243164, 0.06174518585205078, 0.06177382278442383, 0.062182910919189455, 0.062304737091064454, 0.061892608642578124, 0.06167552185058594, 0.0615546875, 0.06159564971923828, 0.06129401779174805, 0.06124604797363281, 0.061257694244384764, 0.06134486389160156, 0.061295520782470705, 0.061489151000976565, 0.0614093132019043, 0.06103241729736328, 0.0612720947265625, 0.0615230712890625, 0.061645278930664064, 0.06199318313598633, 0.06179024124145508, 0.061730209350585936, 0.061794784545898436, 0.061800704956054685, 0.061742271423339844, 0.06150537490844726, 0.06150783920288086, 0.06152265548706055, 0.061373950958251954, 0.06139136123657227, 0.06160179138183594, 0.061417217254638674, 0.06169830322265625, 0.06147622299194336, 0.06151628875732422, 0.06152764892578125, 0.06185219192504883, 0.06211174392700195, 0.061818878173828126, 0.061712383270263675, 0.06159097671508789, 0.06159622573852539, 0.061400192260742184, 0.061524063110351565, 0.061426464080810546, 0.061411136627197264, 0.06152211380004883, 0.06136835098266601, 0.06165654373168945, 0.06534742736816407, 0.06290099334716796, 0.06167705535888672, 0.06150502395629883, 0.0613869743347168, 0.06128924942016602, 0.061515777587890626, 0.061464576721191405, 0.06145024108886719, 0.061470718383789064, 0.061394622802734375, 0.06137887954711914, 0.06157721710205078, 0.06123110580444336, 0.0615464973449707, 0.061949600219726564, 0.06207113647460937, 0.06198409652709961, 0.061878944396972654, 0.0617938232421875, 0.06158982467651367, 0.06139644622802734, 0.061207168579101565, 0.06133107376098633, 0.06148912048339844, 0.061353759765625, 0.06118060684204102, 0.061532161712646485, 0.061650974273681644, 0.06144204711914063, 0.0618106575012207, 0.061738014221191406, 0.06177824020385742, 0.06173331069946289, 0.06177199935913086, 0.06186188888549805, 0.062000801086425784, 0.06152771377563476, 0.06146937561035156, 0.06128639984130859, 0.06111638259887695, 0.061408767700195314, 0.06132585525512695, 0.06141299057006836, 0.061480575561523435, 0.06132515335083008, 0.061440929412841794, 0.061443424224853514, 0.061750942230224606, 0.06185881423950195, 0.06175129699707031, 0.06155673599243164, 0.06183935928344726, 0.061868030548095705, 0.06157516860961914, 0.0614824333190918, 0.06139894485473633, 0.061303489685058596, 0.0614870719909668, 0.06132294464111328, 0.06129900741577148, 0.061265918731689455, 0.06146665573120117, 0.0649062728881836, 0.06303334426879882, 0.06179840087890625, 0.06136422348022461, 0.061351295471191405, 0.06111433410644531, 0.061507678985595705, 0.06155728149414062, 0.06154025650024414, 0.06163241577148437, 0.06170646286010742, 0.06116348648071289, 0.061192192077636716, 0.06120819091796875, 0.06150182342529297, 0.06216447830200195, 0.062063102722167966, 0.06198428726196289, 0.06195574569702148, 0.06160262298583984, 0.06147894287109375, 0.06144160079956055, 0.061604095458984376, 0.06153792190551758, 0.061680191040039065, 0.061360095977783205, 0.061306880950927733, 0.06150348663330078, 0.06137449645996094, 0.06153420639038086, 0.061582592010498045, 0.06157583999633789, 0.061827167510986325, 0.06184307098388672, 0.06171990585327149, 0.06151663970947266, 0.06147884750366211, 0.06125593566894531, 0.06162633514404297, 0.061503040313720704, 0.061637054443359374, 0.061638656616210936, 0.06147686386108398, 0.06153823852539062, 0.061554206848144534, 0.06155094528198242, 0.0617760009765625, 0.06164691162109375, 0.061655040740966796, 0.06196428680419922, 0.061851646423339846, 0.06170009613037109, 0.06160105514526367, 0.06165167999267578, 0.061580543518066404, 0.06167350387573242, 0.06150201416015625, 0.06155059051513672, 0.06152207946777344, 0.061626014709472654, 0.06152816009521484, 0.06168787384033203, 0.061542625427246096, 0.06508134460449219, 0.0629227523803711, 0.06164067077636719, 0.06132499313354492, 0.061208927154541015, 0.06129199981689453, 0.06137500762939453, 0.0613642578125, 0.061423583984375, 0.061295967102050784, 0.061196094512939454, 0.06112956619262695, 0.06130278396606445, 0.061224960327148435, 0.06165507125854492, 0.06210355377197266, 0.06235123062133789, 0.062344993591308594, 0.06209977722167969, 0.061960193634033205, 0.06183695983886719, 0.06165055847167969, 0.06130467224121094, 0.06117875289916992, 0.06148303985595703, 0.06153740692138672, 0.06129135894775391, 0.061327392578125, 0.06129660797119141, 0.06133059310913086, 0.061730751037597655, 0.06169283294677735, 0.06190681457519531, 0.061914558410644534, 0.062111774444580076, 0.06208377456665039, 0.06176927947998047, 0.061488800048828125, 0.06176787185668945, 0.06163475036621094, 0.06146892929077148, 0.06158963012695313, 0.06142348861694336, 0.06163264083862305, 0.06146640014648438, 0.061266143798828124, 0.06144617462158203, 0.061431774139404295, 0.06168166351318359, 0.06182454299926758, 0.06192585754394531, 0.061917217254638675, 0.062098495483398436, 0.06185257720947265, 0.06182876968383789, 0.06162467193603516, 0.06157926559448242, 0.061669055938720706, 0.06150921630859375, 0.06137519836425781, 0.061869953155517576, 0.061580448150634765, 0.061496288299560546]",tokens/s,16.244175644248,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 689, in __init__ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 466, in __init__ super().__init__(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 357, in __init__ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 18.12 MiB is free. Process 167732 has 14.72 GiB memory in use. Of the allocated memory 14.60 GiB is allocated by PyTorch, and 3.02 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1011, in forward outputs = self.model.decoder( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 777, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 418, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 342, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,phi,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1556, in _autoset_attn_implementation cls._check_and_enable_flash_attn_2( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1647, in _check_and_enable_flash_attn_2 raise ValueError( ValueError: RecurrentGemmaForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmp8vcavmnd/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gptj,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 1015, in forward transformer_outputs = self.transformer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 840, in forward outputs = block( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 467, in forward attn_outputs = self.attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 397, in forward attn_weights = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 252, in _flash_attention_forward attn_output_unpad = flash_attn_varlen_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 1124, in flash_attn_varlen_func return FlashAttnVarlenFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 620, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_varlen_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 90, in _flash_attn_varlen_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.varlen_fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 134.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 52.12 MiB is free. Process 98051 has 14.69 GiB memory in use. Of the allocated memory 14.47 GiB is allocated by PyTorch, and 108.93 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 614, in __init__ self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 367, in __init__ super().__init__(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 274, in __init__ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 30.12 MiB is free. Process 86028 has 14.71 GiB memory in use. Of the allocated memory 14.37 GiB is allocated by PyTorch, and 229.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 865, in forward transformer_outputs = self.transformer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 732, in forward outputs = block( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 459, in forward attn_outputs = self.attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 411, in forward return self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 358, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1556, in _autoset_attn_implementation cls._check_and_enable_flash_attn_2( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1647, in _check_and_enable_flash_attn_2 raise ValueError( ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpndiwiwa0/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1189, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1001, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 734, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 556, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 865, in forward transformer_outputs = self.transformer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 732, in forward outputs = block( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 459, in forward attn_outputs = self.attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 411, in forward return self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 358, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mixtral,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 890, in __init__ self.model = OPTModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 822, in __init__ self.decoder = OPTDecoder(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in __init__ self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 373, in __init__ self.self_attn = OPT_ATTENTION_CLASSES[config._attn_implementation](config=config, is_decoder=True) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 252, in __init__ super().__init__(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 115, in __init__ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 98.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 44.12 MiB is free. Process 127189 has 14.70 GiB memory in use. Of the allocated memory 14.58 GiB is allocated by PyTorch, and 3.80 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2_moe,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 1203, in __init__ self.model = Qwen2MoeModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 977, in __init__ [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 977, in [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 750, in __init__ self.self_attn = QWEN2MOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 446, in __init__ super().__init__(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 349, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 12.12 MiB is free. Process 95023 has 14.73 GiB memory in use. Of the allocated memory 12.32 GiB is allocated by PyTorch, and 2.30 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 989, in forward outputs = self.gpt_neox( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 880, in forward outputs = layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 647, in forward attention_layer_outputs = self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 369, in forward attn_weights = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 989, in forward outputs = self.gpt_neox( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 880, in forward outputs = layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 647, in forward attention_layer_outputs = self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 369, in forward attn_weights = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 286, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 280.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 42.12 MiB is free. Process 23393 has 14.70 GiB memory in use. Of the allocated memory 14.58 GiB is allocated by PyTorch, and 1.64 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 609, in __init__ self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 200.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 164.12 MiB is free. Process 47237 has 14.58 GiB memory in use. Of the allocated memory 14.46 GiB is allocated by PyTorch, and 4.94 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1556, in _autoset_attn_implementation cls._check_and_enable_flash_attn_2( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1647, in _check_and_enable_flash_attn_2 raise ValueError( ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpolkkvabj/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1556, in _autoset_attn_implementation cls._check_and_enable_flash_attn_2( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1647, in _check_and_enable_flash_attn_2 raise ValueError( ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmp_ds2k32b/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 134.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 52.12 MiB is free. Process 83039 has 14.69 GiB memory in use. Of the allocated memory 14.47 GiB is allocated by PyTorch, and 108.93 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 248, in __init__ self.model = DeciCoderModel(config) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 215, in __init__ self.layers = nn.ModuleList([DeciCoderDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 215, in self.layers = nn.ModuleList([DeciCoderDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 181, in __init__ self.self_attn = DeciCoderAttention(config=config) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 54, in __init__ self._init_rope() File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1729, in __getattr__ raise AttributeError(f""'{type(self).__name__}' object has no attribute '{name}'"") AttributeError: 'DeciCoderAttention' object has no attribute '_init_rope' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 217, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 258.12 MiB is free. Process 89034 has 14.49 GiB memory in use. Of the allocated memory 14.32 GiB is allocated by PyTorch, and 53.40 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 906, in __init__ self.model = InternLMModel(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in __init__ self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 547, in __init__ self.mlp = InternLMMLP( File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 276, in __init__ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 136.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 18.12 MiB is free. Process 150048 has 14.72 GiB memory in use. Of the allocated memory 14.60 GiB is allocated by PyTorch, and 9.56 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 219, in __init__ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 768.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 286.12 MiB is free. Process 92055 has 14.46 GiB memory in use. Of the allocated memory 14.30 GiB is allocated by PyTorch, and 41.77 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1556, in _autoset_attn_implementation cls._check_and_enable_flash_attn_2( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1647, in _check_and_enable_flash_attn_2 raise ValueError( ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpn1ba4xw5/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt2,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 286, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 344.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 66.12 MiB is free. Process 173263 has 14.67 GiB memory in use. Of the allocated memory 14.56 GiB is allocated by PyTorch, and 1.71 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 689, in __init__ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 466, in __init__ super().__init__(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 358, in __init__ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 2.12 MiB is free. Process 170528 has 14.74 GiB memory in use. Of the allocated memory 14.53 GiB is allocated by PyTorch, and 90.39 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1032, in __init__ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.16 GiB. GPU 0 has a total capacity of 14.74 GiB of which 774.12 MiB is free. Process 68489 has 13.98 GiB memory in use. Of the allocated memory 13.72 GiB is allocated by PyTorch, and 148.73 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-9b,google/recurrentgemma-9b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1556, in _autoset_attn_implementation cls._check_and_enable_flash_attn_2( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1647, in _check_and_enable_flash_attn_2 raise ValueError( ValueError: RecurrentGemmaForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpqdbonryw/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 608, in __init__ self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 288.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 182.12 MiB is free. Process 39433 has 14.56 GiB memory in use. Of the allocated memory 14.43 GiB is allocated by PyTorch, and 13.08 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mixtral,mistralai/Mixtral-8x22B-v0.1,mistralai/Mixtral-8x22B-v0.1,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1189, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1001, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 734, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 556, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 959, in __init__ self.model = MistralModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 711, in __init__ [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 711, in [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 508, in __init__ self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 278, in __init__ super().__init__(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 199, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 24.12 MiB is free. Process 109501 has 14.71 GiB memory in use. Of the allocated memory 14.46 GiB is allocated by PyTorch, and 141.44 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 989, in forward outputs = self.gpt_neox( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 880, in forward outputs = layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 647, in forward attention_layer_outputs = self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 369, in forward attn_weights = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 989, in forward outputs = self.gpt_neox( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 880, in forward outputs = layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 647, in forward attention_layer_outputs = self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 369, in forward attn_weights = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 890, in __init__ self.model = OPTModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 822, in __init__ self.decoder = OPTDecoder(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in __init__ self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 373, in __init__ self.self_attn = OPT_ATTENTION_CLASSES[config._attn_implementation](config=config, is_decoder=True) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 252, in __init__ super().__init__(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 115, in __init__ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 8.12 MiB is free. Process 124161 has 14.73 GiB memory in use. Of the allocated memory 14.61 GiB is allocated by PyTorch, and 3.97 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1011, in forward outputs = self.model.decoder( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 777, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 418, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 342, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 989, in forward outputs = self.gpt_neox( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 880, in forward outputs = layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 647, in forward attention_layer_outputs = self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 369, in forward attn_weights = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 217, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 258.12 MiB is free. Process 101302 has 14.49 GiB memory in use. Of the allocated memory 14.32 GiB is allocated by PyTorch, and 53.40 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1104, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 915, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 655, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 484, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1104, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 915, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 655, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 484, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 989, in forward outputs = self.gpt_neox( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 880, in forward outputs = layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 647, in forward attention_layer_outputs = self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 369, in forward attn_weights = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 1074, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 888, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 610, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 447, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 1001, in __init__ self.model = GemmaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 780, in __init__ [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 780, in [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 571, in __init__ self.mlp = GemmaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 167, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 144.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 34.12 MiB is free. Process 141943 has 14.71 GiB memory in use. Of the allocated memory 14.59 GiB is allocated by PyTorch, and 1.69 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1011, in forward outputs = self.model.decoder( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 777, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 418, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 342, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,dbrx,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1234, in __init__ self.transformer = DbrxModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1007, in __init__ self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1007, in self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 787, in __init__ self.ffn = DbrxFFN(config=config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 764, in __init__ self.experts = DbrxExperts( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 703, in __init__ self.mlp = DbrxExpertGLU( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 681, in __init__ self.w1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.97 GiB. GPU 0 has a total capacity of 14.74 GiB of which 1.17 GiB is free. Process 112462 has 13.57 GiB memory in use. Of the allocated memory 13.45 GiB is allocated by PyTorch, and 1.36 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1011, in forward outputs = self.model.decoder( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 777, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 418, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 342, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 634, in __init__ self.attention = GPT_NEOX_ATTENTION_CLASSES[config._attn_implementation](config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 306, in __init__ super().__init__(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 102, in __init__ self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 150.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 132.12 MiB is free. Process 42300 has 14.61 GiB memory in use. Of the allocated memory 14.47 GiB is allocated by PyTorch, and 21.89 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt2,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1556, in _autoset_attn_implementation cls._check_and_enable_flash_attn_2( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1647, in _check_and_enable_flash_attn_2 raise ValueError( ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpn1n2y8t_/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 989, in forward outputs = self.gpt_neox( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 880, in forward outputs = layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 647, in forward attention_layer_outputs = self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 369, in forward attn_weights = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 111, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 689, in __init__ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 356, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 30.12 MiB is free. Process 157517 has 14.71 GiB memory in use. Of the allocated memory 14.51 GiB is allocated by PyTorch, and 85.33 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,,MB,882.29888,12530.352128,0.0,12127.830016,12122.08896,s,1,7.16305712890625,7.16305712890625,0.0,7.16305712890625,7.16305712890625,7.16305712890625,7.16305712890625,[7.16305712890625],,kWh,7.70302700416323e-06,8.422712230081737e-07,4.412225752002674e-06,1.2957523979174079e-05,,MB,1302.306816,12704.415744,0.0,12289.31072,12248.5888,s,10,1.7112500762939453,0.17112500762939453,0.0027938450717414926,0.17149176025390625,0.17410362854003908,0.17426426239013673,0.17439276947021484,"[0.16383164978027343, 0.1715323486328125, 0.17219465637207032, 0.1705452117919922, 0.17028553771972657, 0.17442489624023438, 0.171451171875, 0.17031094360351562, 0.17260572814941405, 0.17406793212890626]",tokens/s,1495.9824022589337,kWh,5.1015775225577026e-06,5.622665000355291e-07,3.38438968068967e-06,9.048233703282902e-06,tokens/kWh,28292814.75202364,MB,1345.789952,12712.804352,0.0,12297.699328,12248.59136,s,10,33.29478833007813,3.329478833007813,0.002793257228758513,3.329294189453125,3.3334555908203125,3.333936901855469,3.3343219506835937,"[3.3256884765625, 3.326703125, 3.331346923828125, 3.3259365234375, 3.328951416015625, 3.3333486328125, 3.334418212890625, 3.3295029296875, 3.329806640625, 3.32908544921875]",tokens/s,18.921880318153736,kWh,9.71356351424436e-05,1.071450976255313e-05,6.457402579710997e-05,0.00017242417070210673,tokens/kWh,365378.00787131896,,s,630,33.29203848648074,0.05284450553409637,0.0004357898091727626,0.05276875114440918,0.05306257095336914,0.053191564178466794,0.05566008026123047,"[0.05563340759277344, 0.053477409362792966, 0.05293558502197265, 0.052795360565185544, 0.052814975738525394, 0.052744670867919924, 0.05276480102539063, 0.05274153518676758, 0.05260960006713867, 0.052549247741699216, 0.05258076858520508, 0.05244140625, 0.052424671173095704, 0.0527503662109375, 0.05286832046508789, 0.05251561737060547, 0.052461280822753906, 0.05259497451782227, 0.05285683059692383, 0.05308732986450195, 0.05275289535522461, 0.05268931198120117, 0.05270937728881836, 0.05262259292602539, 0.05278591918945313, 0.0526841926574707, 0.052703838348388675, 0.052485889434814456, 0.052588577270507815, 0.052536705017089846, 0.05250668716430664, 0.052544288635253907, 0.05266022491455078, 0.05264384078979492, 0.05256806564331055, 0.05272371292114258, 0.05278294372558594, 0.05289519882202148, 0.052613822937011716, 0.053303295135498044, 0.052770465850830076, 0.05283638381958008, 0.05284486389160156, 0.0526827507019043, 0.05250201416015625, 0.05258086395263672, 0.05264937591552735, 0.05279916763305664, 0.05295542526245117, 0.05313552093505859, 0.05285116958618164, 0.05271308898925781, 0.052687232971191406, 0.05273507308959961, 0.0527674560546875, 0.05289123153686524, 0.05279395294189453, 0.05278214263916016, 0.05288851165771485, 0.052848575592041015, 0.05273811340332031, 0.05275033569335937, 0.052752384185791014, 0.05620703887939453, 0.05360262298583984, 0.05298755264282227, 0.052745887756347656, 0.052678913116455076, 0.052717601776123044, 0.05284307098388672, 0.05273948669433594, 0.05261481475830078, 0.05275459289550781, 0.05267724609375, 0.052512767791748044, 0.05254547119140625, 0.05274838256835938, 0.05261011123657226, 0.05270796966552734, 0.05264822387695312, 0.0527749137878418, 0.053133312225341796, 0.053125118255615236, 0.052918270111083986, 0.05269894409179687, 0.05263091278076172, 0.05258528137207031, 0.052602817535400394, 0.052641857147216795, 0.05271756744384765, 0.0526295051574707, 0.05250457763671875, 0.05247564697265625, 0.05245772933959961, 0.052679710388183594, 0.05262243270874024, 0.052602432250976563, 0.05258067321777344, 0.052682273864746096, 0.05271356964111328, 0.052752769470214844, 0.05297350311279297, 0.052856800079345706, 0.05274019241333008, 0.052770816802978515, 0.05266147232055664, 0.052648735046386716, 0.05260902404785156, 0.05260902404785156, 0.052719615936279295, 0.05284249496459961, 0.05286867141723633, 0.05307385635375977, 0.052906494140625, 0.05273395156860351, 0.05270115280151367, 0.052621345520019534, 0.05283225631713867, 0.05290713500976563, 0.05282495880126953, 0.05271343994140625, 0.05271555328369141, 0.052934688568115236, 0.05275849533081055, 0.05266838455200195, 0.05288553619384766, 0.05618735885620117, 0.053650657653808595, 0.05301107025146484, 0.05293686294555664, 0.05273798370361328, 0.05272326278686523, 0.052797183990478516, 0.05278796768188477, 0.05272780990600586, 0.05304067230224609, 0.05315798568725586, 0.052744575500488285, 0.052620864868164065, 0.05266185760498047, 0.05268124771118164, 0.05261507034301758, 0.05253878402709961, 0.052691967010498046, 0.05324163055419922, 0.05316425704956055, 0.05305535888671875, 0.052848766326904294, 0.052847999572753906, 0.052742782592773436, 0.05297308731079101, 0.05328736114501953, 0.05284457778930664, 0.05265750503540039, 0.052616928100585936, 0.052768894195556644, 0.05271587371826172, 0.05263203048706055, 0.052589984893798826, 0.05257072067260742, 0.05276406478881836, 0.052687454223632815, 0.052596641540527345, 0.05300643157958984, 0.052833599090576173, 0.05279199981689453, 0.05284659194946289, 0.052787071228027345, 0.05295731353759765, 0.05269712066650391, 0.05264361572265625, 0.052674751281738284, 0.05282358551025391, 0.05284092712402344, 0.05294694519042969, 0.05295222473144531, 0.0528612174987793, 0.05262188720703125, 0.052721664428710936, 0.05257830429077148, 0.05267660903930664, 0.05300428771972656, 0.05283955383300781, 0.05281472015380859, 0.05297734451293945, 0.052848224639892576, 0.052800094604492184, 0.05282118225097656, 0.052800289154052736, 0.05575398254394531, 0.05355513763427734, 0.05291872024536133, 0.05274867248535156, 0.05264550399780273, 0.05271088027954102, 0.05265926361083984, 0.052690784454345704, 0.05265177536010742, 0.052782817840576174, 0.052724254608154296, 0.05254348754882812, 0.052566017150878906, 0.052531200408935545, 0.05253734588623047, 0.05247795104980469, 0.05242879867553711, 0.0526879997253418, 0.05306867218017578, 0.05300630569458008, 0.05297078323364258, 0.05277065658569336, 0.05265055847167969, 0.0526646728515625, 0.05269606399536133, 0.05255456161499023, 0.05251465606689453, 0.05254076766967773, 0.05250559997558594, 0.05255987167358398, 0.05253020858764648, 0.052560672760009766, 0.05249833679199219, 0.05264003372192383, 0.05264384078979492, 0.05261936187744141, 0.052571807861328125, 0.05271289443969727, 0.05288345718383789, 0.05283308792114258, 0.05278211212158203, 0.05296022415161133, 0.05285638427734375, 0.052846656799316404, 0.052586879730224606, 0.05255782318115235, 0.052779006958007815, 0.05283225631713867, 0.052910079956054686, 0.052893695831298826, 0.05289295959472656, 0.05268121719360352, 0.05248543930053711, 0.052609886169433594, 0.05286624145507812, 0.05288438415527344, 0.05276198577880859, 0.052703838348388675, 0.05294255828857422, 0.05306601715087891, 0.05304729461669922, 0.05287756729125977, 0.053200160980224606, 0.05658345413208008, 0.05406512069702148, 0.05304191970825195, 0.05283830261230469, 0.05267865753173828, 0.0526890869140625, 0.052823871612548826, 0.05285907363891602, 0.05286912155151367, 0.052741344451904294, 0.05268764877319336, 0.052588542938232424, 0.05256380844116211, 0.052576446533203126, 0.05257139205932617, 0.05249212646484375, 0.05249465560913086, 0.05261894226074219, 0.05301692962646484, 0.05305193710327148, 0.052893695831298826, 0.05281769561767578, 0.052758464813232424, 0.0527608642578125, 0.05278860855102539, 0.05266495895385742, 0.05265817642211914, 0.05257833480834961, 0.05246355056762695, 0.052658206939697264, 0.052615169525146485, 0.052555648803710935, 0.052477760314941405, 0.052535102844238284, 0.05261363220214844, 0.05259017562866211, 0.05275484848022461, 0.05283430480957031, 0.05278271865844727, 0.05290230560302735, 0.052781024932861326, 0.05286812973022461, 0.05288812637329102, 0.05279580688476562, 0.05263372802734375, 0.05259574508666992, 0.05291913604736328, 0.052994144439697265, 0.05294204711914063, 0.0529681282043457, 0.05303827285766602, 0.05284310531616211, 0.052709407806396484, 0.05264371109008789, 0.05283609771728515, 0.052918846130371094, 0.05272137451171875, 0.052737438201904296, 0.052939647674560546, 0.0530063362121582, 0.052825664520263674, 0.05271926498413086, 0.05281603240966797, 0.055549217224121095, 0.05337481689453125, 0.05286716842651367, 0.05265692901611328, 0.05262451171875, 0.05263859176635742, 0.05266403198242187, 0.05266665649414062, 0.0526295051574707, 0.0526376953125, 0.0527154541015625, 0.05257427215576172, 0.05252710342407227, 0.0525269775390625, 0.052561695098876954, 0.052657726287841794, 0.05254412841796875, 0.0527749137878418, 0.05303519821166992, 0.05300835037231445, 0.05284390258789062, 0.052939552307128906, 0.05295452880859375, 0.052871265411376954, 0.053116798400878906, 0.052754913330078125, 0.05283542251586914, 0.05264681625366211, 0.052754302978515626, 0.05280681610107422, 0.05277590560913086, 0.05293056106567383, 0.052891647338867184, 0.05290393447875977, 0.05289295959472656, 0.052660991668701175, 0.05278086471557617, 0.05281763076782227, 0.052696609497070314, 0.05272668838500977, 0.052744190216064454, 0.053175678253173826, 0.05318105697631836, 0.05301862335205078, 0.05290598297119141, 0.052985855102539066, 0.0530239028930664, 0.052975486755371094, 0.05302985763549805, 0.05310259246826172, 0.05293260955810547, 0.052754081726074216, 0.05279296112060547, 0.05269782257080078, 0.05299558258056641, 0.052934558868408206, 0.052970081329345706, 0.053167873382568356, 0.053147903442382814, 0.05323980712890625, 0.053165248870849606, 0.05314419174194336, 0.053070014953613284, 0.05567097473144531, 0.053563358306884766, 0.05296335983276367, 0.05286419296264649, 0.052837184906005856, 0.05273952102661133, 0.05280339050292969, 0.05300300979614258, 0.05283187103271485, 0.052826496124267576, 0.05269216156005859, 0.05273241424560547, 0.0527968635559082, 0.052693889617919924, 0.05258444976806641, 0.052421630859375, 0.052502849578857425, 0.05280633544921875, 0.05323471832275391, 0.05335548782348633, 0.05306351852416992, 0.053020286560058597, 0.05308371353149414, 0.05298230361938477, 0.052912574768066406, 0.053093441009521486, 0.05291856002807617, 0.052970142364501954, 0.05279743957519531, 0.052813182830810546, 0.0529697265625, 0.05268108749389649, 0.05256764984130859, 0.052726177215576174, 0.052686622619628906, 0.05262768173217774, 0.05273788833618164, 0.05294300842285156, 0.05293875122070312, 0.052837535858154296, 0.052835166931152346, 0.052950462341308596, 0.05281644821166992, 0.05274214553833008, 0.05266841506958008, 0.05259254455566406, 0.052963520050048826, 0.0529898567199707, 0.05309235382080078, 0.053285888671875, 0.053136512756347655, 0.05297343826293945, 0.05273347091674805, 0.05279564666748047, 0.0530351676940918, 0.05297177505493164, 0.052875072479248046, 0.05296860885620117, 0.05301948928833008, 0.053059585571289064, 0.05280972671508789, 0.0527768325805664, 0.052768543243408204, 0.05593088150024414, 0.05350604629516602, 0.052891647338867184, 0.052709182739257815, 0.052587711334228515, 0.0527718391418457, 0.05273545455932617, 0.05284713745117187, 0.05279743957519531, 0.0526192626953125, 0.052621440887451174, 0.05250214385986328, 0.05251436614990234, 0.052571903228759764, 0.05255836868286133, 0.05252316665649414, 0.05247769546508789, 0.05272377777099609, 0.05308646392822266, 0.05333795166015625, 0.05306569671630859, 0.05282144165039063, 0.05262451171875, 0.05256780624389648, 0.0526580810546875, 0.05257231903076172, 0.052780799865722657, 0.05268035125732422, 0.05251702499389648, 0.0526545295715332, 0.052569183349609375, 0.05257622528076172, 0.052680927276611327, 0.05267123031616211, 0.05271343994140625, 0.052670463562011716, 0.052803455352783205, 0.053125247955322266, 0.05291417694091797, 0.05298515319824219, 0.05284268951416016, 0.05282457733154297, 0.05287894439697265, 0.05282793426513672, 0.0525726089477539, 0.05274415969848633, 0.05285884857177734, 0.0528612174987793, 0.05309641647338867, 0.05300128173828125, 0.05286099243164062, 0.052706016540527346, 0.05259075164794922, 0.05275033569335937, 0.05284659194946289, 0.05299609756469727, 0.05345014572143555, 0.05280624008178711, 0.05329510498046875, 0.05306982421875, 0.05282403182983399, 0.05275651168823242, 0.05280767822265625, 0.0554071044921875, 0.053472640991210935, 0.05291823959350586, 0.05269161605834961, 0.05260083389282227, 0.05272115325927734, 0.052754878997802734, 0.05274630355834961, 0.05273811340332031, 0.05274534225463867, 0.05282499313354492, 0.05261097717285156, 0.05263359832763672, 0.052563968658447265, 0.05259369659423828, 0.0526181755065918, 0.05256156921386719, 0.05304953765869141, 0.053081886291503906, 0.053162399291992186, 0.053008384704589843, 0.05284249496459961, 0.05271551895141602, 0.052729854583740236, 0.05277286529541016, 0.05272576141357422, 0.05263679885864258, 0.05268979263305664, 0.05265423965454102, 0.05276860809326172, 0.052582111358642575, 0.052717857360839844, 0.05261843109130859, 0.05273683166503906, 0.052598785400390625, 0.05272576141357422, 0.052803585052490234, 0.05294899368286133, 0.05314563369750976, 0.05293462371826172, 0.052867103576660156, 0.05301027297973633, 0.052918399810791016, 0.052760574340820314, 0.052660030364990236, 0.05258448028564453, 0.052770687103271485, 0.05297795104980469, 0.05296144104003906, 0.05294473648071289, 0.052877311706542966, 0.053048641204833984, 0.0526732177734375, 0.05270505523681641, 0.05291030502319336, 0.05296332931518555, 0.0530239028930664, 0.052940704345703124, 0.05285779190063476, 0.05287116622924805, 0.052738048553466796, 0.05279481506347656, 0.05283065414428711, 0.05570499038696289, 0.05368646240234375, 0.05285059356689453, 0.05274035263061523, 0.05272143936157227, 0.052714305877685545, 0.052780544281005856, 0.052746753692626956, 0.05271343994140625, 0.05265356826782226, 0.052765216827392575, 0.052729854583740236, 0.05255353546142578, 0.052510208129882815, 0.05267731094360351, 0.05253529739379883, 0.05261494445800781, 0.052735328674316406, 0.05306246566772461, 0.053276737213134764, 0.05300352096557617, 0.052875457763671876, 0.05270175933837891, 0.05265631866455078, 0.05286687850952149, 0.052789249420166016, 0.05270505523681641, 0.05270755386352539, 0.052582401275634766, 0.05258649444580078, 0.05262931060791016, 0.052545089721679684, 0.052666175842285154, 0.052687713623046875, 0.05262089538574219, 0.052740478515625, 0.0528869743347168, 0.05304582214355469, 0.052985855102539066, 0.05282160186767578, 0.05277328109741211, 0.05279334259033203, 0.05284403228759765, 0.05275923156738281, 0.0526313591003418, 0.05279500961303711, 0.05285724639892578, 0.052996063232421876, 0.0529062385559082, 0.05297945785522461, 0.05289574432373047, 0.052727584838867185, 0.052698848724365234, 0.05264575958251953, 0.05267718505859375, 0.053020286560058597, 0.05284422302246094, 0.05292022323608398, 0.05289625549316406, 0.05289814376831055, 0.0528790397644043, 0.052736385345458985, 0.052780990600585935]",tokens/s,18.92344322069168,, bfloat16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,bfloat16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,,MB,882.987008,12530.352128,0.0,12127.830016,12122.08896,s,1,7.27475830078125,7.27475830078125,0.0,7.27475830078125,7.27475830078125,7.27475830078125,7.27475830078125,[7.27475830078125],,kWh,8.104448683305539e-06,8.66475839571068e-07,4.951392849998626e-06,1.3922317372875234e-05,,MB,1206.976512,12702.318592,0.0,12289.31072,12248.5888,s,10,11.061835083007814,1.1061835083007814,0.0035120959019139695,1.1066976928710939,1.1098046630859375,1.109964404296875,1.110092197265625,"[1.0999833984375, 1.1030943603515626, 1.1045450439453126, 1.10368115234375, 1.109599853515625, 1.1029927978515626, 1.10919482421875, 1.1097691650390624, 1.1101241455078126, 1.108850341796875]",tokens/s,231.4263393722475,kWh,3.2403021676670205e-05,3.571269727035649e-06,2.1485211632599895e-05,5.7459503036305746e-05,tokens/kWh,4455311.7669369085,MB,1255.05536,12710.7072,0.0,12297.699328,12248.59136,s,10,33.672875976562494,3.36728759765625,0.003624973762351431,3.3671678466796875,3.3718475585937497,3.372897412109375,3.373737294921875,"[3.36251025390625, 3.3637431640625, 3.3716142578125, 3.3657763671875, 3.36827880859375, 3.367775146484375, 3.366560546875, 3.37001611328125, 3.362654052734375, 3.373947265625]",tokens/s,18.709420616121477,kWh,9.832140003291215e-05,1.0846932733175633e-05,6.524391330620035e-05,0.00017441224607228815,tokens/kWh,361213.16833388276,,s,630,33.6700317993164,0.05344449491954985,0.00028881589293715753,0.05343684768676758,0.05368059425354004,0.0537969087600708,0.05488070735931397,"[0.055278846740722656, 0.05345507049560547, 0.05354352188110351, 0.05298995208740234, 0.05297148895263672, 0.05307315063476563, 0.05307881546020508, 0.05297971343994141, 0.05295820617675781, 0.052997119903564455, 0.05306982421875, 0.053161663055419923, 0.05304966354370117, 0.053276065826416016, 0.05318921661376953, 0.053310592651367186, 0.05324844741821289, 0.053555648803710935, 0.053507774353027344, 0.05365177536010742, 0.05337615966796875, 0.05328572845458984, 0.05320499038696289, 0.05306367874145508, 0.05301161575317383, 0.05314022445678711, 0.053091743469238284, 0.05317305755615234, 0.05341785430908203, 0.05331302261352539, 0.05340620803833008, 0.05320665740966797, 0.053221759796142576, 0.05336227035522461, 0.0533590087890625, 0.05349792098999023, 0.05349308776855469, 0.05364591979980469, 0.05351628875732422, 0.05346918487548828, 0.053411872863769534, 0.053317214965820314, 0.05321104049682617, 0.05341436767578125, 0.053305343627929686, 0.05339136123657227, 0.05341388702392578, 0.05334649658203125, 0.053343616485595706, 0.05346758270263672, 0.05348556900024414, 0.0535079345703125, 0.05349350357055664, 0.05362524795532227, 0.0539791374206543, 0.05352553558349609, 0.05349884796142578, 0.05351628875732422, 0.05358335876464844, 0.053623294830322264, 0.05337913513183594, 0.05336636734008789, 0.053438816070556644, 0.05491120147705078, 0.053425983428955076, 0.0530871696472168, 0.053008384704589843, 0.0530882568359375, 0.05306272125244141, 0.05299209594726562, 0.052972030639648435, 0.05310851287841797, 0.05324025726318359, 0.05317977523803711, 0.053279712677001954, 0.05337228775024414, 0.05338505554199219, 0.05347590255737305, 0.0534466552734375, 0.053198848724365234, 0.05335395050048828, 0.05334796905517578, 0.05343939208984375, 0.05333772659301758, 0.05318489456176758, 0.0531025276184082, 0.05324601745605469, 0.05313536071777344, 0.05312716674804688, 0.053200897216796876, 0.05333734512329102, 0.053212993621826174, 0.053273185729980466, 0.05341628646850586, 0.053368991851806644, 0.05328015899658203, 0.05345248031616211, 0.053377792358398436, 0.05352761459350586, 0.05352518463134766, 0.05364307022094727, 0.05348611068725586, 0.05349788665771484, 0.05331955337524414, 0.05340364837646484, 0.05328598403930664, 0.05345987319946289, 0.05348761749267578, 0.05334220886230469, 0.053493759155273435, 0.0534200325012207, 0.053512191772460936, 0.05337702560424805, 0.05352825546264649, 0.053520126342773436, 0.05345951843261719, 0.053571678161621096, 0.05359132766723633, 0.05373811340332031, 0.05365129470825195, 0.05361270523071289, 0.0534466552734375, 0.053495071411132813, 0.05361123275756836, 0.05348697662353516, 0.05353887939453125, 0.054640640258789064, 0.05344038391113281, 0.05324803161621094, 0.05308121490478516, 0.05294905471801758, 0.053128097534179686, 0.05322726440429688, 0.05339955139160156, 0.053322208404541015, 0.05324588775634766, 0.053327713012695316, 0.05341961669921875, 0.05316649627685547, 0.053368064880371095, 0.05328963088989258, 0.05326671981811523, 0.053456703186035154, 0.053900543212890624, 0.05360070419311523, 0.05358534240722656, 0.05332262420654297, 0.053286911010742184, 0.05363711929321289, 0.053321281433105466, 0.053344192504882815, 0.053408512115478514, 0.05344419097900391, 0.053502113342285156, 0.053424129486083986, 0.05383168029785156, 0.05347942352294922, 0.0533658561706543, 0.053288959503173826, 0.053392288208007815, 0.05351561737060547, 0.054162273406982424, 0.05360166549682617, 0.05362732696533203, 0.053602302551269534, 0.0533807373046875, 0.053537120819091795, 0.05354703903198242, 0.05354086303710937, 0.053587360382080076, 0.053572193145751956, 0.05353881454467774, 0.053601505279541016, 0.053596351623535154, 0.0535676155090332, 0.0535761604309082, 0.05363916778564453, 0.05355475234985352, 0.05369286346435547, 0.053789886474609375, 0.05358374404907226, 0.05364019012451172, 0.053688255310058594, 0.05363420867919922, 0.05358220672607422, 0.05360483169555664, 0.05365679931640625, 0.05370755386352539, 0.05385830307006836, 0.055126495361328125, 0.053575454711914064, 0.05307993698120117, 0.05306156921386719, 0.053002368927001955, 0.053173919677734376, 0.05307779312133789, 0.053031871795654294, 0.053172126770019534, 0.05305753707885742, 0.05305926513671875, 0.05316012954711914, 0.05324403381347656, 0.05335865783691406, 0.05328390502929688, 0.053384063720703125, 0.05320499038696289, 0.05334431838989258, 0.053533920288085936, 0.053469921112060545, 0.05330739212036133, 0.05332691192626953, 0.05320390319824219, 0.05316812896728516, 0.05319680023193359, 0.05327872085571289, 0.05318041610717773, 0.053404830932617185, 0.053389217376708986, 0.0532960319519043, 0.05345004653930664, 0.053426849365234376, 0.05333744049072266, 0.05340822219848633, 0.053313568115234376, 0.053524158477783204, 0.053604896545410154, 0.05344255828857422, 0.05344870376586914, 0.05348966217041016, 0.05347900772094726, 0.0533590087890625, 0.053460063934326174, 0.05338614273071289, 0.05349785614013672, 0.05362681579589844, 0.05358339309692383, 0.053604896545410154, 0.05371449661254883, 0.053655967712402344, 0.0540733757019043, 0.053440032958984376, 0.05336876678466797, 0.05366019058227539, 0.05367523193359375, 0.053588863372802734, 0.05357072067260742, 0.05338339233398438, 0.05353526306152344, 0.053593631744384765, 0.05340822219848633, 0.05354662322998047, 0.05366624069213867, 0.05463420867919922, 0.05340198516845703, 0.05329705429077149, 0.05313750457763672, 0.053036640167236325, 0.05339984130859375, 0.053229694366455076, 0.05315347290039062, 0.05304985427856445, 0.05323971176147461, 0.05312707138061523, 0.05320908737182617, 0.05343209457397461, 0.053432544708251956, 0.05324588775634766, 0.05323116683959961, 0.05321779251098633, 0.05347532653808594, 0.05396275329589844, 0.053623809814453124, 0.05350678253173828, 0.0534835205078125, 0.0532435188293457, 0.053285537719726564, 0.05325619125366211, 0.05316175842285156, 0.05333628845214844, 0.05345075225830078, 0.053337184906005856, 0.0534659538269043, 0.053477279663085936, 0.05339561462402344, 0.0534031982421875, 0.053309024810791014, 0.05340860748291015, 0.05367955017089844, 0.05360031890869141, 0.05414348983764648, 0.05355929565429687, 0.053542911529541014, 0.05341798400878906, 0.05338521575927734, 0.053381088256835935, 0.05339683151245117, 0.05331785583496094, 0.053454593658447264, 0.05347401428222656, 0.05359206390380859, 0.05362278366088867, 0.05363097763061524, 0.053526527404785154, 0.05351833724975586, 0.053628158569335935, 0.053754623413085935, 0.05370841598510742, 0.05391593551635742, 0.05352444839477539, 0.05359014511108398, 0.05358403015136719, 0.053448543548583985, 0.053493759155273435, 0.05362035369873047, 0.053416576385498044, 0.055191551208496094, 0.053560863494873046, 0.05321980667114258, 0.05305708694458008, 0.05299792098999023, 0.053184257507324216, 0.05333049774169922, 0.05321321487426758, 0.05321942520141602, 0.05338963317871094, 0.05342403030395508, 0.053294174194335936, 0.05321615982055664, 0.053233665466308595, 0.05329862213134766, 0.053117504119873045, 0.05306175994873047, 0.053359615325927735, 0.05350060653686523, 0.05360617446899414, 0.05343862533569336, 0.05326611328125, 0.05314771270751953, 0.05319132614135742, 0.05345580673217774, 0.05330422210693359, 0.05327667236328125, 0.05343164825439453, 0.05352719879150391, 0.053403072357177735, 0.0533427848815918, 0.053441535949707034, 0.05322982406616211, 0.053409950256347656, 0.05337929534912109, 0.053493663787841796, 0.053460895538330076, 0.05373539352416992, 0.0536165771484375, 0.0534381103515625, 0.053351425170898435, 0.053361888885498046, 0.053346176147460934, 0.05331558227539063, 0.053455551147460936, 0.05361072158813476, 0.05345280075073242, 0.0534917106628418, 0.0535203857421875, 0.05351424026489258, 0.05341715240478516, 0.053628799438476565, 0.053543777465820314, 0.05365564727783203, 0.05377024078369141, 0.053709983825683594, 0.05361340713500977, 0.05411958312988281, 0.05365200042724609, 0.05372742462158203, 0.053642654418945314, 0.053520256042480466, 0.05362364959716797, 0.05494169616699219, 0.05347942352294922, 0.0531517448425293, 0.053114879608154295, 0.052942848205566405, 0.05319475173950195, 0.05299222564697265, 0.05301241683959961, 0.05306351852416992, 0.05320294570922852, 0.05319475173950195, 0.05331353759765625, 0.05329305648803711, 0.05334182357788086, 0.0532279052734375, 0.05328003311157226, 0.05329967880249024, 0.05336089706420898, 0.053684223175048826, 0.053395263671875, 0.05322377777099609, 0.05329616165161133, 0.05321196746826172, 0.05321235275268555, 0.053238590240478514, 0.05331468963623047, 0.05325094223022461, 0.05347244644165039, 0.05339628982543945, 0.053356544494628906, 0.0534486083984375, 0.05333411026000977, 0.05333401489257812, 0.053422080993652345, 0.053480640411376956, 0.05376287841796875, 0.053525951385498045, 0.05346771240234375, 0.05345075225830078, 0.05344460678100586, 0.05325823974609375, 0.053379070281982424, 0.05331481552124023, 0.05348227310180664, 0.05357075119018555, 0.053545345306396486, 0.05343628692626953, 0.05363119888305664, 0.05362294387817383, 0.053639328002929684, 0.05350809478759765, 0.05359958267211914, 0.05361936187744141, 0.05361616134643555, 0.05388057708740234, 0.054078174591064454, 0.05363302230834961, 0.05353881454467774, 0.05359001541137695, 0.05360652923583984, 0.05353766250610351, 0.053486400604248044, 0.05357587051391602, 0.055189697265625, 0.05360521697998047, 0.05314796829223633, 0.05312134552001953, 0.05302220916748047, 0.05316284942626953, 0.053085662841796874, 0.053187103271484376, 0.05324595260620117, 0.05327462387084961, 0.053147647857666014, 0.05329724884033203, 0.05313260650634766, 0.053363296508789064, 0.053249919891357425, 0.053294750213623045, 0.05315427017211914, 0.05354819107055664, 0.0536965446472168, 0.05358675384521484, 0.053451904296875, 0.05337996673583984, 0.0533831672668457, 0.05332787322998047, 0.053288959503173826, 0.05348147201538086, 0.053372447967529296, 0.053319679260253904, 0.05329967880249024, 0.053580928802490234, 0.053381919860839844, 0.053421695709228514, 0.053338592529296874, 0.053497600555419925, 0.05336659240722656, 0.05361708831787109, 0.05368832015991211, 0.05362825775146484, 0.05359478378295898, 0.05363302230834961, 0.05343641662597656, 0.05353583908081055, 0.053605281829833984, 0.053498912811279296, 0.05363792037963867, 0.05385644912719727, 0.053663745880126956, 0.0534896011352539, 0.053354366302490235, 0.05356719970703125, 0.05350796890258789, 0.053489631652832034, 0.053686847686767576, 0.05366995239257812, 0.05368832015991211, 0.05380265426635742, 0.05372707366943359, 0.0537154541015625, 0.05363097763061524, 0.053738975524902345, 0.05358195114135742, 0.05360841751098633, 0.053680191040039064, 0.054806049346923826, 0.05346876907348633, 0.053122142791748046, 0.05297689437866211, 0.05287785720825195, 0.053009952545166016, 0.05293904113769531, 0.05317631912231445, 0.05316412734985351, 0.0531866569519043, 0.053198848724365234, 0.053233665466308595, 0.05322947311401367, 0.053144798278808594, 0.05308940887451172, 0.053216766357421875, 0.05328947067260742, 0.05345203018188477, 0.05357823944091797, 0.05341388702392578, 0.05325564956665039, 0.05335670471191406, 0.05309833526611328, 0.05321372985839844, 0.05320646286010742, 0.05327942276000976, 0.05313888168334961, 0.05335622406005859, 0.05333391952514648, 0.053437278747558596, 0.05341971206665039, 0.05344393539428711, 0.053193599700927734, 0.05322463989257813, 0.05340047836303711, 0.05350809478759765, 0.05349555206298828, 0.05354832077026367, 0.05347401428222656, 0.05359027099609375, 0.0534442253112793, 0.053421951293945315, 0.05326694488525391, 0.05327872085571289, 0.05329062271118164, 0.05341836929321289, 0.053454849243164064, 0.053501953125, 0.05343641662597656, 0.053491519927978515, 0.053346240997314456, 0.0535079345703125, 0.053456417083740236, 0.05350848007202148, 0.053508129119873044, 0.05347375869750977, 0.053505760192871094, 0.053631359100341794, 0.05372304153442383, 0.05360038375854492, 0.053530017852783204, 0.05355715179443359, 0.05348742294311523, 0.0553526382446289, 0.053842144012451174, 0.05320550537109375, 0.05313145446777344, 0.05375580978393555, 0.053184608459472656, 0.05317552185058594, 0.05316483306884766, 0.05324099349975586, 0.05344128036499023, 0.05336278533935547, 0.053373119354248044, 0.05345065689086914, 0.053442462921142575, 0.05322751998901367, 0.05318880081176758, 0.053137214660644534, 0.05346694564819336, 0.05367555236816406, 0.053672607421875, 0.05337606430053711, 0.053471454620361326, 0.05334089660644531, 0.053272575378417966, 0.053196609497070314, 0.05337107086181641, 0.053321727752685545, 0.053317344665527344, 0.053474750518798825, 0.05349871826171875, 0.05347894287109375, 0.05339350509643555, 0.05352444839477539, 0.05355152130126953, 0.05355110549926758, 0.05372079849243164, 0.053644927978515625, 0.05356540679931641, 0.05371360015869141, 0.053579776763916016, 0.053596160888671876, 0.05352243041992188, 0.05348147201538086, 0.05348688125610351, 0.05359500885009766, 0.05346028900146484, 0.05348611068725586, 0.05351436614990234, 0.05355097579956054, 0.0538724479675293, 0.053731521606445315, 0.05370265579223633, 0.053710849761962894, 0.05384960174560547, 0.05377280044555664, 0.05382688140869141, 0.05384457778930664, 0.0538317756652832, 0.053821342468261715, 0.05376009750366211, 0.053759998321533206, 0.053661697387695315, 0.05392588806152344]",tokens/s,18.711001039588883,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,,MB,882.896896,12530.352128,0.0,12127.830016,12122.08896,s,1,7.2202919921875,7.2202919921875,0.0,7.2202919921875,7.2202919921875,7.2202919921875,7.2202919921875,[7.2202919921875],,kWh,7.604624329186056e-06,8.31568194422373e-07,3.010557964002597e-06,1.1446750487611027e-05,,MB,1326.669824,12704.415744,0.0,12289.31072,12248.5888,s,10,1.7817932434082033,0.17817932434082034,0.0024478150576192105,0.17849166107177733,0.18066952056884766,0.18078581771850588,0.18087885543823243,"[0.17192950439453125, 0.17818797302246095, 0.17841004943847658, 0.1768067169189453, 0.1797464599609375, 0.1785732727050781, 0.17947891235351562, 0.18090211486816407, 0.1806436767578125, 0.17711456298828124]",tokens/s,1436.7548027644596,kWh,5.220272146874549e-06,5.756987808120636e-07,3.4895910853214348e-06,9.285562013008047e-06,tokens/kWh,27569682.873408448,MB,1382.907904,12714.901504,0.0,12297.699328,12248.59136,s,10,33.169950439453125,3.3169950439453126,0.002144470311395144,3.3168643798828126,3.319463427734375,3.3195075927734377,3.3195429248046877,"[3.3149462890625, 3.31375244140625, 3.31538427734375, 3.3181201171875, 3.315608642578125, 3.314974853515625, 3.31945361328125, 3.3195517578125, 3.3193466796875, 3.318811767578125]",tokens/s,18.993094401813245,kWh,9.696391268895809e-05,1.069525098051943e-05,6.435951874947854e-05,0.0001720186824189561,tokens/kWh,366239.2893265036,,s,630,33.16721828842166,0.0526463782355899,0.0004593346585512815,0.05256920051574707,0.05287371940612793,0.05303268432617188,0.055697619476318364,"[0.05573651123046875, 0.05378627014160156, 0.052547489166259766, 0.05245177459716797, 0.05215599822998047, 0.05228995132446289, 0.05222809600830078, 0.05231206512451172, 0.05217200088500976, 0.05221046447753906, 0.05215436935424805, 0.05223014450073242, 0.052405696868896484, 0.052431198120117185, 0.05227542495727539, 0.05232009506225586, 0.052107166290283204, 0.052248256683349606, 0.052697662353515626, 0.05285683059692383, 0.053028865814208986, 0.052767807006835935, 0.05258745574951172, 0.052588542938232424, 0.0523612174987793, 0.05243494415283203, 0.05296681594848633, 0.0525376968383789, 0.052408287048339844, 0.052420894622802736, 0.05243843078613281, 0.05246214294433594, 0.05233667373657227, 0.05254681777954102, 0.052494144439697264, 0.052456127166748044, 0.05273014450073242, 0.05285647964477539, 0.052762943267822264, 0.053025985717773436, 0.052758815765380856, 0.05286966323852539, 0.052729854583740236, 0.05263673782348633, 0.05244400024414062, 0.05253907012939453, 0.052549983978271486, 0.05242035293579102, 0.05241273498535156, 0.052459358215332035, 0.052396190643310546, 0.052663360595703125, 0.0525464973449707, 0.05249548721313477, 0.05247884750366211, 0.05261635208129883, 0.052892513275146484, 0.052961280822753906, 0.052746238708496096, 0.052717601776123044, 0.052699104309082034, 0.052991329193115236, 0.052822689056396484, 0.055602401733398435, 0.05331027221679688, 0.052400096893310544, 0.052448448181152345, 0.052179393768310545, 0.05227763366699219, 0.052133216857910156, 0.05239673614501953, 0.052364288330078126, 0.052329345703125, 0.05227939224243164, 0.05226496124267578, 0.05229363250732422, 0.05237097549438476, 0.0522982063293457, 0.052295169830322265, 0.05217705535888672, 0.052349281311035153, 0.052588417053222654, 0.05304742431640625, 0.05303910446166992, 0.0526929931640625, 0.05263552093505859, 0.05261939239501953, 0.052496383666992184, 0.052572158813476565, 0.05243084716796875, 0.05264691162109375, 0.05256499099731445, 0.052450942993164065, 0.05243328094482422, 0.05230172729492188, 0.05231625747680664, 0.052367359161376956, 0.05244518280029297, 0.052506622314453126, 0.052572158813476565, 0.052579872131347655, 0.05274262237548828, 0.052688064575195315, 0.05274297714233398, 0.05274323272705078, 0.05257721710205078, 0.05268889617919922, 0.05256806564331055, 0.05267407989501953, 0.0525255355834961, 0.052555072784423826, 0.05256230545043945, 0.05254790496826172, 0.05239577484130859, 0.05233689498901367, 0.052405918121337894, 0.05276019287109375, 0.052623680114746094, 0.05270774459838867, 0.05267251205444336, 0.052785057067871094, 0.053004383087158206, 0.05287046432495117, 0.05280428695678711, 0.05270937728881836, 0.05271481704711914, 0.0559659194946289, 0.05348108673095703, 0.052412799835205075, 0.05243494415283203, 0.05224179077148437, 0.052462207794189454, 0.05224038314819336, 0.05238982391357422, 0.052426815032958984, 0.0525596809387207, 0.05228153610229492, 0.052373504638671874, 0.052268447875976565, 0.052324832916259764, 0.052160415649414066, 0.052500705718994144, 0.052193279266357424, 0.052405567169189454, 0.05271532821655273, 0.05309254455566406, 0.052851390838623044, 0.05269504165649414, 0.052498432159423826, 0.05270054244995117, 0.052459583282470704, 0.05240275192260742, 0.05228953552246094, 0.052410369873046876, 0.0524653434753418, 0.05238595199584961, 0.05245756912231445, 0.05238790512084961, 0.05250576019287109, 0.05257712173461914, 0.05243289566040039, 0.052555774688720705, 0.05248409652709961, 0.05262745666503906, 0.052802974700927735, 0.052720222473144535, 0.05277219009399414, 0.052642463684082035, 0.05248614501953125, 0.05259468841552734, 0.052441089630126954, 0.05246361541748047, 0.052529151916503904, 0.05268380737304688, 0.052646881103515626, 0.05273155212402344, 0.05259203338623047, 0.05258732986450195, 0.05261734390258789, 0.05275350570678711, 0.05269187164306641, 0.052657470703125, 0.052623809814453124, 0.05279308700561523, 0.0529536018371582, 0.052948158264160154, 0.052671295166015625, 0.05278515243530273, 0.052798591613769534, 0.055994911193847655, 0.05351417541503906, 0.052536670684814456, 0.052652767181396484, 0.05252710342407227, 0.05252256011962891, 0.052297279357910155, 0.05248294448852539, 0.05237116622924805, 0.05254582214355469, 0.052383743286132815, 0.05276409530639648, 0.05262188720703125, 0.05261894226074219, 0.05244707107543945, 0.052486560821533204, 0.0523240966796875, 0.052627616882324216, 0.05280767822265625, 0.05275996780395508, 0.05266220855712891, 0.05261395263671875, 0.052460895538330075, 0.05251139068603516, 0.0524062385559082, 0.05252243041992188, 0.05236899185180664, 0.05257033538818359, 0.05264054489135742, 0.05255731201171875, 0.05286323165893555, 0.0524409294128418, 0.05252342224121094, 0.05254553604125976, 0.052441089630126954, 0.05271270370483398, 0.052617984771728514, 0.05271347045898438, 0.052762622833251956, 0.05265769577026367, 0.05273443222045898, 0.05261248016357422, 0.05259452819824219, 0.052689697265625, 0.052647937774658204, 0.0525926399230957, 0.052547103881835935, 0.052572639465332034, 0.05256806564331055, 0.05250457763671875, 0.05247523117065429, 0.052421279907226566, 0.052496448516845706, 0.05266835021972656, 0.05259238433837891, 0.05272601699829101, 0.052620609283447264, 0.052814529418945315, 0.052811775207519535, 0.05273395156860351, 0.05281296157836914, 0.05290864181518555, 0.05282022476196289, 0.055807361602783205, 0.05340998458862305, 0.052566814422607425, 0.05260083389282227, 0.052316158294677735, 0.05247180938720703, 0.05219728088378906, 0.05234492874145508, 0.052359169006347656, 0.05240627288818359, 0.05235478210449219, 0.05233692932128906, 0.052391937255859375, 0.05251891326904297, 0.052348926544189454, 0.05229568099975586, 0.0522158088684082, 0.05244851303100586, 0.0529169921875, 0.05290367889404297, 0.05267670440673828, 0.05256617736816406, 0.05243289566040039, 0.05252022552490234, 0.05242726516723633, 0.05243721771240235, 0.05231126403808594, 0.05233891296386719, 0.052376129150390624, 0.05243686294555664, 0.05246131134033203, 0.05237728118896484, 0.052355583190917966, 0.05251500701904297, 0.052418048858642576, 0.05247760009765625, 0.05245014572143555, 0.05276860809326172, 0.052940704345703124, 0.05279894256591797, 0.05261155319213867, 0.052592960357666016, 0.05269504165649414, 0.05271756744384765, 0.05271347045898438, 0.05258649444580078, 0.05248316955566406, 0.05255670547485351, 0.05256332778930664, 0.05278579330444336, 0.05307187271118164, 0.052531070709228515, 0.052416641235351565, 0.05252828979492188, 0.0525750732421875, 0.052736000061035154, 0.052743392944335936, 0.05284534454345703, 0.052829345703125, 0.052884319305419925, 0.05286707305908203, 0.05289984130859375, 0.05279129409790039, 0.055777057647705075, 0.053653472900390624, 0.052671199798583986, 0.052502464294433594, 0.052273502349853514, 0.05253078460693359, 0.05221007919311523, 0.05229676818847656, 0.05232940673828125, 0.052354400634765624, 0.052314273834228514, 0.052414718627929686, 0.05230412673950195, 0.0523612174987793, 0.052387039184570314, 0.052329246520996096, 0.05225376129150391, 0.05269190216064453, 0.052621311187744144, 0.05286502456665039, 0.05281792068481445, 0.052703231811523435, 0.052615169525146485, 0.052768768310546874, 0.05253459167480469, 0.05243769454956055, 0.05243068695068359, 0.052481697082519534, 0.052496288299560545, 0.05242736053466797, 0.05243830490112305, 0.052331230163574216, 0.05240118408203125, 0.05254243087768555, 0.05239807891845703, 0.05257622528076172, 0.052440704345703124, 0.05272198486328125, 0.05271356964111328, 0.052759998321533205, 0.05271814346313477, 0.052604927062988284, 0.05250252914428711, 0.052587806701660154, 0.05248483276367188, 0.05264998245239258, 0.05251379013061523, 0.05249507141113281, 0.05261135864257813, 0.05260406494140625, 0.05254025650024414, 0.05241190338134766, 0.05250646209716797, 0.05265260696411133, 0.05257561492919922, 0.052636287689208985, 0.05258659362792969, 0.05284966278076172, 0.0529090576171875, 0.05284864044189453, 0.052731136322021484, 0.05273062515258789, 0.05277459335327148, 0.05639785766601563, 0.05381907272338867, 0.05262137603759766, 0.052566238403320316, 0.05227926254272461, 0.05244521713256836, 0.052235870361328124, 0.052472225189208986, 0.05263974380493164, 0.05259648132324219, 0.052392192840576175, 0.052389537811279294, 0.05234518432617188, 0.05247932815551758, 0.052337310791015626, 0.05232217788696289, 0.05236953735351563, 0.05259193420410156, 0.053047489166259766, 0.05298566436767578, 0.05285283279418945, 0.05282585525512695, 0.052603744506835935, 0.05263926315307617, 0.052461246490478515, 0.05246569442749023, 0.052380416870117186, 0.05245280075073242, 0.05240585708618164, 0.052503166198730467, 0.052434558868408206, 0.05245132827758789, 0.05238150405883789, 0.05250892639160156, 0.052386463165283205, 0.05260060882568359, 0.05254361724853516, 0.05269308853149414, 0.05295084762573242, 0.052873409271240235, 0.05272361755371094, 0.0526328010559082, 0.052661121368408205, 0.052774368286132814, 0.05253174209594726, 0.052729854583740236, 0.05260083389282227, 0.052506622314453126, 0.052621311187744144, 0.052703231811523435, 0.052539134979248045, 0.05253555297851562, 0.05252022552490234, 0.0527305908203125, 0.05267251205444336, 0.05286092758178711, 0.05278700637817383, 0.05281744003295898, 0.05290415954589844, 0.05282860946655273, 0.05285836791992188, 0.05304115295410156, 0.05284233474731445, 0.05576950454711914, 0.05347971343994141, 0.052762016296386716, 0.05253823852539063, 0.05240342330932617, 0.05248284912109375, 0.05249635314941406, 0.05252092742919922, 0.05248006439208985, 0.0526110725402832, 0.05243289566040039, 0.052514816284179686, 0.05237750244140625, 0.052367454528808595, 0.052313343048095706, 0.052404991149902345, 0.05257558441162109, 0.0525953598022461, 0.05283567810058594, 0.052873119354248044, 0.052831008911132814, 0.052819393157958985, 0.052741950988769534, 0.05261590576171875, 0.052400127410888675, 0.05249001693725586, 0.05260031890869141, 0.05245993423461914, 0.052453697204589846, 0.052459232330322264, 0.052519199371337894, 0.052544513702392576, 0.05264281463623047, 0.05250252914428711, 0.05245888137817383, 0.05254777526855469, 0.05286547088623047, 0.05280771255493164, 0.05285193634033203, 0.05268892669677734, 0.05270806503295898, 0.05294403076171875, 0.05276924896240234, 0.052619647979736325, 0.05253494262695312, 0.0526196174621582, 0.052614559173583986, 0.052521087646484374, 0.052576671600341796, 0.05250259017944336, 0.05249436950683594, 0.052703041076660156, 0.052502368927001955, 0.0525579833984375, 0.05260073471069336, 0.052784481048583985, 0.052755359649658204, 0.052811328887939456, 0.05271392059326172, 0.05306367874145508, 0.053012191772460936, 0.05296771240234375, 0.05275852966308594, 0.05530476760864258, 0.053395454406738284, 0.05252025604248047, 0.05239468765258789, 0.05238070297241211, 0.05249327850341797, 0.052385726928710935, 0.052418624877929684, 0.052367359161376956, 0.05252710342407227, 0.052383743286132815, 0.052612895965576174, 0.052343006134033206, 0.052506622314453126, 0.05244851303100586, 0.052419326782226563, 0.052365310668945314, 0.05257625579833984, 0.05290598297119141, 0.053286945343017575, 0.05311894226074219, 0.05266361618041992, 0.05262201690673828, 0.052668319702148435, 0.05253539276123047, 0.05249951934814453, 0.05254646301269531, 0.052491649627685544, 0.05242537689208984, 0.05266022491455078, 0.052490238189697266, 0.05254963302612305, 0.05245849609375, 0.052499454498291014, 0.052515998840332034, 0.05255395126342773, 0.052703872680664066, 0.05279257583618164, 0.0529186897277832, 0.0530230712890625, 0.052741470336914065, 0.05270783996582031, 0.05259689712524414, 0.0526827507019043, 0.05263974380493164, 0.05258406448364258, 0.05250086212158203, 0.052442752838134765, 0.05250870513916016, 0.05277526473999023, 0.05259001541137695, 0.05267494583129883, 0.05257209777832031, 0.05270256042480469, 0.05278780746459961, 0.05277849578857422, 0.05276140975952148, 0.0530118408203125, 0.052865665435791014, 0.05295439910888672, 0.05277711868286133, 0.052755008697509764, 0.05288902282714844, 0.05545574569702148, 0.053321727752685545, 0.05238988876342773, 0.05242265701293945, 0.05246156692504883, 0.05260246276855469, 0.052338977813720704, 0.052487998962402346, 0.05244908905029297, 0.05258291244506836, 0.05241241455078125, 0.05255353546142578, 0.052394081115722656, 0.052450912475585934, 0.05248051071166992, 0.05242265701293945, 0.052359169006347656, 0.05251036834716797, 0.05285718536376953, 0.05316185760498047, 0.05280374526977539, 0.0526888313293457, 0.0524892463684082, 0.052462593078613284, 0.05246156692504883, 0.05247331237792969, 0.05249871826171875, 0.052471710205078126, 0.052531551361083985, 0.05264179229736328, 0.05264384078979492, 0.05246566390991211, 0.05237696075439453, 0.05245606231689453, 0.052504352569580075, 0.05250889587402344, 0.05255478286743164, 0.05268988800048828, 0.052908031463623044, 0.053049343109130856, 0.052791103363037106, 0.0527525749206543, 0.05275043106079102, 0.05280527877807617, 0.05267686462402344, 0.05264998245239258, 0.052670463562011716, 0.05270713424682617, 0.05251910400390625, 0.052582401275634766, 0.05244927978515625, 0.05260083389282227, 0.05267660903930664, 0.052615169525146485, 0.05271756744384765, 0.052744129180908206, 0.05280080032348633, 0.05303580856323242, 0.05287651062011719, 0.05299280166625977, 0.05277027130126953, 0.052791839599609376, 0.05277811050415039]",tokens/s,18.994658958780605,, float32-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float32,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 111, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 689, in __init__ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 356, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 30.12 MiB is free. Process 162545 has 14.71 GiB memory in use. Of the allocated memory 14.51 GiB is allocated by PyTorch, and 85.33 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 890, in __init__ self.model = OPTModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 822, in __init__ self.decoder = OPTDecoder(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in __init__ self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 382, in __init__ self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=config.enable_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.27 GiB. GPU 0 has a total capacity of 14.74 GiB of which 172.12 MiB is free. Process 127991 has 14.57 GiB memory in use. Of the allocated memory 14.45 GiB is allocated by PyTorch, and 2.28 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,742.989824,11799.560192,0.0,11404.312576,11388.314624,s,1,7.22953173828125,7.22953173828125,0.0,7.22953173828125,7.22953173828125,7.22953173828125,7.22953173828125,[7.22953173828125],,kWh,6.060062895841157e-06,6.604853918541069e-07,3.1891692180013864e-06,9.90971750569665e-06,,MB,1045.102592,11812.143104,0.0,11406.409728,11107.92192,s,10,4.078596130371094,0.4078596130371094,0.006914636060580647,0.4093941650390625,0.41454249267578125,0.4161641296386719,0.4174614392089844,"[0.3908428344726563, 0.40325701904296873, 0.4048968811035156, 0.40763894653320315, 0.4104405212402344, 0.41418212890625, 0.40905242919921875, 0.41076370239257814, 0.40973590087890627, 0.4177857666015625]",tokens/s,627.6669516104005,kWh,1.1848457179999816e-05,1.3057261868365596e-06,7.91846189032011e-06,2.1072645257156487e-05,tokens/kWh,12148451.078445397,MB,1049.894912,11814.240256,0.0,11408.50688,11305.031168,s,10,33.25393603515625,3.325393603515625,0.004680598481783512,3.3244874267578126,3.331663720703125,3.3319961669921874,3.332262124023438,"[3.32085595703125, 3.32172607421875, 3.32499609375, 3.320064453125, 3.3196875, 3.323978759765625, 3.32793017578125, 3.33232861328125, 3.33158984375, 3.330778564453125]",tokens/s,18.94512575395467,kWh,9.727351534833359e-05,1.0730509639033732e-05,6.439720707327956e-05,0.0001724012320606469,tokens/kWh,365426.6228088092,,s,630,33.250572078704806,0.05277868583921402,0.00030674911309846537,0.05275551986694336,0.053081284332275394,0.05319347534179687,0.054124218521118164,"[0.0541383056640625, 0.05286969757080078, 0.05241062545776367, 0.05242035293579102, 0.052539424896240236, 0.052261089324951174, 0.05237136077880859, 0.052418399810791015, 0.05233817672729492, 0.052375518798828125, 0.05235324859619141, 0.052402145385742185, 0.05252556610107422, 0.05238297653198242, 0.05253529739379883, 0.05237820816040039, 0.05243628692626953, 0.052414497375488284, 0.05265177536010742, 0.05280767822265625, 0.05262160110473633, 0.05304336166381836, 0.052717151641845705, 0.052778976440429684, 0.05249491119384766, 0.05253279876708984, 0.052677471160888674, 0.052567424774169924, 0.052643966674804685, 0.052544033050537106, 0.05244662475585937, 0.05290854263305664, 0.052652320861816405, 0.05259030532836914, 0.05252505493164063, 0.052580352783203124, 0.05269852828979492, 0.05272431945800781, 0.053174270629882815, 0.05282179260253906, 0.053018753051757815, 0.052811870574951174, 0.05289372634887695, 0.0526520004272461, 0.05276435089111328, 0.05268259048461914, 0.052684257507324216, 0.052634624481201174, 0.05271756744384765, 0.052739585876464844, 0.05284710311889648, 0.05268889617919922, 0.05295718383789062, 0.05281932830810547, 0.05289843368530273, 0.05272371292114258, 0.05284592056274414, 0.05336131286621094, 0.05306982421875, 0.053190689086914066, 0.052962303161621094, 0.052933120727539064, 0.05286550521850586, 0.054295841217041015, 0.05278310394287109, 0.05225545501708984, 0.05222348785400391, 0.05213471984863281, 0.05276435089111328, 0.05241856002807617, 0.05244518280029297, 0.0523612174987793, 0.05259823989868164, 0.05237583923339844, 0.05227657699584961, 0.05245225524902344, 0.05256185531616211, 0.05246105575561524, 0.05245990371704102, 0.0522856330871582, 0.05280972671508789, 0.05276387023925781, 0.052833057403564455, 0.05261711883544922, 0.05257030487060547, 0.05251478576660156, 0.05252822494506836, 0.052620094299316404, 0.05253500747680664, 0.05258812713623047, 0.05267324829101563, 0.052838401794433595, 0.052598785400390625, 0.05249017715454102, 0.05257353591918945, 0.05297020721435547, 0.05268889617919922, 0.05284044647216797, 0.05280115127563476, 0.05288179016113281, 0.053029022216796874, 0.05291356658935547, 0.052753952026367186, 0.05279212951660156, 0.05269014358520508, 0.052716415405273435, 0.05270233535766602, 0.05283651351928711, 0.05289884948730469, 0.052725440979003904, 0.05300569534301758, 0.052718208312988284, 0.05275033569335937, 0.0526295051574707, 0.05269289779663086, 0.05280547332763672, 0.05272003173828125, 0.05290387344360352, 0.05283190536499023, 0.053141761779785156, 0.05346918487548828, 0.053028865814208986, 0.052942848205566405, 0.053008384704589843, 0.05283375930786133, 0.05295772933959961, 0.0541822738647461, 0.05274176025390625, 0.05234732818603516, 0.052550945281982425, 0.05255356979370117, 0.05251718521118164, 0.05244704055786133, 0.05243376159667969, 0.05239174270629883, 0.05232963180541992, 0.052342655181884766, 0.052356063842773436, 0.052547584533691405, 0.05264169692993164, 0.05256614303588867, 0.052591743469238283, 0.05249110412597656, 0.052542720794677734, 0.05268278503417969, 0.05272003173828125, 0.05251308822631836, 0.052518753051757815, 0.05262556838989258, 0.05255782318115235, 0.05266960144042969, 0.05263446426391601, 0.05271779251098633, 0.052727584838867185, 0.05248006439208985, 0.05255161666870117, 0.0526025276184082, 0.05267695999145508, 0.05294230270385742, 0.052908065795898435, 0.05303123092651367, 0.05357177734375, 0.05297488021850586, 0.052861663818359376, 0.05295539093017578, 0.05288499069213867, 0.053065982818603516, 0.052876960754394534, 0.05283795166015625, 0.05278799819946289, 0.0530882568359375, 0.05285174560546875, 0.05284281539916992, 0.05268764877319336, 0.05266985702514648, 0.05278153610229492, 0.052770782470703125, 0.05302217483520508, 0.05281849670410156, 0.05310025787353516, 0.05289769744873047, 0.05295756912231445, 0.05297151947021484, 0.05296102523803711, 0.052888961791992185, 0.0530645751953125, 0.053065727233886716, 0.052951038360595705, 0.05332992172241211, 0.05417824172973633, 0.05289571380615234, 0.05244675064086914, 0.05241219329833984, 0.052550430297851565, 0.05248604965209961, 0.05226015853881836, 0.05234479904174805, 0.052349056243896484, 0.05243145751953125, 0.05271142578125, 0.05235302352905274, 0.05244480133056641, 0.052440608978271484, 0.05248700714111328, 0.0523691520690918, 0.052289249420166016, 0.05249897766113281, 0.052850368499755856, 0.05290611267089844, 0.052828254699707033, 0.052533344268798826, 0.052478240966796874, 0.05251430511474609, 0.05239318466186523, 0.052429824829101565, 0.05249622344970703, 0.052488449096679685, 0.052442623138427735, 0.052731391906738284, 0.05265296173095703, 0.05241439819335938, 0.052496158599853515, 0.05253763198852539, 0.052545055389404294, 0.05320268630981445, 0.05318729782104492, 0.052910079956054686, 0.052921409606933596, 0.05282297515869141, 0.05267251205444336, 0.05267171096801758, 0.05290063858032226, 0.05263161468505859, 0.052770751953125, 0.05267865753173828, 0.05271551895141602, 0.05280691146850586, 0.05285145568847656, 0.052733535766601565, 0.052744449615478514, 0.05276073455810547, 0.05272576141357422, 0.05313238525390625, 0.052916385650634765, 0.052813888549804684, 0.05304143905639649, 0.052922782897949217, 0.0530882568359375, 0.052909854888916016, 0.05281814575195312, 0.05285273742675781, 0.052891647338867184, 0.054089729309082034, 0.05288547134399414, 0.05237251281738281, 0.05233337783813476, 0.05233478546142578, 0.052393600463867186, 0.05241241455078125, 0.0523823356628418, 0.05242227172851562, 0.05236083221435547, 0.05278908920288086, 0.05237036895751953, 0.052472671508789065, 0.05242902374267578, 0.05275920104980469, 0.052555679321289066, 0.05271356964111328, 0.0526192626953125, 0.05252048110961914, 0.05265251159667969, 0.05267670440673828, 0.05266217422485352, 0.05276163101196289, 0.05257321548461914, 0.052557758331298825, 0.052499584197998043, 0.05245792007446289, 0.05243948745727539, 0.05244927978515625, 0.05246771240234375, 0.0525513916015625, 0.052494625091552734, 0.05247180938720703, 0.05246361541748047, 0.05320028686523438, 0.0529920654296875, 0.052733535766601565, 0.05265708923339844, 0.05290393447875977, 0.052724864959716795, 0.05337948989868164, 0.052705760955810546, 0.05294899368286133, 0.05284864044189453, 0.052872543334960935, 0.052568737030029296, 0.05271347045898438, 0.05271273422241211, 0.05285551834106445, 0.052708576202392575, 0.05266716766357422, 0.05255782318115235, 0.05283356857299805, 0.052711776733398434, 0.053072158813476565, 0.052754528045654295, 0.05274185562133789, 0.05279260635375976, 0.05277312088012695, 0.05285289764404297, 0.05288201522827148, 0.05281587219238281, 0.052967422485351565, 0.05408150482177734, 0.052770591735839846, 0.05258671951293945, 0.05242879867553711, 0.052424705505371094, 0.052391712188720706, 0.05248255920410156, 0.05252243041992188, 0.05233078384399414, 0.05242675018310547, 0.05241424179077148, 0.05258204650878906, 0.0529697265625, 0.05251513671875, 0.05253529739379883, 0.05252710342407227, 0.05259468841552734, 0.052711166381835935, 0.05284889602661133, 0.052830432891845705, 0.05274591827392578, 0.052676288604736325, 0.05271798324584961, 0.05254553604125976, 0.05266783905029297, 0.05261983871459961, 0.05264787292480469, 0.052617279052734375, 0.052623489379882815, 0.05266960144042969, 0.05278793716430664, 0.05263359832763672, 0.05275651168823242, 0.0525700798034668, 0.05270528030395508, 0.052682369232177735, 0.052834686279296876, 0.05288140869140625, 0.05290188980102539, 0.05278307342529297, 0.052817119598388675, 0.05302777481079102, 0.052786815643310545, 0.05273420715332031, 0.05282406234741211, 0.05277084732055664, 0.05295491027832031, 0.052744384765625, 0.053053760528564455, 0.05283808135986328, 0.05270528030395508, 0.05282611083984375, 0.05281792068481445, 0.05300617599487305, 0.05300204849243164, 0.05279369735717773, 0.052999488830566405, 0.05307696151733399, 0.052870880126953124, 0.05287097549438476, 0.053231136322021484, 0.05285520172119141, 0.053017887115478515, 0.05406307220458984, 0.05285583877563477, 0.05234790420532227, 0.052397247314453124, 0.052420894622802736, 0.05233513641357422, 0.05240537643432617, 0.05258329772949219, 0.052569534301757814, 0.05259273529052735, 0.05240812683105469, 0.05234960174560547, 0.05247334289550781, 0.0528983039855957, 0.052566017150878906, 0.05257212829589844, 0.05280361557006836, 0.05270937728881836, 0.05275839996337891, 0.05278937530517578, 0.052746238708496096, 0.05259823989868164, 0.05263824081420899, 0.05264003372192383, 0.052737567901611326, 0.05265340805053711, 0.05283107376098633, 0.052762622833251956, 0.05260489654541016, 0.05267027282714844, 0.052863201141357424, 0.05324579238891602, 0.05301776123046875, 0.052863998413085936, 0.05271756744384765, 0.05290963363647461, 0.05293072128295898, 0.05283663940429688, 0.05303068923950195, 0.052989246368408204, 0.052978591918945314, 0.052899486541748045, 0.05295548629760742, 0.05285472106933594, 0.05299820709228516, 0.053017791748046876, 0.05292319869995117, 0.05290800094604492, 0.052875297546386715, 0.052784961700439455, 0.05288191986083984, 0.052802398681640626, 0.05292486572265625, 0.05304348754882812, 0.05314982223510742, 0.05293011093139648, 0.05305785751342774, 0.053055553436279296, 0.05322348785400391, 0.05311654281616211, 0.05297628784179687, 0.05293641662597656, 0.05308124923706055, 0.05461270523071289, 0.053144832611083985, 0.05265071868896484, 0.05251686477661133, 0.05243417739868164, 0.05247286224365234, 0.052538944244384767, 0.052396190643310546, 0.05261529541015625, 0.05266729736328125, 0.05251379013061523, 0.05374358367919922, 0.052701343536376954, 0.05273788833618164, 0.05269417572021484, 0.05274915313720703, 0.05264777755737305, 0.05265423965454102, 0.05267827224731445, 0.05319510269165039, 0.05292233657836914, 0.05308422470092773, 0.05280767822265625, 0.05284659194946289, 0.05279888153076172, 0.05276732635498047, 0.05276374435424805, 0.052809982299804686, 0.05270595169067383, 0.05268668746948242, 0.052719425201416016, 0.05276079940795898, 0.052754047393798825, 0.05283891296386719, 0.052868640899658204, 0.0528421745300293, 0.05279414367675781, 0.05278617477416992, 0.05300128173828125, 0.05289971160888672, 0.05314156723022461, 0.05289267349243164, 0.05293913650512695, 0.052738494873046875, 0.052961280822753906, 0.0527341423034668, 0.05281788635253906, 0.052799518585205076, 0.052811775207519535, 0.05273011016845703, 0.052813568115234376, 0.05289567947387695, 0.052916385650634765, 0.05315081787109375, 0.05319148635864258, 0.0529837760925293, 0.05310262298583984, 0.05332735824584961, 0.05320755386352539, 0.05337699127197266, 0.053346046447753905, 0.05318070220947266, 0.053106689453125, 0.05466521453857422, 0.05334339141845703, 0.052703102111816405, 0.05247894287109375, 0.05252828979492188, 0.05254377746582031, 0.052410816192626955, 0.052627582550048825, 0.05255168151855469, 0.05253324890136719, 0.052502113342285155, 0.05256233596801758, 0.052587646484375, 0.05255487823486328, 0.052612545013427735, 0.05280185699462891, 0.052482177734375, 0.05268876647949219, 0.052728031158447264, 0.05289539337158203, 0.05286310577392578, 0.05277494430541992, 0.05271708679199219, 0.05267327880859375, 0.052676063537597656, 0.05277030563354492, 0.05288828659057617, 0.052709022521972654, 0.05279792022705078, 0.05270105743408203, 0.05278464126586914, 0.05269903945922851, 0.05286563110351562, 0.052827327728271485, 0.05291228866577148, 0.05285270309448242, 0.05293331146240234, 0.052883712768554685, 0.05298688125610351, 0.0529409294128418, 0.05295798492431641, 0.053319454193115234, 0.05304121780395508, 0.0530063362121582, 0.05297971343994141, 0.05307494354248047, 0.05297840118408203, 0.052834465026855466, 0.05283654403686523, 0.05287519836425781, 0.052983806610107424, 0.052822017669677736, 0.052956768035888675, 0.05294736099243164, 0.053182464599609375, 0.05314787292480469, 0.053106464385986325, 0.05320083236694336, 0.053137248992919925, 0.05315974426269531, 0.05315353775024414, 0.05341865539550781, 0.05304681777954102, 0.05451468658447266, 0.05318656158447266, 0.052654079437255856, 0.05249871826171875, 0.052536991119384764, 0.05242585754394531, 0.05259564971923828, 0.053082015991210936, 0.05249187088012695, 0.052679168701171876, 0.05255708694458008, 0.05245836639404297, 0.05275222396850586, 0.05255478286743164, 0.052591743469238283, 0.05266211318969727, 0.05263359832763672, 0.05268428802490235, 0.05275289535522461, 0.053082111358642575, 0.05294668960571289, 0.05282822418212891, 0.05271897506713867, 0.05253116989135742, 0.05270943832397461, 0.05268339157104492, 0.052842655181884766, 0.05267804718017578, 0.052660831451416014, 0.052719615936279295, 0.05269081497192383, 0.05266998291015625, 0.0528554573059082, 0.05276627349853515, 0.052913887023925785, 0.052947616577148436, 0.05287116622924805, 0.052789249420166016, 0.053037120819091794, 0.05297760009765625, 0.05308160018920898, 0.05293721771240235, 0.052967422485351565, 0.05287936019897461, 0.05300428771972656, 0.052848190307617185, 0.05299244689941406, 0.052754432678222656, 0.052819969177246094, 0.05288905715942383, 0.05279388809204102, 0.05301248168945313, 0.05294079971313476, 0.053032958984375, 0.05303910446166992, 0.05296332931518555, 0.053125118255615236, 0.05315996932983398, 0.05339907073974609, 0.05335254287719727, 0.05317232131958008, 0.05292262268066406, 0.05307148742675781]",tokens/s,18.94704243009041,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 287, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 172.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 150.12 MiB is free. Process 174026 has 14.59 GiB memory in use. Of the allocated memory 14.48 GiB is allocated by PyTorch, and 1.43 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 68.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 26.12 MiB is free. Process 64547 has 14.71 GiB memory in use. Of the allocated memory 14.60 GiB is allocated by PyTorch, and 47.00 KiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm2,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 1138, in __init__ self.model = InternLM2Model(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 918, in __init__ [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 918, in [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 709, in __init__ self.feed_forward = InternLM2MLP(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 205, in __init__ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 180.12 MiB is free. Process 150800 has 14.56 GiB memory in use. Of the allocated memory 14.45 GiB is allocated by PyTorch, and 1.62 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,deci,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/modeling_decilm.py"", line 311, in __init__ self.model = DeciLMModel(config) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/modeling_decilm.py"", line 182, in __init__ self.layers = nn.ModuleList([DeciLMDecoderLayer(config, layer_idx) for layer_idx File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/modeling_decilm.py"", line 182, in self.layers = nn.ModuleList([DeciLMDecoderLayer(config, layer_idx) for layer_idx File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/modeling_decilm.py"", line 149, in __init__ self.mlp = LlamaMLP(config) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/transformers_v4_35_2__modeling_llama.py"", line 236, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 224.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 162.12 MiB is free. Process 24130 has 14.58 GiB memory in use. Of the allocated memory 14.44 GiB is allocated by PyTorch, and 25.46 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 288, in __init__ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 270.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 98.12 MiB is free. Process 165567 has 14.64 GiB memory in use. Of the allocated memory 14.53 GiB is allocated by PyTorch, and 1.56 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,785.956864,11656.953856,0.0,11261.70624,11255.391232,s,1,7.18033935546875,7.18033935546875,0.0,7.18033935546875,7.18033935546875,7.18033935546875,7.18033935546875,[7.18033935546875],,kWh,5.039279437501893e-06,5.485672503577893e-07,1.397223339999476e-06,6.985070027859159e-06,,MB,1123.26656,11667.439616,0.0,11261.70624,10971.009024,s,10,3.609160095214844,0.3609160095214844,0.0057715397464658475,0.36168374633789063,0.36523611755371094,0.3675208755493164,0.3693486819458008,"[0.34562661743164064, 0.36130355834960937, 0.35997222900390624, 0.3647283935546875, 0.360566650390625, 0.3621558837890625, 0.3620639343261719, 0.36980563354492185, 0.3622278137207031, 0.36070938110351564]",tokens/s,709.3063018717683,kWh,1.0374761183620728e-05,1.1441585045193638e-06,6.926892514689321e-06,1.844581220282941e-05,tokens/kWh,13878488.90496305,MB,1129.078784,11669.536768,0.0,11263.803392,11168.310272,s,10,32.345559570312496,3.2345559570312497,0.0030313954029406553,3.23419287109375,3.238731909179687,3.239144885253906,3.2394752661132813,"[3.228908203125, 3.23709130859375, 3.234354248046875, 3.239557861328125, 3.23864013671875, 3.231833740234375, 3.232732177734375, 3.233671142578125, 3.234031494140625, 3.2347392578125]",tokens/s,19.477171159475894,kWh,9.4550488759296e-05,1.0429143709534005e-05,6.261869089951168e-05,0.00016759832336834168,tokens/kWh,375898.7484710144,,s,630,32.3424638595581,0.051337244221520806,0.0002730846994798606,0.05133265495300293,0.051640332794189454,0.051755985450744627,0.05218107563018799,"[0.05185184097290039, 0.05116694259643555, 0.051020065307617185, 0.05102796936035156, 0.05079040145874023, 0.05086412811279297, 0.05093948745727539, 0.05091164779663086, 0.05082726287841797, 0.051001182556152345, 0.0509455680847168, 0.05109526443481445, 0.05096131134033203, 0.05127126312255859, 0.05109990310668945, 0.05096457672119141, 0.05110784149169922, 0.05120006561279297, 0.05122048187255859, 0.0513875846862793, 0.05126841735839844, 0.051265281677246095, 0.05110111999511719, 0.05129817581176758, 0.05111084747314453, 0.05101350402832031, 0.05118150329589844, 0.05111347198486328, 0.05107360076904297, 0.05109142303466797, 0.05104451370239258, 0.05120204925537109, 0.051120128631591794, 0.051205665588378906, 0.05122851181030273, 0.05125593566894531, 0.0513966064453125, 0.05135974502563476, 0.0513719367980957, 0.051394657135009764, 0.05133660888671875, 0.05134710311889648, 0.05139756774902344, 0.051353118896484376, 0.05133315277099609, 0.05142950439453125, 0.0512957763671875, 0.0513666877746582, 0.051224193572998046, 0.051324478149414064, 0.05144249725341797, 0.05132809448242188, 0.051420063018798826, 0.05140889739990234, 0.05154611206054688, 0.05159686279296875, 0.0514400634765625, 0.05144985580444336, 0.05153779220581055, 0.051560321807861326, 0.051517696380615235, 0.05165055847167969, 0.051557727813720707, 0.052185344696044925, 0.05153792190551758, 0.05099494552612305, 0.050864383697509764, 0.050991104125976565, 0.051146751403808595, 0.05095945739746094, 0.05092240142822266, 0.05091123199462891, 0.05104838562011719, 0.05114652633666992, 0.05100291061401367, 0.05100211334228515, 0.05116652679443359, 0.05118841552734375, 0.051087135314941405, 0.05124937438964844, 0.05129216003417969, 0.051910110473632816, 0.05162768173217774, 0.051323776245117185, 0.05125529479980469, 0.05158707046508789, 0.051156608581542966, 0.05110140609741211, 0.051098270416259764, 0.05119753646850586, 0.05113078308105469, 0.051118049621582035, 0.0510423355102539, 0.05114265441894531, 0.0510382080078125, 0.051138561248779295, 0.051317855834960936, 0.05135017776489258, 0.05146768188476562, 0.051442527770996095, 0.05140470504760742, 0.05155644989013672, 0.051523582458496094, 0.05148262405395508, 0.05155430221557617, 0.05166080093383789, 0.0514150390625, 0.05227718353271484, 0.05254502487182617, 0.05140947341918945, 0.05142015838623047, 0.05121331024169922, 0.05138604736328125, 0.05148908615112305, 0.05131468963623047, 0.05129817581176758, 0.05148236846923828, 0.0523573112487793, 0.05162601470947266, 0.05164588928222656, 0.051622528076171875, 0.05166604614257812, 0.05177158355712891, 0.05144451141357422, 0.05154816055297851, 0.05153123092651367, 0.052065982818603515, 0.05120902252197266, 0.05104422378540039, 0.050863422393798825, 0.050934593200683595, 0.05127372741699219, 0.05117497634887695, 0.050969024658203126, 0.05103731155395508, 0.05110188674926758, 0.05112697601318359, 0.05102796936035156, 0.05100940704345703, 0.05121855926513672, 0.05104230499267578, 0.05109145736694336, 0.051128318786621094, 0.051236862182617186, 0.05130643081665039, 0.05133318328857422, 0.051122177124023435, 0.05131235122680664, 0.05115523147583008, 0.05117715072631836, 0.0510379524230957, 0.05120467376708984, 0.05102092742919922, 0.05099977493286133, 0.05135721588134766, 0.05136883163452149, 0.05117337417602539, 0.051418689727783205, 0.05147068786621094, 0.051370079040527344, 0.051492641448974606, 0.05142265701293945, 0.05144246292114258, 0.05139046478271484, 0.05171814346313477, 0.05150624084472656, 0.0512685432434082, 0.05134912109375, 0.051423614501953124, 0.05139177703857422, 0.05130928039550781, 0.051490238189697266, 0.051272254943847656, 0.051500926971435546, 0.051514846801757816, 0.051388256072998045, 0.05150803375244141, 0.051410945892333984, 0.05156620788574219, 0.05153814315795899, 0.05151705551147461, 0.051646270751953126, 0.051501792907714845, 0.051689472198486325, 0.05170995330810547, 0.05175091171264649, 0.05171532821655273, 0.05170048141479492, 0.051502239227294924, 0.05227001571655274, 0.05150310516357422, 0.05107062530517578, 0.05112630462646484, 0.05085804748535156, 0.05107913589477539, 0.051093791961669924, 0.05113417434692383, 0.05096847915649414, 0.05105683135986328, 0.05099103927612305, 0.05121427154541015, 0.05112041473388672, 0.0511242561340332, 0.05108272171020508, 0.05123072052001953, 0.05118825531005859, 0.05149033737182617, 0.05149897766113281, 0.051491329193115234, 0.05133107376098633, 0.05146214294433594, 0.051253246307373046, 0.05124915313720703, 0.0511110725402832, 0.0511288948059082, 0.05133036804199219, 0.0512907829284668, 0.0512105598449707, 0.05145539093017578, 0.05127180862426758, 0.05123660659790039, 0.05125571060180664, 0.05132249450683594, 0.05163692855834961, 0.05156614303588867, 0.05147488021850586, 0.05175910568237305, 0.051603424072265626, 0.05159529495239258, 0.05159526443481445, 0.05144166564941406, 0.05156560134887695, 0.051442176818847656, 0.051501537322998045, 0.051544063568115236, 0.05144521713256836, 0.0514312973022461, 0.05148944091796875, 0.05144780731201172, 0.0514436149597168, 0.051477664947509764, 0.05152646255493164, 0.05164044952392578, 0.05175296020507812, 0.05170175933837891, 0.05183820724487305, 0.05177215957641602, 0.05170336151123047, 0.05169107055664063, 0.051609790802001954, 0.05243532943725586, 0.05156486511230469, 0.05212601470947266, 0.05128799819946289, 0.05166207885742188, 0.05214700698852539, 0.05093116760253906, 0.05081455993652344, 0.05114275360107422, 0.05114147186279297, 0.050964481353759764, 0.05104844665527344, 0.05102105712890625, 0.05125724792480469, 0.0509202880859375, 0.05108224105834961, 0.05093478393554687, 0.05121795272827148, 0.05101206588745117, 0.0513493766784668, 0.05119929504394531, 0.05132505416870117, 0.051122081756591796, 0.051378753662109374, 0.05119558334350586, 0.051055137634277346, 0.050984798431396486, 0.05127388763427734, 0.05140009689331055, 0.05122259140014648, 0.05123126220703125, 0.05199462509155273, 0.051738304138183595, 0.05138463973999023, 0.05116668701171875, 0.05135619354248047, 0.05146739196777344, 0.05139104080200195, 0.05161743927001953, 0.05149967956542969, 0.05142297744750977, 0.05154227066040039, 0.05150848007202148, 0.05143824005126953, 0.05150729751586914, 0.05150515365600586, 0.0514334716796875, 0.05175686264038086, 0.051617088317871096, 0.05141955184936523, 0.051665374755859375, 0.051650177001953124, 0.05181683349609375, 0.05150051116943359, 0.051754913330078124, 0.05142512130737305, 0.051761920928955076, 0.05155219268798828, 0.05149705505371094, 0.05169356918334961, 0.051582977294921874, 0.05166262435913086, 0.05154019165039062, 0.051544063568115236, 0.05148246383666992, 0.052170623779296876, 0.051132606506347655, 0.05115887832641602, 0.05097283172607422, 0.05088665771484375, 0.05084569549560547, 0.05100896072387695, 0.050893375396728516, 0.050958335876464846, 0.05089641571044922, 0.05089308929443359, 0.050986686706542966, 0.0508851203918457, 0.05096857452392578, 0.05093939208984375, 0.05104281616210937, 0.051371391296386716, 0.05133785629272461, 0.05122662353515625, 0.051205631256103515, 0.051044769287109375, 0.051213470458984375, 0.05127468872070313, 0.0513309440612793, 0.05114204788208008, 0.05102870559692383, 0.05101363372802734, 0.05098863983154297, 0.05107497787475586, 0.050962944030761716, 0.05104844665527344, 0.050993152618408207, 0.05110374450683594, 0.05125529479980469, 0.052029441833496094, 0.051484672546386716, 0.051666465759277344, 0.05137593460083008, 0.05141161727905273, 0.05146419143676758, 0.051410945892333984, 0.05141299057006836, 0.0515968017578125, 0.05161625671386719, 0.05164031982421875, 0.05161369705200195, 0.05141299057006836, 0.05154934310913086, 0.051472225189208985, 0.05130752182006836, 0.051275070190429685, 0.05130889511108398, 0.051398719787597656, 0.051542015075683595, 0.05147244644165039, 0.05164054489135742, 0.05151129531860352, 0.051557727813720707, 0.05151811218261719, 0.051555774688720704, 0.05163065719604492, 0.051596382141113284, 0.05175388717651367, 0.05201375961303711, 0.05120841598510742, 0.05115084838867188, 0.05107036972045898, 0.05101833724975586, 0.05094153594970703, 0.0510153923034668, 0.05099923324584961, 0.050991584777832034, 0.05088214492797852, 0.050941951751708986, 0.05109215927124024, 0.05103615951538086, 0.05110492706298828, 0.05115702438354492, 0.051163745880126954, 0.05103433609008789, 0.05115609741210937, 0.05127043151855469, 0.05153801727294922, 0.05113779067993164, 0.05124556732177735, 0.051189952850341794, 0.051118144989013674, 0.05130444717407227, 0.05112422561645508, 0.05120783996582031, 0.051087711334228514, 0.05102150344848633, 0.05118912124633789, 0.05098908615112305, 0.05129497528076172, 0.051140609741210936, 0.05128611373901367, 0.051273792266845704, 0.051367935180664064, 0.05140991973876953, 0.05138278579711914, 0.05142169570922851, 0.05158089447021484, 0.05134748840332031, 0.0514150390625, 0.051510337829589845, 0.05153273773193359, 0.051576831817626956, 0.05148246383666992, 0.051294368743896486, 0.051591167449951174, 0.0513875846862793, 0.05140118408203125, 0.05134339141845703, 0.05153164672851562, 0.05123894500732422, 0.05145568084716797, 0.05140550231933594, 0.05156252670288086, 0.051525409698486326, 0.05202057647705078, 0.05177350234985351, 0.051661121368408204, 0.05160806274414063, 0.05163827133178711, 0.05157068634033203, 0.052096382141113284, 0.05118835067749023, 0.050974720001220705, 0.050861183166503905, 0.050937793731689454, 0.05083404922485352, 0.05093404769897461, 0.05090435028076172, 0.05090719985961914, 0.051003326416015626, 0.05099801635742188, 0.05110988616943359, 0.05105459213256836, 0.05113651275634765, 0.0522874870300293, 0.05129344177246094, 0.051132736206054685, 0.05110419082641601, 0.051307743072509765, 0.051372833251953125, 0.05130854415893555, 0.05130035018920898, 0.051165184020996096, 0.05116108703613281, 0.051158718109130856, 0.05113478469848633, 0.05117526245117188, 0.05122883224487305, 0.05125734329223633, 0.05117647933959961, 0.05114569473266602, 0.05110988616943359, 0.05133107376098633, 0.05126758575439453, 0.05139564895629883, 0.05188703918457031, 0.05153318405151367, 0.0515467529296875, 0.05148591995239258, 0.051313438415527345, 0.05135769653320312, 0.05148057556152344, 0.051525630950927735, 0.05146623992919922, 0.05160953521728515, 0.05167520141601562, 0.051419136047363284, 0.05130035018920898, 0.05132287979125977, 0.05125734329223633, 0.051332191467285154, 0.05128467178344726, 0.05158115386962891, 0.0514150390625, 0.05144707107543945, 0.05169347381591797, 0.051591999053955076, 0.05157273483276367, 0.051507198333740234, 0.051607551574707033, 0.05143462371826172, 0.05160844802856445, 0.05136716842651367, 0.051907230377197265, 0.051843040466308596, 0.05120425415039063, 0.050949630737304685, 0.0509567985534668, 0.05085184097290039, 0.05095609664916992, 0.05094144058227539, 0.05097856140136719, 0.05113907241821289, 0.051044734954833984, 0.05099321746826172, 0.050817024230957034, 0.05112815856933594, 0.05116329574584961, 0.051253246307373046, 0.05100255966186523, 0.05127804946899414, 0.05135625457763672, 0.051568641662597656, 0.05122252655029297, 0.0514202880859375, 0.051200191497802736, 0.05117599868774414, 0.05118947219848633, 0.051257408142089844, 0.0511102409362793, 0.05108736038208008, 0.051195903778076174, 0.05124643325805664, 0.051178112030029296, 0.051300384521484374, 0.05137561416625976, 0.05129391860961914, 0.051346206665039064, 0.05143484878540039, 0.05147100830078125, 0.05144512176513672, 0.05160819244384766, 0.051451904296875, 0.05155833435058594, 0.051369281768798826, 0.051737342834472656, 0.05139865493774414, 0.05151129531860352, 0.05155977630615234, 0.051302398681640625, 0.05135222244262695, 0.051329025268554686, 0.05146419143676758, 0.05148672103881836, 0.05142323303222656, 0.05130179214477539, 0.05141753768920899, 0.05161795043945312, 0.051533824920654295, 0.05148211288452149, 0.051622398376464845, 0.05159526443481445, 0.05156380844116211, 0.051778270721435544, 0.051580032348632815, 0.051409793853759767, 0.05198233413696289, 0.0513331184387207, 0.05110572814941406, 0.0509071044921875, 0.050954177856445314, 0.05108918380737305, 0.05096076965332031, 0.051042240142822264, 0.05087609481811523, 0.051385921478271486, 0.05099808120727539, 0.05110889434814453, 0.05101052856445312, 0.051109214782714844, 0.05110553741455078, 0.05117414474487305, 0.05110185623168945, 0.05140070343017578, 0.05142643356323242, 0.05148681640625, 0.05125814437866211, 0.05127135848999023, 0.05126176071166992, 0.05130035018920898, 0.05120819091796875, 0.05146988677978516, 0.05118563079833984, 0.05119753646850586, 0.05121484756469727, 0.05141337585449219, 0.0510832633972168, 0.05120819091796875, 0.051236862182617186, 0.05122457504272461, 0.051318687438964845, 0.051361888885498044, 0.05144908905029297, 0.05157759857177734, 0.05143328094482422, 0.0513947525024414, 0.05152767944335938, 0.05149491119384766, 0.051748863220214845, 0.05152972793579102, 0.052103168487548826, 0.051590240478515625, 0.05137420654296875, 0.05142403030395508, 0.05144780731201172, 0.051394561767578124, 0.05147238540649414, 0.05140889739990234, 0.05141708755493164, 0.05135475158691406, 0.05145484924316406, 0.05156454467773437, 0.05144915390014648, 0.05160825729370117, 0.05161939239501953, 0.05156047821044922, 0.051429790496826173, 0.05136588668823242, 0.05148057556152344]",tokens/s,19.479035448123945,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,phi,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1006.432256,13915.58656,0.0,13520.338944,13508.0832,s,1,7.23065673828125,7.23065673828125,0.0,7.23065673828125,7.23065673828125,7.23065673828125,7.23065673828125,[7.23065673828125],,kWh,8.440995179156138e-06,9.145939481327352e-07,4.60222590401016e-06,1.3957815031299033e-05,,MB,1360.71168,13930.266624,0.0,13524.533248,11787.729408,s,10,4.1068275451660154,0.4106827545166015,0.005539901845629834,0.412336669921875,0.4148724090576172,0.41568087921142577,0.41632765533447263,"[0.39646453857421876, 0.41363455200195315, 0.4117584228515625, 0.4146927490234375, 0.41122003173828126, 0.41462997436523436, 0.40607705688476564, 0.40894595336914064, 0.41648934936523435, 0.4129149169921875]",tokens/s,623.3522035794455,kWh,1.1856260370501634e-05,1.3075373971009456e-06,7.816406253120523e-06,2.0980204020723102e-05,tokens/kWh,12201978.576906934,MB,1378.271232,13932.363776,0.0,13526.6304,11790.353408,s,10,34.81288720703125,3.4812887207031253,0.0023177707460265234,3.48176611328125,3.4838597412109373,3.483888854980469,3.483912145996094,"[3.479330322265625, 3.47658447265625, 3.478411865234375, 3.4817265625, 3.4818056640625, 3.48391796875, 3.48139599609375, 3.482677978515625, 3.48318310546875, 3.483853271484375]",tokens/s,18.096746651704233,kWh,0.00010191496828449954,1.124156451406639e-05,6.774890419907919e-05,0.0001809054369976451,tokens/kWh,348248.23977413174,,s,630,34.810988906860345,0.05525553794739738,0.0006136812357323722,0.05514700698852539,0.05558548202514649,0.05579898166656494,0.05940476905822754,"[0.05961724853515625, 0.05585667037963867, 0.05495641708374024, 0.054973918914794924, 0.05516556930541992, 0.055015487670898436, 0.05493465423583985, 0.055062496185302734, 0.055241569519042966, 0.054937599182128906, 0.05496035385131836, 0.05514009475708008, 0.05496604919433594, 0.054927616119384765, 0.055135295867919924, 0.05503388977050781, 0.05488323211669922, 0.05559500885009765, 0.05594112014770508, 0.05535081481933594, 0.05513983917236328, 0.05546223831176758, 0.055322528839111325, 0.055203903198242185, 0.05487887954711914, 0.05517644882202148, 0.055026432037353516, 0.054916255950927736, 0.05512483215332031, 0.05528707122802735, 0.0549257926940918, 0.054870529174804686, 0.055056129455566406, 0.054988800048828126, 0.055008575439453124, 0.05533929443359375, 0.05595782470703125, 0.05527305603027344, 0.05509571075439453, 0.0552916145324707, 0.05538444900512695, 0.054953983306884766, 0.055347198486328124, 0.05514035034179687, 0.05493929672241211, 0.05486012649536133, 0.055177215576171876, 0.05527772903442383, 0.05491439819335937, 0.05482342529296875, 0.05513216018676758, 0.05497241592407227, 0.054921215057373046, 0.05536972808837891, 0.055447200775146484, 0.05504441452026367, 0.054986785888671875, 0.0553779182434082, 0.05544550323486328, 0.05499103927612305, 0.055147518157958986, 0.05540742492675781, 0.05504771041870117, 0.05940633773803711, 0.05566847991943359, 0.05490070343017578, 0.05526556777954102, 0.05530812835693359, 0.054927520751953125, 0.05491059112548828, 0.05497673416137695, 0.05486812973022461, 0.05479811096191406, 0.055089439392089844, 0.05529388809204101, 0.05492531204223633, 0.05482223892211914, 0.05509120178222656, 0.055005504608154294, 0.05515420913696289, 0.05586175918579102, 0.055904575347900394, 0.055320384979248044, 0.05495827102661133, 0.055174720764160155, 0.05532921600341797, 0.05489459228515625, 0.05484112167358399, 0.055129470825195315, 0.054958847045898436, 0.05486774444580078, 0.055032127380371096, 0.05523455810546875, 0.05494716644287109, 0.05482902526855469, 0.05505209732055664, 0.054889152526855466, 0.05501279830932617, 0.055610111236572266, 0.05567859268188476, 0.05517366409301758, 0.05501887893676758, 0.05526124954223633, 0.055063232421875, 0.054905696868896486, 0.05502860641479492, 0.055279071807861326, 0.05497296142578125, 0.05489459228515625, 0.055198848724365236, 0.05523875045776367, 0.054741695404052736, 0.05498275375366211, 0.05521612930297851, 0.054943294525146485, 0.0550629768371582, 0.055465984344482425, 0.05561139297485351, 0.05503939056396484, 0.05493356704711914, 0.05521593475341797, 0.05487225723266602, 0.054779552459716795, 0.05531036758422852, 0.055315296173095704, 0.05494371032714844, 0.05936095809936524, 0.055421886444091795, 0.05492531204223633, 0.05503180694580078, 0.05505023956298828, 0.054928577423095704, 0.05520182418823242, 0.05532956695556641, 0.05497241592407227, 0.05482086563110351, 0.05518947219848633, 0.05514448165893555, 0.054880256652832034, 0.05504771041870117, 0.055366111755371095, 0.05501529693603516, 0.05499871826171875, 0.055837120056152344, 0.05561958312988281, 0.05523865509033203, 0.05508937454223633, 0.055291072845458984, 0.05507132720947266, 0.05492940902709961, 0.05508297729492188, 0.05528579330444336, 0.05537363052368164, 0.05491852951049805, 0.05507564926147461, 0.05480243301391602, 0.05491878509521484, 0.05509772872924805, 0.055201793670654295, 0.05508095932006836, 0.055136127471923826, 0.055441150665283205, 0.055521663665771485, 0.055103488922119144, 0.055054302215576174, 0.05532825469970703, 0.05511017608642578, 0.054916702270507815, 0.0551833267211914, 0.055353279113769534, 0.054927871704101565, 0.054890464782714844, 0.05505961608886719, 0.05485862350463867, 0.05494784164428711, 0.05499699020385742, 0.05527273559570312, 0.055093982696533206, 0.055144447326660156, 0.05544755172729492, 0.055649887084960936, 0.055190975189208985, 0.055008224487304684, 0.05524009704589844, 0.055091102600097655, 0.05490963363647461, 0.055163902282714845, 0.05534822463989258, 0.0551847038269043, 0.059714046478271485, 0.055820064544677736, 0.05488899230957031, 0.05475539016723633, 0.05518297576904297, 0.05488063812255859, 0.05479219055175781, 0.05497151947021484, 0.055214977264404295, 0.05499526214599609, 0.05489753723144531, 0.055021793365478515, 0.055495262145996094, 0.054941631317138674, 0.054982017517089844, 0.05513827133178711, 0.0551759033203125, 0.05552313613891602, 0.05615840148925781, 0.05567027282714844, 0.05519724655151367, 0.05495852661132813, 0.05512857437133789, 0.055277568817138675, 0.05491616058349609, 0.05479849624633789, 0.05514934539794922, 0.055375873565673826, 0.05494169616699219, 0.05501337432861328, 0.055277183532714845, 0.055064414978027346, 0.054996959686279295, 0.055196224212646486, 0.05521408081054688, 0.0551014404296875, 0.05533612823486328, 0.05569823837280274, 0.05528956985473633, 0.05498294448852539, 0.055332862854003906, 0.05545369720458984, 0.05507823944091797, 0.055253662109375, 0.05513011169433594, 0.05590220642089844, 0.05496201705932617, 0.054876319885253905, 0.055191551208496094, 0.0550010871887207, 0.05515673446655273, 0.055228416442871096, 0.05534668731689453, 0.055062110900878904, 0.055186336517333984, 0.055562015533447265, 0.0552655029296875, 0.055215198516845705, 0.055352222442626955, 0.055473377227783206, 0.05512623977661133, 0.05502828979492187, 0.055201217651367186, 0.06010291290283203, 0.05593088150024414, 0.05529910278320312, 0.055057056427001955, 0.05504460906982422, 0.05524448013305664, 0.055281822204589846, 0.055051265716552736, 0.05487651062011719, 0.05511231994628906, 0.055104705810546876, 0.054945793151855465, 0.05492816162109375, 0.05553974533081055, 0.05508224105834961, 0.05495011138916016, 0.055306785583496096, 0.056299232482910154, 0.05577763366699219, 0.055227775573730466, 0.05527199935913086, 0.05534515380859375, 0.05492150497436524, 0.05487353515625, 0.055210208892822264, 0.05485564804077148, 0.05482432174682617, 0.05512879943847656, 0.05527961730957031, 0.05489664077758789, 0.05491507339477539, 0.055136257171630856, 0.05495107269287109, 0.054843456268310546, 0.05535391998291016, 0.05587071990966797, 0.055389152526855466, 0.05507891082763672, 0.055384159088134766, 0.0555068473815918, 0.05519683074951172, 0.05499580764770508, 0.05527347183227539, 0.05492531204223633, 0.05490073776245117, 0.0551354866027832, 0.055386528015136716, 0.054997344970703126, 0.05479119873046875, 0.05513264083862305, 0.05532460784912109, 0.05499552154541015, 0.055003135681152344, 0.05550080108642578, 0.055264961242675784, 0.05504832077026367, 0.0552163200378418, 0.05546332931518555, 0.05515529632568359, 0.05515468978881836, 0.05513779067993164, 0.05533542251586914, 0.055091007232666016, 0.05929948806762695, 0.055597408294677735, 0.05503334426879883, 0.05501337432861328, 0.05524531173706055, 0.05498470306396484, 0.05496627044677734, 0.056172542572021485, 0.05524070358276367, 0.05496422576904297, 0.05497987365722656, 0.05507670211791992, 0.05491996765136719, 0.05488649749755859, 0.05508444976806641, 0.05526179122924805, 0.055316478729248046, 0.05571379089355469, 0.05575040054321289, 0.05581644821166992, 0.05528985595703125, 0.05513382339477539, 0.055296062469482425, 0.05501996612548828, 0.05490441513061523, 0.05490284729003906, 0.05533510589599609, 0.05503286361694336, 0.054809120178222655, 0.055144927978515626, 0.05556633758544922, 0.055099552154541015, 0.055344993591308594, 0.055223838806152344, 0.05536310577392578, 0.05515363311767578, 0.055504096984863284, 0.05568723297119141, 0.055143009185791014, 0.055037086486816406, 0.05524371337890625, 0.0554598388671875, 0.05535948944091797, 0.055003135681152344, 0.05521408081054688, 0.05516611099243164, 0.05498108673095703, 0.05504025650024414, 0.05517923355102539, 0.0549582405090332, 0.05498400115966797, 0.05532307052612305, 0.05569337463378906, 0.05532281494140625, 0.05517907333374023, 0.05549484634399414, 0.055929985046386715, 0.05517401504516602, 0.055231937408447264, 0.05521648025512695, 0.05544777679443359, 0.05491507339477539, 0.054904129028320314, 0.059627521514892576, 0.0556767692565918, 0.05497052764892578, 0.05488019180297852, 0.05516060638427735, 0.055197982788085936, 0.05492486572265625, 0.05493948745727539, 0.05522419357299805, 0.054878559112548825, 0.05492095947265625, 0.055066558837890626, 0.05529167938232422, 0.055015583038330075, 0.05490969467163086, 0.05519779205322266, 0.05501327896118164, 0.05542399978637695, 0.055737281799316404, 0.05570284652709961, 0.055199649810791014, 0.05498316955566406, 0.05515708923339844, 0.05543731307983398, 0.05504409790039062, 0.05501542282104492, 0.05514009475708008, 0.05501545715332031, 0.054790367126464845, 0.05498470306396484, 0.055400447845458986, 0.055060256958007814, 0.05492079925537109, 0.055320735931396484, 0.0553026237487793, 0.05527347183227539, 0.05528575897216797, 0.05548441696166992, 0.05544947052001953, 0.055109760284423825, 0.05506588745117187, 0.05534908676147461, 0.05511667251586914, 0.054860897064208984, 0.05529692840576172, 0.05535868835449219, 0.05511862564086914, 0.054986560821533206, 0.055228641510009766, 0.055092929840087894, 0.05489078521728516, 0.05534112167358399, 0.05542019271850586, 0.055295841217041015, 0.055279937744140625, 0.05532291030883789, 0.05561161422729492, 0.05532262420654297, 0.05517014312744141, 0.055371936798095704, 0.055405311584472657, 0.05507049560546875, 0.05506851196289062, 0.06019071960449219, 0.05566320037841797, 0.055144447326660156, 0.05501683044433594, 0.054844032287597655, 0.0551464958190918, 0.05524070358276367, 0.05492531204223633, 0.054988800048828126, 0.05521337509155273, 0.05494441604614258, 0.05493571090698242, 0.054994815826416014, 0.05523427200317383, 0.054968608856201175, 0.054945793151855465, 0.05530112075805664, 0.0558766098022461, 0.05554995346069336, 0.05528937530517578, 0.055292385101318356, 0.05523155212402344, 0.054999969482421876, 0.05509040069580078, 0.05530502319335937, 0.05501353454589844, 0.05490796661376953, 0.055114177703857424, 0.055296417236328124, 0.05494777679443359, 0.05510758590698242, 0.05517926406860352, 0.05503369522094727, 0.05502787017822266, 0.055713024139404294, 0.0558969612121582, 0.05558464050292969, 0.05523984146118164, 0.055331680297851564, 0.0554598388671875, 0.05509120178222656, 0.05505843353271484, 0.05521337509155273, 0.05512406539916992, 0.05495366287231445, 0.0549587516784668, 0.05530035018920899, 0.05519769668579102, 0.05500831985473633, 0.05513478469848633, 0.05532505416870117, 0.05522227096557617, 0.05528575897216797, 0.055578624725341794, 0.055547904968261716, 0.055103103637695314, 0.0551038703918457, 0.055382015228271485, 0.055121150970458985, 0.055027713775634764, 0.05519356918334961, 0.05528656005859375, 0.05510380935668945, 0.05940092849731445, 0.05587148666381836, 0.055621631622314455, 0.054937599182128906, 0.055136257171630856, 0.055300094604492187, 0.05487615966796875, 0.05493091201782226, 0.05524124908447266, 0.05494972610473633, 0.05499100875854492, 0.05506867218017578, 0.05522431945800781, 0.05488412857055664, 0.05482723236083984, 0.05511756896972656, 0.05513804626464844, 0.05545830535888672, 0.05572608184814453, 0.05577276611328125, 0.055468448638916014, 0.05595897674560547, 0.05523091125488281, 0.05520352172851563, 0.05499667358398438, 0.055024158477783205, 0.055150657653808596, 0.0553535041809082, 0.054937599182128906, 0.05505228805541992, 0.05528339385986328, 0.054947807312011716, 0.05489904022216797, 0.05516060638427735, 0.055744735717773435, 0.05527961730957031, 0.05526528167724609, 0.05571526336669922, 0.05554547119140625, 0.05520835113525391, 0.05502620697021485, 0.05521612930297851, 0.05505228805541992, 0.05486796951293945, 0.0550167350769043, 0.055306976318359374, 0.055048030853271486, 0.05509667205810547, 0.055118656158447264, 0.05538137435913086, 0.05515737533569336, 0.05496422576904297, 0.05532876968383789, 0.05533491134643555, 0.05522784042358399, 0.055298465728759766, 0.055691326141357425, 0.05511996841430664, 0.0550645751953125, 0.055217601776123046, 0.05544976043701172, 0.05510700988769531, 0.05499593734741211, 0.05967871856689453, 0.05602099227905273, 0.055136257171630856, 0.05525299072265625, 0.05501747131347656, 0.05518691253662109, 0.055155136108398437, 0.05559305572509766, 0.05493718338012695, 0.05482947158813477, 0.05523660659790039, 0.055005054473876956, 0.054780033111572264, 0.05514854431152344, 0.055273502349853516, 0.05506083297729492, 0.055283233642578124, 0.05596579360961914, 0.05585715103149414, 0.05543894577026367, 0.055049697875976564, 0.055398399353027344, 0.05519190216064453, 0.054932254791259766, 0.05519955062866211, 0.05531238555908203, 0.05496745681762695, 0.05486678314208984, 0.055166656494140626, 0.055295806884765625, 0.05495663833618164, 0.054929313659667967, 0.055144447326660156, 0.05511782455444336, 0.05533472061157227, 0.05566278457641602, 0.05574166488647461, 0.05528860855102539, 0.05508915328979492, 0.05545574569702148, 0.05543526458740235, 0.05504409790039062, 0.055241790771484375, 0.05528857421875, 0.05504403305053711, 0.05483340835571289, 0.054924510955810545, 0.05527836990356445, 0.054973823547363285, 0.0548741455078125, 0.05515311813354492, 0.05556032180786133, 0.05528115081787109, 0.05519427108764648, 0.0553752326965332, 0.05564873504638672, 0.05530035018920899, 0.05531187057495117, 0.05525324630737305, 0.0551649284362793, 0.05506233596801758, 0.055091392517089846, 0.05539430236816406]",tokens/s,18.097733496902848,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gptj,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 892, in __init__ self.transformer = GPTJModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 646, in __init__ self.h = nn.ModuleList([GPTJBlock(config) for _ in range(config.n_layer)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 646, in self.h = nn.ModuleList([GPTJBlock(config) for _ in range(config.n_layer)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 453, in __init__ self.mlp = GPTJMLP(inner_dim, config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 433, in __init__ self.fc_in = nn.Linear(embed_dim, intermediate_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 14.12 MiB is free. Process 28347 has 14.72 GiB memory in use. Of the allocated memory 14.60 GiB is allocated by PyTorch, and 6.48 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 268.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 180.12 MiB is free. Process 95775 has 14.56 GiB memory in use. Of the allocated memory 14.45 GiB is allocated by PyTorch, and 1.06 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 217, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 536.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 452.12 MiB is free. Process 83771 has 14.30 GiB memory in use. Of the allocated memory 14.18 GiB is allocated by PyTorch, and 1.57 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,738.77504,1148.125184,0.0,752.877568,713.93792,s,1,7.34036962890625,7.34036962890625,0.0,7.34036962890625,7.34036962890625,7.34036962890625,7.34036962890625,[7.34036962890625],,kWh,6.353637062502078e-06,6.932980891981484e-07,1.972779356002735e-06,9.019714507702962e-06,,MB,1052.758016,1190.068224,0.0,784.334848,638.877696,s,18,0.33536745643615723,0.01863152535756429,0.0004424272807504113,0.01849524784088135,0.018742918586730956,0.01913710832595825,0.020132650852203365,"[0.02038153648376465, 0.01852057647705078, 0.018917503356933593, 0.01836672019958496, 0.018438175201416017, 0.018667007446289064, 0.018447296142578125, 0.018466527938842774, 0.0186680965423584, 0.0185446720123291, 0.018389856338500977, 0.018467391967773437, 0.01844771194458008, 0.01845568084716797, 0.018569536209106445, 0.018547935485839842, 0.018469919204711915, 0.0186013126373291]",tokens/s,13740.152514998752,kWh,6.889110478183946e-07,7.597375514928903e-08,4.5554740322169947e-07,1.220432206189383e-06,tokens/kWh,209761753.8292616,MB,1063.030784,1215.234048,0.0,809.500672,638.880256,s,18,9.91459100341797,0.5508106113009983,0.0024000763314876027,0.5507142639160156,0.5530488464355469,0.554253955078125,0.556790341796875,"[0.5496165161132812, 0.5463087768554687, 0.5512454223632812, 0.5495008544921876, 0.5516490478515625, 0.5506685180664063, 0.5485482177734375, 0.5524202270507812, 0.5505003051757813, 0.5536944580078125, 0.5495416259765625, 0.5477716674804688, 0.550760009765625, 0.5574244384765625, 0.5520377807617187, 0.55111181640625, 0.5490191650390625, 0.5527721557617188]",tokens/s,114.37688146783496,kWh,1.5814841655654132e-05,1.744113168838617e-06,7.741326438222773e-06,2.5300281262715512e-05,tokens/kWh,2490090.8944771993,,s,1134,9.909957987785342,0.008738940024502064,0.00017457159636791476,0.008700208187103271,0.008826022624969482,0.008934936332702637,0.009401976852416994,"[0.008698080062866211, 0.008691583633422852, 0.00869820785522461, 0.008882080078125, 0.008676639556884766, 0.008678208351135254, 0.008724384307861328, 0.008626079559326172, 0.008737183570861817, 0.008652288436889649, 0.008652928352355958, 0.008659008026123047, 0.008684543609619141, 0.01020201587677002, 0.008724896430969239, 0.008742591857910157, 0.00905446434020996, 0.008732416152954102, 0.008682815551757813, 0.008698559761047364, 0.0086364164352417, 0.00865449619293213, 0.008669343948364258, 0.008659135818481446, 0.008666848182678223, 0.008692000389099121, 0.008702272415161133, 0.008726207733154297, 0.008689472198486328, 0.008659135818481446, 0.008650752067565918, 0.008712191581726075, 0.008689663887023925, 0.008630271911621093, 0.00865824031829834, 0.008696767807006836, 0.008634367942810058, 0.008652544021606446, 0.008642560005187988, 0.008699040412902832, 0.00867801570892334, 0.008753376007080078, 0.008646656036376953, 0.008667455673217774, 0.00867625617980957, 0.008809599876403808, 0.008865440368652344, 0.008675328254699707, 0.008622079849243165, 0.008738816261291504, 0.008706048011779785, 0.008652159690856934, 0.008657535552978516, 0.008615936279296875, 0.008647775650024414, 0.008620960235595703, 0.008732192039489746, 0.008659423828125, 0.00866870403289795, 0.008726207733154297, 0.008808256149291992, 0.008696767807006836, 0.008715680122375488, 0.008609663963317872, 0.008662079811096192, 0.008642784118652344, 0.008667872428894044, 0.008633824348449707, 0.00865123176574707, 0.008599616050720215, 0.00871833610534668, 0.008601344108581543, 0.008675583839416504, 0.008651040077209472, 0.00862169647216797, 0.008681568145751953, 0.008665087699890137, 0.008603872299194336, 0.0087957124710083, 0.008638655662536621, 0.008653887748718262, 0.008728575706481934, 0.008774335861206056, 0.008697343826293944, 0.008635168075561523, 0.00862003231048584, 0.008642848014831544, 0.00863372802734375, 0.00868342399597168, 0.008702400207519532, 0.008648256301879882, 0.008607295989990235, 0.008640992164611816, 0.008669088363647461, 0.00866543960571289, 0.00863212776184082, 0.008634495735168456, 0.008662464141845704, 0.008659520149230958, 0.008668479919433593, 0.008686495780944823, 0.008627264022827149, 0.008707008361816405, 0.00872163200378418, 0.008699711799621581, 0.00865817642211914, 0.00868937587738037, 0.008644864082336426, 0.008660736083984375, 0.008640512466430664, 0.008648703575134278, 0.008685055732727051, 0.008741087913513183, 0.008677536010742188, 0.008675456047058105, 0.008609919548034669, 0.00873574447631836, 0.00874294376373291, 0.0086843843460083, 0.00869711971282959, 0.008676063537597657, 0.008671232223510742, 0.008640768051147461, 0.0086812162399292, 0.00870969581604004, 0.008673727989196777, 0.008753472328186036, 0.008741184234619141, 0.008696288108825683, 0.00866703987121582, 0.008685759544372559, 0.008642368316650391, 0.008667136192321777, 0.008686816215515137, 0.008765343666076661, 0.008622976303100586, 0.008666560173034668, 0.00866323184967041, 0.008681856155395507, 0.008630335807800293, 0.008644543647766113, 0.008699071884155274, 0.008700736045837402, 0.00862003231048584, 0.008673279762268067, 0.009494112014770508, 0.009800095558166504, 0.00884489631652832, 0.008710528373718262, 0.00870809555053711, 0.008605728149414063, 0.008642560005187988, 0.008629983901977539, 0.00878211212158203, 0.00865609645843506, 0.008667584419250488, 0.00862831974029541, 0.008659296035766602, 0.008830880165100098, 0.008689663887023925, 0.008662783622741699, 0.008651007652282714, 0.00865510368347168, 0.008740480422973634, 0.008760512351989746, 0.008694720268249512, 0.008656319618225097, 0.008684096336364746, 0.00864633560180664, 0.008671551704406739, 0.008724703788757324, 0.010385184288024903, 0.008725855827331543, 0.00872659206390381, 0.008747808456420899, 0.008634176254272461, 0.008720383644104004, 0.008636287689208984, 0.008752287864685059, 0.00866806411743164, 0.008665151596069336, 0.008656031608581543, 0.00886569595336914, 0.008694399833679199, 0.008632991790771484, 0.00869331169128418, 0.00864470386505127, 0.008679360389709472, 0.00864249610900879, 0.00875276756286621, 0.00867414379119873, 0.008666496276855468, 0.008718976020812988, 0.008902239799499511, 0.008694175720214845, 0.008732735633850098, 0.008734656333923339, 0.008696096420288086, 0.008684864044189453, 0.008642368316650391, 0.008657504081726074, 0.00867948818206787, 0.008652735710144042, 0.008668864250183105, 0.008835071563720704, 0.008702143669128418, 0.008659071922302246, 0.008625696182250977, 0.008686047554016113, 0.008634367942810058, 0.008699904441833496, 0.008650752067565918, 0.008647711753845214, 0.008690655708312988, 0.008704000473022461, 0.008652704238891602, 0.008661087989807128, 0.008671520233154296, 0.008670944213867188, 0.008675328254699707, 0.008675328254699707, 0.008648320198059082, 0.00865932846069336, 0.008644736289978028, 0.008820608139038085, 0.008935040473937988, 0.008777088165283203, 0.008713088035583495, 0.00883456039428711, 0.008708736419677735, 0.00869375991821289, 0.008703871726989746, 0.008654175758361816, 0.008674079895019532, 0.00874067211151123, 0.00866323184967041, 0.009287232398986817, 0.008870335578918457, 0.008737792015075683, 0.009143296241760255, 0.008714048385620118, 0.008720576286315918, 0.00871628761291504, 0.008715744018554688, 0.008659487724304199, 0.008679424285888672, 0.008673088073730469, 0.008613408088684082, 0.008657055854797363, 0.00873475170135498, 0.008648832321166993, 0.008685695648193359, 0.008648672103881837, 0.00860598373413086, 0.008652192115783691, 0.008644063949584961, 0.008736672401428223, 0.008721376419067383, 0.008652576446533203, 0.008675552368164063, 0.008694080352783204, 0.008680928230285644, 0.008893664360046388, 0.008812864303588868, 0.008886367797851562, 0.008795040130615234, 0.008746368408203125, 0.008751423835754394, 0.008688768386840821, 0.0087193603515625, 0.008697728157043456, 0.008607744216918945, 0.008626175880432128, 0.008650943756103516, 0.008595264434814454, 0.008658080101013184, 0.008618687629699707, 0.008630016326904296, 0.008603167533874512, 0.008622976303100586, 0.008671232223510742, 0.008697855949401855, 0.00880025577545166, 0.008697855949401855, 0.008666272163391114, 0.008687520027160644, 0.008754112243652344, 0.00870809555053711, 0.008707167625427246, 0.00911248016357422, 0.00913590431213379, 0.009410783767700196, 0.008752703666687012, 0.009255007743835449, 0.009028160095214843, 0.008700991630554199, 0.008677184104919433, 0.008731552124023437, 0.008716480255126953, 0.008653696060180665, 0.008883135795593262, 0.008728384017944336, 0.008720576286315918, 0.008689727783203125, 0.008714591979980469, 0.0088635835647583, 0.00866431999206543, 0.008649215698242188, 0.008687007904052734, 0.008632767677307128, 0.008691616058349609, 0.008930624008178711, 0.00931935977935791, 0.008648287773132325, 0.00869212818145752, 0.008721376419067383, 0.008748543739318848, 0.008776191711425782, 0.008681568145751953, 0.008664383888244628, 0.008671839714050293, 0.008796159744262694, 0.008671296119689942, 0.009133855819702148, 0.009384096145629883, 0.008789183616638184, 0.008675264358520509, 0.008706784248352051, 0.008691871643066406, 0.008704000473022461, 0.008773504257202148, 0.00873635196685791, 0.00868188762664795, 0.008755007743835449, 0.008630271911621093, 0.008755616188049316, 0.00883193588256836, 0.008815232276916505, 0.008640864372253417, 0.008683520317077637, 0.008707136154174804, 0.008681471824645997, 0.008689696311950684, 0.0086495361328125, 0.008681535720825195, 0.008681119918823242, 0.009169280052185058, 0.00870195198059082, 0.008738847732543945, 0.008724448204040527, 0.008710432052612304, 0.008768671989440919, 0.008714495658874511, 0.008708415985107422, 0.008691007614135743, 0.008769280433654785, 0.008684479713439941, 0.008664095878601074, 0.008647647857666016, 0.008705375671386718, 0.008643232345581054, 0.008740863800048827, 0.008797344207763671, 0.008686431884765625, 0.008689663887023925, 0.008665087699890137, 0.008697504043579102, 0.008742783546447754, 0.00869219207763672, 0.008742400169372559, 0.008665599822998048, 0.008764800071716308, 0.008716927528381348, 0.008697919845581055, 0.008728575706481934, 0.00869164752960205, 0.00870911979675293, 0.008741184234619141, 0.008748703956604004, 0.008663776397705079, 0.008716416358947755, 0.008709280014038086, 0.008657088279724121, 0.008667872428894044, 0.008675519943237304, 0.008654591560363769, 0.008670944213867188, 0.00870246410369873, 0.008672287940979004, 0.008679295539855957, 0.008751999855041505, 0.00876255989074707, 0.008733504295349121, 0.008691712379455567, 0.008697792053222657, 0.008619839668273926, 0.008723999977111816, 0.008642463684082032, 0.008661824226379395, 0.008646976470947266, 0.008711872100830078, 0.008720383644104004, 0.00870025634765625, 0.008941216468811035, 0.008806400299072266, 0.008678624153137207, 0.008639264106750488, 0.008660991668701172, 0.008652799606323243, 0.00863759994506836, 0.008694175720214845, 0.00872697639465332, 0.00867363166809082, 0.008660639762878418, 0.008664799690246581, 0.008762751579284668, 0.0089017915725708, 0.00872815990447998, 0.008644767761230469, 0.00863167953491211, 0.008661631584167481, 0.008653887748718262, 0.008648832321166993, 0.008678208351135254, 0.008697855949401855, 0.00871628761291504, 0.008667136192321777, 0.008742303848266601, 0.00871235179901123, 0.008658368110656739, 0.008653823852539062, 0.008671232223510742, 0.008684543609619141, 0.008710304260253906, 0.008747679710388184, 0.008715776443481446, 0.00883296012878418, 0.008755904197692871, 0.008796223640441895, 0.008785280227661132, 0.008718976020812988, 0.008659456253051758, 0.008712160110473632, 0.008642463684082032, 0.00867369556427002, 0.008699999809265137, 0.008798239707946777, 0.009000831604003907, 0.008699904441833496, 0.00870304012298584, 0.008713151931762695, 0.008767487525939942, 0.008724224090576172, 0.00869753646850586, 0.00861676788330078, 0.008732416152954102, 0.008691167831420899, 0.009269791603088379, 0.0088985595703125, 0.008934880256652832, 0.00874300765991211, 0.009200160026550292, 0.008714143753051757, 0.008722304344177246, 0.008681247711181641, 0.008741151809692383, 0.00867743968963623, 0.0090316801071167, 0.00883619213104248, 0.008673600196838379, 0.008826656341552734, 0.008817472457885743, 0.008742912292480469, 0.008709759712219238, 0.008759519577026368, 0.008824543952941894, 0.008744735717773438, 0.008778656005859375, 0.00875875186920166, 0.008847647666931153, 0.008689984321594239, 0.008806079864501952, 0.008881759643554688, 0.008724864006042481, 0.008747039794921875, 0.008780063629150391, 0.008802016258239747, 0.008742912292480469, 0.00871395206451416, 0.008726719856262208, 0.008757087707519531, 0.00878559970855713, 0.00868614387512207, 0.008861311912536621, 0.008755616188049316, 0.008732352256774902, 0.008701631546020508, 0.008633952140808105, 0.008737664222717285, 0.008646783828735351, 0.008611519813537598, 0.008708415985107422, 0.00869375991821289, 0.008730624198913574, 0.008639871597290039, 0.008695839881896972, 0.008638400077819824, 0.008661664009094239, 0.008689951896667481, 0.008695520401000977, 0.00868556785583496, 0.00877558422088623, 0.008662943840026855, 0.008679519653320313, 0.00868883228302002, 0.008747039794921875, 0.008684415817260743, 0.008667136192321777, 0.008648703575134278, 0.008683103561401367, 0.008687168121337891, 0.008694399833679199, 0.00881481647491455, 0.008728128433227539, 0.00866547203063965, 0.008769599914550782, 0.009103360176086426, 0.009074687957763672, 0.00872009563446045, 0.008709728240966797, 0.008729280471801758, 0.008700991630554199, 0.00870851230621338, 0.00870639991760254, 0.008650943756103516, 0.00869375991821289, 0.00872447967529297, 0.008669183731079102, 0.008629759788513184, 0.00870851230621338, 0.008652864456176758, 0.00864412784576416, 0.008675840377807617, 0.008761183738708496, 0.008701248168945313, 0.00884928035736084, 0.00873788833618164, 0.008722304344177246, 0.008804351806640624, 0.008790016174316406, 0.008814623832702637, 0.008734687805175782, 0.00870195198059082, 0.008742912292480469, 0.008761343955993652, 0.008734720230102539, 0.008642560005187988, 0.008723999977111816, 0.009145088195800781, 0.00908463954925537, 0.008781248092651368, 0.008755776405334472, 0.00872447967529297, 0.008740768432617188, 0.008677472114562988, 0.008670880317687988, 0.00865056037902832, 0.009156607627868652, 0.008736767768859864, 0.008677696228027344, 0.008808128356933594, 0.008667263984680176, 0.008900480270385742, 0.009539584159851074, 0.009084927558898925, 0.00992255973815918, 0.008873984336853028, 0.008998335838317871, 0.008981056213378906, 0.008668767929077148, 0.009142687797546387, 0.008814047813415528, 0.00870412826538086, 0.008677791595458985, 0.008761343955993652, 0.008679424285888672, 0.008642080307006837, 0.008675104141235351, 0.008632479667663574, 0.008738752365112304, 0.008659711837768555, 0.009184703826904297, 0.008749823570251464, 0.008816287994384766, 0.008741024017333985, 0.008648544311523438, 0.008730624198913574, 0.008666943550109864, 0.008648896217346191, 0.008736031532287598, 0.008680159568786622, 0.008642560005187988, 0.008699904441833496, 0.008650239944458007, 0.008671039581298829, 0.008685407638549804, 0.00869871997833252, 0.008683327674865723, 0.008720767974853516, 0.008716032028198243, 0.008682911872863769, 0.00871836757659912, 0.008786463737487793, 0.008996959686279296, 0.008769536018371582, 0.008845312118530273, 0.008841216087341308, 0.008728575706481934, 0.008709343910217285, 0.008629023551940918, 0.00871401596069336, 0.008657119750976562, 0.008722016334533692, 0.008675935745239258, 0.008691807746887208, 0.008656736373901366, 0.008678367614746094, 0.00865167999267578, 0.008695520401000977, 0.008687040328979493, 0.008715968132019043, 0.008660863876342774, 0.008664671897888183, 0.008655200004577637, 0.008671744346618653, 0.008660991668701172, 0.008673279762268067, 0.008646656036376953, 0.008648703575134278, 0.008699071884155274, 0.008710975646972657, 0.008700096130371093, 0.008674367904663086, 0.00865775966644287, 0.00866643238067627, 0.008688223838806153, 0.008707903861999511, 0.008644800186157226, 0.008652959823608398, 0.008641599655151367, 0.008626976013183595, 0.008634367942810058, 0.008648703575134278, 0.008663040161132812, 0.008737919807434082, 0.008663488388061523, 0.008630080223083496, 0.008664735794067383, 0.008757216453552246, 0.008723039627075196, 0.008679967880249023, 0.008689472198486328, 0.00866425609588623, 0.00862502384185791, 0.008693280220031739, 0.008685376167297363, 0.008698464393615723, 0.008667488098144532, 0.00996224021911621, 0.008827872276306152, 0.008762463569641114, 0.008686495780944823, 0.008676608085632325, 0.008757599830627441, 0.008694111824035644, 0.008728832244873046, 0.008697759628295899, 0.008720288276672363, 0.008777728080749512, 0.008711423873901367, 0.008687423706054688, 0.008738911628723145, 0.008921055793762208, 0.00872332763671875, 0.00876307201385498, 0.008667455673217774, 0.008653887748718262, 0.008671903610229492, 0.008671839714050293, 0.008699584007263183, 0.008658944129943847, 0.009164799690246582, 0.008681119918823242, 0.008656319618225097, 0.008641087532043457, 0.008650655746459962, 0.008650848388671875, 0.008652799606323243, 0.00867734432220459, 0.008826911926269531, 0.008736319541931152, 0.008686016082763672, 0.008773152351379394, 0.008690143585205078, 0.008804351806640624, 0.008812543869018554, 0.008732447624206543, 0.008687840461730958, 0.00872652816772461, 0.008689663887023925, 0.008668959617614746, 0.00863696002960205, 0.008649824142456054, 0.00864089584350586, 0.008638688087463379, 0.008638463973999023, 0.008639967918395997, 0.008644255638122558, 0.008642815589904785, 0.008663071632385253, 0.008704863548278808, 0.008678912162780762, 0.008671487808227539, 0.008779680252075196, 0.008693856239318848, 0.008683103561401367, 0.008630463600158692, 0.008669407844543457, 0.00865446376800537, 0.00862758445739746, 0.008608768463134766, 0.0086364164352417, 0.008703712463378907, 0.008679712295532226, 0.008742527961730957, 0.008713791847229004, 0.008697664260864258, 0.00862217617034912, 0.008717311859130859, 0.008677280426025391, 0.008634367942810058, 0.008680831909179688, 0.008702400207519532, 0.008765151977539062, 0.008722911834716797, 0.00863424015045166, 0.008650879859924316, 0.008690688133239746, 0.00872755241394043, 0.008785920143127441, 0.008750144004821778, 0.008723135948181152, 0.008705344200134277, 0.008743583679199219, 0.008720255851745606, 0.008722880363464355, 0.008681471824645997, 0.008765439987182617, 0.008658944129943847, 0.008689023971557618, 0.008698592185974121, 0.00868956756591797, 0.008722271919250488, 0.008648863792419434, 0.00875868797302246, 0.008708703994750976, 0.008660191535949708, 0.008678175926208497, 0.008796159744262694, 0.008812543869018554, 0.008685407638549804, 0.008699392318725586, 0.008691967964172364, 0.008704416275024414, 0.008714240074157715, 0.008680512428283691, 0.008671584129333497, 0.008667743682861329, 0.00870524787902832, 0.008790271759033203, 0.008933024406433105, 0.008696127891540527, 0.008714816093444825, 0.00874227237701416, 0.008771552085876464, 0.008739487648010254, 0.008787967681884766, 0.008747008323669434, 0.008721792221069335, 0.008648544311523438, 0.00915724754333496, 0.008734880447387695, 0.00878489589691162, 0.00879923152923584, 0.008749055862426757, 0.008689056396484375, 0.008704192161560058, 0.00867574405670166, 0.008703328132629395, 0.008698528289794921, 0.008706048011779785, 0.008763392448425293, 0.008671232223510742, 0.008767487525939942, 0.00873686408996582, 0.008830880165100098, 0.008761343955993652, 0.008727968215942383, 0.008690048217773437, 0.008669407844543457, 0.008677056312561035, 0.008741184234619141, 0.008757247924804687, 0.008802304267883301, 0.008796031951904298, 0.008814720153808594, 0.00894156837463379, 0.008722432136535644, 0.008757247924804687, 0.008699904441833496, 0.008785920143127441, 0.008763392448425293, 0.008773344039916992, 0.008734496116638183, 0.008761024475097657, 0.008696640014648437, 0.00870195198059082, 0.008675680160522461, 0.00872208023071289, 0.0087259521484375, 0.008700480461120605, 0.008695136070251465, 0.008639007568359376, 0.009274944305419922, 0.008983103752136231, 0.008775679588317872, 0.00874931240081787, 0.008703871726989746, 0.008734272003173829, 0.008701760292053223, 0.008728960037231445, 0.009248895645141602, 0.008755200386047364, 0.008740863800048827, 0.008785056114196778, 0.008864607810974121, 0.008822208404541015, 0.008833600044250487, 0.008851072311401368, 0.008782591819763184, 0.00876095962524414, 0.008680992126464844, 0.008655327796936035, 0.00870582389831543, 0.008786144256591797, 0.008744895935058594, 0.00865657615661621, 0.008702336311340332, 0.008768832206726074, 0.009179840087890625, 0.008752991676330566, 0.0087041597366333, 0.008759296417236329, 0.008664480209350586, 0.00868000030517578, 0.008674464225769042, 0.008713088035583495, 0.008699392318725586, 0.008768320083618164, 0.008701631546020508, 0.008654879570007325, 0.00868553638458252, 0.008654848098754882, 0.00862003231048584, 0.008652799606323243, 0.008660127639770508, 0.008702239990234374, 0.011135295867919922, 0.010840448379516601, 0.009742207527160644, 0.008853504180908203, 0.008776000022888183, 0.008764512062072754, 0.00890991973876953, 0.008865504264831544, 0.008788064002990722, 0.008849504470825196, 0.00884175968170166, 0.00892956829071045, 0.009129376411437988, 0.008984928131103515, 0.008810400009155273, 0.008923199653625489, 0.008782048225402832, 0.008818400382995606, 0.008751040458679199, 0.008735136032104492, 0.008787487983703613, 0.008739295959472657, 0.008899616241455079, 0.009001952171325683, 0.009338208198547363, 0.008702624320983886, 0.00867363166809082, 0.00871718406677246, 0.00870684814453125, 0.008773632049560547, 0.008690912246704102, 0.008710944175720214, 0.008669535636901855, 0.00865449619293213, 0.008728704452514648, 0.008757311820983887, 0.008621888160705566, 0.008665184020996093, 0.008668831825256348, 0.008653056144714356, 0.008662464141845704, 0.008671808242797851, 0.008687616348266602, 0.008673279762268067, 0.008763360023498536, 0.008656448364257812, 0.008682208061218262, 0.00873036766052246, 0.008697855949401855, 0.00868131160736084, 0.008771648406982422, 0.00872047996520996, 0.008707615852355957, 0.008739295959472657, 0.008755552291870116, 0.008741888046264648, 0.008678048133850098, 0.008719967842102052, 0.00869212818145752, 0.008695808410644532, 0.008695808410644532, 0.008704000473022461, 0.00866425609588623, 0.008694016456604003, 0.0086626558303833, 0.008659903526306151, 0.00869983959197998, 0.008804415702819824, 0.008710016250610351, 0.00876195240020752, 0.008700032234191895, 0.008693535804748536, 0.008710463523864747, 0.008685759544372559, 0.00877344036102295, 0.008837120056152344, 0.008814592361450196, 0.008820735931396484, 0.008764639854431152, 0.008843296051025391, 0.008741632461547851, 0.008661151885986328, 0.008692959785461425, 0.008855744361877442, 0.008849856376647949, 0.008804320335388183, 0.008713824272155762, 0.008706496238708497, 0.008683520317077637, 0.008714240074157715, 0.008849344253540038, 0.008749119758605957, 0.008742719650268556, 0.008776960372924804, 0.0087192964553833, 0.008790111541748047, 0.00880787181854248, 0.008720767974853516, 0.008728320121765137, 0.008800607681274414, 0.008744959831237792, 0.008706048011779785, 0.00877558422088623, 0.008708191871643066, 0.008677120208740235, 0.00866329574584961, 0.008699904441833496, 0.00869375991821289, 0.008704000473022461, 0.008733823776245117, 0.008712832450866698, 0.008757216453552246, 0.008779775619506837, 0.008734304428100586, 0.008667712211608886, 0.008683520317077637, 0.008768863677978515, 0.008782719612121582, 0.008766528129577636, 0.008754015922546387, 0.00870025634765625, 0.00872822380065918, 0.008785920143127441, 0.008747008323669434, 0.00903104019165039, 0.008726688385009765, 0.008694016456604003, 0.008666367530822753, 0.008696800231933593, 0.008701087951660157, 0.008657055854797363, 0.008656607627868653, 0.008722432136535644, 0.008699135780334473, 0.00865766429901123, 0.008726207733154297, 0.00867465591430664, 0.008717280387878418, 0.008759263992309571, 0.008703519821166992, 0.008710368156433106, 0.008736800193786622, 0.008720895767211915, 0.008700927734375, 0.008780384063720703, 0.008732288360595704, 0.00877622413635254, 0.008730527877807617, 0.008713695526123047, 0.008661631584167481, 0.008658495903015137, 0.008632287979125977, 0.008645248413085938, 0.008641535758972169, 0.008712127685546875, 0.008642911911010742, 0.00868188762664795, 0.008749152183532715, 0.008713919639587403, 0.00864627170562744, 0.008704832077026367, 0.008669343948364258, 0.00866425609588623, 0.00869167995452881, 0.008653440475463868, 0.008696063995361328, 0.008643360137939453, 0.008644991874694825, 0.008732512474060058, 0.008759455680847168, 0.008757344245910645, 0.008767999649047852, 0.00870195198059082, 0.008763392448425293, 0.008687199592590332, 0.008701760292053223, 0.008680031776428223, 0.008695584297180176, 0.008773088455200195, 0.008917023658752441, 0.008832927703857421, 0.008719136238098144, 0.00872441577911377, 0.008675200462341309, 0.008699711799621581, 0.008628640174865723, 0.00870195198059082, 0.008649951934814453, 0.008632831573486328, 0.008692000389099121, 0.008679424285888672, 0.008769536018371582, 0.00893337631225586, 0.008797504425048829, 0.00875984001159668, 0.00874512004852295, 0.008780832290649415, 0.00867420768737793, 0.008654303550720215, 0.008691871643066406, 0.00866528034210205, 0.008700160026550293, 0.008738783836364747, 0.008714271545410155, 0.008692735671997071, 0.00870297622680664, 0.00867734432220459, 0.008642208099365235, 0.008868224143981933, 0.009127903938293457, 0.008665120124816895, 0.00869702434539795, 0.008713343620300292, 0.008679360389709472, 0.008670975685119629, 0.008644831657409669, 0.008664863586425781, 0.008652799606323243, 0.008673536300659179, 0.008965888023376466, 0.009224191665649414, 0.009723360061645508, 0.008761759757995605, 0.008790143966674805, 0.008863455772399902, 0.008805695533752442, 0.00877462387084961, 0.008822688102722168, 0.008876128196716309, 0.008775391578674317, 0.00880668830871582, 0.008660991668701172, 0.00868934440612793, 0.008677696228027344, 0.009142271995544434, 0.008873984336853028, 0.008713215827941894, 0.008743840217590332, 0.008795647621154786, 0.008777664184570313, 0.008776351928710938, 0.008728575706481934, 0.00871833610534668, 0.008730208396911621, 0.008808863639831544, 0.008779775619506837, 0.00899071979522705, 0.008815936088562012, 0.008655072212219238, 0.00874953556060791, 0.008668383598327637, 0.008608736038208008, 0.008633184432983398, 0.008602527618408204, 0.00867081642150879, 0.008732704162597657, 0.008681728363037109]",tokens/s,114.43035393265318,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1067.393024,3727.622144,0.0,3332.374528,3314.861056,s,1,6.993041015625,6.993041015625,0.0,6.993041015625,6.993041015625,6.993041015625,6.993041015625,[6.993041015625],,kWh,4.096283800011709e-06,4.442444997861467e-07,1.0897230940040692e-06,5.6302513938019245e-06,,MB,1366.413312,3796.82816,0.0,3391.094784,2593.689088,s,10,0.7121671447753907,0.07121671447753905,0.0021358946542407754,0.07064505386352539,0.07195755157470703,0.07473421554565429,0.0769555467224121,"[0.07751087951660156, 0.07007782745361328, 0.07067266845703125, 0.07134051513671875, 0.07031696319580077, 0.07069990539550781, 0.07061743927001952, 0.06981353759765625, 0.07080863952636719, 0.07030876922607422]",tokens/s,3594.66175711798,kWh,2.450450445868076e-06,2.701050560885326e-07,1.625707319083287e-06,4.346262821039895e-06,tokens/kWh,58901177.986919105,MB,1377.97632,3796.82816,0.0,3391.094784,2593.691648,s,10,10.720811645507812,1.0720811645507813,0.0023244832450649497,1.0722510986328126,1.0747999267578126,1.0751251220703124,1.0753852783203124,"[1.072836181640625, 1.0710458984375, 1.071342529296875, 1.06953369140625, 1.073463134765625, 1.0672841796875, 1.0754503173828125, 1.0747276611328125, 1.071666015625, 1.0734620361328124]",tokens/s,58.76420749020246,kWh,3.086898568371642e-05,3.404526461774013e-06,1.932455944111689e-05,5.359807158660731e-05,tokens/kWh,1175415.4232620185,,s,630,10.71847644615174,0.01701345467643132,0.0002638609085937025,0.016952816009521483,0.017211798858642578,0.017431530952453613,0.018231530761718753,"[0.017162143707275392, 0.017008895874023437, 0.017020448684692383, 0.017037792205810545, 0.016983360290527345, 0.01684550476074219, 0.018285823822021485, 0.0185229434967041, 0.017147136688232423, 0.017078720092773437, 0.016912895202636717, 0.01687923240661621, 0.016838783264160155, 0.016914432525634765, 0.016885759353637696, 0.016857120513916017, 0.01685910415649414, 0.016885311126708984, 0.016877727508544924, 0.01688096046447754, 0.016872415542602538, 0.016873472213745116, 0.016906240463256835, 0.016895999908447267, 0.01683251190185547, 0.01681100845336914, 0.01704025650024414, 0.017124704360961914, 0.016837408065795898, 0.01685481643676758, 0.0167511043548584, 0.01767366409301758, 0.016918943405151366, 0.016895872116088867, 0.016877504348754884, 0.017053760528564454, 0.017088512420654296, 0.016873056411743165, 0.016910751342773436, 0.016765216827392578, 0.016823680877685546, 0.016856992721557617, 0.01684524726867676, 0.016944543838500976, 0.01764575958251953, 0.01689411163330078, 0.01691606330871582, 0.016956096649169923, 0.017012704849243165, 0.016904191970825197, 0.017111040115356444, 0.017276927947998046, 0.01689798355102539, 0.016939071655273436, 0.01711065673828125, 0.017021312713623046, 0.01699603271484375, 0.017608863830566406, 0.01706175994873047, 0.01706422424316406, 0.016919904708862305, 0.017054367065429687, 0.01700249671936035, 0.017088287353515624, 0.01712873649597168, 0.017014848709106446, 0.016910816192626955, 0.016990623474121093, 0.01683203125, 0.01686307144165039, 0.016898303985595702, 0.01683683204650879, 0.016796031951904298, 0.016873119354248046, 0.016773248672485353, 0.01677926445007324, 0.016949247360229493, 0.01679769515991211, 0.01677497673034668, 0.01681167984008789, 0.016799648284912108, 0.01681635284423828, 0.016875295639038085, 0.016951936721801758, 0.016861183166503906, 0.0170383358001709, 0.016938079833984376, 0.016890880584716796, 0.01682934379577637, 0.016911359786987306, 0.01700796890258789, 0.01710588836669922, 0.016889823913574218, 0.01707596778869629, 0.01687855911254883, 0.017074176788330078, 0.01710678482055664, 0.01711529541015625, 0.01690630340576172, 0.017009695053100585, 0.016995296478271485, 0.01688979148864746, 0.0169749755859375, 0.016941280364990235, 0.016906911849975587, 0.016916479110717773, 0.017264352798461915, 0.017006879806518556, 0.017008127212524413, 0.016977792739868165, 0.017068416595458984, 0.017027200698852538, 0.017505727767944335, 0.018825439453125, 0.01720163154602051, 0.01717452812194824, 0.017072128295898437, 0.016901567459106447, 0.017054271697998048, 0.016908287048339844, 0.016859136581420898, 0.01743667221069336, 0.016982015609741212, 0.01681315231323242, 0.016851295471191408, 0.017053407669067384, 0.017352287292480468, 0.017213823318481446, 0.01698649597167969, 0.016977727890014647, 0.01711942481994629, 0.016994144439697264, 0.016973983764648436, 0.01694060707092285, 0.017017087936401366, 0.01685523223876953, 0.016868383407592773, 0.01688265609741211, 0.01679974365234375, 0.01693440055847168, 0.016953472137451173, 0.016944799423217773, 0.016760704040527343, 0.016912992477416993, 0.01693926429748535, 0.017176544189453125, 0.01700864028930664, 0.016979999542236328, 0.01683456039428711, 0.016855039596557618, 0.017040864944458008, 0.016959232330322267, 0.016957504272460937, 0.016998880386352538, 0.016861440658569336, 0.01688310432434082, 0.017054048538208008, 0.01688822364807129, 0.01692860794067383, 0.01695292854309082, 0.017039072036743163, 0.016966335296630858, 0.01716223907470703, 0.016910144805908203, 0.017058015823364258, 0.016839967727661134, 0.016902816772460937, 0.016957599639892577, 0.016940576553344727, 0.01694937515258789, 0.01694905662536621, 0.01687388801574707, 0.016920576095581053, 0.016824640274047852, 0.016878719329833983, 0.017070240020751953, 0.01698371124267578, 0.01682908821105957, 0.016975648880004884, 0.016970048904418944, 0.01697148895263672, 0.016988128662109376, 0.016935232162475587, 0.018765823364257812, 0.017854463577270507, 0.017028863906860352, 0.016984319686889647, 0.016895999908447267, 0.016886783599853517, 0.017741952896118164, 0.017288991928100586, 0.01700864028930664, 0.017000127792358398, 0.016959999084472658, 0.01700364875793457, 0.01699955177307129, 0.017019647598266602, 0.016988895416259767, 0.0168056640625, 0.017234432220458985, 0.016954944610595702, 0.016957183837890626, 0.01677996826171875, 0.016920576095581053, 0.016873023986816407, 0.016836544036865235, 0.016793535232543944, 0.016917055130004882, 0.01689708709716797, 0.016787647247314453, 0.016818944931030273, 0.016902143478393555, 0.016895999908447267, 0.016926496505737305, 0.016850175857543944, 0.0168187198638916, 0.016902271270751952, 0.01722604751586914, 0.017261760711669922, 0.016902656555175782, 0.017154367446899414, 0.016911680221557618, 0.017000736236572264, 0.017051519393920897, 0.01699279975891113, 0.01687286376953125, 0.01721161651611328, 0.016789888381958006, 0.016788671493530274, 0.016834463119506836, 0.017046432495117187, 0.01692790412902832, 0.017034080505371092, 0.01722777557373047, 0.017524736404418945, 0.016945152282714843, 0.016961536407470702, 0.01693075180053711, 0.016926336288452148, 0.016905824661254884, 0.01688400077819824, 0.016888383865356446, 0.017089920043945314, 0.01692326354980469, 0.016872512817382813, 0.0168785285949707, 0.01680998420715332, 0.016888832092285155, 0.016879648208618165, 0.016912960052490236, 0.01694895935058594, 0.017002847671508788, 0.017095840454101563, 0.01706831932067871, 0.017340864181518555, 0.017454336166381836, 0.017425247192382812, 0.01726063919067383, 0.017088415145874024, 0.017003807067871093, 0.01694588851928711, 0.017014080047607422, 0.01690284729003906, 0.016904319763183594, 0.017176448822021486, 0.016823583602905274, 0.016972448348999022, 0.016939071655273436, 0.016986112594604492, 0.016970943450927735, 0.016827199935913088, 0.01721343994140625, 0.01692995262145996, 0.016989023208618163, 0.017110944747924805, 0.017008735656738282, 0.017485183715820314, 0.01711782455444336, 0.01695692825317383, 0.0168985595703125, 0.016908031463623047, 0.0167491512298584, 0.01684659194946289, 0.016950239181518556, 0.01705615997314453, 0.016904415130615233, 0.01684867286682129, 0.017150623321533203, 0.01716211128234863, 0.0176680965423584, 0.017086271286010743, 0.017008832931518555, 0.016907648086547853, 0.016992832183837892, 0.01692086410522461, 0.016885536193847656, 0.016977344512939453, 0.01691507148742676, 0.01701241683959961, 0.01695359992980957, 0.016965631484985352, 0.01690118408203125, 0.016922815322875977, 0.017041696548461913, 0.017117664337158202, 0.01695974349975586, 0.017038816452026366, 0.017066015243530273, 0.01694540786743164, 0.01713497543334961, 0.016960128784179688, 0.01701273536682129, 0.01704550361633301, 0.017382591247558594, 0.016911455154418945, 0.01764761543273926, 0.01740297508239746, 0.017488224029541016, 0.017306175231933594, 0.01707119941711426, 0.01700489616394043, 0.017271551132202148, 0.016974815368652342, 0.016962303161621093, 0.017143903732299806, 0.016867328643798828, 0.016979167938232422, 0.017083168029785156, 0.016902143478393555, 0.01725164794921875, 0.0168209285736084, 0.0169881591796875, 0.01680179214477539, 0.016900096893310547, 0.0167587833404541, 0.016948928833007814, 0.016740671157836916, 0.016881664276123046, 0.0168407039642334, 0.016961536407470702, 0.01674684715270996, 0.01698371124267578, 0.01678335952758789, 0.016952352523803713, 0.016798688888549806, 0.016990207672119142, 0.016777215957641603, 0.016967872619628906, 0.01679100799560547, 0.016879552841186522, 0.017084831237792968, 0.016860383987426758, 0.016712480545043946, 0.01682636833190918, 0.01695475196838379, 0.0168986873626709, 0.016784704208374024, 0.017022655487060546, 0.01696460723876953, 0.016910335540771485, 0.01682636833190918, 0.01700422477722168, 0.01689628791809082, 0.016961631774902345, 0.016698368072509767, 0.01687443161010742, 0.016707584381103514, 0.016895999908447267, 0.016863231658935548, 0.016910144805908203, 0.016877056121826172, 0.01691103935241699, 0.01681216049194336, 0.01690611267089844, 0.016699392318725585, 0.016905824661254884, 0.016728479385375975, 0.016885759353637696, 0.01700432014465332, 0.017111808776855468, 0.017114912033081055, 0.0169836483001709, 0.01712169647216797, 0.017119232177734374, 0.016905824661254884, 0.017237600326538087, 0.01706812858581543, 0.016851680755615234, 0.01695267105102539, 0.01678607940673828, 0.016982015609741212, 0.01700249671936035, 0.01684889602661133, 0.01688175964355469, 0.017076480865478517, 0.016944799423217773, 0.01702707290649414, 0.01701888084411621, 0.01723187255859375, 0.017043455123901367, 0.017043455123901367, 0.017131296157836914, 0.01755683135986328, 0.017105152130126953, 0.01697443199157715, 0.016916032791137695, 0.016921056747436523, 0.016902143478393555, 0.016941055297851563, 0.01703321647644043, 0.017194208145141603, 0.01698896026611328, 0.01694438362121582, 0.016880512237548828, 0.01695270347595215, 0.01694099235534668, 0.016893760681152344, 0.01695635223388672, 0.01697977638244629, 0.01700387191772461, 0.016992416381835938, 0.016927232742309572, 0.01713705635070801, 0.017265247344970702, 0.017508352279663086, 0.01807974433898926, 0.018163711547851562, 0.017157503128051758, 0.01704972839355469, 0.017009151458740233, 0.01696950340270996, 0.016953567504882812, 0.016879615783691407, 0.016979072570800783, 0.016876224517822266, 0.016882080078125, 0.017008159637451174, 0.01690230369567871, 0.016910240173339842, 0.016883232116699218, 0.018102272033691406, 0.017280960083007814, 0.017482015609741212, 0.01710214424133301, 0.01697862434387207, 0.017018848419189454, 0.016967424392700194, 0.0169003849029541, 0.017005695343017577, 0.01705459213256836, 0.017047552108764647, 0.016961503982543945, 0.017036575317382813, 0.01710358428955078, 0.01714793586730957, 0.01695916748046875, 0.016933183670043945, 0.01686300849914551, 0.01700227165222168, 0.017451135635375977, 0.016933183670043945, 0.016891904830932617, 0.01688310432434082, 0.0169150390625, 0.017074079513549806, 0.016920671463012696, 0.017147424697875977, 0.016952159881591797, 0.01709017562866211, 0.01690608024597168, 0.01695318412780762, 0.01695689582824707, 0.016906944274902344, 0.016877248764038087, 0.017095136642456054, 0.016896095275878906, 0.01694095993041992, 0.017184576034545897, 0.01717398452758789, 0.016932928085327148, 0.016915103912353516, 0.016846847534179688, 0.016850944519042968, 0.016855039596557618, 0.016952512741088867, 0.016795679092407225, 0.01689654350280762, 0.01740825653076172, 0.017287168502807617, 0.017092607498168946, 0.0171495361328125, 0.016951711654663085, 0.017032896041870117, 0.01684739112854004, 0.016957216262817383, 0.016813247680664063, 0.016931808471679688, 0.01688969612121582, 0.016947200775146484, 0.016866336822509764, 0.016980960845947267, 0.017077600479125977, 0.019362144470214844, 0.017840383529663086, 0.01703731155395508, 0.017160160064697266, 0.01695952033996582, 0.016891487121582033, 0.016945568084716797, 0.016987199783325194, 0.016917280197143555, 0.016983327865600587, 0.01703206443786621, 0.016879423141479492, 0.016803232192993164, 0.016965728759765625, 0.016910528182983397, 0.016953855514526366, 0.0168221435546875, 0.016867456436157228, 0.01769267272949219, 0.01684889602661133, 0.017002016067504882, 0.0168637752532959, 0.016842079162597657, 0.0170863037109375, 0.01688652801513672, 0.016852991104125976, 0.016990207672119142, 0.016951295852661134, 0.016941055297851563, 0.016913631439208984, 0.017300128936767578, 0.016919967651367187, 0.017071935653686525, 0.016878240585327147, 0.016764575958251954, 0.016847455978393554, 0.016862592697143554, 0.016741247177124025, 0.016856191635131836, 0.01686582374572754, 0.01683875274658203, 0.016881824493408203, 0.017014144897460937, 0.017144096374511718, 0.01708255958557129, 0.017163328170776367, 0.017036224365234377, 0.01702681541442871, 0.016859743118286134, 0.016997568130493163, 0.017264799118041994, 0.01694259262084961, 0.017031007766723633, 0.016933855056762696, 0.016829439163208008, 0.017023231506347655, 0.01685990333557129, 0.016891904830932617, 0.017325279235839843, 0.017867551803588868, 0.01825923156738281, 0.017187488555908202, 0.016965696334838867, 0.016995391845703124, 0.01692153549194336, 0.017119232177734374, 0.01697782325744629, 0.017025119781494142, 0.016969728469848632, 0.017104415893554686, 0.017133216857910156, 0.01704217529296875, 0.017985599517822266, 0.017065248489379882, 0.017263328552246094, 0.016977920532226562, 0.01703763198852539, 0.0171393928527832, 0.01700249671936035, 0.01691472053527832, 0.01694281578063965, 0.016938304901123045, 0.017031871795654296, 0.016934656143188478, 0.017055999755859374, 0.01702707290649414, 0.01691267204284668, 0.01683363151550293, 0.016818815231323243, 0.01697996711730957, 0.016910688400268555, 0.016848543167114257, 0.017967071533203125, 0.016968896865844726, 0.01687228775024414, 0.016871423721313478, 0.01691263961791992, 0.016882720947265624, 0.017005279541015626, 0.01693065643310547, 0.01680838394165039, 0.016884544372558593, 0.016886688232421874, 0.0169649600982666, 0.016908544540405274, 0.017230239868164063, 0.017323040008544923, 0.017036256790161134, 0.016947200775146484, 0.016989568710327148, 0.016938911437988282, 0.016947263717651366, 0.017218015670776368, 0.016898239135742187, 0.017090240478515626, 0.016884031295776366, 0.016855039596557618, 0.01691200065612793, 0.01694246482849121, 0.01696767997741699, 0.016836896896362304, 0.016980703353881837, 0.01884569549560547, 0.0169432315826416, 0.016834400177001954, 0.016889888763427733, 0.016951295852661134, 0.016914112091064453]",tokens/s,58.77701025561237,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 287, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 172.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 150.12 MiB is free. Process 153836 has 14.59 GiB memory in use. Of the allocated memory 14.48 GiB is allocated by PyTorch, and 1.43 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,742.764544,6193.872896,0.0,5798.62528,5774.685184,s,1,7.30814697265625,7.30814697265625,0.0,7.30814697265625,7.30814697265625,7.30814697265625,7.30814697265625,[7.30814697265625],,kWh,4.32576990416654e-06,4.700026609990046e-07,2.377224124001931e-06,7.172996689167475e-06,,MB,1047.277568,6206.455808,0.0,5800.722432,5525.736448,s,10,2.3927240905761713,0.23927240905761718,0.009610978361010573,0.2413498229980469,0.24558556365966797,0.24645138931274413,0.24714404983520508,"[0.2117969207763672, 0.2372667236328125, 0.2394752655029297, 0.24016172790527343, 0.2419894714355469, 0.24731721496582032, 0.24520982360839844, 0.24539315795898436, 0.24071017456054689, 0.2434036102294922]",tokens/s,1069.9102374915062,kWh,6.58644672194437e-06,7.263188448296269e-07,4.35650965804443e-06,1.1669275224818428e-05,tokens/kWh,21937952.020836264,MB,1051.738112,6208.55296,0.0,5802.819584,5623.660032,s,10,17.640743408203125,1.7640743408203126,0.002191758134030772,1.76315966796875,1.7671169555664061,1.767554815673828,1.7679051037597657,"[1.76262060546875, 1.7623641357421875, 1.7670196533203124, 1.761020751953125, 1.7628199462890626, 1.7648861083984375, 1.76799267578125, 1.7661329345703125, 1.76238720703125, 1.7634993896484374]",tokens/s,35.71278065906472,kWh,5.2048872468055586e-05,5.739458893656275e-06,3.445896583875587e-05,9.224729720046773e-05,tokens/kWh,682946.8386818011,,s,630,17.638176202774062,0.02799710508376833,0.00031267521339151144,0.02794905662536621,0.02817639675140381,0.028387158775329588,0.029773395805358892,"[0.029443679809570314, 0.028571552276611328, 0.027992576599121095, 0.027808864593505858, 0.02789686393737793, 0.027770912170410156, 0.027739200592041015, 0.027689472198486328, 0.027746591567993164, 0.027676671981811524, 0.02773401641845703, 0.02784867286682129, 0.027787296295166016, 0.02779961585998535, 0.02803296089172363, 0.0278154239654541, 0.02775059127807617, 0.02770102310180664, 0.02777142333984375, 0.027777023315429687, 0.027808927536010743, 0.028105567932128907, 0.02825356864929199, 0.028070240020751952, 0.027837823867797852, 0.02789878463745117, 0.02776678466796875, 0.027826175689697266, 0.027846656799316406, 0.02788675117492676, 0.02789401626586914, 0.027859264373779297, 0.027896095275878906, 0.027935007095336913, 0.02852854347229004, 0.02844633674621582, 0.028176511764526367, 0.028033151626586914, 0.027996095657348632, 0.02821126365661621, 0.028190656661987303, 0.028203008651733398, 0.027992063522338868, 0.028090368270874022, 0.027992095947265625, 0.027918560028076172, 0.02821865653991699, 0.0281246395111084, 0.027947488784790038, 0.02786886405944824, 0.027888479232788085, 0.027936767578125, 0.02787942314147949, 0.027903711318969727, 0.027988256454467772, 0.02800614356994629, 0.027918687820434572, 0.0279215030670166, 0.027949312210083007, 0.028006399154663086, 0.02790166473388672, 0.027915103912353516, 0.027994400024414064, 0.02965711975097656, 0.028714656829833984, 0.028100479125976564, 0.027877824783325195, 0.02780182456970215, 0.02776655960083008, 0.02771046447753906, 0.02781110382080078, 0.027743711471557617, 0.027674720764160155, 0.027699359893798826, 0.02783251190185547, 0.027789119720458985, 0.027770559310913087, 0.027732383728027343, 0.02778009605407715, 0.027673664093017577, 0.027684000015258788, 0.027780832290649413, 0.02774963188171387, 0.027659488677978517, 0.027762304306030272, 0.027835264205932617, 0.028010240554809572, 0.027754751205444336, 0.02776412773132324, 0.027880224227905273, 0.027821887969970704, 0.02782931137084961, 0.027871295928955077, 0.027858911514282228, 0.027855775833129884, 0.027867136001586915, 0.02799523162841797, 0.028023712158203123, 0.028037120819091797, 0.028163871765136718, 0.02815407943725586, 0.02814361572265625, 0.028098880767822267, 0.028174144744873047, 0.02891526412963867, 0.028252096176147462, 0.028002687454223633, 0.027975679397583008, 0.027850751876831056, 0.02790768051147461, 0.0280231990814209, 0.027973440170288084, 0.02785708808898926, 0.0279552001953125, 0.028215295791625978, 0.028062816619873046, 0.02811996841430664, 0.028019968032836913, 0.028074464797973632, 0.027971872329711912, 0.028000448226928713, 0.02789561653137207, 0.027987968444824218, 0.028006399154663086, 0.028024927139282226, 0.02810665512084961, 0.03003664016723633, 0.029128608703613282, 0.028288192749023437, 0.028132223129272462, 0.028026687622070313, 0.02781724739074707, 0.0277410888671875, 0.02798124885559082, 0.027775552749633788, 0.027807743072509765, 0.027850656509399413, 0.027868640899658202, 0.027816287994384764, 0.027851200103759764, 0.027843679428100586, 0.02793343925476074, 0.02778748893737793, 0.027842336654663086, 0.027757984161376953, 0.02784111976623535, 0.027804927825927736, 0.02794099235534668, 0.027890304565429687, 0.02783395195007324, 0.02781430435180664, 0.027852832794189455, 0.027858911514282228, 0.027879520416259764, 0.02803049659729004, 0.029004159927368163, 0.028035072326660155, 0.027971263885498046, 0.027991840362548828, 0.028027423858642576, 0.02816409683227539, 0.028089792251586913, 0.02815648078918457, 0.028012544631958007, 0.028051456451416015, 0.028039167404174805, 0.028008159637451173, 0.027990304946899414, 0.02792857551574707, 0.027978784561157228, 0.02790483283996582, 0.027936927795410155, 0.028025983810424804, 0.027967552185058593, 0.027942880630493164, 0.027911008834838866, 0.027987968444824218, 0.028458400726318358, 0.028442975997924804, 0.028080127716064454, 0.028004608154296874, 0.0279837760925293, 0.028059776306152345, 0.028100448608398436, 0.02808844757080078, 0.027977567672729492, 0.028049631118774412, 0.028123071670532226, 0.028211200714111328, 0.029952224731445314, 0.028782495498657225, 0.02820355224609375, 0.02788483238220215, 0.027914016723632813, 0.0277142391204834, 0.027641855239868163, 0.027703296661376952, 0.027711488723754882, 0.02772377586364746, 0.027820287704467775, 0.027768287658691406, 0.027730207443237304, 0.027835968017578126, 0.027783008575439454, 0.027781280517578125, 0.027790943145751954, 0.027753343582153322, 0.027891328811645508, 0.02777052879333496, 0.028027584075927734, 0.027891712188720705, 0.02778508758544922, 0.027773056030273437, 0.02775654411315918, 0.02789583969116211, 0.02777225685119629, 0.027763328552246093, 0.027799264907836914, 0.027834144592285157, 0.02783078384399414, 0.02777529525756836, 0.02786604881286621, 0.027984607696533204, 0.028221376419067384, 0.028030815124511718, 0.02806809616088867, 0.02802284812927246, 0.027966623306274415, 0.02812291145324707, 0.028035167694091798, 0.02793769645690918, 0.027918399810791014, 0.027848224639892578, 0.027873952865600585, 0.027918079376220702, 0.02802284812927246, 0.02807539176940918, 0.027909791946411133, 0.02795564842224121, 0.027988447189331054, 0.028108192443847657, 0.027880096435546876, 0.027940959930419923, 0.027905696868896483, 0.027959487915039063, 0.027989023208618163, 0.028122079849243163, 0.02800828742980957, 0.027977888107299804, 0.027999359130859373, 0.028023679733276366, 0.02803264045715332, 0.029866783142089844, 0.02874563217163086, 0.02847145652770996, 0.028131519317626953, 0.02785251235961914, 0.02781337547302246, 0.02802943992614746, 0.027842336654663086, 0.02774822425842285, 0.027828575134277344, 0.02788688087463379, 0.027909055709838867, 0.02772764778137207, 0.02775859260559082, 0.02788262367248535, 0.02782912063598633, 0.027840511322021484, 0.028063743591308594, 0.027953216552734375, 0.028078144073486327, 0.027840639114379884, 0.02779680061340332, 0.027750688552856444, 0.027821344375610353, 0.02782912063598633, 0.027817983627319336, 0.027786815643310547, 0.02776054382324219, 0.027836671829223635, 0.027836704254150392, 0.02774220848083496, 0.02778688049316406, 0.028008832931518554, 0.028057600021362306, 0.02813337516784668, 0.028106752395629882, 0.028106719970703124, 0.027991167068481447, 0.028171167373657227, 0.02812495994567871, 0.02795132827758789, 0.02789580726623535, 0.027906047821044923, 0.027891712188720705, 0.02822524833679199, 0.02794268798828125, 0.02802070426940918, 0.02795779228210449, 0.027884960174560547, 0.027902143478393555, 0.0278799991607666, 0.027905887603759765, 0.02796134376525879, 0.02793471908569336, 0.02796134376525879, 0.027850879669189452, 0.027968896865844726, 0.028123647689819335, 0.02794495964050293, 0.027979904174804688, 0.02797350311279297, 0.027917728424072266, 0.028029472351074218, 0.029911008834838868, 0.02967747116088867, 0.028435968399047853, 0.028311391830444337, 0.027951871871948242, 0.02782841682434082, 0.02768227195739746, 0.02777948760986328, 0.027704832077026367, 0.0277774715423584, 0.02774233627319336, 0.027694976806640625, 0.027792383193969726, 0.02776166343688965, 0.02774220848083496, 0.02773606491088867, 0.027812864303588865, 0.027823104858398437, 0.027686975479125978, 0.0278035831451416, 0.02829120063781738, 0.02816806411743164, 0.02779136085510254, 0.02792188835144043, 0.027773471832275392, 0.027768831253051757, 0.027844608306884764, 0.02790809631347656, 0.0278853759765625, 0.027888896942138672, 0.027929536819458006, 0.027830272674560546, 0.027899232864379883, 0.028008319854736327, 0.0279968318939209, 0.02810086441040039, 0.02799203109741211, 0.02801888084411621, 0.028101919174194336, 0.028114463806152342, 0.027998559951782225, 0.028013120651245116, 0.02815999984741211, 0.028128992080688475, 0.028018848419189453, 0.028219520568847658, 0.02811087989807129, 0.028026847839355468, 0.028016767501831054, 0.02800774383544922, 0.02793734359741211, 0.027983871459960938, 0.027926528930664062, 0.028039167404174805, 0.028026847839355468, 0.027977983474731447, 0.027981216430664063, 0.028245471954345704, 0.0279715518951416, 0.027988927841186523, 0.027987167358398436, 0.027995136260986327, 0.02799007987976074, 0.029646879196166993, 0.02871891212463379, 0.02826678466796875, 0.028129152297973633, 0.027922271728515625, 0.02784787178039551, 0.027771871566772462, 0.027811840057373048, 0.027785152435302735, 0.027886655807495116, 0.02798899269104004, 0.027795583724975585, 0.027916160583496094, 0.028022783279418945, 0.02794643211364746, 0.027846656799316406, 0.0279205436706543, 0.027876064300537108, 0.027932544708251954, 0.027846527099609376, 0.02783843231201172, 0.027876895904541017, 0.02795155143737793, 0.027932191848754884, 0.027951583862304688, 0.027985183715820313, 0.027863807678222656, 0.02784272003173828, 0.027879104614257813, 0.027855039596557617, 0.027789375305175782, 0.027862207412719726, 0.02793747138977051, 0.027992063522338868, 0.0281529598236084, 0.028181375503540038, 0.028096511840820314, 0.028042816162109376, 0.028105152130126952, 0.028077791213989258, 0.02948739242553711, 0.028118528366088868, 0.028002815246582033, 0.028010751724243162, 0.027967039108276366, 0.028028703689575194, 0.028020479202270507, 0.028015264511108397, 0.028071327209472655, 0.028127359390258788, 0.028112895965576173, 0.028071392059326173, 0.028103967666625977, 0.02812928009033203, 0.028184288024902342, 0.028209152221679686, 0.028160032272338868, 0.028196832656860352, 0.02798703956604004, 0.02809116744995117, 0.0281396484375, 0.028188928604125977, 0.028210880279541016, 0.02993731117248535, 0.028737024307250978, 0.02841846466064453, 0.0281112003326416, 0.027872383117675783, 0.027909088134765624, 0.027746368408203125, 0.02787708854675293, 0.02776038360595703, 0.027898208618164062, 0.027870912551879883, 0.027785728454589844, 0.02788140869140625, 0.027875328063964845, 0.027867136001586915, 0.027737632751464843, 0.027818464279174806, 0.02779862403869629, 0.027819936752319335, 0.02787833595275879, 0.02790928077697754, 0.028007328033447267, 0.02794905662536621, 0.027891712188720705, 0.027881471633911133, 0.027897823333740236, 0.02779743957519531, 0.027879680633544922, 0.02908361625671387, 0.02802060890197754, 0.02798201560974121, 0.02798182487487793, 0.027983680725097656, 0.028057600021362306, 0.02823097610473633, 0.02813164710998535, 0.028037504196166994, 0.02817638397216797, 0.02811635208129883, 0.02801318359375, 0.028001855850219727, 0.028045759201049805, 0.02797772789001465, 0.027950815200805664, 0.02808665657043457, 0.028022687911987306, 0.028006336212158204, 0.027955263137817384, 0.028005504608154298, 0.02795814323425293, 0.028006399154663086, 0.02797590446472168, 0.02808399963378906, 0.0279564151763916, 0.027960128784179687, 0.02794905662536621, 0.028080127716064454, 0.028026880264282225, 0.027960447311401366, 0.02800320053100586, 0.027987968444824218, 0.027983007431030275, 0.028234592437744142, 0.029812576293945313, 0.02880953598022461, 0.02834889602661133, 0.0279117431640625, 0.028043712615966797, 0.027821760177612304, 0.027699520111083984, 0.02779136085510254, 0.02775654411315918, 0.027942783355712892, 0.027795743942260743, 0.027720575332641603, 0.02779849624633789, 0.027813791275024414, 0.027770975112915038, 0.02777907180786133, 0.02775654411315918, 0.027703296661376952, 0.027796863555908203, 0.027800384521484374, 0.027821887969970704, 0.027797504425048827, 0.02782339286804199, 0.027810495376586915, 0.027821439743041992, 0.027744672775268556, 0.02777891159057617, 0.02778972816467285, 0.027897151947021484, 0.02782908821105957, 0.02794713592529297, 0.027846015930175782, 0.027864479064941407, 0.027986656188964842, 0.02833430480957031, 0.02815795135498047, 0.028065792083740236, 0.028176223754882813, 0.028078208923339842, 0.02802403259277344, 0.028213920593261718, 0.028141727447509767, 0.02792959976196289, 0.027988832473754884, 0.028078559875488282, 0.028057376861572267, 0.028037023544311524, 0.02795699119567871, 0.027955455780029295, 0.027998207092285156, 0.02790934371948242, 0.027950944900512694, 0.027899999618530274, 0.02792108726501465, 0.027936735153198243, 0.027914560317993165, 0.02795039939880371, 0.027946624755859375, 0.027973663330078124, 0.028000383377075194, 0.027994911193847657, 0.02800873565673828, 0.028097248077392577, 0.029820928573608397, 0.028690240859985353, 0.028274879455566407, 0.02795929527282715, 0.02796771240234375, 0.027823904037475585, 0.027788736343383788, 0.027786111831665038, 0.027862720489501953, 0.027941024780273438, 0.02780143928527832, 0.027711488723754882, 0.02775449562072754, 0.02775449562072754, 0.027686464309692384, 0.02778067207336426, 0.027896703720092772, 0.027856992721557616, 0.02784675216674805, 0.02789356803894043, 0.02775040054321289, 0.027803712844848633, 0.0278035831451416, 0.027850751876831056, 0.027805152893066405, 0.027872800827026367, 0.02778828811645508, 0.02794291114807129, 0.027966720581054687, 0.027931392669677733, 0.027945119857788085, 0.027912031173706053, 0.027933952331542968, 0.027919103622436523, 0.02814156723022461, 0.02806915283203125, 0.028011232376098632, 0.02809196853637695, 0.028127359390258788, 0.02801020812988281, 0.0279736328125, 0.028240480422973634, 0.028536159515380858, 0.02796406364440918, 0.028086271286010742, 0.02806537628173828, 0.028131872177124023, 0.028052671432495117, 0.028035776138305664, 0.027901952743530273, 0.027937919616699218, 0.02795814323425293, 0.02795484733581543, 0.027935071945190428, 0.027962656021118165, 0.028005119323730468, 0.027985887527465822, 0.02798201560974121, 0.027914079666137695, 0.02796544075012207, 0.02799190330505371, 0.02798195266723633, 0.028090368270874022]",tokens/s,35.717978591285224,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mixtral,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 890, in __init__ self.model = OPTModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 822, in __init__ self.decoder = OPTDecoder(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in __init__ self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 383, in __init__ self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=config.enable_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 784.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 210.12 MiB is free. Process 124889 has 14.53 GiB memory in use. Of the allocated memory 14.41 GiB is allocated by PyTorch, and 5.21 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2_moe,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 1203, in __init__ self.model = Qwen2MoeModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 977, in __init__ [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 977, in [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 755, in __init__ self.mlp = Qwen2MoeSparseMoeBlock(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 693, in __init__ [Qwen2MoeMLP(config, intermediate_size=config.moe_intermediate_size) for _ in range(self.num_experts)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 693, in [Qwen2MoeMLP(config, intermediate_size=config.moe_intermediate_size) for _ in range(self.num_experts)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 294, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 12.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 8.12 MiB is free. Process 92771 has 14.73 GiB memory in use. Of the allocated memory 14.60 GiB is allocated by PyTorch, and 14.93 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,815.616,6174.998528,0.0,5779.750912,5773.960192,s,1,7.478220703125,7.478220703125,0.0,7.478220703125,7.478220703125,7.478220703125,7.478220703125,[7.478220703125],,kWh,1.0453589358333676e-05,1.1408213825045796e-06,3.244724817996758e-06,1.4839135558835014e-05,,MB,1107.259392,6491.66848,0.0,6085.935104,6038.345728,s,10,2.3825533142089843,0.23825533142089844,0.014006455705070683,0.24009297180175782,0.2507077835083008,0.25461110916137697,0.2577337696838379,"[0.20144749450683594, 0.23908642578125, 0.25851443481445313, 0.23458921813964845, 0.2365148468017578, 0.23665673828125, 0.24212879943847657, 0.24109951782226563, 0.24267546081542968, 0.2498403778076172]",tokens/s,1074.4775299393157,kWh,6.354509738043421e-06,7.007880555138613e-07,4.220492506826212e-06,1.1275790300383495e-05,tokens/kWh,22703508.417613383,MB,1112.174592,6512.64,0.0,6106.906624,6086.544896,s,10,18.115085937499998,1.8115085937500002,0.005597813361466063,1.812888427734375,1.8164951049804687,1.817097100830078,1.8175786975097656,"[1.81152734375, 1.8122493896484375, 1.81234716796875, 1.79936083984375, 1.8026717529296874, 1.816361328125, 1.8176990966796875, 1.8134296875, 1.8143582763671875, 1.8150810546875]",tokens/s,34.7776434610138,kWh,5.342013054278995e-05,5.892050214093037e-06,3.532256690537347e-05,9.463474766225645e-05,tokens/kWh,665717.4194075285,,s,630,18.111963876724243,0.028749149010673394,0.00032102976876612315,0.028713279724121094,0.028936253356933592,0.02910829677581787,0.030612848529815676,"[0.030595104217529298, 0.029626304626464844, 0.02889936065673828, 0.028631040573120117, 0.028559232711791994, 0.02851024055480957, 0.028401599884033204, 0.028483039855957033, 0.028536991119384767, 0.028654111862182616, 0.028512063980102538, 0.028549312591552734, 0.028524351119995118, 0.0285861759185791, 0.028477439880371092, 0.028545024871826172, 0.02865679931640625, 0.02864121627807617, 0.028562335968017577, 0.02863420867919922, 0.028593055725097655, 0.028645376205444335, 0.02865558433532715, 0.0285098876953125, 0.02873583984375, 0.02873958396911621, 0.028579839706420897, 0.028545024871826172, 0.028762304306030273, 0.02869638442993164, 0.02867193603515625, 0.02862598419189453, 0.028791135787963867, 0.02885446357727051, 0.029012672424316405, 0.029253408432006835, 0.02896076774597168, 0.02882361602783203, 0.02870582389831543, 0.028725599288940428, 0.02872991943359375, 0.02873311996459961, 0.028721471786499024, 0.02878384017944336, 0.029506336212158202, 0.028700672149658202, 0.02862051200866699, 0.028732831954956056, 0.028803232192993165, 0.02866044807434082, 0.028728992462158202, 0.02878044891357422, 0.0287891845703125, 0.028665855407714845, 0.02880512046813965, 0.028827648162841796, 0.028753919601440428, 0.028787776947021483, 0.02870163154602051, 0.02872319984436035, 0.02877804756164551, 0.02876051139831543, 0.028659711837768553, 0.03077734375, 0.029468576431274415, 0.02901545524597168, 0.028737695693969726, 0.028594720840454103, 0.02845462417602539, 0.028565792083740233, 0.028653568267822265, 0.028620800018310546, 0.02851020812988281, 0.028553279876708984, 0.028450752258300783, 0.02874163246154785, 0.028549375534057616, 0.028566272735595703, 0.02852454376220703, 0.028439552307128906, 0.028645376205444335, 0.02858393669128418, 0.028635135650634767, 0.029360128402709962, 0.028440704345703127, 0.02865510368347168, 0.028489728927612305, 0.028670335769653322, 0.028756128311157227, 0.028819135665893555, 0.02862710380554199, 0.028683712005615234, 0.028764736175537108, 0.02868364715576172, 0.028713600158691406, 0.02884105682373047, 0.028831647872924804, 0.02899660873413086, 0.028845695495605467, 0.028809600830078125, 0.028833791732788085, 0.028876863479614257, 0.0287455997467041, 0.02876131248474121, 0.028876991271972657, 0.028716896057128908, 0.02872812843322754, 0.02876825523376465, 0.02879078483581543, 0.028712959289550782, 0.028704191207885744, 0.028803712844848634, 0.028663423538208006, 0.029017728805541994, 0.028786687850952147, 0.028726112365722655, 0.028719167709350586, 0.02877622413635254, 0.02875587272644043, 0.02867625617980957, 0.028847936630249024, 0.028702367782592775, 0.028706304550170897, 0.028779327392578127, 0.028672224044799806, 0.028718624114990234, 0.030757152557373046, 0.029655008316040038, 0.0289168643951416, 0.0286965446472168, 0.028613536834716798, 0.02853232002258301, 0.028477439880371092, 0.02859663963317871, 0.028487871170043946, 0.028628608703613282, 0.028555391311645507, 0.02861369514465332, 0.02871603202819824, 0.02860851287841797, 0.028497919082641602, 0.02874982452392578, 0.028564992904663085, 0.02863088035583496, 0.02856230354309082, 0.028636255264282227, 0.0286276798248291, 0.028499935150146486, 0.028649471282958985, 0.028495872497558594, 0.02877628707885742, 0.02866796875, 0.02862499237060547, 0.02854300880432129, 0.028601823806762697, 0.02864348793029785, 0.028832096099853516, 0.0289619197845459, 0.02867852783203125, 0.028746240615844725, 0.028991615295410156, 0.02888431930541992, 0.028897216796875, 0.028938848495483397, 0.028901567459106447, 0.02872096061706543, 0.028695552825927735, 0.02874060821533203, 0.02873958396911621, 0.02872643280029297, 0.028750688552856445, 0.02880496025085449, 0.028778175354003906, 0.028952255249023437, 0.028695327758789062, 0.028696575164794923, 0.028775903701782228, 0.02884048080444336, 0.028911615371704103, 0.028761695861816407, 0.028723615646362305, 0.028788288116455077, 0.028758144378662108, 0.028752031326293944, 0.028839647293090822, 0.02888035202026367, 0.0287938232421875, 0.02877644729614258, 0.028685375213623045, 0.03062009620666504, 0.029390335083007812, 0.028874847412109376, 0.0286110725402832, 0.028839807510375976, 0.028520448684692383, 0.028624832153320314, 0.02842425537109375, 0.02831974411010742, 0.028358047485351562, 0.028416608810424803, 0.028362720489501954, 0.028734560012817382, 0.028719680786132813, 0.028440959930419923, 0.028411903381347657, 0.028321727752685547, 0.028325727462768555, 0.028401887893676758, 0.028424192428588867, 0.028334079742431642, 0.02836070442199707, 0.028493791580200194, 0.028436288833618165, 0.028451040267944337, 0.02838755226135254, 0.02844179153442383, 0.028400224685668947, 0.02844879913330078, 0.02843235206604004, 0.028380767822265625, 0.028420511245727538, 0.02853273582458496, 0.02852604866027832, 0.02861520004272461, 0.0286167049407959, 0.028645376205444335, 0.028661184310913086, 0.028543039321899413, 0.028561920166015626, 0.02850115203857422, 0.02863395118713379, 0.02860633659362793, 0.028502143859863282, 0.028516063690185545, 0.02846134376525879, 0.02853455924987793, 0.02849184036254883, 0.028581504821777345, 0.028512575149536132, 0.028503456115722657, 0.028537696838378906, 0.028534751892089844, 0.028508159637451173, 0.02856550407409668, 0.02852659225463867, 0.028559392929077148, 0.02858540725708008, 0.028515871047973634, 0.028503040313720703, 0.0285614070892334, 0.028506111145019532, 0.02854092788696289, 0.03032268714904785, 0.029396991729736328, 0.028836992263793944, 0.02857865524291992, 0.028452896118164064, 0.028420095443725587, 0.02842624092102051, 0.028428287506103517, 0.028382463455200194, 0.028475263595581054, 0.028424543380737306, 0.028367391586303713, 0.028331104278564452, 0.0283472957611084, 0.028293184280395508, 0.0283155517578125, 0.028356639862060547, 0.02840166473388672, 0.028411712646484375, 0.028553407669067384, 0.028516351699829103, 0.028442367553710938, 0.02852275276184082, 0.028422143936157225, 0.028516351699829103, 0.028512256622314453, 0.028411359786987306, 0.02845052719116211, 0.028619039535522462, 0.028447263717651366, 0.028416000366210937, 0.02846723175048828, 0.028601696014404297, 0.028617216110229493, 0.028594303131103515, 0.028669279098510744, 0.028667680740356444, 0.028697471618652343, 0.028639232635498047, 0.028688640594482423, 0.02860972785949707, 0.028648000717163086, 0.028620351791381837, 0.02852396774291992, 0.02857472038269043, 0.028747615814208986, 0.028518272399902345, 0.028549407958984373, 0.028530048370361327, 0.028576160430908205, 0.02873776054382324, 0.02886182403564453, 0.028750463485717772, 0.02871500778198242, 0.02880512046813965, 0.028848031997680663, 0.028772447586059572, 0.028794879913330077, 0.028682239532470705, 0.02875801658630371, 0.028778495788574218, 0.028780256271362305, 0.028712575912475585, 0.030640703201293945, 0.029507104873657226, 0.029047264099121093, 0.028697599411010744, 0.028621824264526367, 0.028603904724121092, 0.028588672637939454, 0.02862054443359375, 0.02874380874633789, 0.02859519958496094, 0.028601343154907227, 0.028528640747070313, 0.028720703125, 0.028700992584228514, 0.028668031692504883, 0.02855731201171875, 0.028589920043945314, 0.0286474552154541, 0.02854310417175293, 0.028639488220214844, 0.028702720642089844, 0.028691680908203124, 0.028705535888671876, 0.0285565128326416, 0.02870044708251953, 0.02874473571777344, 0.028661407470703126, 0.028905567169189454, 0.028627967834472655, 0.028678720474243163, 0.028684352874755858, 0.02891200065612793, 0.028886560440063477, 0.028807647705078127, 0.028837631225585938, 0.030287519454956054, 0.029019744873046874, 0.028933120727539063, 0.029001728057861328, 0.028932096481323243, 0.028825599670410155, 0.028853952407836916, 0.02880031967163086, 0.028937376022338868, 0.028833887100219727, 0.028753919601440428, 0.02876323127746582, 0.028742591857910157, 0.02886627197265625, 0.028816928863525392, 0.028818111419677734, 0.028763935089111327, 0.028709056854248047, 0.028763711929321287, 0.028954879760742187, 0.028862464904785157, 0.028717056274414062, 0.02894233512878418, 0.02876006317138672, 0.02875596809387207, 0.02880732727050781, 0.02886783981323242, 0.028951135635375977, 0.030656063079833984, 0.029681791305541994, 0.02915564727783203, 0.028720191955566406, 0.02862710380554199, 0.028588991165161132, 0.028495712280273436, 0.02861392021179199, 0.028531423568725588, 0.028665855407714845, 0.028633087158203126, 0.028606464385986328, 0.029478912353515626, 0.02856550407409668, 0.028663808822631837, 0.028633216857910156, 0.028682111740112304, 0.028923904418945313, 0.028708864212036132, 0.028672000885009766, 0.02879859161376953, 0.028688928604125977, 0.028673887252807617, 0.02857094383239746, 0.028655519485473634, 0.029012767791748047, 0.028733440399169922, 0.028733503341674804, 0.028714527130126954, 0.028709280014038087, 0.0287825927734375, 0.028733440399169922, 0.02881331253051758, 0.02879692840576172, 0.02893414306640625, 0.028964864730834962, 0.029110111236572266, 0.029060991287231445, 0.02896473693847656, 0.029018527984619142, 0.028778495788574218, 0.02893337631225586, 0.02881203269958496, 0.028753919601440428, 0.02876825523376465, 0.028857471466064454, 0.02878758430480957, 0.028738912582397462, 0.02880169677734375, 0.028739072799682616, 0.028825824737548827, 0.028934431076049805, 0.028850175857543944, 0.02872684860229492, 0.028784576416015624, 0.028750335693359375, 0.02878054428100586, 0.02921881675720215, 0.029187103271484376, 0.029010879516601563, 0.02887068748474121, 0.028901344299316407, 0.028798847198486327, 0.031053024291992186, 0.029621023178100586, 0.02892361640930176, 0.028692768096923827, 0.028693824768066405, 0.028622623443603515, 0.028660640716552735, 0.02848988723754883, 0.02865340805053711, 0.028633087158203126, 0.02853887939453125, 0.028680192947387696, 0.02871603202819824, 0.028683263778686522, 0.028594175338745118, 0.02853856086730957, 0.02858425521850586, 0.028565216064453124, 0.028623424530029296, 0.028616512298583984, 0.028611936569213868, 0.028652095794677736, 0.028704767227172853, 0.028737535476684572, 0.02875116729736328, 0.028801727294921874, 0.028692384719848633, 0.02873103904724121, 0.028690784454345704, 0.028818815231323243, 0.028666591644287108, 0.02874367904663086, 0.02874367904663086, 0.028719104766845704, 0.02885171127319336, 0.028936128616333007, 0.028833984375, 0.028780927658081056, 0.029017087936401367, 0.028976127624511717, 0.028754240036010743, 0.028755136489868164, 0.028692447662353515, 0.02868262481689453, 0.02879280090332031, 0.028709056854248047, 0.02872319984436035, 0.02879078483581543, 0.028716543197631835, 0.02869487953186035, 0.028782655715942383, 0.028711008071899413, 0.02874163246154785, 0.02870681571960449, 0.02874928092956543, 0.0287805118560791, 0.028797183990478516, 0.02879017639160156, 0.02885932731628418, 0.028712928771972655, 0.0288719367980957, 0.02888547134399414, 0.028766496658325195, 0.030526592254638673, 0.029479808807373047, 0.029003231048583985, 0.028942880630493165, 0.029142047882080076, 0.028761056900024413, 0.028556800842285155, 0.028531200408935548, 0.028622528076171876, 0.028804927825927733, 0.028688320159912108, 0.028561983108520508, 0.028618751525878908, 0.028593887329101564, 0.028575807571411132, 0.028621248245239258, 0.028642208099365234, 0.02862387275695801, 0.02857088088989258, 0.02860915184020996, 0.02855116844177246, 0.028674047470092775, 0.028682016372680665, 0.028688608169555666, 0.028802976608276368, 0.02873049545288086, 0.028707807540893554, 0.02872438430786133, 0.028696767807006834, 0.028701343536376954, 0.028680192947387696, 0.028675680160522462, 0.02886697578430176, 0.028886272430419923, 0.029305791854858397, 0.02901740837097168, 0.02906675148010254, 0.02893926429748535, 0.028710079193115235, 0.02879756736755371, 0.02877440071105957, 0.02882374382019043, 0.02879897689819336, 0.028757440567016603, 0.028681888580322265, 0.028758943557739256, 0.02877644729614258, 0.02872319984436035, 0.028716064453125, 0.028703104019165038, 0.028754528045654298, 0.028711999893188477, 0.028713920593261718, 0.028762111663818358, 0.02878463935852051, 0.028856447219848633, 0.02884752082824707, 0.028783071517944337, 0.02873244857788086, 0.0288306884765625, 0.02888243293762207, 0.02881177520751953, 0.028704927444458007, 0.030879743576049806, 0.029616128921508788, 0.028861919403076173, 0.028768415451049804, 0.02875430488586426, 0.028737312316894532, 0.028647647857666016, 0.02851353645324707, 0.02863795280456543, 0.028633087158203126, 0.028542335510253907, 0.028621440887451173, 0.028727296829223634, 0.028667903900146483, 0.02856345558166504, 0.028555200576782225, 0.028687551498413087, 0.028683135986328125, 0.02856982421875, 0.02890118408203125, 0.028624319076538087, 0.028623615264892578, 0.028785760879516602, 0.028652128219604493, 0.028747167587280274, 0.028667808532714844, 0.028625024795532226, 0.02852681541442871, 0.028748224258422852, 0.028729343414306642, 0.02873075294494629, 0.028727903366088867, 0.028852256774902343, 0.028917024612426758, 0.029137632369995118, 0.0291060791015625, 0.028868703842163085, 0.028955839157104493, 0.028883935928344727, 0.0288623046875, 0.028753919601440428, 0.028792224884033202, 0.02872368049621582, 0.028729215621948242, 0.02879283142089844, 0.028700159072875975, 0.028875520706176758, 0.028786304473876954, 0.0288221435546875, 0.028912384033203124, 0.028869632720947266, 0.028778495788574218, 0.0287825927734375, 0.028800287246704102, 0.028885631561279296, 0.028855808258056642, 0.028774463653564453, 0.02878873634338379, 0.028858688354492186, 0.028833919525146485, 0.02874991989135742, 0.02874163246154785, 0.028747264862060546]",tokens/s,34.783638278431845,, float32-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,817.729536,6174.998528,0.0,5779.750912,5773.960192,s,1,7.57930224609375,7.57930224609375,0.0,7.57930224609375,7.57930224609375,7.57930224609375,7.57930224609375,[7.57930224609375],,kWh,1.031787790832368e-05,1.1308835693605839e-06,4.427225764006004e-06,1.587598724169027e-05,,MB,1109.594112,6491.66848,0.0,6085.935104,6038.345728,s,10,2.3674476165771483,0.23674476165771483,0.012145732333113422,0.24003164672851562,0.24437044525146484,0.2444778022766113,0.2445636878967285,"[0.20128944396972656, 0.23908291625976563, 0.2431251220703125, 0.24098037719726562, 0.24434658813476562, 0.2358023681640625, 0.23840220642089843, 0.23757420349121094, 0.2422592315673828, 0.2445851593017578]",tokens/s,1081.3333237342094,kWh,6.383036748641098e-06,7.038957026354253e-07,4.221482845782736e-06,1.130841529705926e-05,tokens/kWh,22638008.357065953,MB,1114.431488,6512.64,0.0,6106.906624,6086.544896,s,10,18.189046997070317,1.8189046997070313,0.002654217950322588,1.818224365234375,1.8220148559570313,1.8222690246582032,1.8224723596191408,"[1.8154215087890626, 1.818479248046875, 1.817969482421875, 1.815954345703125, 1.822523193359375, 1.8219407958984375, 1.8219583740234375, 1.8213411865234375, 1.81760107421875, 1.8158577880859375]",tokens/s,34.63622916041029,kWh,5.362022793344189e-05,5.914190468179385e-06,3.549668781761704e-05,9.503110621923831e-05,tokens/kWh,662940.8254457017,,s,630,18.185909311294548,0.028866522716340565,0.0002932959952372305,0.028806336402893068,0.029048799324035642,0.029152521705627443,0.030631099720001224,"[0.030439424514770507, 0.029577215194702147, 0.029061119079589845, 0.028778495788574218, 0.028741247177124025, 0.028761888504028322, 0.028666080474853514, 0.02862076759338379, 0.028575328826904296, 0.028547903060913087, 0.0285980167388916, 0.028608768463134766, 0.02877440071105957, 0.02878054428100586, 0.028684255599975585, 0.028745376586914062, 0.02866009521484375, 0.028655616760253907, 0.028535839080810546, 0.028687328338623048, 0.028677791595458985, 0.028649791717529297, 0.02860611152648926, 0.028621055603027343, 0.028801151275634766, 0.02874336051940918, 0.028725568771362304, 0.028696128845214844, 0.028682687759399413, 0.02873958396911621, 0.028685407638549806, 0.028771167755126954, 0.02884819221496582, 0.02881657600402832, 0.028826175689697267, 0.02907321548461914, 0.029012224197387696, 0.029159616470336915, 0.02888915252685547, 0.028945760726928713, 0.02879756736755371, 0.028757440567016603, 0.028709407806396484, 0.02875094413757324, 0.028721887588500975, 0.028811456680297852, 0.028807167053222657, 0.028862464904785157, 0.02883737564086914, 0.028744192123413087, 0.02875596809387207, 0.028755359649658203, 0.028785247802734375, 0.028887359619140626, 0.028808544158935547, 0.028736991882324217, 0.02885264015197754, 0.028909536361694337, 0.028930559158325195, 0.028878400802612305, 0.028897727966308594, 0.02893414306640625, 0.028735231399536133, 0.030709760665893555, 0.029738239288330078, 0.029081663131713866, 0.02891436767578125, 0.02869862365722656, 0.02870681571960449, 0.02865344047546387, 0.028776575088500976, 0.028708864212036132, 0.02870681571960449, 0.028622848510742187, 0.028516351699829103, 0.028704767227172853, 0.028659711837768553, 0.028740863800048828, 0.02864566421508789, 0.028596704483032226, 0.02865337562561035, 0.028733631134033204, 0.02871500778198242, 0.02873107147216797, 0.028655935287475585, 0.028940288543701172, 0.028618080139160156, 0.028738016128540038, 0.028700544357299806, 0.028721471786499024, 0.028708192825317384, 0.028711584091186522, 0.028905536651611326, 0.02885215950012207, 0.028872480392456056, 0.02888630485534668, 0.028923072814941407, 0.028931615829467773, 0.028964160919189453, 0.0289719352722168, 0.029073408126831055, 0.028901056289672853, 0.028836160659790038, 0.029100032806396486, 0.02894643211364746, 0.028848127365112306, 0.028817407608032225, 0.028824800491333007, 0.02875276756286621, 0.028757312774658202, 0.028815967559814453, 0.02894643211364746, 0.028888479232788086, 0.029149599075317383, 0.0289334716796875, 0.02890982437133789, 0.028840192794799803, 0.028915327072143556, 0.028838367462158204, 0.02889753532409668, 0.028831584930419922, 0.028825664520263673, 0.028724319458007814, 0.028959743499755858, 0.02883500862121582, 0.028834432601928712, 0.03068511962890625, 0.029756959915161134, 0.029282848358154298, 0.028835840225219726, 0.02872025680541992, 0.028674079895019532, 0.02870467185974121, 0.02870377540588379, 0.028702463150024414, 0.028508031845092773, 0.028570112228393556, 0.028591903686523437, 0.02866489601135254, 0.028709823608398438, 0.028765663146972657, 0.028669567108154298, 0.02871776008605957, 0.02872038459777832, 0.028729343414306642, 0.028711904525756837, 0.02872319984436035, 0.028667104721069335, 0.02876032066345215, 0.02870662307739258, 0.028752031326293944, 0.02892857551574707, 0.0287457275390625, 0.028843551635742187, 0.02880988883972168, 0.02877129554748535, 0.028709344863891602, 0.0287379207611084, 0.028872735977172853, 0.028924928665161134, 0.02897977638244629, 0.029137504577636718, 0.029220672607421876, 0.02905824089050293, 0.028986175537109374, 0.028895360946655273, 0.028732959747314452, 0.028706592559814455, 0.028667455673217775, 0.028799808502197266, 0.02874387168884277, 0.028805343627929688, 0.02884940719604492, 0.028914207458496093, 0.029234399795532228, 0.028875551223754882, 0.02874387168884277, 0.028743488311767578, 0.028805152893066406, 0.028767391204833983, 0.02881990432739258, 0.028968448638916015, 0.02888172721862793, 0.028921920776367186, 0.028880447387695313, 0.028848575592041015, 0.028753183364868165, 0.028771360397338866, 0.028781728744506838, 0.030577407836914063, 0.029626367568969726, 0.02905023956298828, 0.028690240859985353, 0.028605247497558595, 0.028618335723876953, 0.02858345603942871, 0.02854092788696289, 0.028541120529174804, 0.028641408920288085, 0.02858451271057129, 0.028628992080688476, 0.028626623153686522, 0.028542911529541016, 0.028655391693115234, 0.028834400177001954, 0.029147136688232423, 0.028675743103027344, 0.028739936828613283, 0.02869171142578125, 0.02874448013305664, 0.028728736877441406, 0.02874220848083496, 0.02871839904785156, 0.028764928817749023, 0.028713983535766603, 0.028719968795776367, 0.028622943878173827, 0.02855740737915039, 0.028655519485473634, 0.02880512046813965, 0.029430784225463868, 0.028821535110473633, 0.028967008590698243, 0.029035392761230468, 0.029057024002075195, 0.02898054313659668, 0.029007808685302734, 0.028895999908447264, 0.028915712356567383, 0.028823551177978517, 0.028794591903686523, 0.02874163246154785, 0.028737823486328126, 0.028807039260864257, 0.028784767150878906, 0.028716928482055665, 0.028749952316284178, 0.028794879913330077, 0.028692480087280273, 0.028769472122192382, 0.028774528503417968, 0.028954399108886718, 0.028743743896484375, 0.029012960433959963, 0.028806880950927736, 0.028739744186401368, 0.028835840225219726, 0.028784576416015624, 0.028813119888305663, 0.028815616607666017, 0.02879283142089844, 0.028725248336791992, 0.030593952178955077, 0.029666879653930663, 0.029003488540649415, 0.028742271423339842, 0.028512479782104493, 0.02851171112060547, 0.028549184799194337, 0.02873788833618164, 0.028784255981445312, 0.02875164794921875, 0.02887548828125, 0.0287903995513916, 0.028780799865722656, 0.02874982452392578, 0.02874982452392578, 0.028705888748168946, 0.0287425594329834, 0.028738847732543947, 0.028797664642333985, 0.028907520294189453, 0.028778495788574218, 0.02873139190673828, 0.02877961540222168, 0.02874435234069824, 0.028806720733642578, 0.02895270347595215, 0.028800575256347657, 0.02876927947998047, 0.028827360153198242, 0.028879295349121092, 0.028856351852416993, 0.028955968856811523, 0.028903776168823243, 0.029568960189819336, 0.02915760040283203, 0.02908723258972168, 0.029053440093994142, 0.029060096740722657, 0.029025407791137697, 0.02904051208496094, 0.02901580810546875, 0.02898150444030762, 0.028868160247802734, 0.0290263671875, 0.02889971160888672, 0.028953855514526367, 0.028871423721313478, 0.028932096481323243, 0.02893519973754883, 0.028953088760375976, 0.028901439666748047, 0.028901792526245116, 0.028929407119750977, 0.028918399810791015, 0.028999584197998047, 0.029114463806152343, 0.028911808013916015, 0.028935583114624023, 0.028879072189331053, 0.028952224731445313, 0.02897769546508789, 0.02884422492980957, 0.02901100730895996, 0.03085094451904297, 0.029772287368774415, 0.02911884880065918, 0.028860416412353516, 0.028786687850952147, 0.028706464767456055, 0.028651456832885742, 0.028719520568847655, 0.02874163246154785, 0.028817407608032225, 0.0287554874420166, 0.02874361610412598, 0.028776384353637694, 0.02867897605895996, 0.02874959945678711, 0.02868230438232422, 0.028721216201782227, 0.028815231323242187, 0.02895462417602539, 0.02900480079650879, 0.028824703216552734, 0.028760223388671874, 0.028751392364501954, 0.028686527252197266, 0.028844127655029295, 0.028983455657958984, 0.0288656005859375, 0.02892870330810547, 0.02881926345825195, 0.028952768325805664, 0.028825408935546876, 0.028833663940429688, 0.02903481674194336, 0.029097471237182617, 0.029097663879394532, 0.02904863929748535, 0.02896691131591797, 0.028903839111328124, 0.02891961669921875, 0.02899843215942383, 0.028893184661865235, 0.028821504592895508, 0.02890713691711426, 0.02888742446899414, 0.0287457275390625, 0.028825599670410155, 0.02891302490234375, 0.028805952072143554, 0.02890150451660156, 0.028868288040161134, 0.02880102348327637, 0.0287903995513916, 0.029024639129638673, 0.02887641525268555, 0.02891542434692383, 0.028961599349975584, 0.028888927459716798, 0.029097984313964844, 0.028868608474731446, 0.028903423309326173, 0.029041791915893556, 0.028922752380371095, 0.028901632308959962, 0.030714591979980468, 0.029648000717163087, 0.029075872421264647, 0.028886655807495117, 0.028729440689086914, 0.028695552825927735, 0.028726911544799803, 0.02872902488708496, 0.02876153564453125, 0.028768543243408204, 0.028693376541137697, 0.028737152099609375, 0.028776351928710937, 0.028639167785644532, 0.028799327850341797, 0.028674079895019532, 0.028730911254882814, 0.02870524787902832, 0.028753440856933595, 0.028715551376342772, 0.028815391540527344, 0.02885843276977539, 0.028814912796020508, 0.02879747200012207, 0.029027999877929686, 0.028864608764648438, 0.02880886459350586, 0.028797279357910155, 0.028792032241821287, 0.02879280090332031, 0.02886079978942871, 0.028859935760498046, 0.028881824493408204, 0.028917760848999025, 0.02926313591003418, 0.029061855316162108, 0.029056768417358398, 0.028960639953613282, 0.029030784606933594, 0.02899715232849121, 0.028813791275024415, 0.028919807434082033, 0.028809215545654295, 0.028796096801757813, 0.02899795150756836, 0.028789247512817383, 0.028983327865600587, 0.028959808349609376, 0.02896784019470215, 0.028817407608032225, 0.028957984924316407, 0.02887343978881836, 0.028899328231811523, 0.028900928497314453, 0.029280832290649414, 0.028904800415039063, 0.028936256408691408, 0.02892608070373535, 0.028896799087524416, 0.02902931213378906, 0.028900447845458983, 0.028959520339965822, 0.029071104049682616, 0.030795743942260742, 0.02978019142150879, 0.029081375122070312, 0.028708864212036132, 0.02876438331604004, 0.028681024551391602, 0.028731679916381835, 0.028720928192138673, 0.028724128723144532, 0.028729055404663088, 0.028780799865722656, 0.028673152923583984, 0.028824480056762695, 0.02868751907348633, 0.02873619270324707, 0.02869660758972168, 0.028712671279907228, 0.02871548843383789, 0.028738943099975586, 0.028777023315429688, 0.028770303726196288, 0.028896480560302733, 0.028803871154785155, 0.02879897689819336, 0.028763551712036133, 0.0291549129486084, 0.028758495330810548, 0.02883404731750488, 0.02885865592956543, 0.02874982452392578, 0.028858367919921874, 0.028931615829467773, 0.029001792907714843, 0.029075872421264647, 0.029042688369750977, 0.02900105667114258, 0.02899193572998047, 0.029013919830322265, 0.029339967727661134, 0.02894220733642578, 0.02875200080871582, 0.028896896362304688, 0.0288439998626709, 0.028815263748168944, 0.02886092758178711, 0.028923904418945313, 0.028762111663818358, 0.028915552139282225, 0.02895894432067871, 0.028728256225585936, 0.028913951873779296, 0.028887775421142577, 0.028960639953613282, 0.028829471588134765, 0.028954656600952148, 0.028872415542602538, 0.028938720703125, 0.02891788864135742, 0.028932319641113282, 0.02882966423034668, 0.029035743713378907, 0.028971616744995116, 0.02885807991027832, 0.0308175048828125, 0.029647712707519532, 0.029142976760864258, 0.028788000106811523, 0.028797504425048828, 0.029034656524658205, 0.02894438362121582, 0.028645376205444335, 0.02871500778198242, 0.028604415893554686, 0.02869001579284668, 0.028695968627929686, 0.028744991302490235, 0.028663520812988282, 0.028657663345336915, 0.02855891227722168, 0.029085535049438477, 0.029118751525878905, 0.02866217613220215, 0.02873436737060547, 0.028682432174682616, 0.02910700798034668, 0.029087039947509767, 0.028707168579101563, 0.028788223266601562, 0.028746591567993165, 0.02869990348815918, 0.028713056564331055, 0.028719423294067382, 0.0287542724609375, 0.028735488891601563, 0.028747039794921873, 0.028809471130371092, 0.02895414352416992, 0.028978111267089844, 0.0289234561920166, 0.02882431983947754, 0.02889491271972656, 0.028823392868041992, 0.028789024353027343, 0.028915679931640625, 0.028835744857788087, 0.028684160232543946, 0.02876198387145996, 0.028762367248535155, 0.028730880737304686, 0.028708736419677736, 0.028756607055664064, 0.028758079528808593, 0.028676031112670898, 0.02879283142089844, 0.02877440071105957, 0.02877449607849121, 0.02871900749206543, 0.02883516883850098, 0.02883407974243164, 0.028976543426513672, 0.02878767967224121, 0.028833791732788085, 0.028694271087646484, 0.028782880783081055, 0.028914688110351562, 0.02878563117980957, 0.030646272659301758, 0.029595008850097658, 0.02903654479980469, 0.028760704040527343, 0.028604415893554686, 0.028506111145019532, 0.028635168075561525, 0.028770559310913085, 0.028714719772338866, 0.02867967987060547, 0.028690944671630858, 0.028563232421875, 0.028610847473144532, 0.028565023422241213, 0.028729759216308593, 0.02867571258544922, 0.028573631286621094, 0.02864975929260254, 0.028586143493652343, 0.02857164764404297, 0.02872425651550293, 0.028675039291381835, 0.028907520294189453, 0.029618175506591796, 0.028811103820800783, 0.02866102409362793, 0.028671871185302733, 0.02863747215270996, 0.028848575592041015, 0.028739871978759764, 0.028704767227172853, 0.02880499267578125, 0.02879302406311035, 0.028821439743041993, 0.028876800537109375, 0.0289751033782959, 0.028887231826782225, 0.02889299201965332, 0.02892812728881836, 0.02879270362854004, 0.028729343414306642, 0.02876380729675293, 0.02867030334472656, 0.028686656951904296, 0.028714208602905272, 0.02873788833618164, 0.028745023727416993, 0.028723552703857423, 0.028799455642700197, 0.028688383102416993, 0.02877408027648926, 0.028733024597167967, 0.028727584838867188, 0.028706335067749025, 0.028859296798706056, 0.028938175201416016, 0.028977216720581053, 0.029085695266723634, 0.028866336822509765, 0.028893407821655274, 0.02896294403076172, 0.02900099182128906, 0.028803647994995116]",tokens/s,34.642205083951,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 286, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 560.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 8.12 MiB is free. Process 21273 has 14.73 GiB memory in use. Of the allocated memory 14.62 GiB is allocated by PyTorch, and 1.67 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 608, in __init__ self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 400.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 316.12 MiB is free. Process 45031 has 14.43 GiB memory in use. Of the allocated memory 14.30 GiB is allocated by PyTorch, and 13.04 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 705, in __init__ self.model = XGLMModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 517, in __init__ self.layers = nn.ModuleList([XGLMDecoderLayer(config) for _ in range(config.num_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 517, in self.layers = nn.ModuleList([XGLMDecoderLayer(config) for _ in range(config.num_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 371, in __init__ self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 128.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 78.12 MiB is free. Process 133200 has 14.66 GiB memory in use. Of the allocated memory 14.54 GiB is allocated by PyTorch, and 12.56 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 705, in __init__ self.model = XGLMModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 517, in __init__ self.layers = nn.ModuleList([XGLMDecoderLayer(config) for _ in range(config.num_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 517, in self.layers = nn.ModuleList([XGLMDecoderLayer(config) for _ in range(config.num_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 351, in __init__ self.self_attn = XGLMAttention( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 219, in __init__ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 56.12 MiB is free. Process 135479 has 14.68 GiB memory in use. Of the allocated memory 14.57 GiB is allocated by PyTorch, and 4.97 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 268.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 180.12 MiB is free. Process 69219 has 14.56 GiB memory in use. Of the allocated memory 14.45 GiB is allocated by PyTorch, and 1.06 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 248, in __init__ self.model = DeciCoderModel(config) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 215, in __init__ self.layers = nn.ModuleList([DeciCoderDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 215, in self.layers = nn.ModuleList([DeciCoderDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 181, in __init__ self.self_attn = DeciCoderAttention(config=config) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 54, in __init__ self._init_rope() File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1729, in __getattr__ raise AttributeError(f""'{type(self).__name__}' object has no attribute '{name}'"") AttributeError: 'DeciCoderAttention' object has no attribute '_init_rope' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 614, in __init__ self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 271, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 142.12 MiB is free. Process 86871 has 14.60 GiB memory in use. Of the allocated memory 14.48 GiB is allocated by PyTorch, and 1.53 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 906, in __init__ self.model = InternLMModel(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in __init__ self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 547, in __init__ self.mlp = InternLMMLP( File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 275, in __init__ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 270.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 128.12 MiB is free. Process 147829 has 14.61 GiB memory in use. Of the allocated memory 14.48 GiB is allocated by PyTorch, and 17.60 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 219, in __init__ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.50 GiB. GPU 0 has a total capacity of 14.74 GiB of which 1.30 GiB is free. Process 89857 has 13.44 GiB memory in use. Of the allocated memory 13.33 GiB is allocated by PyTorch, and 1.86 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 582, in __init__ self.transformer = CodeGenModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 400, in __init__ self.h = nn.ModuleList([CodeGenBlock(config) for _ in range(config.n_layer)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 400, in self.h = nn.ModuleList([CodeGenBlock(config) for _ in range(config.n_layer)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 258, in __init__ self.mlp = CodeGenMLP(inner_dim, config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 237, in __init__ self.fc_out = nn.Linear(intermediate_size, embed_dim) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 576.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 480.12 MiB is free. Process 104370 has 14.27 GiB memory in use. Of the allocated memory 14.15 GiB is allocated by PyTorch, and 10.71 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt2,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 286, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 688.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 598.12 MiB is free. Process 171164 has 14.15 GiB memory in use. Of the allocated memory 14.04 GiB is allocated by PyTorch, and 1.75 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 288, in __init__ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 456.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 280.12 MiB is free. Process 168446 has 14.46 GiB memory in use. Of the allocated memory 14.35 GiB is allocated by PyTorch, and 3.19 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 172.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 80.12 MiB is free. Process 66254 has 14.66 GiB memory in use. Of the allocated memory 14.55 GiB is allocated by PyTorch, and 791.00 KiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-9b,google/recurrentgemma-9b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py"", line 790, in __init__ self.model = RecurrentGemmaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py"", line 660, in __init__ [RecurrentGemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py"", line 660, in [RecurrentGemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py"", line 490, in __init__ self.mlp_block = RecurrentGemmaMlp(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py"", line 473, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 192.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 36.12 MiB is free. Process 144699 has 14.70 GiB memory in use. Of the allocated memory 14.59 GiB is allocated by PyTorch, and 156.50 KiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 609, in __init__ self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 576.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 500.12 MiB is free. Process 37298 has 14.25 GiB memory in use. Of the allocated memory 14.13 GiB is allocated by PyTorch, and 8.58 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mixtral,mistralai/Mixtral-8x22B-v0.1,mistralai/Mixtral-8x22B-v0.1,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 689, in __init__ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 356, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 30.12 MiB is free. Process 19428 has 14.71 GiB memory in use. Of the allocated memory 14.51 GiB is allocated by PyTorch, and 85.33 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 959, in __init__ self.model = MistralModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 711, in __init__ [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 711, in [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 510, in __init__ self.mlp = MistralMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 150, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 224.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 170.12 MiB is free. Process 107276 has 14.57 GiB memory in use. Of the allocated memory 14.46 GiB is allocated by PyTorch, and 1.46 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,816.074752,1129.250816,0.0,734.0032,709.336064,s,1,7.43693310546875,7.43693310546875,0.0,7.43693310546875,7.43693310546875,7.43693310546875,7.43693310546875,[7.43693310546875],,kWh,5.201868145816964e-06,5.662632469932491e-07,1.980001584002411e-06,7.748132976812624e-06,,MB,1107.88608,1276.051456,0.0,870.31808,809.960448,s,15,0.25941091346740724,0.01729406089782715,0.0005297255663439621,0.01726335906982422,0.01760234909057617,0.01818601589202881,0.018896005973815917,"[0.019073503494262695, 0.01717180824279785, 0.01726335906982422, 0.017280704498291017, 0.0169836483001709, 0.017047456741333008, 0.01691372871398926, 0.01683955192565918, 0.017281055450439453, 0.01729737663269043, 0.0178056640625, 0.017280031204223632, 0.016884416580200196, 0.016996864318847657, 0.017291744232177733]",tokens/s,14802.769662512534,kWh,6.447960063649882e-07,7.107573282732315e-08,4.25537500105971e-07,1.1414092392982822e-06,tokens/kWh,224284149.0904561,MB,1117.888512,1311.70304,0.0,905.969664,809.963008,s,15,9.905081726074219,0.6603387817382812,0.011113331088490127,0.6602666015625,0.672424609375,0.6754632690429687,0.6802393334960937,"[0.6602666015625, 0.6636019897460937, 0.6598812255859375, 0.663210693359375, 0.6421433715820313, 0.6421513671875, 0.6425101318359375, 0.6600648803710938, 0.6729046630859375, 0.681433349609375, 0.6664047241210938, 0.6534988403320312, 0.6589554443359374, 0.6717045288085938, 0.6663499145507813]",tokens/s,95.40557323342162,kWh,1.8989165730301262e-05,2.0941903259328287e-06,8.994136702293818e-06,3.0077492758527917e-05,tokens/kWh,2094589.482766562,,s,945,9.89892097187043,0.010475048647481926,0.00034942214293159305,0.010455455780029297,0.010799897193908692,0.010900223731994629,0.011734079666137695,"[0.010524831771850585, 0.011044447898864745, 0.010804767608642579, 0.01053769588470459, 0.010745183944702148, 0.010670751571655273, 0.010538944244384766, 0.010553279876708984, 0.010522751808166505, 0.010623040199279786, 0.010565567970275878, 0.01033407974243164, 0.010340703964233398, 0.01020633602142334, 0.010228128433227538, 0.010248448371887207, 0.010231807708740234, 0.010229791641235352, 0.010223584175109863, 0.010192831993103028, 0.010149951934814452, 0.010299136161804199, 0.010492064476013184, 0.010332256317138673, 0.010460960388183593, 0.010344672203063964, 0.010338303565979003, 0.010264575958251953, 0.01027187156677246, 0.010599007606506347, 0.010914079666137695, 0.010866687774658204, 0.010795007705688477, 0.01064857578277588, 0.010570624351501464, 0.01064179229736328, 0.010612480163574219, 0.01053286361694336, 0.010628992080688477, 0.010574175834655761, 0.010753120422363281, 0.010563584327697753, 0.010381728172302247, 0.010374879837036133, 0.010424896240234375, 0.010231871604919434, 0.01022969627380371, 0.010226976394653321, 0.010394335746765137, 0.010491904258728027, 0.010414079666137695, 0.010389727592468262, 0.010287967681884766, 0.010316736221313476, 0.010220959663391113, 0.010297951698303222, 0.01044863986968994, 0.010514687538146973, 0.010532032012939454, 0.010435680389404296, 0.01058521556854248, 0.010692352294921876, 0.010808159828186035, 0.010562175750732422, 0.010714816093444825, 0.010645824432373047, 0.01053600025177002, 0.010519488334655762, 0.010887040138244628, 0.01085632038116455, 0.010617055892944337, 0.010618240356445312, 0.010597023963928223, 0.010751999855041505, 0.010502143859863282, 0.010500096321105956, 0.010448896408081054, 0.010335359573364258, 0.010203712463378907, 0.01036847972869873, 0.010305919647216798, 0.010455455780029297, 0.010528575897216797, 0.010365183830261231, 0.01032192039489746, 0.010554880142211913, 0.010589856147766114, 0.010404640197753907, 0.010297408103942871, 0.010327296257019043, 0.0102259521484375, 0.010539487838745117, 0.010960351943969727, 0.01083683204650879, 0.010840928077697754, 0.010965855598449707, 0.01082367992401123, 0.010553631782531738, 0.010542816162109375, 0.010512384414672851, 0.010647551536560058, 0.0106496000289917, 0.010687999725341797, 0.010473919868469237, 0.010450431823730469, 0.010472000122070313, 0.01069046401977539, 0.0107357120513916, 0.010489439964294434, 0.010465632438659668, 0.010470879554748536, 0.010446592330932617, 0.010420160293579101, 0.010240032196044921, 0.010281855583190919, 0.010358688354492187, 0.010215200424194337, 0.010230079650878906, 0.010329983711242675, 0.010254464149475097, 0.010201087951660156, 0.010233856201171876, 0.01031372833251953, 0.01070473575592041, 0.011079327583312988, 0.010897919654846192, 0.010456864356994628, 0.010522720336914062, 0.01052070426940918, 0.010590208053588868, 0.010569184303283692, 0.010629664421081543, 0.010823264122009277, 0.010660160064697265, 0.010504287719726562, 0.010473695755004883, 0.010469152450561523, 0.010438976287841796, 0.010337984085083008, 0.010372447967529296, 0.010510751724243164, 0.01049129581451416, 0.010369888305664062, 0.010210304260253907, 0.010255071640014648, 0.010192543983459472, 0.010182304382324219, 0.010142687797546387, 0.01010649585723877, 0.010172320365905761, 0.01024227237701416, 0.010199040412902831, 0.010194527626037597, 0.010254752159118653, 0.010178655624389648, 0.01028707218170166, 0.010684096336364746, 0.010882559776306153, 0.010722304344177246, 0.010713055610656738, 0.010653727531433106, 0.010561408042907715, 0.010559840202331543, 0.010671903610229492, 0.010686464309692383, 0.010729472160339355, 0.010584063529968261, 0.010483584403991698, 0.010444928169250488, 0.010520575523376464, 0.010780256271362304, 0.010393183708190918, 0.01028211212158203, 0.010316767692565919, 0.010276960372924806, 0.010239871978759765, 0.010244864463806153, 0.010446463584899902, 0.010401984214782715, 0.010434752464294433, 0.011067744255065917, 0.010900799751281737, 0.010617312431335449, 0.010598272323608398, 0.010414079666137695, 0.010274208068847657, 0.010244704246520997, 0.010274720191955567, 0.01090783977508545, 0.010463359832763672, 0.010580415725708009, 0.010575072288513183, 0.010600607872009277, 0.01046787166595459, 0.010377311706542968, 0.0103155517578125, 0.010293472290039062, 0.0102194242477417, 0.010303584098815918, 0.010467328071594239, 0.010647520065307618, 0.010472831726074218, 0.010435232162475586, 0.010393600463867187, 0.0104017915725708, 0.010264479637145996, 0.010223615646362304, 0.010192864418029786, 0.010254048347473144, 0.010555808067321776, 0.010784511566162109, 0.010635392189025879, 0.010571999549865723, 0.010763392448425294, 0.01072822380065918, 0.010698080062866211, 0.010678943634033202, 0.01067523193359375, 0.010715488433837891, 0.010613375663757325, 0.0107642879486084, 0.010505408287048339, 0.01054751968383789, 0.01053542423248291, 0.01043455982208252, 0.010528767585754394, 0.010347840309143066, 0.010326720237731934, 0.010420224189758302, 0.010548576354980469, 0.010561375617980958, 0.010494688034057616, 0.01040345573425293, 0.010531231880187989, 0.010448479652404785, 0.010158559799194337, 0.010239999771118164, 0.01073971176147461, 0.010825568199157715, 0.010649760246276856, 0.010462271690368652, 0.010442815780639648, 0.01073036766052246, 0.010695679664611817, 0.011336095809936523, 0.010687071800231934, 0.010659839630126953, 0.010616064071655273, 0.010724096298217774, 0.010569567680358887, 0.010330240249633789, 0.010316991806030273, 0.010115008354187011, 0.01014742374420166, 0.010104384422302246, 0.01036137580871582, 0.010434464454650879, 0.010238431930541992, 0.010141695976257324, 0.010199007987976074, 0.010194623947143554, 0.010278528213500976, 0.0105315523147583, 0.010168319702148437, 0.01021350383758545, 0.010499839782714843, 0.010750080108642578, 0.010491904258728027, 0.010308735847473145, 0.01015078353881836, 0.010141823768615723, 0.010326047897338868, 0.010106752395629883, 0.010203104019165039, 0.010205183982849121, 0.010166272163391114, 0.010172384262084961, 0.010190688133239745, 0.010260416030883788, 0.010211584091186523, 0.010395648002624512, 0.010280960083007813, 0.010286272048950195, 0.010115424156188964, 0.010086496353149415, 0.010113311767578124, 0.010067999839782715, 0.010129728317260743, 0.010073311805725097, 0.010119711875915528, 0.010057056427001953, 0.010066592216491699, 0.010179903984069824, 0.01022156810760498, 0.010140352249145508, 0.010149375915527344, 0.010062335968017578, 0.010110943794250489, 0.010053664207458497, 0.010131456375122071, 0.010143744468688964, 0.010071136474609376, 0.01020406436920166, 0.010208992004394532, 0.010132800102233887, 0.010114015579223633, 0.010153056144714356, 0.010087455749511719, 0.010112192153930664, 0.010077887535095215, 0.010138463973999024, 0.010086560249328613, 0.010093791961669922, 0.01004419231414795, 0.010070015907287597, 0.010059071540832519, 0.010023776054382325, 0.0101212158203125, 0.010085791587829589, 0.010199647903442383, 0.01008358383178711, 0.010132224082946777, 0.010192895889282226, 0.010099871635437012, 0.01010364818572998, 0.010116671562194824, 0.010193344116210937, 0.010172160148620605, 0.010232288360595703, 0.01023363208770752, 0.01013759994506836, 0.010061823844909668, 0.01012940788269043, 0.010045632362365723, 0.010098496437072753, 0.01005568027496338, 0.010137727737426758, 0.010087583541870117, 0.01010694408416748, 0.010085023880004883, 0.010033056259155274, 0.01009059238433838, 0.010097824096679687, 0.010170623779296875, 0.010101344108581543, 0.011016192436218262, 0.010645503997802735, 0.011602016448974609, 0.01024300765991211, 0.010152607917785645, 0.010113632202148438, 0.010464991569519043, 0.010153984069824219, 0.010180607795715332, 0.010149888038635254, 0.010158080101013184, 0.010202752113342286, 0.01026460838317871, 0.010336607933044433, 0.010225664138793946, 0.010185888290405273, 0.010113471984863282, 0.010113151550292968, 0.01013584041595459, 0.010145792007446289, 0.010082304000854492, 0.010145792007446289, 0.010085536003112792, 0.010154784202575684, 0.010350655555725098, 0.0101396484375, 0.010178720474243164, 0.010102527618408203, 0.010111071586608887, 0.010062975883483887, 0.010122112274169922, 0.01007414436340332, 0.010182623863220214, 0.010059359550476075, 0.01010483169555664, 0.010145792007446289, 0.01011302375793457, 0.010119168281555176, 0.010118783950805664, 0.010121600151062012, 0.010090496063232422, 0.010106880187988282, 0.010028127670288087, 0.010137760162353515, 0.01006492805480957, 0.010145376205444336, 0.010045696258544921, 0.010121088027954101, 0.010062047958374024, 0.010114080429077148, 0.010086688041687011, 0.010237631797790527, 0.010088640213012695, 0.01011193561553955, 0.010112671852111817, 0.010090496063232422, 0.010108832359313966, 0.010100640296936036, 0.010115263938903808, 0.010174464225769043, 0.010196800231933595, 0.014173919677734376, 0.010813568115234375, 0.010235456466674805, 0.01010153579711914, 0.010254336357116698, 0.010117119789123535, 0.01011302375793457, 0.010077919960021973, 0.010101023674011231, 0.010130463600158691, 0.010134495735168458, 0.010114720344543457, 0.010109215736389161, 0.01010044765472412, 0.010133855819702149, 0.010116191864013671, 0.01012009620666504, 0.010112480163574218, 0.010107423782348633, 0.010076160430908204, 0.010110112190246582, 0.010097503662109375, 0.010089792251586915, 0.0100765438079834, 0.010096960067749024, 0.010143967628479003, 0.010171296119689942, 0.010248255729675294, 0.010168448448181152, 0.010164928436279298, 0.010136608123779298, 0.010064607620239257, 0.010115103721618652, 0.01011734390258789, 0.010076383590698242, 0.01005452823638916, 0.010086400032043457, 0.010102687835693359, 0.01017369556427002, 0.010133824348449706, 0.010314271926879883, 0.010141695976257324, 0.01011302375793457, 0.010123135566711426, 0.01010912036895752, 0.010148927688598633, 0.01013644790649414, 0.010188672065734863, 0.010110783576965331, 0.010139967918395996, 0.010077695846557617, 0.010117664337158203, 0.010153951644897461, 0.010141695976257324, 0.010138879776000977, 0.010130080223083496, 0.010384575843811035, 0.010146656036376954, 0.01031174373626709, 0.010168160438537598, 0.010154144287109375, 0.010094112396240234, 0.010371552467346192, 0.010589664459228515, 0.010629664421081543, 0.010711039543151855, 0.01098134422302246, 0.010649632453918458, 0.010754048347473144, 0.01072332763671875, 0.01067580795288086, 0.010750368118286132, 0.010671327590942383, 0.010705696105957032, 0.010974559783935547, 0.010809856414794922, 0.010791071891784668, 0.010690560340881347, 0.01093120002746582, 0.01084006404876709, 0.010871135711669921, 0.010869279861450195, 0.01081603240966797, 0.01072208023071289, 0.010687264442443847, 0.010685855865478516, 0.010637120246887207, 0.010606816291809082, 0.010611295700073242, 0.010577119827270508, 0.01043507194519043, 0.010393280029296875, 0.010554080009460448, 0.010831392288208008, 0.010811648368835448, 0.010841664314270019, 0.010687135696411132, 0.010641280174255372, 0.010473440170288086, 0.01173094367980957, 0.010421728134155274, 0.010420767784118653, 0.010506239891052246, 0.010620896339416503, 0.010629152297973633, 0.010471424102783204, 0.010521856307983399, 0.010470144271850586, 0.010674176216125488, 0.01075814437866211, 0.010626079559326172, 0.010657024383544923, 0.010755807876586913, 0.010580032348632813, 0.010526656150817871, 0.01061580753326416, 0.010705727577209473, 0.01042198371887207, 0.010441184043884277, 0.01049180793762207, 0.010648768424987793, 0.010657952308654786, 0.01076095962524414, 0.010848256111145019, 0.010907487869262695, 0.01077286434173584, 0.010581791877746582, 0.01063526439666748, 0.01073523235321045, 0.010561920166015626, 0.01054319953918457, 0.010606399536132812, 0.01075823974609375, 0.01073151969909668, 0.010825728416442871, 0.010672127723693848, 0.010721280097961425, 0.010612640380859375, 0.011736543655395507, 0.010707584381103516, 0.010795007705688477, 0.01075609588623047, 0.010532896041870117, 0.010577792167663575, 0.01058137607574463, 0.010705632209777832, 0.01064252758026123, 0.010522815704345703, 0.010433247566223144, 0.010495776176452637, 0.010909536361694335, 0.010805631637573242, 0.010820799827575684, 0.010730175971984864, 0.010681728363037109, 0.010714879989624023, 0.010604960441589355, 0.010606847763061523, 0.01059670352935791, 0.010636832237243652, 0.010678367614746094, 0.010394240379333496, 0.010662079811096192, 0.010668031692504883, 0.010630847930908204, 0.010744031906127929, 0.010736736297607422, 0.010791935920715333, 0.010707200050354004, 0.010648736000061035, 0.010588768005371094, 0.010800959587097168, 0.010748255729675292, 0.010786656379699708, 0.010704319953918457, 0.011899359703063965, 0.01069257640838623, 0.010632896423339843, 0.010624768257141114, 0.010676480293273926, 0.010631232261657715, 0.010627455711364746, 0.01076633644104004, 0.010704895973205567, 0.010751711845397948, 0.010864928245544433, 0.01070899200439453, 0.010693920135498048, 0.01059008026123047, 0.010574687957763671, 0.010579968452453613, 0.011530240058898926, 0.011794783592224122, 0.011101856231689453, 0.011558879852294921, 0.010742815971374511, 0.010646528244018554, 0.010691807746887208, 0.010523424148559571, 0.010675328254699707, 0.0106561279296875, 0.010590656280517578, 0.010953151702880859, 0.010806912422180176, 0.01074176025390625, 0.010696703910827637, 0.010602335929870605, 0.010631327629089355, 0.010792960166931152, 0.010727423667907715, 0.010620800018310547, 0.01065334415435791, 0.010861023902893067, 0.010798303604125977, 0.01062377643585205, 0.010659775733947753, 0.010749792098999024, 0.010733792304992676, 0.010757632255554199, 0.01066006374359131, 0.010600959777832031, 0.011044639587402344, 0.012755200386047364, 0.01128867244720459, 0.010575231552124023, 0.01075868797302246, 0.010573823928833008, 0.01056761646270752, 0.010555392265319824, 0.01083193588256836, 0.010665023803710937, 0.010771391868591308, 0.010734720230102539, 0.010641280174255372, 0.010673151969909669, 0.010705120086669922, 0.010657343864440918, 0.01073583984375, 0.011132927894592285, 0.010823904037475586, 0.010889344215393067, 0.01096992015838623, 0.01076921558380127, 0.010764320373535157, 0.010853568077087402, 0.010759296417236329, 0.010770079612731933, 0.010720352172851562, 0.010718144416809083, 0.010672127723693848, 0.010829824447631836, 0.010696703910827637, 0.010622976303100586, 0.01077222442626953, 0.0107010555267334, 0.010629119873046875, 0.01061513614654541, 0.010712415695190429, 0.010643136024475098, 0.010446623802185058, 0.010197855949401856, 0.010129376411437989, 0.010164256095886231, 0.010182592391967773, 0.010154047966003417, 0.01011302375793457, 0.01022150421142578, 0.010141119956970215, 0.010162816047668458, 0.010215392112731933, 0.010086400032043457, 0.01017039966583252, 0.010590208053588868, 0.010972543716430664, 0.01087551975250244, 0.010643072128295898, 0.01056982421875, 0.01044099235534668, 0.01039731216430664, 0.010405920028686523, 0.01031935977935791, 0.010574687957763671, 0.010601696014404296, 0.010570528030395508, 0.0104017915725708, 0.010288415908813476, 0.010421088218688965, 0.010324000358581543, 0.01019878387451172, 0.0101048641204834, 0.010082304000854492, 0.010172160148620605, 0.010154399871826172, 0.010116959571838379, 0.010460543632507324, 0.010533056259155273, 0.01019545555114746, 0.010264255523681641, 0.010133760452270508, 0.01021951961517334, 0.010129695892333984, 0.010540767669677735, 0.01084620761871338, 0.010762240409851074, 0.010758272171020508, 0.01063481616973877, 0.010654239654541016, 0.010477343559265136, 0.01042841625213623, 0.010406144142150879, 0.010641375541687011, 0.010796832084655763, 0.010391551971435547, 0.010272543907165527, 0.010252511978149415, 0.010239232063293456, 0.01032374382019043, 0.01047651195526123, 0.010120512008666992, 0.010106559753417968, 0.010202112197875977, 0.010207232475280761, 0.010145440101623535, 0.01022339153289795, 0.010172991752624512, 0.010170368194580079, 0.010204959869384765, 0.010128671646118165, 0.010195903778076172, 0.010168319702148437, 0.010131391525268554, 0.010432576179504395, 0.010975232124328613, 0.011100128173828125, 0.010866720199584961, 0.010584063529968261, 0.010510335922241211, 0.010457375526428222, 0.010372832298278808, 0.010381312370300292, 0.010571167945861817, 0.010480223655700683, 0.01040505599975586, 0.010424192428588868, 0.010675135612487794, 0.01036291217803955, 0.01009660816192627, 0.010163264274597168, 0.010077119827270508, 0.010135552406311036, 0.010233792304992675, 0.010139360427856445, 0.010136896133422852, 0.010234848022460937, 0.010245696067810058, 0.010181056022644044, 0.010221152305603028, 0.010123680114746094, 0.010196864128112793, 0.01038144016265869, 0.010864416122436523, 0.010905823707580566, 0.010645503997802735, 0.010544639587402344, 0.010598655700683593, 0.010510592460632325, 0.010475520133972169, 0.010491519927978516, 0.010576255798339844, 0.010743807792663575, 0.010665984153747558, 0.010717503547668457, 0.010760064125061036, 0.010566656112670898, 0.010443584442138672, 0.010356736183166505, 0.010301440238952637, 0.010225664138793946, 0.010192447662353516, 0.010150336265563964, 0.010269696235656739, 0.010109951972961426, 0.010159296035766601, 0.010224448204040528, 0.010354432106018066, 0.010313088417053223, 0.010244864463806153, 0.0102457275390625, 0.010340736389160157, 0.010802720069885254, 0.01071769618988037, 0.011051136016845703, 0.010731103897094727, 0.010645376205444337, 0.010532928466796874, 0.010481984138488769, 0.010473183631896973, 0.010508735656738282, 0.010599455833435058, 0.010515423774719238, 0.010751999855041505, 0.01067625617980957, 0.010505887985229492, 0.010448448181152344, 0.010431232452392579, 0.010364128112792968, 0.010410335540771485, 0.010445247650146485, 0.010391136169433594, 0.010615200042724609, 0.010727392196655274, 0.01039686393737793, 0.01032192039489746, 0.01022163200378418, 0.010274815559387206, 0.010340224266052246, 0.010618176460266113, 0.010920255661010743, 0.010893376350402832, 0.010772352218627929, 0.010641599655151367, 0.010688032150268555, 0.010664799690246581, 0.010559488296508789, 0.010528191566467286, 0.010451519966125488, 0.010606880187988282, 0.010845919609069825, 0.011370368003845215, 0.01092416000366211, 0.013450783729553223, 0.011151840209960937, 0.010439807891845704, 0.010486656188964844, 0.010284704208374023, 0.01028326416015625, 0.010338624000549317, 0.010235487937927246, 0.010211359977722169, 0.010193056106567382, 0.010424063682556153, 0.010368895530700684, 0.012419455528259278, 0.012228608131408691, 0.01057151985168457, 0.01073305606842041, 0.011157440185546876, 0.010847040176391601, 0.01073971176147461, 0.010694656372070312, 0.01061888027191162, 0.010748991966247559, 0.01073971176147461, 0.010601344108581543, 0.010803263664245605, 0.010754048347473144, 0.010724639892578125, 0.010717920303344727, 0.01066921615600586, 0.010721983909606934, 0.010490015983581543, 0.010389504432678222, 0.010297344207763673, 0.01030288028717041, 0.01024403190612793, 0.010357151985168457, 0.010244352340698242, 0.010182656288146973, 0.010291199684143066, 0.010338303565979003, 0.01028006362915039, 0.010279808044433594, 0.010235424041748048, 0.010203616142272949, 0.010436415672302246, 0.010874943733215332, 0.010575743675231933, 0.010669407844543457, 0.010572671890258789, 0.01062502384185791, 0.010559488296508789, 0.010422271728515625, 0.01053273582458496, 0.010489184379577637, 0.010504639625549317, 0.010652000427246094, 0.010757535934448241, 0.010534496307373046, 0.010414560317993165, 0.010295136451721192, 0.010309408187866211, 0.010205280303955079, 0.010306015968322754, 0.010328415870666505, 0.010364928245544434, 0.01040998363494873, 0.01042636775970459, 0.010424320220947265, 0.010362879753112793, 0.010315296173095703, 0.010355199813842773, 0.010469344139099121, 0.01095411205291748, 0.010895359992980956, 0.010807935714721679, 0.010749888420104981, 0.010729408264160157, 0.010608768463134766, 0.011374591827392578, 0.011780096054077148, 0.011974143981933593, 0.011467007637023926, 0.010658047676086425, 0.010682271957397462, 0.010715231895446778, 0.010476608276367188, 0.010235936164855956, 0.010195872306823731, 0.010436448097229004, 0.010171584129333496, 0.01013974380493164, 0.010244992256164551, 0.010225664138793946, 0.010465279579162597, 0.010340352058410645, 0.01023369598388672, 0.01022480010986328, 0.010238975524902343, 0.010270912170410157, 0.010480480194091797, 0.010795904159545898, 0.010854496002197265, 0.010772480010986327, 0.010704895973205567, 0.010529952049255371, 0.010611552238464356, 0.010553343772888184, 0.01067244815826416, 0.010739392280578613]",tokens/s,95.46495044110252,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 608, in __init__ self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 14.12 MiB is free. Process 51143 has 14.72 GiB memory in use. Of the allocated memory 14.61 GiB is allocated by PyTorch, and 4.70 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 890, in __init__ self.model = OPTModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 822, in __init__ self.decoder = OPTDecoder(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in __init__ self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 382, in __init__ self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=config.enable_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 400.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 348.12 MiB is free. Process 122082 has 14.40 GiB memory in use. Of the allocated memory 14.28 GiB is allocated by PyTorch, and 3.01 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 890, in __init__ self.model = OPTModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 822, in __init__ self.decoder = OPTDecoder(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in __init__ self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 382, in __init__ self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=config.enable_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 72.12 MiB is free. Process 119517 has 14.67 GiB memory in use. Of the allocated memory 14.55 GiB is allocated by PyTorch, and 2.19 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,816.734208,11724.06272,0.0,11328.815104,11314.254848,s,1,7.628697265625,7.628697265625,0.0,7.628697265625,7.628697265625,7.628697265625,7.628697265625,[7.628697265625],,kWh,1.2234974120830581e-05,1.3241086368013376e-06,4.526114731999431e-06,1.808519748963135e-05,,MB,1110.388736,12177.047552,0.0,11771.314176,11713.906688,s,10,4.138964324951171,0.4138964324951172,0.012396790772144301,0.41192939758300784,0.41933658142089847,0.4330530258178711,0.44402618133544924,"[0.3938546142578125, 0.4104230041503906, 0.41178872680664064, 0.412070068359375, 0.41628848266601565, 0.44676947021484376, 0.4114878845214844, 0.41365005493164064, 0.4091081237792969, 0.4135238952636719]",tokens/s,618.5122168285905,kWh,1.1924313853666414e-05,1.315038087562178e-06,7.905161879679933e-06,2.1144513820908526e-05,tokens/kWh,12107159.434749316,MB,1115.181056,12281.905152,0.0,11876.171776,11829.476864,s,10,33.361275634765626,3.3361275634765626,0.0045100151832228605,3.3370075683593754,3.341362548828125,3.341722900390625,3.342011181640625,"[3.32912841796875, 3.328656982421875, 3.333444091796875, 3.3338837890625, 3.336612060546875, 3.341282470703125, 3.342083251953125, 3.34015478515625, 3.337403076171875, 3.338626708984375]",tokens/s,18.884169984899497,kWh,9.75254553630005e-05,1.075733135902759e-05,6.48060074003208e-05,0.0001730887941223489,tokens/kWh,363975.0355847303,,s,630,33.357723354339605,0.052948767229110474,0.0002874159301043155,0.05293332862854004,0.05319623527526856,0.0533000020980835,0.05435796005249024,"[0.05449523162841797, 0.05295654296875, 0.052574207305908206, 0.052775550842285156, 0.05268889617919922, 0.05261721420288086, 0.052590591430664066, 0.052760574340820314, 0.05286092758178711, 0.05254553604125976, 0.05263872146606445, 0.05270220947265625, 0.052514816284179686, 0.053272575378417966, 0.05257830429077148, 0.0526110725402832, 0.05279129409790039, 0.05256796646118164, 0.05268489456176758, 0.05286300659179687, 0.052727935791015625, 0.05266006469726563, 0.052674560546875, 0.05264179229736328, 0.05286707305908203, 0.05263894271850586, 0.05263030242919922, 0.05264384078979492, 0.05286431884765625, 0.05262188720703125, 0.05265216064453125, 0.05264147186279297, 0.05304761505126953, 0.05284659194946289, 0.05277692794799805, 0.05289782333374023, 0.053129505157470704, 0.053010143280029294, 0.05290595245361328, 0.052932640075683594, 0.05292031860351563, 0.052961280822753906, 0.052879009246826175, 0.0529466552734375, 0.05275302505493164, 0.05283955383300781, 0.05302687835693359, 0.05290655899047852, 0.052933120727539064, 0.05282758331298828, 0.05286739349365235, 0.052843807220458984, 0.05286563110351562, 0.05288569641113281, 0.05292787170410156, 0.053242431640625, 0.0530145263671875, 0.052994014739990235, 0.05305347061157226, 0.052934783935546875, 0.052776161193847655, 0.052791969299316406, 0.05273964691162109, 0.05425999832153321, 0.053138656616210936, 0.05272809600830078, 0.05259724807739258, 0.052596736907958984, 0.05264384078979492, 0.052506622314453126, 0.052512767791748044, 0.05249039840698242, 0.05251055908203125, 0.052279296875, 0.052364768981933596, 0.05240067291259766, 0.05249331283569336, 0.052519935607910156, 0.052959232330322265, 0.05269708633422852, 0.052795520782470705, 0.052938816070556644, 0.05279520034790039, 0.05285059356689453, 0.052672607421875, 0.05256425476074219, 0.05253817749023437, 0.05256489562988281, 0.05248758316040039, 0.052642208099365234, 0.052571552276611325, 0.052666782379150394, 0.05269952011108398, 0.05268431854248047, 0.05276924896240234, 0.05285887908935547, 0.05284796905517578, 0.05291689682006836, 0.05286444854736328, 0.05307980728149414, 0.053176513671875, 0.05314179229736328, 0.05315545654296875, 0.05297430419921875, 0.053016574859619144, 0.052796798706054686, 0.05311065673828125, 0.05283712005615234, 0.052897342681884764, 0.05290233612060547, 0.05296332931518555, 0.052908031463623044, 0.05278310394287109, 0.052877311706542966, 0.05290598297119141, 0.05301273727416992, 0.053051136016845704, 0.05294102478027344, 0.05294163131713867, 0.05317116928100586, 0.05315129470825195, 0.053047969818115236, 0.05302463912963867, 0.053126785278320314, 0.05285823822021484, 0.05303968048095703, 0.0543590087890625, 0.05301164627075195, 0.052644577026367184, 0.05308015823364258, 0.0527011833190918, 0.052623329162597654, 0.052770206451416016, 0.052587135314941406, 0.053018112182617184, 0.05252761459350586, 0.052744094848632815, 0.052873119354248044, 0.05249862289428711, 0.052628833770751955, 0.05253936004638672, 0.052525760650634766, 0.052580352783203124, 0.05267388916015625, 0.052896415710449216, 0.05284067153930664, 0.05284636688232422, 0.05272780990600586, 0.05268889617919922, 0.052726879119873046, 0.05274252700805664, 0.0527611198425293, 0.052729854583740236, 0.05286905670166016, 0.05272377777099609, 0.05291136169433594, 0.052681056976318356, 0.05271318435668945, 0.05289849472045898, 0.05283430480957031, 0.05288889694213867, 0.05300009536743164, 0.05336483383178711, 0.05304595184326172, 0.05299100875854492, 0.053062175750732424, 0.05320684814453125, 0.05295577621459961, 0.053022048950195313, 0.05306435012817383, 0.053063617706298825, 0.05315795135498047, 0.052985855102539066, 0.052850719451904296, 0.053002208709716794, 0.05281923294067383, 0.05288832092285156, 0.05302054214477539, 0.053004383087158206, 0.05290313720703125, 0.05328108978271484, 0.05324233627319336, 0.05313702392578125, 0.05308659362792969, 0.05312470245361328, 0.053176734924316404, 0.052942848205566405, 0.05286092758178711, 0.05295513534545898, 0.05454188919067383, 0.053394176483154296, 0.05294873428344726, 0.052836353302001954, 0.05268204879760742, 0.05265478515625, 0.052647232055664066, 0.05248684692382812, 0.052467041015625, 0.052533920288085935, 0.05246156692504883, 0.05264998245239258, 0.052601119995117185, 0.052663230895996095, 0.05264652633666992, 0.052805728912353515, 0.052674625396728514, 0.052724769592285156, 0.05294588851928711, 0.052881118774414065, 0.0528175048828125, 0.05274425506591797, 0.05264857482910156, 0.052678913116455076, 0.052829856872558596, 0.0527913932800293, 0.05304524612426758, 0.05282185745239258, 0.05275459289550781, 0.052676929473876956, 0.05279097747802734, 0.05279769515991211, 0.053217025756835935, 0.05315379333496094, 0.052918270111083986, 0.052928703308105465, 0.05301331329345703, 0.05308528137207031, 0.05304883193969727, 0.05315615844726562, 0.05302076721191406, 0.05304524612426758, 0.053034366607666014, 0.052807872772216796, 0.053158336639404294, 0.052969406127929684, 0.05276883316040039, 0.05291417694091797, 0.05308415985107422, 0.052934337615966796, 0.05323955154418945, 0.052935230255126954, 0.05302614212036133, 0.05301942443847656, 0.05293388748168945, 0.05304899215698242, 0.05309539031982422, 0.05323980712890625, 0.053096256256103515, 0.053026912689208984, 0.05302076721191406, 0.052951038360595705, 0.05299507141113281, 0.054322879791259764, 0.053108993530273436, 0.0527988166809082, 0.05276755142211914, 0.052744190216064454, 0.052787200927734375, 0.052746238708496096, 0.05267011260986328, 0.05267027282714844, 0.052797985076904294, 0.05277286529541016, 0.05267660903930664, 0.05262556838989258, 0.05291196823120117, 0.053101566314697264, 0.0528397102355957, 0.05277193450927734, 0.05304998397827149, 0.052967422485351565, 0.05288748931884766, 0.052827903747558594, 0.05266873550415039, 0.05274214553833008, 0.05271254348754883, 0.052771007537841794, 0.052775646209716795, 0.052760513305664065, 0.05277907180786133, 0.052756191253662106, 0.052717376708984375, 0.052932735443115234, 0.05274857711791992, 0.05292448043823242, 0.05289984130859375, 0.053100193023681644, 0.05303443145751953, 0.05325417709350586, 0.05317695999145508, 0.05317145538330078, 0.05303807830810547, 0.053071998596191404, 0.05301615905761719, 0.05297612762451172, 0.05296310424804687, 0.052950336456298826, 0.052935264587402345, 0.05285472106933594, 0.05301283264160156, 0.05297107315063477, 0.053096736907958984, 0.05312851333618164, 0.053432544708251956, 0.053127616882324216, 0.053065185546875, 0.05307756805419922, 0.05319164657592773, 0.053147647857666014, 0.053272575378417966, 0.05306067276000977, 0.05295756912231445, 0.05308883285522461, 0.05302272033691406, 0.053008384704589843, 0.05435539245605469, 0.05310726547241211, 0.052893695831298826, 0.05260003280639648, 0.05272182464599609, 0.052859519958496096, 0.05261280059814453, 0.052625728607177735, 0.05271347045898438, 0.052836353302001954, 0.052636768341064455, 0.0527184944152832, 0.05282428741455078, 0.052754207611083986, 0.05265167999267578, 0.05271078491210938, 0.05269631958007812, 0.052975582122802733, 0.05314534378051758, 0.05326816177368164, 0.053037376403808595, 0.05290003204345703, 0.052989761352539064, 0.052978721618652344, 0.05293769454956055, 0.05279743957519531, 0.05280883026123047, 0.052851585388183596, 0.05282815933227539, 0.05282979202270508, 0.05305795288085938, 0.05369036865234375, 0.05301862335205078, 0.05299168014526367, 0.053184833526611325, 0.05325174331665039, 0.053217632293701175, 0.05322751998901367, 0.05312694549560547, 0.053225406646728514, 0.053163936614990234, 0.053221279144287106, 0.05307644653320313, 0.05311862564086914, 0.05307625579833984, 0.05315798568725586, 0.053006591796875, 0.053118686676025394, 0.05322099304199219, 0.05302924728393555, 0.05313945770263672, 0.053149696350097655, 0.05334220886230469, 0.0531328010559082, 0.05302924728393555, 0.05315724945068359, 0.05311884689331055, 0.05330614471435547, 0.053188545227050785, 0.05329321670532226, 0.05298128128051758, 0.053026302337646485, 0.05317731094360351, 0.054775169372558594, 0.05361151885986328, 0.053065727233886716, 0.053114879608154295, 0.05275804901123047, 0.05285116958618164, 0.05283430480957031, 0.05305344009399414, 0.05305344009399414, 0.05288345718383789, 0.0526541748046875, 0.052845951080322265, 0.052634143829345705, 0.052735774993896485, 0.05278332901000977, 0.05283225631713867, 0.05274009704589844, 0.05286502456665039, 0.053272575378417966, 0.053026817321777345, 0.05311078262329102, 0.05280495834350586, 0.052814495086669924, 0.05266470336914063, 0.05283187103271485, 0.052870529174804684, 0.052907745361328126, 0.05280649566650391, 0.05270044708251953, 0.05274294281005859, 0.05286656188964844, 0.0529224967956543, 0.05287155151367187, 0.05289984130859375, 0.05300223922729492, 0.053187679290771485, 0.05316009521484375, 0.0532487678527832, 0.05308415985107422, 0.05328051376342773, 0.05356364822387695, 0.05313945770263672, 0.053122814178466794, 0.053139713287353514, 0.053020286560058597, 0.05316960144042969, 0.05304825592041015, 0.053133312225341796, 0.05303500747680664, 0.053050559997558595, 0.053001022338867186, 0.053184513092041016, 0.05311888122558594, 0.05335868835449219, 0.0530145263671875, 0.05319007873535156, 0.05333871841430664, 0.05332783889770508, 0.05326233673095703, 0.05321113586425781, 0.05290972900390625, 0.05302921676635742, 0.05315910339355469, 0.054681598663330076, 0.05352470397949219, 0.052924190521240234, 0.053067424774169925, 0.05276704025268555, 0.05282819366455078, 0.05284659194946289, 0.05280767822265625, 0.05286659240722656, 0.05286284637451172, 0.05291251373291016, 0.05287913513183594, 0.05276102447509766, 0.05289318466186523, 0.05283670425415039, 0.05271567916870117, 0.05286297607421875, 0.05287740707397461, 0.0531959342956543, 0.05315068817138672, 0.05305545425415039, 0.052853790283203125, 0.052879199981689454, 0.05281273651123047, 0.05286902236938477, 0.05294873428344726, 0.05327289581298828, 0.05294083023071289, 0.05274995040893555, 0.052785537719726563, 0.05280972671508789, 0.05282928085327149, 0.05285766220092773, 0.05300028610229492, 0.05297151947021484, 0.05310259246826172, 0.05317631912231445, 0.05320073699951172, 0.05334956741333008, 0.05310927963256836, 0.052971969604492186, 0.05305487823486328, 0.052988800048828125, 0.05301353454589844, 0.05306671905517578, 0.05293353652954102, 0.05291455841064453, 0.052894142150878905, 0.05310787200927734, 0.05296774291992187, 0.0530560302734375, 0.053022270202636716, 0.05307436752319336, 0.05304844665527344, 0.05304601669311523, 0.05312217712402344, 0.053063934326171874, 0.0532938232421875, 0.0531346549987793, 0.05330505752563477, 0.05294947052001953, 0.05294742584228516, 0.052987934112548825, 0.05445257568359375, 0.05312307357788086, 0.05288473510742187, 0.05292047882080078, 0.052684993743896485, 0.05282656097412109, 0.05285254287719727, 0.052949153900146484, 0.0526376953125, 0.0526827507019043, 0.052685920715332034, 0.05293967819213867, 0.05280924987792969, 0.053345855712890626, 0.05276671981811523, 0.0529552001953125, 0.05270937728881836, 0.05282902526855469, 0.05302864074707031, 0.05301065444946289, 0.05296236801147461, 0.052706241607666016, 0.052698368072509764, 0.05262124633789062, 0.052783935546875, 0.052802623748779295, 0.05273491287231445, 0.05269094467163086, 0.05266636657714844, 0.05268479919433594, 0.05273369598388672, 0.052754688262939456, 0.05284044647216797, 0.052879070281982424, 0.05294291305541992, 0.053075489044189454, 0.053193119049072264, 0.0531827507019043, 0.05305567932128906, 0.05306553649902344, 0.05302272033691406, 0.05306924819946289, 0.05293952178955078, 0.05286614227294922, 0.05294768142700195, 0.05297356796264648, 0.0529409294128418, 0.05305740737915039, 0.05298591995239258, 0.0529788818359375, 0.052947711944580075, 0.05308121490478516, 0.053109630584716794, 0.05308755111694336, 0.05322208023071289, 0.05361891174316406, 0.05335631942749024, 0.05327193450927734, 0.05332380676269531, 0.05313187026977539, 0.053038654327392576, 0.05292281723022461, 0.05297151947021484, 0.05467548751831055, 0.05331600189208984, 0.05300611114501953, 0.05288959884643555, 0.05271084976196289, 0.052722240447998045, 0.052741310119628904, 0.05268563079833984, 0.05269913482666016, 0.05282182312011719, 0.052670654296875, 0.05275353622436523, 0.05262015914916992, 0.052779006958007815, 0.05275033569335937, 0.052746238708496096, 0.05291212844848633, 0.05336012649536133, 0.053036544799804686, 0.05310073471069336, 0.05303788757324219, 0.05288959884643555, 0.05280767822265625, 0.052668479919433596, 0.05279913711547852, 0.05272751998901367, 0.052806209564208985, 0.05264998245239258, 0.052757503509521485, 0.05282918548583984, 0.05278105545043945, 0.05269094467163086, 0.05297711944580078, 0.052953216552734376, 0.052942657470703126, 0.053198944091796874, 0.053139041900634766, 0.05313833618164063, 0.05313558578491211, 0.0531022720336914, 0.053356639862060545, 0.05296294403076172, 0.0528858871459961, 0.053008384704589843, 0.053131263732910154, 0.053043201446533204, 0.05292851257324219, 0.05303910446166992, 0.05326985549926758, 0.05310531234741211, 0.053116928100585936, 0.053071937561035155, 0.05308204650878906, 0.053231616973876954, 0.05312220764160156, 0.05317446517944336, 0.053119647979736326, 0.05332729721069336, 0.053101119995117185, 0.0531827507019043, 0.0529917106628418, 0.05295513534545898, 0.053043201446533204]",tokens/s,18.886180969482787,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 614, in __init__ self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 271, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 142.12 MiB is free. Process 98824 has 14.60 GiB memory in use. Of the allocated memory 14.48 GiB is allocated by PyTorch, and 1.53 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,839.00416,3354.329088,0.0,2959.081472,2957.493248,s,1,7.4474365234375,7.4474365234375,0.0,7.4474365234375,7.4474365234375,7.4474365234375,7.4474365234375,[7.4474365234375],,kWh,9.354730991644071e-06,1.02380170073714e-06,2.9752801579963073e-06,1.3353812850377518e-05,,MB,1148.882944,3423.535104,0.0,3017.801728,2552.885248,s,10,0.609890682220459,0.060989068222045896,0.003264355478831742,0.06088916778564453,0.06263210525512695,0.0660835391998291,0.06884468635559082,"[0.06953497314453125, 0.06046691131591797, 0.061311424255371096, 0.05996384048461914, 0.06186511993408203, 0.06173257446289063, 0.057616863250732425, 0.05804412841796875, 0.05776764678955078, 0.06158720016479492]",tokens/s,4197.473538503134,kWh,2.2473518942627797e-06,2.4783270569686913e-07,1.4945033323538555e-06,3.989687932313504e-06,tokens/kWh,64165419.537350394,MB,1158.61504,3423.535104,0.0,3017.801728,2552.887808,s,10,14.256443725585939,1.4256443725585934,0.0115770949596713,1.4310405883789064,1.4351067993164062,1.4353154846191407,1.4354824328613283,"[1.4318619384765625, 1.394968017578125, 1.4350604248046874, 1.43022119140625, 1.4318599853515626, 1.417967529296875, 1.42188232421875, 1.4320689697265625, 1.435524169921875, 1.4250291748046875]",tokens/s,44.190543737730586,kWh,4.106144405865308e-05,4.528718605831331e-06,2.2645821535445745e-05,6.823598419993017e-05,tokens/kWh,923266.5248208506,,s,630,14.253904968261713,0.022625245981367805,0.0005464244241510381,0.022606528282165528,0.02291669692993164,0.023132241344451902,0.024322863998413095,"[0.023183231353759767, 0.02291663932800293, 0.02278883171081543, 0.022808576583862306, 0.02265497589111328, 0.022640640258789063, 0.02253363227844238, 0.02261427116394043, 0.02275312042236328, 0.022503776550292967, 0.02271808052062988, 0.02297702407836914, 0.02273683166503906, 0.024712480545043946, 0.023758975982666016, 0.022856159210205076, 0.023077280044555663, 0.022898080825805665, 0.022765344619750976, 0.022575647354125976, 0.022521600723266602, 0.022378751754760742, 0.022550527572631835, 0.022593408584594726, 0.02283942413330078, 0.022543487548828126, 0.022626623153686524, 0.022569536209106445, 0.022713375091552735, 0.022590431213378906, 0.02249932861328125, 0.023838720321655273, 0.02262182426452637, 0.022714752197265625, 0.022550527572631835, 0.022581247329711913, 0.02278201675415039, 0.02258732795715332, 0.022398399353027343, 0.02254729652404785, 0.022716127395629882, 0.022478847503662108, 0.022501375198364256, 0.02249318313598633, 0.02269923210144043, 0.022661376953125, 0.02268623924255371, 0.022560768127441407, 0.022579200744628908, 0.02261008071899414, 0.02271241569519043, 0.022654720306396484, 0.022686847686767576, 0.022614879608154295, 0.022592992782592775, 0.02287468719482422, 0.022529247283935547, 0.022560800552368164, 0.022756095886230468, 0.022668800354003905, 0.022426080703735352, 0.022487071990966796, 0.022548479080200197, 0.023119903564453124, 0.022724576950073242, 0.022409215927124023, 0.02220649528503418, 0.02205251121520996, 0.0221146240234375, 0.022192127227783204, 0.022208511352539064, 0.02207744026184082, 0.022214496612548828, 0.022020544052124023, 0.0223189754486084, 0.022269088745117186, 0.022164159774780274, 0.022280191421508787, 0.022148351669311523, 0.022150079727172853, 0.022097728729248048, 0.02221670341491699, 0.022181888580322266, 0.022177791595458983, 0.022071296691894532, 0.022013952255249023, 0.02191302490234375, 0.022032960891723633, 0.022022144317626953, 0.022079488754272462, 0.022066783905029298, 0.022063488006591796, 0.02219603157043457, 0.022224863052368163, 0.022044927597045898, 0.022024192810058595, 0.02200707244873047, 0.022225631713867187, 0.02215711975097656, 0.022026016235351564, 0.02234432029724121, 0.022028064727783202, 0.022296607971191405, 0.021916959762573244, 0.02265567970275879, 0.02254435157775879, 0.022071327209472656, 0.022071296691894532, 0.02188483238220215, 0.022011999130249024, 0.02260915184020996, 0.02194918441772461, 0.02205708885192871, 0.022245248794555663, 0.022113727569580077, 0.022206943511962892, 0.02203446388244629, 0.021958719253540038, 0.021907360076904296, 0.021928031921386718, 0.021923391342163086, 0.02188470458984375, 0.02195248031616211, 0.021940031051635743, 0.021855104446411134, 0.021863935470581054, 0.022661951065063475, 0.022147071838378905, 0.022763519287109374, 0.02294988822937012, 0.022845439910888672, 0.022405120849609376, 0.022355968475341798, 0.022202560424804688, 0.022124191284179688, 0.021919904708862306, 0.022120447158813478, 0.022197887420654296, 0.022339712142944335, 0.022354175567626953, 0.022471935272216796, 0.02253081512451172, 0.02295132827758789, 0.02255523109436035, 0.022994943618774414, 0.022799999237060546, 0.022623903274536134, 0.023065471649169923, 0.022785888671875, 0.022597280502319336, 0.02387798309326172, 0.0240863037109375, 0.02277596855163574, 0.0229039363861084, 0.022702592849731446, 0.022706623077392577, 0.022665216445922853, 0.022751232147216797, 0.023289503097534178, 0.022743392944335937, 0.022934560775756837, 0.02271536064147949, 0.022854719161987305, 0.022920127868652343, 0.02285478401184082, 0.023030656814575196, 0.02276927947998047, 0.022881887435913087, 0.022795040130615233, 0.022810047149658202, 0.022859807968139648, 0.023675424575805664, 0.02272217559814453, 0.022903167724609375, 0.022607200622558592, 0.022772319793701173, 0.022681663513183594, 0.022754848480224608, 0.023497184753417968, 0.022666976928710936, 0.02283535957336426, 0.02256230354309082, 0.022827648162841798, 0.022626304626464845, 0.022640640258789063, 0.022769664764404295, 0.023225664138793945, 0.023077568054199218, 0.023259136199951173, 0.023173280715942383, 0.022544384002685547, 0.02251158332824707, 0.022652959823608397, 0.022775808334350587, 0.02290892791748047, 0.02257449531555176, 0.02256752014160156, 0.02261561584472656, 0.022364288330078124, 0.02256108856201172, 0.022660736083984376, 0.022800575256347655, 0.022456512451171876, 0.022605823516845702, 0.02245631980895996, 0.022345024108886717, 0.022712095260620117, 0.022649759292602538, 0.022435039520263673, 0.022591327667236327, 0.022688703536987306, 0.022552448272705077, 0.022610048294067382, 0.022529119491577147, 0.02229916763305664, 0.02257475280761719, 0.023018207550048828, 0.022540288925170897, 0.022452224731445314, 0.02272220802307129, 0.02288243293762207, 0.0227740478515625, 0.022446016311645507, 0.02257935905456543, 0.022486656188964844, 0.022621728897094726, 0.022645023345947264, 0.022602144241333007, 0.022900415420532227, 0.023608896255493166, 0.02275766372680664, 0.02283692741394043, 0.022950687408447266, 0.022642688751220705, 0.02249068832397461, 0.022573503494262695, 0.022697984695434572, 0.022753183364868163, 0.022863967895507813, 0.02411427116394043, 0.022774688720703123, 0.022840927124023438, 0.02272502326965332, 0.0228351993560791, 0.022693151473999022, 0.022702592849731446, 0.022713823318481444, 0.022968063354492186, 0.022815744400024415, 0.022587392807006838, 0.02269523239135742, 0.022446815490722655, 0.023310752868652345, 0.02254630470275879, 0.02267558479309082, 0.02251366424560547, 0.022603776931762694, 0.022486112594604493, 0.02218281555175781, 0.022349472045898437, 0.02285398483276367, 0.022614015579223632, 0.02247270393371582, 0.022338592529296875, 0.02245910453796387, 0.02238489532470703, 0.03100876808166504, 0.022345727920532226, 0.022437280654907226, 0.023004831314086913, 0.022756288528442383, 0.02308233642578125, 0.022631135940551758, 0.02263033676147461, 0.0225581111907959, 0.022931488037109374, 0.022914751052856445, 0.022610815048217773, 0.022796287536621093, 0.022519615173339842, 0.022605119705200197, 0.022644832611083986, 0.022493984222412108, 0.022519168853759767, 0.022454912185668946, 0.022534143447875975, 0.02243756866455078, 0.022460704803466798, 0.02245020866394043, 0.022250944137573243, 0.022656927108764647, 0.02285593605041504, 0.022728736877441407, 0.02263897514343262, 0.022519359588623045, 0.022444480895996093, 0.02263654327392578, 0.02262118339538574, 0.02248099136352539, 0.02244700813293457, 0.02270191955566406, 0.022631647109985352, 0.022609888076782228, 0.022504383087158204, 0.02238876724243164, 0.022629919052124022, 0.02243836784362793, 0.02244105529785156, 0.022649023056030275, 0.022704864501953127, 0.02275225639343262, 0.02248806381225586, 0.022542335510253905, 0.022619808197021484, 0.022589120864868164, 0.025994720458984374, 0.02296268844604492, 0.022968320846557616, 0.02265907287597656, 0.022701248168945313, 0.022462879180908203, 0.02231884765625, 0.022506143569946287, 0.02284726333618164, 0.022794336318969727, 0.022550655364990235, 0.022609920501708985, 0.022521087646484375, 0.022597984313964845, 0.02260121536254883, 0.022498207092285158, 0.02268342399597168, 0.02270185661315918, 0.022759359359741212, 0.022497791290283203, 0.02265907287597656, 0.02262015914916992, 0.02271177673339844, 0.022557216644287108, 0.022558719635009765, 0.022845632553100587, 0.022673215866088867, 0.02263859176635742, 0.022543807983398438, 0.022186559677124025, 0.021960704803466798, 0.022147071838378905, 0.02186979293823242, 0.02207823944091797, 0.021831680297851562, 0.02206915283203125, 0.02237654495239258, 0.022383615493774413, 0.022701055526733398, 0.022589439392089843, 0.024408063888549804, 0.023171072006225587, 0.022514879226684572, 0.0221909122467041, 0.023010368347167968, 0.02240630340576172, 0.0226296329498291, 0.022368799209594725, 0.02232524871826172, 0.022621952056884765, 0.02206924819946289, 0.021881088256835938, 0.022013952255249023, 0.021975135803222655, 0.022089887619018554, 0.022036224365234374, 0.022023551940917967, 0.0218590087890625, 0.02200476837158203, 0.02197212791442871, 0.022021888732910156, 0.02192915153503418, 0.02197587203979492, 0.022379135131835936, 0.022173919677734376, 0.022226463317871092, 0.021964479446411132, 0.022118431091308594, 0.02220230484008789, 0.022063135147094726, 0.022002464294433595, 0.02198886489868164, 0.021981695175170898, 0.02195155143737793, 0.021860639572143556, 0.022002336502075195, 0.02205881690979004, 0.022085248947143556, 0.02190540885925293, 0.022053056716918946, 0.022276479721069335, 0.022228992462158204, 0.02286367988586426, 0.02215648078918457, 0.02227507209777832, 0.022317119598388672, 0.02263852882385254, 0.02293337631225586, 0.0223287353515625, 0.02227027130126953, 0.022438304901123047, 0.023226560592651366, 0.022771520614624022, 0.02260326385498047, 0.02274287986755371, 0.022722623825073243, 0.02278665542602539, 0.022824960708618162, 0.022734848022460938, 0.02272051239013672, 0.022755327224731444, 0.022731008529663085, 0.0229039363861084, 0.022833791732788086, 0.022837087631225585, 0.02263852882385254, 0.02268921661376953, 0.022838048934936524, 0.022664480209350586, 0.02273967933654785, 0.02291312026977539, 0.022699935913085938, 0.02267523193359375, 0.02268601608276367, 0.022827072143554686, 0.022847232818603517, 0.022917215347290038, 0.022722560882568358, 0.022648735046386717, 0.02264409637451172, 0.022553312301635743, 0.022644224166870116, 0.022808704376220703, 0.022563199996948242, 0.02332467269897461, 0.025610080718994142, 0.023443424224853515, 0.022732927322387696, 0.023035839080810548, 0.022710208892822267, 0.022505247116088867, 0.022814752578735352, 0.023142335891723632, 0.023289279937744142, 0.02302239990234375, 0.02292531204223633, 0.02270412826538086, 0.02264473533630371, 0.02268511962890625, 0.022563295364379884, 0.02272060775756836, 0.02319900894165039, 0.022688512802124024, 0.02257302474975586, 0.022744672775268555, 0.02250726318359375, 0.0226265926361084, 0.02274064064025879, 0.022556800842285157, 0.022534751892089845, 0.023566335678100587, 0.022595104217529298, 0.022617887496948243, 0.022663839340209962, 0.022497055053710937, 0.022749183654785156, 0.022453760147094725, 0.022385408401489258, 0.022571008682250978, 0.022766719818115233, 0.02268582344055176, 0.022639360427856445, 0.022816768646240236, 0.022585119247436523, 0.022714591979980468, 0.022579200744628908, 0.022603776931762694, 0.022605823516845702, 0.02292736053466797, 0.02288025665283203, 0.022551872253417968, 0.02256675148010254, 0.02298944091796875, 0.02272483253479004, 0.02275062370300293, 0.022651519775390625, 0.0227491512298584, 0.022577152252197266, 0.022429695129394533, 0.02254172706604004, 0.02267366409301758, 0.02273535919189453, 0.022665056228637695, 0.0225133113861084, 0.022769216537475587, 0.022749919891357422, 0.02280006408691406, 0.02266748809814453, 0.02268079948425293, 0.02297500801086426, 0.02262022399902344, 0.022608160018920898, 0.022691232681274414, 0.022590047836303712, 0.022584415435791014, 0.02245903968811035, 0.022585599899291993, 0.02260905647277832, 0.022614879608154295, 0.022439647674560546, 0.022442272186279297, 0.022374399185180666, 0.022431392669677735, 0.02278598403930664, 0.02276393508911133, 0.02267686462402344, 0.02257574462890625, 0.02258451271057129, 0.022764352798461913, 0.02270137596130371, 0.02261020851135254, 0.022700096130371095, 0.02249558448791504, 0.02410905647277832, 0.022759424209594727, 0.02275702476501465, 0.02283113670349121, 0.02253446388244629, 0.02285753631591797, 0.022589792251586915, 0.022695648193359376, 0.022603904724121094, 0.022747135162353514, 0.02246451187133789, 0.022598943710327148, 0.02260585594177246, 0.022542976379394532, 0.022816831588745118, 0.022783296585083008, 0.02279078483581543, 0.0227205753326416, 0.022786048889160155, 0.022697984695434572, 0.02265907287597656, 0.02264473533630371, 0.022535999298095702, 0.022697439193725587, 0.02258208084106445, 0.023175071716308594, 0.026408960342407226, 0.02552217674255371, 0.02266726493835449, 0.02263033676147461, 0.02259564781188965, 0.022649856567382814, 0.022508544921875, 0.022542335510253905, 0.022421247482299806, 0.022503679275512695, 0.022815807342529297, 0.02278825569152832, 0.02292815971374512, 0.023346080780029296, 0.02264838409423828, 0.022837568283081054, 0.0225664005279541, 0.02256752014160156, 0.022618112564086915, 0.022576288223266603, 0.02247123146057129, 0.022712064743041993, 0.022574623107910155, 0.02245475196838379, 0.02256876754760742, 0.02247248077392578, 0.022536319732666017, 0.023003360748291016, 0.022938207626342775, 0.02254217529296875, 0.022457952499389647, 0.022590015411376955, 0.02239897537231445, 0.022582815170288085, 0.022581119537353516, 0.022594144821166992, 0.02254377555847168, 0.022599647521972657, 0.0223603515625, 0.022475103378295898, 0.022512704849243163, 0.022604736328125, 0.022504928588867188, 0.02260544013977051, 0.022481727600097656, 0.022407039642333985, 0.02289072036743164, 0.02266316795349121, 0.022679040908813477, 0.022471168518066405, 0.022425504684448243, 0.02259891128540039, 0.02252047920227051, 0.022554208755493164, 0.022524511337280274, 0.02270412826538086, 0.02275868797302246, 0.022628671646118165, 0.02253606414794922, 0.022464128494262697, 0.022829055786132812, 0.02246486473083496, 0.02262201690673828, 0.02249772834777832, 0.022668928146362306, 0.02251046371459961, 0.022877439498901368, 0.022794815063476564, 0.022838272094726563, 0.022537023544311523, 0.02256480026245117, 0.022585599899291993, 0.022648256301879884, 0.022693632125854492, 0.022816991806030272, 0.022650720596313477]",tokens/s,44.19841449783633,, float32-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,839.241728,8760.786944,0.0,8365.539328,8230.228992,s,1,7.50484423828125,7.50484423828125,0.0,7.50484423828125,7.50484423828125,7.50484423828125,7.50484423828125,[7.50484423828125],,kWh,1.1066832612497515e-05,1.2130818759605153e-06,5.226393070004165e-06,1.7506307558462196e-05,,MB,1169.158144,8951.627776,0.0,8545.8944,8499.295232,s,10,2.6764699096679685,0.26764699096679684,0.010224015400804483,0.27015660095214844,0.2749579895019531,0.2763633331298828,0.2774876080322266,"[0.2387668762207031, 0.2687913208007813, 0.2687487487792969, 0.264208251953125, 0.26977490234375, 0.2708685607910156, 0.27053829956054687, 0.27235858154296877, 0.27464569091796875, 0.2777686767578125]",tokens/s,956.4837589814648,kWh,7.34776420145863e-06,8.100666222931695e-07,4.890156689900046e-06,1.3047987513651845e-05,tokens/kWh,19619883.8887723,MB,1174.2208,8953.724928,0.0,8547.991552,8499.297792,s,10,18.966721679687502,1.8966721679687502,0.004236313017153842,1.8971524658203125,1.8996663452148437,1.9014992492675782,1.9029655725097656,"[1.89731689453125, 1.8964061279296875, 1.8975816650390624, 1.895955078125, 1.8856767578125, 1.896988037109375, 1.89871826171875, 1.8954876708984374, 1.9033321533203125, 1.899259033203125]",tokens/s,33.216072373471974,kWh,5.602011279520714e-05,6.179156081395586e-06,3.704018240989933e-05,9.923945128650207e-05,tokens/kWh,634828.1775371814,,s,630,18.963937675476082,0.030101488373771548,0.0003737273369058032,0.030036399841308594,0.03032941131591797,0.030539182472229004,0.03224072696685791,"[0.03222934341430664, 0.03057254409790039, 0.030236448287963867, 0.03005414390563965, 0.029918912887573243, 0.02982304000854492, 0.02989302444458008, 0.029762943267822264, 0.029848512649536134, 0.02996944046020508, 0.02985241508483887, 0.029823200225830078, 0.0300316162109375, 0.030032127380371094, 0.030001279830932617, 0.030010976791381837, 0.030052223205566407, 0.029941375732421876, 0.029847583770751952, 0.029767711639404296, 0.029906656265258787, 0.030077951431274414, 0.030069856643676757, 0.029860767364501953, 0.029891775131225585, 0.029958976745605468, 0.029800447463989257, 0.030143583297729492, 0.029955135345458985, 0.02990652847290039, 0.030183231353759766, 0.030195775985717772, 0.03033251190185547, 0.030488927841186522, 0.030249120712280274, 0.030761247634887696, 0.030257152557373046, 0.029973600387573244, 0.030194591522216797, 0.030045215606689452, 0.030088159561157228, 0.030010400772094728, 0.030073823928833007, 0.03017728042602539, 0.030138111114501952, 0.029980224609375, 0.030036575317382814, 0.030038112640380858, 0.03025017547607422, 0.03026924705505371, 0.030079679489135744, 0.030007680892944335, 0.030168256759643554, 0.030157535552978516, 0.030029855728149413, 0.03024105644226074, 0.030117599487304688, 0.030121280670166017, 0.03013088035583496, 0.030013439178466796, 0.030076223373413084, 0.030819007873535156, 0.030054399490356445, 0.032245376586914065, 0.030806367874145507, 0.030271488189697264, 0.029884416580200194, 0.02975062370300293, 0.029945663452148438, 0.030065311431884765, 0.02992918395996094, 0.029901472091674805, 0.02979596710205078, 0.02995327949523926, 0.029847904205322264, 0.029911167144775392, 0.029845279693603517, 0.0299051513671875, 0.030036224365234374, 0.02981011199951172, 0.029905664443969728, 0.03004966354370117, 0.030089088439941406, 0.03018582344055176, 0.0300032958984375, 0.029774080276489256, 0.02984351921081543, 0.030021120071411132, 0.030105344772338866, 0.02984217643737793, 0.029924863815307616, 0.029918943405151367, 0.029879072189331054, 0.030027135848999024, 0.030081151962280273, 0.03037164878845215, 0.0305097599029541, 0.03033888053894043, 0.03023993682861328, 0.03011862373352051, 0.0300731201171875, 0.030074880599975585, 0.03031449508666992, 0.03052694320678711, 0.030027711868286133, 0.030146656036376954, 0.029943552017211914, 0.029921279907226563, 0.03026940727233887, 0.030245664596557618, 0.029914495468139648, 0.030026464462280272, 0.029986719131469726, 0.030087167739868165, 0.030101152420043947, 0.030090816497802736, 0.02998137664794922, 0.03020400047302246, 0.02997987174987793, 0.03002556800842285, 0.029948320388793945, 0.03027203178405762, 0.030449663162231445, 0.030055776596069336, 0.030122655868530274, 0.030150592803955076, 0.032194526672363284, 0.030664703369140626, 0.030345216751098632, 0.02997622489929199, 0.029835615158081055, 0.029705631256103517, 0.029993024826049805, 0.029749248504638674, 0.03002217674255371, 0.030031328201293946, 0.029822784423828123, 0.02985443115234375, 0.02998886489868164, 0.029845504760742186, 0.030131231307983397, 0.03000419235229492, 0.029748607635498046, 0.029851295471191405, 0.029796672821044923, 0.029825696945190428, 0.029880319595336914, 0.030119935989379884, 0.029913087844848633, 0.029871488571166994, 0.029944448471069335, 0.029805696487426758, 0.0298353271484375, 0.030026559829711915, 0.03024684715270996, 0.03012339210510254, 0.030099264144897463, 0.03016691207885742, 0.030694400787353516, 0.030279680252075194, 0.030284896850585937, 0.030086048126220705, 0.030341119766235353, 0.030081024169921877, 0.03016294479370117, 0.03003392028808594, 0.029996192932128907, 0.029944671630859374, 0.030280832290649415, 0.03020684814453125, 0.03008230400085449, 0.03001590347290039, 0.030984384536743164, 0.029928607940673826, 0.03000831985473633, 0.03010767936706543, 0.03020716857910156, 0.03013916778564453, 0.03002572822570801, 0.03001753616333008, 0.03041231918334961, 0.03026540756225586, 0.030105920791625978, 0.03006854438781738, 0.03018351936340332, 0.030224576950073242, 0.030084800720214844, 0.030255104064941408, 0.030326528549194334, 0.03230550384521484, 0.03094432067871094, 0.030393280029296876, 0.02995609664916992, 0.030096576690673827, 0.029818975448608398, 0.02974550437927246, 0.029871648788452148, 0.03005084800720215, 0.030023231506347656, 0.029780736923217775, 0.029804191589355468, 0.030009695053100586, 0.030072832107543947, 0.029980127334594726, 0.02989302444458008, 0.030006687164306642, 0.02986240005493164, 0.029888128280639647, 0.029819488525390625, 0.02991923141479492, 0.030133344650268554, 0.02994473648071289, 0.02994175910949707, 0.029841407775878907, 0.02983526420593262, 0.02985958480834961, 0.029858047485351563, 0.030095359802246095, 0.029910144805908204, 0.03023551940917969, 0.030087167739868165, 0.030093311309814453, 0.030523391723632814, 0.030308351516723633, 0.030062591552734375, 0.030066688537597655, 0.03007427215576172, 0.029997663497924806, 0.03028531265258789, 0.029975040435791016, 0.03001510429382324, 0.030140159606933593, 0.03006502342224121, 0.030185728073120116, 0.02996019172668457, 0.030320512771606446, 0.030172351837158204, 0.03004300880432129, 0.030001216888427735, 0.029997055053710937, 0.030315967559814454, 0.030028352737426756, 0.02998681640625, 0.030385440826416015, 0.02999123191833496, 0.030050207138061523, 0.030114303588867186, 0.030000896453857423, 0.030015743255615235, 0.03041279983520508, 0.030035871505737305, 0.03011782455444336, 0.032194561004638675, 0.03055961608886719, 0.03025974464416504, 0.0302061767578125, 0.029746400833129884, 0.029642784118652343, 0.029637344360351564, 0.029662879943847656, 0.029663616180419922, 0.029749248504638674, 0.029702335357666015, 0.029714239120483397, 0.02971980857849121, 0.029775808334350586, 0.029761344909667968, 0.029825216293334962, 0.029788991928100587, 0.02980575942993164, 0.029799232482910155, 0.029742687225341798, 0.029790271759033204, 0.029730527877807618, 0.029702783584594727, 0.02976335906982422, 0.029720800399780273, 0.02975334358215332, 0.02978201675415039, 0.029722623825073242, 0.0297325439453125, 0.02982943916320801, 0.030025760650634767, 0.02995622444152832, 0.03012915229797363, 0.030204063415527345, 0.030160640716552733, 0.03006355285644531, 0.030044160842895507, 0.02999091148376465, 0.029911039352416992, 0.029886463165283202, 0.029906944274902345, 0.029959936141967774, 0.02993382453918457, 0.02999728012084961, 0.0298855037689209, 0.02983750343322754, 0.02981942367553711, 0.02979430389404297, 0.029836479187011718, 0.029874975204467774, 0.029922943115234375, 0.029850015640258788, 0.029879840850830078, 0.029921728134155272, 0.029949983596801757, 0.029882368087768556, 0.0299233283996582, 0.029998336791992188, 0.030115711212158204, 0.030094207763671874, 0.0300437126159668, 0.03003343963623047, 0.03013500785827637, 0.03227036666870117, 0.03070774459838867, 0.030063167572021484, 0.0298221435546875, 0.029780799865722657, 0.029741056442260744, 0.02984342384338379, 0.029814815521240233, 0.02975129508972168, 0.02976563262939453, 0.029744768142700197, 0.029804927825927734, 0.029714431762695313, 0.02973695945739746, 0.029788223266601563, 0.029734367370605468, 0.02970204734802246, 0.029680192947387694, 0.02979635238647461, 0.029798080444335937, 0.03004419136047363, 0.030015775680541992, 0.03017523193359375, 0.030109695434570313, 0.030031871795654298, 0.03002524757385254, 0.030126367568969727, 0.03027987289428711, 0.02996441650390625, 0.03011737632751465, 0.030230911254882812, 0.030235967636108398, 0.030366399765014648, 0.030535680770874023, 0.03032035255432129, 0.03023209571838379, 0.030370559692382813, 0.030275583267211914, 0.030246912002563478, 0.030215904235839842, 0.030181663513183594, 0.030312320709228516, 0.030072959899902343, 0.030189376831054687, 0.030119871139526366, 0.030040319442749024, 0.030205856323242186, 0.030229856491088867, 0.03002579116821289, 0.030175935745239257, 0.030336736679077148, 0.03011008071899414, 0.030156351089477538, 0.030322368621826173, 0.030352031707763672, 0.030119935989379884, 0.029997312545776367, 0.02999679946899414, 0.030227935791015625, 0.03001807975769043, 0.030109695434570313, 0.030212032318115235, 0.030224447250366212, 0.03246089553833008, 0.030785535812377928, 0.030296064376831053, 0.030003200531005858, 0.029838399887084963, 0.02984441566467285, 0.03003385543823242, 0.029978687286376954, 0.02977177619934082, 0.030101503372192383, 0.030007295608520508, 0.029728511810302734, 0.02976924705505371, 0.029909727096557617, 0.029968351364135743, 0.0299434871673584, 0.029846944808959962, 0.029975488662719728, 0.029908992767333983, 0.02994175910949707, 0.029962112426757812, 0.03015388870239258, 0.02987513542175293, 0.030248735427856447, 0.02988057518005371, 0.0299683837890625, 0.02990675163269043, 0.030146751403808594, 0.02997657585144043, 0.03017919921875, 0.030275039672851563, 0.03054204750061035, 0.030611648559570312, 0.0303372802734375, 0.03058016014099121, 0.030196287155151366, 0.030342720031738282, 0.030116287231445313, 0.03018121528625488, 0.030054559707641603, 0.03018956756591797, 0.030346687316894532, 0.030284351348876953, 0.029919071197509764, 0.02993078422546387, 0.0300184326171875, 0.030264511108398437, 0.030042848587036132, 0.030166624069213867, 0.030046720504760743, 0.02996220779418945, 0.029890592575073243, 0.030304256439208983, 0.03020150375366211, 0.02998512077331543, 0.03005232048034668, 0.03001683235168457, 0.030007999420166017, 0.030062623977661133, 0.030327871322631837, 0.03016729545593262, 0.030329376220703124, 0.03024470329284668, 0.033325214385986325, 0.031747360229492184, 0.030630399703979492, 0.030443231582641603, 0.03010201644897461, 0.029898752212524415, 0.029747200012207032, 0.029849599838256836, 0.029787263870239257, 0.029743999481201173, 0.029798015594482422, 0.029914527893066405, 0.029762527465820313, 0.030080608367919922, 0.03008348846435547, 0.029916511535644532, 0.03004425621032715, 0.0298417911529541, 0.03005459213256836, 0.029999103546142578, 0.029865503311157227, 0.030129919052124022, 0.02990358352661133, 0.029900543212890623, 0.029943712234497072, 0.029884096145629882, 0.029882816314697264, 0.030289119720458984, 0.03001651191711426, 0.029937664031982423, 0.030094783782958986, 0.03002217674255371, 0.030293439865112303, 0.030196607589721678, 0.030329727172851564, 0.030202720642089845, 0.030250751495361328, 0.030138208389282228, 0.030110111236572267, 0.030038015365600586, 0.029962175369262694, 0.029919296264648437, 0.02990438461303711, 0.02988310432434082, 0.029844671249389648, 0.02991574478149414, 0.029870080947875976, 0.029865983963012696, 0.029877471923828124, 0.02999171257019043, 0.02994700813293457, 0.029911584854125976, 0.029886816024780275, 0.029911039352416992, 0.02993152046203613, 0.0299597110748291, 0.030132768630981445, 0.030000991821289062, 0.029981983184814452, 0.030069568634033202, 0.030105600357055663, 0.030066688537597655, 0.030100576400756834, 0.03231948852539063, 0.030898143768310547, 0.030517248153686522, 0.0302073917388916, 0.029964895248413087, 0.029888416290283205, 0.030077024459838866, 0.02993715286254883, 0.030192031860351562, 0.02982512092590332, 0.029755392074584962, 0.030082176208496094, 0.03023551940917969, 0.030211103439331054, 0.030012351989746094, 0.029923360824584962, 0.030080223083496095, 0.03039516830444336, 0.03018956756591797, 0.030070783615112305, 0.030017023086547853, 0.02989926338195801, 0.030019584655761718, 0.02995609664916992, 0.030053855895996094, 0.030200319290161134, 0.030001119613647462, 0.03005638313293457, 0.030107776641845704, 0.030286048889160155, 0.030365472793579103, 0.03043231964111328, 0.030298336029052735, 0.030472671508789063, 0.030595327377319338, 0.030195711135864257, 0.030294015884399415, 0.031135744094848632, 0.030269439697265626, 0.030029312133789062, 0.030003679275512694, 0.029959615707397462, 0.030313056945800783, 0.02992905616760254, 0.030305856704711913, 0.030077280044555663, 0.030072959899902343, 0.03001363182067871, 0.029970624923706054, 0.030193119049072265, 0.030144960403442382, 0.029935264587402345, 0.02997907257080078, 0.03078348731994629, 0.03033087921142578, 0.030126079559326172, 0.03022233581542969, 0.03003392028808594, 0.030023008346557616, 0.030261568069458008, 0.030318143844604493, 0.030155168533325196, 0.030433664321899413, 0.03231110382080078, 0.03096182441711426, 0.03017932891845703, 0.0299532470703125, 0.030118688583374024, 0.03018137550354004, 0.02980454444885254, 0.029800447463989257, 0.02979151916503906, 0.030052959442138674, 0.029849536895751955, 0.030277183532714844, 0.029979263305664063, 0.029915136337280275, 0.030113792419433592, 0.0298570556640625, 0.030149343490600587, 0.030085119247436523, 0.029816831588745117, 0.030126079559326172, 0.030058496475219725, 0.029834943771362303, 0.029780288696289063, 0.029863744735717773, 0.029990463256835936, 0.029991552352905272, 0.029853599548339844, 0.029851743698120117, 0.030260223388671875, 0.03029875183105469, 0.030181760787963866, 0.030283775329589844, 0.03032268714904785, 0.030320640563964843, 0.030232576370239257, 0.030253055572509766, 0.030107648849487304, 0.030191295623779296, 0.03000966453552246, 0.03007187271118164, 0.03032294464111328, 0.03018207931518555, 0.029961919784545897, 0.030002496719360353, 0.030135295867919923, 0.030277631759643556, 0.030091264724731445, 0.030021312713623047, 0.029951583862304686, 0.03130646324157715, 0.030169343948364256, 0.029867776870727537, 0.030291007995605468, 0.030268352508544923, 0.030053728103637694, 0.03010371208190918, 0.030046783447265624, 0.03003308868408203, 0.030317312240600587, 0.030013439178466796, 0.030104639053344727, 0.030155712127685547, 0.030236064910888674]",tokens/s,33.22094866482862,, float32-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,816.96768,718.209024,0.0,322.961408,314.743808,s,1,7.3543603515625,7.3543603515625,0.0,7.3543603515625,7.3543603515625,7.3543603515625,7.3543603515625,[7.3543603515625],,kWh,4.528132787478019e-06,4.921199367924644e-07,1.0097230300071258e-06,6.02997575427761e-06,,MB,1109.393408,810.483712,0.0,404.750336,391.119872,s,28,0.23511241626739496,0.00839687200954982,5.0066419832193083e-05,0.008390496253967285,0.008446630477905273,0.008482257795333861,0.008542315378189086,"[0.008561599731445312, 0.008347359657287598, 0.008490176200866699, 0.008378623962402344, 0.00836246395111084, 0.008417216300964356, 0.008345791816711426, 0.008420000076293946, 0.008392512321472168, 0.008333632469177246, 0.00831372833251953, 0.008388480186462403, 0.008340831756591796, 0.00840828800201416, 0.008381471633911133, 0.008366623878479003, 0.008437088012695312, 0.008401503562927246, 0.008437664031982421, 0.008411968231201172, 0.008467552185058593, 0.008403200149536133, 0.008402400016784668, 0.008382783889770509, 0.008385055541992188, 0.008348480224609375, 0.008399552345275878, 0.008386367797851563]",tokens/s,30487.543421984927,kWh,2.677828497402986e-07,2.9515348800167903e-08,1.7613773129606e-07,4.734359298365265e-07,tokens/kWh,540727865.9403706,MB,1119.39584,823.066624,0.0,417.333248,391.122432,s,28,10.094631469726561,0.3605225524902344,0.02247068146145327,0.3560248718261719,0.3585250762939453,0.35991512908935547,0.4454740164184571,"[0.4770150146484375, 0.35675845336914064, 0.35692742919921877, 0.35595477294921873, 0.3581532897949219, 0.35647695922851563, 0.35771258544921875, 0.359392578125, 0.3544256591796875, 0.35476324462890624, 0.3531097717285156, 0.35399282836914064, 0.354876708984375, 0.3577764892578125, 0.3552135009765625, 0.35681475830078124, 0.3555978088378906, 0.3551192626953125, 0.3559044494628906, 0.35580642700195314, 0.3554816589355469, 0.356094970703125, 0.35668875122070315, 0.3554750671386719, 0.3562126159667969, 0.3550398864746094, 0.36019650268554687, 0.3576500244140625]",tokens/s,174.74634961069876,kWh,1.0572432539457617e-05,1.1659751416953781e-06,4.684432000777751e-06,1.6422839681930743e-05,tokens/kWh,3836120.9888272765,,s,1764,10.082759708881394,0.005715850175102823,0.0028396695228811914,0.0056310720443725586,0.005697811079025269,0.0057735600233078,0.006137980718612669,"[0.005451935768127442, 0.005694911956787109, 0.005716127872467041, 0.005833183765411377, 0.005695487976074219, 0.005738399982452393, 0.0056648640632629395, 0.005642240047454834, 0.005666783809661865, 0.005847072124481201, 0.005715583801269531, 0.005724544048309326, 0.005670911788940429, 0.005752831935882568, 0.00588972806930542, 0.0057432641983032225, 0.005648032188415527, 0.12485836791992187, 0.005994336128234863, 0.005746848106384277, 0.005677055835723877, 0.005640096187591552, 0.005617760181427002, 0.005640416145324707, 0.005646111965179443, 0.00564134407043457, 0.005684095859527588, 0.005607423782348633, 0.0056258559226989744, 0.005586080074310303, 0.005639008045196533, 0.005646336078643799, 0.005631999969482422, 0.0056975998878479005, 0.005652416229248047, 0.005857279777526855, 0.005732160091400146, 0.0056724481582641605, 0.005646080017089844, 0.0056063361167907715, 0.005668863773345947, 0.005616991996765137, 0.005664735794067383, 0.005669472217559815, 0.005745759963989258, 0.005702239990234375, 0.005610208034515381, 0.005725120067596436, 0.005620192050933838, 0.00561900806427002, 0.005652607917785645, 0.005610655784606933, 0.00562553596496582, 0.005668320178985596, 0.005626399993896484, 0.005594336032867432, 0.0056096000671386715, 0.005651103973388672, 0.005603040218353271, 0.005607711791992188, 0.005594751834869385, 0.005601151943206787, 0.005672959804534912, 0.0053487358093261715, 0.00566048002243042, 0.005829823970794678, 0.00569920015335083, 0.005656479835510254, 0.00567084789276123, 0.00575107192993164, 0.005640192031860352, 0.005719808101654053, 0.005639776229858399, 0.005657023906707763, 0.005617887973785401, 0.005703680038452149, 0.005678336143493653, 0.005645055770874024, 0.005648672103881836, 0.005684959888458252, 0.0056295361518859865, 0.005683360099792481, 0.005615647792816162, 0.005832255840301514, 0.0056162881851196285, 0.0056258559226989744, 0.0056293120384216305, 0.005704319953918457, 0.0056258559226989744, 0.005584479808807373, 0.005620128154754639, 0.005591040134429932, 0.005576704025268555, 0.005662399768829346, 0.005558591842651367, 0.0056442880630493165, 0.005581151962280273, 0.006147456169128418, 0.0056118078231811525, 0.005596896171569824, 0.005625440120697022, 0.005673664093017578, 0.005819519996643066, 0.005682047843933106, 0.005592671871185303, 0.005717663764953613, 0.005618239879608154, 0.005618207931518555, 0.005633696079254151, 0.005638112068176269, 0.005595168113708496, 0.00559884786605835, 0.005642240047454834, 0.005654911994934082, 0.005627200126647949, 0.005609951972961426, 0.005610879898071289, 0.005659488201141358, 0.005621664047241211, 0.005635551929473877, 0.005616256237030029, 0.00561900806427002, 0.005775743961334228, 0.00571014404296875, 0.0056852478981018065, 0.005670911788940429, 0.005462143898010254, 0.005672351837158203, 0.0056938881874084475, 0.005642943859100342, 0.005635807991027832, 0.005670911788940429, 0.005609471797943116, 0.005649983882904053, 0.005628352165222168, 0.005670239925384521, 0.005642015933990479, 0.005604512214660644, 0.005652192115783691, 0.005644224166870117, 0.005637663841247559, 0.005656991958618164, 0.0056070399284362795, 0.005659135818481445, 0.005647359848022461, 0.005661695957183838, 0.005672639846801758, 0.005637728214263916, 0.005648575782775879, 0.00561411190032959, 0.0057712640762329105, 0.0056442880630493165, 0.005677055835723877, 0.005649856090545654, 0.005614143848419189, 0.005646207809448242, 0.005642303943634033, 0.005602719783782959, 0.005648672103881836, 0.005681280136108398, 0.0056302080154418946, 0.005625247955322266, 0.0056431999206542965, 0.005610559940338135, 0.005598048210144043, 0.005646016120910645, 0.005592864036560058, 0.005897503852844238, 0.005659647941589355, 0.00566921615600586, 0.005752480030059815, 0.005650207996368408, 0.006117599964141846, 0.00565772819519043, 0.005741439819335938, 0.005654079914093018, 0.005665215969085693, 0.0056483840942382815, 0.005677055835723877, 0.005657599925994873, 0.005628960132598877, 0.005646304130554199, 0.005646336078643799, 0.005611072063446045, 0.005717472076416015, 0.005589983940124512, 0.005621503829956054, 0.005628159999847412, 0.005701632022857666, 0.005383647918701172, 0.005673503875732422, 0.005656576156616211, 0.005604351997375488, 0.005631328105926514, 0.005637440204620361, 0.005618239879608154, 0.006198400020599365, 0.005634751796722412, 0.005666656017303467, 0.0056475200653076174, 0.005649375915527344, 0.005646336078643799, 0.0056852478981018065, 0.0056483840942382815, 0.00566476821899414, 0.0056234879493713376, 0.00561359977722168, 0.005646431922912597, 0.0057112002372741695, 0.005601696014404297, 0.005632448196411133, 0.00561356782913208, 0.005638144016265869, 0.005622943878173828, 0.005605663776397705, 0.005655104160308838, 0.005598495960235596, 0.005700319766998291, 0.005609471797943116, 0.005598464012145996, 0.005632768154144287, 0.005642111778259277, 0.0056096000671386715, 0.0056135039329528805, 0.005603392124176026, 0.005705728054046631, 0.005608863830566406, 0.0056735677719116214, 0.005622911930084229, 0.0056265277862548825, 0.005627327919006347, 0.005628064155578614, 0.005742720127105713, 0.005609983921051025, 0.005632319927215576, 0.00563375997543335, 0.005650400161743164, 0.00563318395614624, 0.005595168113708496, 0.005622015953063965, 0.005632639884948731, 0.005698592185974121, 0.00565340805053711, 0.00562992000579834, 0.005658656120300293, 0.005629280090332031, 0.005730976104736328, 0.005600992202758789, 0.005593376159667969, 0.005635104179382324, 0.005600224018096924, 0.00563750410079956, 0.0053547840118408204, 0.005625919818878174, 0.005614336013793945, 0.005592127799987793, 0.005851583957672119, 0.0055996479988098145, 0.005638144016265869, 0.005631999969482422, 0.005609663963317871, 0.005643871784210205, 0.005616991996765137, 0.005630847930908203, 0.005634047985076904, 0.0056566400527954105, 0.005642399787902832, 0.005639071941375732, 0.005694047927856445, 0.005653120040893554, 0.005654176235198974, 0.005654528141021729, 0.0064386558532714844, 0.0060900158882141115, 0.005679232120513916, 0.0057721281051635745, 0.005627456188201904, 0.005675456047058105, 0.005650207996368408, 0.0056566400527954105, 0.005642399787902832, 0.0056236801147460935, 0.005717887878417969, 0.005633696079254151, 0.005647071838378906, 0.005633344173431396, 0.005812128067016601, 0.005694111824035644, 0.005626976013183594, 0.005659552097320557, 0.005713888168334961, 0.005675039768218994, 0.005768223762512207, 0.0057704000473022465, 0.00564192008972168, 0.005763199806213379, 0.005664063930511475, 0.005603744029998779, 0.005640480041503906, 0.00559660816192627, 0.005674848079681397, 0.005652224063873291, 0.005618336200714111, 0.005638463973999024, 0.0056258559226989744, 0.005609471797943116, 0.005650432109832764, 0.005611519813537597, 0.0056863040924072265, 0.005667808055877685, 0.005612576007843017, 0.00563647985458374, 0.00562992000579834, 0.0056408319473266605, 0.0060208959579467775, 0.005398528099060058, 0.005647903919219971, 0.005673439979553223, 0.005654528141021729, 0.0056436161994934085, 0.005665440082550049, 0.005638144016265869, 0.005645408153533936, 0.005747615814208984, 0.005658624172210694, 0.005678976058959961, 0.005658207893371582, 0.005701759815216065, 0.005628159999847412, 0.0056505918502807615, 0.00561356782913208, 0.005611839771270752, 0.005738175868988037, 0.00559830379486084, 0.00565340805053711, 0.005636159896850586, 0.005669919967651367, 0.005665760040283203, 0.005622911930084229, 0.0056650562286376955, 0.005895711898803711, 0.00567193603515625, 0.005675007820129394, 0.005646560192108154, 0.005658400058746338, 0.005636096000671387, 0.005645823955535889, 0.005622208118438721, 0.005627552032470703, 0.005656991958618164, 0.005623807907104492, 0.005623807907104492, 0.0056258559226989744, 0.005620736122131348, 0.0056824002265930176, 0.005569568157196045, 0.005622879981994629, 0.005609119892120361, 0.005601280212402344, 0.005591040134429932, 0.005674975872039795, 0.00563375997543335, 0.00601529598236084, 0.005791744232177734, 0.005816319942474365, 0.005626976013183594, 0.005622655868530274, 0.0056945281028747555, 0.005658944129943847, 0.005583712100982666, 0.00562275218963623, 0.005596000194549561, 0.005590943813323974, 0.0056481599807739254, 0.005566976070404053, 0.005661664009094239, 0.005583072185516357, 0.005581727981567383, 0.005351871967315674, 0.0055927357673645015, 0.005861663818359375, 0.005599232196807862, 0.005593088150024414, 0.0055808000564575196, 0.005574656009674072, 0.005601280212402344, 0.0055668802261352535, 0.005585984230041504, 0.005609536170959472, 0.005597536087036133, 0.005701759815216065, 0.005819456100463867, 0.006220736026763916, 0.006209536075592041, 0.006112383842468262, 0.005630847930908203, 0.005658976078033447, 0.005942431926727295, 0.006500703811645508, 0.005635263919830322, 0.00566806411743164, 0.00565993595123291, 0.005824704170227051, 0.0056293439865112305, 0.005583744049072265, 0.005662432193756103, 0.005600736141204834, 0.005636991977691651, 0.00562716817855835, 0.005610144138336182, 0.00562716817855835, 0.005579487800598144, 0.005614943981170654, 0.005626656055450439, 0.005584767818450928, 0.00566476821899414, 0.005595136165618897, 0.005623807907104492, 0.005607423782348633, 0.005611519813537597, 0.0056274237632751465, 0.005595615863800049, 0.005617504119873047, 0.005621920108795166, 0.00561356782913208, 0.005627903938293457, 0.005601471900939942, 0.005625664234161377, 0.005611519813537597, 0.005642240047454834, 0.005631999969482422, 0.005606527805328369, 0.005675456047058105, 0.005648575782775879, 0.005651936054229736, 0.0056368961334228515, 0.00561356782913208, 0.005621632099151611, 0.005621664047241211, 0.005624032020568848, 0.005595136165618897, 0.0054579200744628905, 0.0056179518699646, 0.005590752124786377, 0.005627903938293457, 0.005619775772094726, 0.005631936073303223, 0.005582848072052002, 0.005594783782958984, 0.0055937919616699215, 0.0055968317985534664, 0.005603328227996827, 0.005595136165618897, 0.005574016094207763, 0.005615615844726562, 0.005590784072875977, 0.005890944004058838, 0.006743231773376465, 0.0072341117858886715, 0.007020607948303222, 0.005933248043060303, 0.005666816234588623, 0.005607264041900635, 0.005623968124389649, 0.005601280212402344, 0.005635488033294678, 0.005896800041198731, 0.005623839855194092, 0.00566048002243042, 0.005616896152496338, 0.005601439952850342, 0.00566326379776001, 0.005600575923919678, 0.0056143999099731445, 0.005635935783386231, 0.005613791942596436, 0.005615359783172608, 0.005619743824005127, 0.0056154241561889645, 0.005615327835083008, 0.005630688190460205, 0.005600895881652832, 0.005638688087463379, 0.005617504119873047, 0.005627903938293457, 0.005611519813537597, 0.005607168197631836, 0.005603583812713623, 0.00566048002243042, 0.005601471900939942, 0.005636096000671387, 0.005638144016265869, 0.005668863773345947, 0.005622111797332764, 0.005592639923095703, 0.005636191844940185, 0.005596288204193115, 0.005617695808410645, 0.0057923197746276855, 0.005624095916748047, 0.005634047985076904, 0.005629024028778076, 0.005600160121917725, 0.005645311832427978, 0.0053821439743042, 0.005654528141021729, 0.005611199855804444, 0.005638463973999024, 0.0056863360404968265, 0.005675968170166016, 0.00562716817855835, 0.005627967834472656, 0.005765024185180664, 0.0056241598129272465, 0.005613984107971192, 0.0056217598915100095, 0.005694464206695556, 0.00564089584350586, 0.005593728065490722, 0.005627711772918701, 0.00559500789642334, 0.00557260799407959, 0.005636096000671387, 0.005580031871795654, 0.005630080223083496, 0.005605120182037354, 0.005630847930908203, 0.005646336078643799, 0.005609471797943116, 0.005633215904235839, 0.005614208221435547, 0.0056302080154418946, 0.00560697603225708, 0.0056910080909729, 0.005626207828521729, 0.005607840061187744, 0.0056356477737426755, 0.005591487884521485, 0.005600768089294434, 0.0056161279678344726, 0.005627520084381103, 0.005617536067962646, 0.005609983921051025, 0.005580671787261963, 0.005673056125640869, 0.005580192089080811, 0.005642784118652344, 0.005609151840209961, 0.005581215858459472, 0.005631999969482422, 0.005601280212402344, 0.0056200637817382815, 0.005588384151458741, 0.005654784202575683, 0.005650432109832764, 0.005602943897247315, 0.005619808197021485, 0.005597472190856934, 0.005605184078216553, 0.005611711978912353, 0.005601280212402344, 0.005654528141021729, 0.005615039825439453, 0.005571135997772217, 0.005619711875915527, 0.005582047939300537, 0.005603231906890869, 0.005328896045684814, 0.005587007999420166, 0.0057134079933166505, 0.005808576107025147, 0.005640543937683105, 0.005611167907714844, 0.005603328227996827, 0.005582240104675293, 0.005572224140167236, 0.005599967956542969, 0.005561600208282471, 0.005635072231292724, 0.005791168212890625, 0.005562943935394287, 0.005598239898681641, 0.005573599815368652, 0.005601280212402344, 0.005603295803070068, 0.005590496063232422, 0.00571449613571167, 0.005748479843139648, 0.005908448219299317, 0.005828479766845703, 0.005654943943023682, 0.005672959804534912, 0.005621344089508057, 0.005613984107971192, 0.005588607788085937, 0.005615200042724609, 0.005628704071044922, 0.005603328227996827, 0.005594783782958984, 0.005584415912628174, 0.005616543769836425, 0.0056109437942504885, 0.005659103870391846, 0.005634047985076904, 0.005586944103240967, 0.005629951953887939, 0.005659711837768555, 0.005616576194763184, 0.005606431961059571, 0.005612512111663818, 0.005652480125427246, 0.005611519813537597, 0.005621632099151611, 0.005603456020355225, 0.005615615844726562, 0.0056217598915100095, 0.005594560146331787, 0.0056059517860412595, 0.005599135875701904, 0.005616928100585937, 0.005638688087463379, 0.0055668802261352535, 0.005640160083770752, 0.005582752227783203, 0.0056217598915100095, 0.005620960235595703, 0.005571360111236572, 0.0055808000564575196, 0.005596320152282715, 0.005585855960845947, 0.005375936031341553, 0.005572800159454346, 0.005634751796722412, 0.005596255779266358, 0.005602208137512207, 0.00556441593170166, 0.005563936233520508, 0.005577184200286865, 0.0055623679161071774, 0.005613247871398926, 0.005595680236816406, 0.005551904201507568, 0.005631872177124023, 0.005574783802032471, 0.005588992118835449, 0.0055582718849182125, 0.005554175853729248, 0.005576704025268555, 0.005625152111053467, 0.005554463863372803, 0.005603744029998779, 0.005564703941345215, 0.005600992202758789, 0.005583136081695556, 0.005590464115142822, 0.0055790400505065915, 0.005560287952423096, 0.005601471900939942, 0.005729983806610108, 0.005621856212615967, 0.005621823787689209, 0.005582848072052002, 0.005611519813537597, 0.005597184181213379, 0.005582431793212891, 0.005625823974609375, 0.0056936640739440915, 0.005648608207702637, 0.005609471797943116, 0.005612544059753418, 0.005598207950592041, 0.005588992118835449, 0.005619711875915527, 0.005594399929046631, 0.0055938239097595216, 0.005576704025268555, 0.0055474557876586915, 0.005591616153717041, 0.0055848960876464845, 0.005658048152923584, 0.005597536087036133, 0.005578976154327392, 0.005595136165618897, 0.005615520000457764, 0.005625951766967774, 0.0055848960876464845, 0.005586016178131104, 0.005907360076904297, 0.00556441593170166, 0.005599391937255859, 0.005594560146331787, 0.005580543994903564, 0.005618656158447265, 0.005347455978393555, 0.005714111804962159, 0.005601280212402344, 0.005615615844726562, 0.0055922560691833495, 0.005575488090515137, 0.005606656074523926, 0.005620480060577393, 0.005619904041290283, 0.005605184078216553, 0.0055920639038085935, 0.005618688106536865, 0.005592991828918457, 0.005619391918182373, 0.005583263874053955, 0.005570559978485107, 0.005586368083953857, 0.005589087963104248, 0.005625984191894531, 0.0056629438400268555, 0.005606527805328369, 0.005643551826477051, 0.005572319984436035, 0.005596511840820313, 0.00563267183303833, 0.005607423782348633, 0.005597087860107422, 0.005609568119049072, 0.005629439830780029, 0.0055895037651062015, 0.005590688228607177, 0.00564463996887207, 0.0055808000564575196, 0.005623839855194092, 0.005581952095031738, 0.005581920146942139, 0.00562713623046875, 0.005626368045806885, 0.005607552051544189, 0.005607295989990235, 0.0055760002136230466, 0.005628608226776123, 0.005578303813934326, 0.005639840126037598, 0.005589600086212158, 0.005580671787261963, 0.005603519916534424, 0.005578048229217529, 0.005658432006835938, 0.005609471797943116, 0.005600607872009277, 0.0056459841728210445, 0.005607423782348633, 0.005623807907104492, 0.005599232196807862, 0.005689343929290771, 0.005613247871398926, 0.0055790719985961915, 0.005605375766754151, 0.0057935361862182615, 0.005843200206756592, 0.005621407985687256, 0.005589344024658203, 0.005359615802764893, 0.005588992118835449, 0.005627903938293457, 0.005600351810455323, 0.005607935905456543, 0.00558735990524292, 0.0055764479637145994, 0.00561568021774292, 0.005962080001831055, 0.005650271892547607, 0.00561356782913208, 0.005608799934387207, 0.005634719848632812, 0.005581056118011475, 0.005631455898284912, 0.0055957441329956056, 0.005596864223480225, 0.005619487762451172, 0.005582143783569336, 0.005630879878997803, 0.005605375766754151, 0.005615231990814209, 0.005630239963531494, 0.005602431774139404, 0.005630943775177002, 0.005629951953887939, 0.005631040096282959, 0.005640960216522216, 0.005596704006195068, 0.00559990406036377, 0.005619584083557129, 0.005633408069610595, 0.0055857281684875484, 0.005574016094207763, 0.005589568138122559, 0.005603328227996827, 0.005576704025268555, 0.005641983985900879, 0.005595232009887695, 0.005625376224517822, 0.005601920127868652, 0.005615744113922119, 0.005615488052368164, 0.005597184181213379, 0.005728256225585937, 0.005671040058135986, 0.005633408069610595, 0.005808127880096436, 0.0055976958274841304, 0.005701632022857666, 0.005605216026306152, 0.005673120021820069, 0.005617152214050293, 0.005607935905456543, 0.0056258559226989744, 0.005607295989990235, 0.005611648082733154, 0.005658624172210694, 0.0056852478981018065, 0.005679103851318359, 0.005660672187805176, 0.005639552116394043, 0.005730432033538818, 0.0053366079330444335, 0.005619616031646729, 0.005648287773132324, 0.005702527999877929, 0.00559827184677124, 0.005630559921264648, 0.005577087879180908, 0.0056044158935546875, 0.005632768154144287, 0.005777279853820801, 0.005920063972473144, 0.005594079971313477, 0.005649759769439698, 0.005605663776397705, 0.005640575885772705, 0.0056135358810424805, 0.005608575820922852, 0.005626016139984131, 0.006284031867980957, 0.006352543830871582, 0.006281023979187012, 0.005992512226104737, 0.005953440189361572, 0.005671487808227539, 0.005652480125427246, 0.005664480209350586, 0.005693727970123291, 0.005685408115386963, 0.005635583877563476, 0.005593311786651611, 0.005654655933380127, 0.005595136165618897, 0.005643551826477051, 0.005616352081298828, 0.005612800121307373, 0.005616384029388428, 0.0055848960876464845, 0.00564192008972168, 0.005636415958404541, 0.0055848960876464845, 0.005705728054046631, 0.005818143844604492, 0.005635488033294678, 0.005607391834259033, 0.005608287811279297, 0.005614880084991455, 0.0055979199409484865, 0.005593088150024414, 0.005605375766754151, 0.005615615844726562, 0.00562332820892334, 0.005609856128692627, 0.005625984191894531, 0.005609439849853516, 0.005595136165618897, 0.005617504119873047, 0.005593247890472412, 0.005637440204620361, 0.0056031041145324706, 0.005601439952850342, 0.005611519813537597, 0.005579520225524903, 0.005607423782348633, 0.0055354881286621095, 0.0056302080154418946, 0.005605375766754151, 0.005625279903411865, 0.005620287895202637, 0.005609471797943116, 0.005631999969482422, 0.005592607975006104, 0.0056427202224731444, 0.0056258559226989744, 0.005642240047454834, 0.005650239944458008, 0.005594719886779785, 0.005634655952453613, 0.005621471881866455, 0.005595424175262451, 0.005646207809448242, 0.0056152639389038085, 0.005620192050933838, 0.005603328227996827, 0.005611519813537597, 0.005638144016265869, 0.005593088150024414, 0.005633664131164551, 0.0056221442222595215, 0.005589248180389405, 0.005627647876739502, 0.005605728149414063, 0.005602975845336914, 0.005596704006195068, 0.005595104217529297, 0.0056427521705627445, 0.005609471797943116, 0.005619711875915527, 0.005640192031860352, 0.0056154241561889645, 0.005628032207489014, 0.00560748815536499, 0.005602880001068115, 0.005626304149627686, 0.006440959930419922, 0.005617568016052246, 0.005811647891998291, 0.0056241598129272465, 0.005601600170135498, 0.005647647857666016, 0.005601215839385987, 0.00560649585723877, 0.005590720176696777, 0.005574656009674072, 0.005638144016265869, 0.005619711875915527, 0.005631999969482422, 0.005607423782348633, 0.005605375766754151, 0.005633855819702148, 0.005606688022613525, 0.005602208137512207, 0.005615488052368164, 0.005611648082733154, 0.00563750410079956, 0.005589632034301758, 0.005623807907104492, 0.005357696056365967, 0.005615392208099365, 0.005610144138336182, 0.005662720203399658, 0.005636127948760986, 0.00562172794342041, 0.0056258878707885745, 0.005606880187988281, 0.005597311973571778, 0.005630335807800293, 0.005605375766754151, 0.005617631912231445, 0.005586976051330566, 0.005574656009674072, 0.005621503829956054, 0.005589248180389405, 0.005646624088287353, 0.00561078405380249, 0.005677504062652588, 0.005631872177124023, 0.005640160083770752, 0.005658783912658691, 0.005633952140808106, 0.005636191844940185, 0.005627903938293457, 0.005605375766754151, 0.005607423782348633, 0.005647679805755615, 0.005659167766571045, 0.005640192031860352, 0.0056303682327270505, 0.005684991836547851, 0.005611008167266846, 0.0056254081726074216, 0.005742847919464111, 0.00564521598815918, 0.00566044807434082, 0.005623167991638184, 0.00564195203781128, 0.005622687816619873, 0.005656576156616211, 0.005615615844726562, 0.005617919921875, 0.005653439998626709, 0.005621920108795166, 0.005859839916229248, 0.006127776145935059, 0.005861343860626221, 0.005633056163787842, 0.005645408153533936, 0.005681056022644043, 0.005660672187805176, 0.005675072193145752, 0.005652160167694092, 0.005671040058135986, 0.005619679927825928, 0.0057077760696411135, 0.005691391944885254, 0.00563420820236206, 0.005642240047454834, 0.005809760093688965, 0.0060661759376525876, 0.005627744197845459, 0.005402912139892578, 0.005650432109832764, 0.0056310720443725586, 0.005659552097320557, 0.005699584007263184, 0.005703392028808593, 0.005613855838775635, 0.005617631912231445, 0.005639616012573242, 0.005603456020355225, 0.005628384113311767, 0.005604351997375488, 0.005596159934997558, 0.005651552200317383, 0.005622464179992676, 0.005635903835296631, 0.00564028787612915, 0.0057736320495605465, 0.005648575782775879, 0.005601088047027588, 0.005692575931549072, 0.005643104076385498, 0.005672959804534912, 0.005646336078643799, 0.0056640000343322755, 0.0059028158187866215, 0.0056239042282104496, 0.005629119873046875, 0.005641215801239013, 0.005639935970306396, 0.0056343040466308595, 0.005616640090942383, 0.0056492481231689455, 0.0056440639495849605, 0.005651904106140137, 0.00561407995223999, 0.005625311851501465, 0.005635039806365967, 0.005624896049499512, 0.005618624210357666, 0.005627264022827148, 0.005617472171783447, 0.005647168159484863, 0.00563750410079956, 0.005636735916137696, 0.005650432109832764, 0.005627456188201904, 0.005652927875518799, 0.005603328227996827, 0.005670015811920166, 0.005622655868530274, 0.005640192031860352, 0.005624864101409912, 0.005604320049285889, 0.0056258559226989744, 0.005612544059753418, 0.005628032207489014, 0.005606272220611572, 0.005631999969482422, 0.005609471797943116, 0.005629568099975586, 0.00564467191696167, 0.0056442880630493165, 0.005392384052276611, 0.005628223896026611, 0.00562278413772583, 0.005644224166870117, 0.005609344005584717, 0.00564518404006958, 0.005613152027130127, 0.005597599983215332, 0.0056258559226989744, 0.0056137280464172365, 0.005595200061798096, 0.005631775856018067, 0.005588992118835449, 0.005666944026947021, 0.00559500789642334, 0.005629727840423584, 0.005615359783172608, 0.005591519832611084, 0.005651679992675782, 0.0056061758995056155, 0.005640192031860352, 0.005605375766754151, 0.005584991931915283, 0.005654431819915771, 0.005826560020446778, 0.005627520084381103, 0.0056180481910705566, 0.005630015850067139, 0.005613024234771728, 0.00559113597869873, 0.0056236801147460935, 0.005609536170959472, 0.005638591766357422, 0.005629568099975586, 0.005754784107208252, 0.0056835517883300785, 0.005652607917785645, 0.005662720203399658, 0.005637695789337158, 0.005605823993682861, 0.005654528141021729, 0.005618847846984863, 0.005651296138763428, 0.0056483840942382815, 0.005646016120910645, 0.005632415771484375, 0.005599135875701904, 0.005643743991851807, 0.005634592056274414, 0.005645919799804688, 0.005633600234985351, 0.005624095916748047, 0.005687520027160644, 0.005640543937683105, 0.005658432006835938, 0.00564243221282959, 0.005607423782348633, 0.005652480125427246, 0.005600927829742431, 0.005658976078033447, 0.005617663860321045, 0.005599232196807862, 0.005646336078643799, 0.005373248100280762, 0.005667808055877685, 0.005599391937255859, 0.00562937593460083, 0.005628320217132568, 0.0056211199760437015, 0.005627711772918701, 0.005606207847595215, 0.005609471797943116, 0.005586559772491455, 0.005560704231262207, 0.005619711875915527, 0.005566463947296142, 0.005599232196807862, 0.005583936214447021, 0.0055799040794372555, 0.005639071941375732, 0.005593311786651611, 0.005688000202178955, 0.005631999969482422, 0.005623807907104492, 0.005658239841461182, 0.005621600151062012, 0.005698336124420166, 0.005666336059570312, 0.005676928043365478, 0.005670591831207276, 0.005666528224945068, 0.005673920154571533, 0.005637663841247559, 0.005816800117492676, 0.00568236780166626, 0.005868447780609131, 0.00567849588394165, 0.00563865613937378, 0.005652480125427246, 0.005619872093200684, 0.00564796781539917, 0.005635903835296631, 0.0056406397819519045, 0.0057051520347595214, 0.005878335952758789, 0.0057019200325012205, 0.005631103992462159, 0.005673439979553223, 0.005615744113922119, 0.005610847949981689, 0.005648799896240234, 0.005646592140197754, 0.005660672187805176, 0.005642240047454834, 0.005629439830780029, 0.00565670394897461, 0.005616000175476074, 0.005628159999847412, 0.005633791923522949, 0.005629759788513183, 0.005635488033294678, 0.005613408088684082, 0.005641151905059814, 0.005627903938293457, 0.005650432109832764, 0.005628096103668213, 0.005391615867614746, 0.005603936195373535, 0.0056068158149719235, 0.005608191967010498, 0.005625631809234619, 0.005613247871398926, 0.0056241598129272465, 0.005600736141204834, 0.00563478422164917, 0.005750239849090576, 0.005603871822357178, 0.005610879898071289, 0.005611616134643555, 0.005654111862182617, 0.005636223793029785, 0.00563647985458374, 0.005613887786865234, 0.0056096000671386715, 0.005654016017913818, 0.005614240169525147, 0.005646175861358642, 0.0056258559226989744, 0.005621344089508057, 0.005663392066955567, 0.005615231990814209, 0.005680992126464844, 0.005644576072692871, 0.005668032169342041, 0.005655295848846435, 0.005627967834472656, 0.00566476821899414, 0.005615615844726562, 0.005635200023651123, 0.005624767780303955, 0.005627264022827148, 0.005717984199523926, 0.0056341438293457035, 0.005664544105529785, 0.0056464638710021975, 0.005617695808410645, 0.005681727886199951, 0.005624959945678711, 0.005687424182891846, 0.005649151802062988, 0.005652671813964844, 0.005670752048492432, 0.005657919883728027, 0.005671008110046387, 0.005624383926391602, 0.005765120029449463, 0.005711391925811767, 0.005634528160095215, 0.005660287857055664, 0.005626239776611328, 0.005668863773345947, 0.005634047985076904, 0.005666336059570312, 0.005622591972351074, 0.005610879898071289, 0.005744448184967041, 0.005611487865447998, 0.0056570878028869625, 0.005646336078643799, 0.005398591995239258, 0.005645023822784424, 0.005597280025482178, 0.005656544208526611, 0.005597216129302978, 0.005633887767791748, 0.005626016139984131, 0.005608640193939209, 0.0056360640525817875, 0.00561033582687378, 0.005647552013397217, 0.00565715217590332, 0.0058178558349609374, 0.005609856128692627, 0.0056277761459350584, 0.005628416061401367, 0.005615615844726562, 0.005629951953887939, 0.005611519813537597, 0.005615615844726562, 0.005634047985076904, 0.005609471797943116, 0.00562713623046875, 0.005624576091766358, 0.005608511924743652, 0.005651391983032226, 0.00563097620010376, 0.005670976161956787, 0.005669727802276612, 0.005640255928039551, 0.005724192142486572, 0.005666207790374756, 0.005723936080932617, 0.005642240047454834, 0.005661375999450683, 0.005699711799621582, 0.005635488033294678, 0.005679711818695068, 0.005642240047454834, 0.005646240234375, 0.0056054720878601074, 0.005605120182037354, 0.005646592140197754, 0.0056146240234375, 0.005630943775177002, 0.005633503913879395, 0.005596896171569824, 0.005672863960266113, 0.0056267518997192385, 0.005643455982208252, 0.005632863998413086, 0.005673247814178467, 0.005649663925170898, 0.005616096019744873, 0.0056622719764709475, 0.005607359886169434, 0.005636608123779297, 0.005610976219177246, 0.005618207931518555, 0.005633535861968994, 0.0056202239990234375, 0.005636096000671387, 0.005631999969482422, 0.005351679801940918, 0.0056003198623657225, 0.005632991790771484, 0.005727519989013672, 0.0056388797760009764, 0.005646336078643799, 0.005638144016265869, 0.0056258559226989744, 0.005672095775604248, 0.00567145586013794, 0.005695648193359375, 0.005652544021606446, 0.0056341438293457035, 0.0056433920860290525, 0.005633056163787842, 0.005653535842895508, 0.005619904041290283, 0.005628255844116211, 0.005628128051757813, 0.0056098241806030276, 0.005678815841674805, 0.005650432109832764, 0.005643487930297852, 0.005616415977478027, 0.005648064136505127, 0.005635935783386231, 0.005601759910583496, 0.0056418561935424804, 0.005936927795410156, 0.005642848014831543, 0.0056250238418579105, 0.005624127864837646, 0.005634560108184815, 0.005629951953887939, 0.005646336078643799, 0.005619711875915527, 0.00561359977722168, 0.005664735794067383, 0.005609471797943116, 0.0056497278213500975, 0.005613791942596436, 0.0056232957839965824, 0.005667520046234131, 0.005625984191894531, 0.005632160186767578, 0.0056638078689575195, 0.005634943962097168, 0.005625823974609375, 0.005637631893157959, 0.0056735677719116214, 0.005656576156616211, 0.005687295913696289, 0.005697535991668701, 0.00564415979385376, 0.005662112236022949, 0.005637951850891113, 0.005651360034942627, 0.005748608112335205, 0.005675136089324951, 0.0056516480445861815, 0.005632448196411133, 0.005626239776611328, 0.005699584007263184, 0.005359712123870849, 0.005623167991638184, 0.0056284480094909665, 0.0056112961769104, 0.005625088214874268, 0.005630655765533447, 0.005624095916748047, 0.005631999969482422, 0.005639872074127197, 0.0056112961769104, 0.005655072212219238, 0.005627071857452393, 0.005654911994934082, 0.005632448196411133, 0.005637951850891113, 0.005666240215301514, 0.005645055770874024, 0.0056442880630493165, 0.005633696079254151, 0.00559116792678833, 0.005650527954101562, 0.0056275839805603025, 0.005645088195800781, 0.005648032188415527, 0.005647456169128418, 0.005626783847808838, 0.005641791820526123, 0.005642687797546387, 0.005654528141021729, 0.005666719913482666, 0.005681248188018799, 0.005616703987121582, 0.005692351818084717, 0.005592864036560058, 0.0059836478233337405, 0.006132415771484375, 0.005727935791015625, 0.005654047966003418, 0.005653120040893554, 0.005643775939941406, 0.005660575866699219, 0.005641088008880615, 0.005658624172210694, 0.005666816234588623, 0.005648447990417481, 0.0056070079803466795, 0.0056733121871948245, 0.005619711875915527, 0.00564134407043457, 0.005649280071258545, 0.005631648063659668, 0.005693439960479736, 0.0056200637817382815, 0.005695712089538574, 0.005643743991851807, 0.00566918420791626, 0.00564195203781128, 0.005624032020568848, 0.005900288105010986, 0.005596640110015869, 0.005650176048278809, 0.005622432231903076, 0.0055912318229675295, 0.005355616092681884, 0.005615615844726562, 0.005631999969482422, 0.005607135772705078, 0.005611680030822754, 0.005619584083557129, 0.005613632202148437, 0.005640384197235108, 0.005605375766754151, 0.005611519813537597, 0.005601280212402344, 0.005688576221466064, 0.005614336013793945, 0.005607423782348633, 0.0056442880630493165, 0.005631999969482422, 0.0056239042282104496, 0.005652383804321289, 0.0056295042037963865, 0.0056713600158691405, 0.005662975788116455, 0.005635776042938232, 0.00560748815536499, 0.005619711875915527, 0.005683199882507324, 0.005601280212402344, 0.005617663860321045, 0.005618720054626465, 0.0055797438621521, 0.005756896018981933, 0.005601344108581543, 0.005631968021392823, 0.005629951953887939, 0.00561897611618042, 0.005646399974822998, 0.005585440158843994, 0.005641632080078125, 0.0056388797760009764, 0.005816256046295166, 0.0056341118812561035, 0.005597184181213379, 0.005629856109619141, 0.005622975826263428, 0.005854112148284912, 0.005631135940551758, 0.00562604808807373, 0.005663392066955567, 0.005687295913696289, 0.0056217598915100095, 0.0056217598915100095, 0.005758848190307617, 0.005726336002349853, 0.00560038423538208, 0.005608320236206055, 0.005636288166046143, 0.00562332820892334, 0.005646624088287353, 0.005607423782348633, 0.005659904003143311, 0.005585663795471192, 0.005621024131774902, 0.005611487865447998, 0.005690112113952637, 0.005453855991363526, 0.005606304168701172, 0.0056375679969787595, 0.005620160102844238, 0.005621183872222901, 0.005635776042938232, 0.005622367858886718, 0.005662528038024903, 0.005937280178070069, 0.00563043212890625, 0.0056130561828613285, 0.005636000156402588, 0.005609151840209961, 0.005593472003936768, 0.005627456188201904, 0.005616608142852783, 0.005656383991241455, 0.005609632015228272, 0.0055931200981140135, 0.005646336078643799, 0.005617663860321045, 0.005658624172210694, 0.0056557440757751464, 0.005640768051147461, 0.005670591831207276, 0.00563046407699585, 0.005632031917572022, 0.005650527954101562, 0.005650368213653565, 0.005703680038452149, 0.005650303840637207, 0.0056730880737304685, 0.005679103851318359, 0.005654528141021729, 0.005650368213653565, 0.0056310720443725586, 0.005663712024688721, 0.005848159790039062, 0.005644544124603272, 0.005648096084594726, 0.005657536029815674, 0.00579744005203247, 0.005595327854156494, 0.005713568210601806, 0.005626463890075683, 0.005631999969482422, 0.005636096000671387, 0.005617472171783447, 0.005642079830169678, 0.00560368013381958, 0.005652736186981202, 0.005630879878997803, 0.005639008045196533, 0.005669087886810303, 0.00566044807434082, 0.005652480125427246, 0.005661856174468994, 0.005663584232330323, 0.005618879795074463, 0.005614175796508789, 0.005652031898498535, 0.00562662410736084, 0.005636000156402588, 0.005375999927520752, 0.0056315197944641114, 0.0056713919639587405, 0.005623807907104492, 0.0056770238876342775, 0.005619743824005127, 0.0056341438293457035, 0.005662623882293701, 0.005659808158874511, 0.005697887897491455, 0.005615871906280517, 0.005660927772521972, 0.005638144016265869, 0.0056217598915100095, 0.00565177583694458, 0.005618368148803711, 0.005644320011138916, 0.0056295042037963865, 0.005616032123565674, 0.005615359783172608, 0.005607583999633789, 0.0056341438293457035, 0.005613344192504883, 0.0056304001808166505, 0.005625472068786621, 0.005598432064056397, 0.005622719764709473, 0.005629216194152832, 0.005669600009918213, 0.005627520084381103, 0.005623968124389649, 0.005648672103881836, 0.005606592178344727, 0.005630720138549805, 0.005629951953887939, 0.005588736057281494, 0.005650047779083252, 0.0055747518539428715, 0.00564031982421875, 0.005608191967010498, 0.005797120094299316, 0.005656991958618164, 0.005595136165618897, 0.005638144016265869, 0.005672192096710205, 0.005630144119262695, 0.005636191844940185, 0.005612095832824707, 0.005643455982208252, 0.005626656055450439, 0.005631872177124023, 0.005635615825653076, 0.005594816207885742, 0.005630815982818603, 0.005617728233337402, 0.005615551948547363, 0.005640192031860352, 0.005582848072052002, 0.005607423782348633, 0.005590623855590821, 0.005623839855194092, 0.0055972480773925784, 0.005695807933807373, 0.005393184185028076, 0.005619711875915527, 0.005691391944885254, 0.005646336078643799, 0.005634047985076904, 0.005646336078643799, 0.0055948801040649416, 0.005628032207489014, 0.005593215942382813, 0.005654528141021729, 0.005608672142028808, 0.005633056163787842, 0.005641759872436524, 0.005624032020568848, 0.005621503829956054, 0.00578326416015625, 0.006793248176574707, 0.005968480110168457, 0.006121535778045654, 0.006065279960632324, 0.006225823879241943, 0.005679935932159424, 0.005709824085235596, 0.005649792194366455, 0.005668672084808349, 0.005650335788726806, 0.005661824226379395, 0.005689023971557617, 0.00562992000579834, 0.005666111946105957, 0.005671743869781494, 0.005660223960876465, 0.00564899206161499, 0.005675903797149658, 0.005711935997009278, 0.00565340805053711, 0.005711775779724121, 0.005658783912658691, 0.00566864013671875, 0.00566921615600586, 0.005686079978942871, 0.0056863360404968265, 0.00565180778503418, 0.005661280155181885, 0.005638144016265869, 0.0056275839805603025, 0.005677375793457031, 0.005662720203399658, 0.005703616142272949, 0.005717376232147217, 0.005651135921478271, 0.005695487976074219, 0.005649759769439698, 0.005667232036590576, 0.00566707181930542, 0.005662720203399658, 0.0056217598915100095, 0.005629951953887939, 0.005713920116424561, 0.006149824142456055, 0.005664351940155029, 0.005663455963134766, 0.005689343929290771, 0.005354015827178955, 0.005670911788940429, 0.005636096000671387, 0.005616703987121582, 0.005655007839202881, 0.005667295932769776, 0.0056741762161254886, 0.005665599822998047, 0.0056399679183959965, 0.005656511783599854, 0.00562614393234253, 0.005640192031860352, 0.005623519897460938, 0.005597472190856934, 0.00564793586730957, 0.005618112087249756, 0.005654528141021729, 0.00565772819519043, 0.005661568164825439, 0.005623807907104492, 0.005607423782348633, 0.005684607982635498, 0.005642879962921143, 0.005670911788940429, 0.0059169921875, 0.005620960235595703, 0.0061567678451538085, 0.0056260800361633305, 0.005664544105529785, 0.005631999969482422, 0.005646336078643799, 0.005646336078643799, 0.005640192031860352, 0.005671040058135986, 0.005652160167694092, 0.005652671813964844, 0.005668416023254395, 0.005740992069244385, 0.005679103851318359, 0.005678431987762451, 0.0056900157928466795, 0.005641600131988525, 0.005773151874542236, 0.005727007865905762, 0.005675007820129394, 0.005646336078643799, 0.005645567893981933, 0.0056921601295471195, 0.0056442880630493165, 0.00566431999206543, 0.005652575969696045, 0.00563750410079956, 0.005667808055877685, 0.005656576156616211, 0.005700640201568604, 0.005724319934844971, 0.005716032028198243, 0.005663487911224365, 0.00564134407043457, 0.005685887813568115, 0.005666975975036621, 0.0056976318359375, 0.005817728042602539]",tokens/s,174.95210150115787,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,939.741184,12518.883328,0.0,12123.635712,12121.851904,s,1,7.0910576171875,7.0910576171875,0.0,7.0910576171875,7.0910576171875,7.0910576171875,7.0910576171875,[7.0910576171875],,kWh,5.995084929149167e-06,6.536890547941898e-07,3.3272248840046648e-06,9.975998867948022e-06,,MB,1327.08352,12544.049152,0.0,12138.315776,10311.21664,s,10,3.5256805114746097,0.352568051147461,0.009494322369546622,0.35446546936035156,0.3594026153564453,0.36019141998291015,0.36082246368408205,"[0.3253225402832031, 0.35563198852539063, 0.35113504028320314, 0.3545672607421875, 0.3541093444824219, 0.35436367797851565, 0.3530037536621094, 0.360980224609375, 0.3592273254394531, 0.35733935546875]",tokens/s,726.1009588555386,kWh,9.95890694555568e-06,1.0977229504491317e-06,6.659088660599758e-06,1.771571855660457e-05,tokens/kWh,14450444.060851319,MB,1356.386304,12550.340608,0.0,12144.607232,10311.2192,s,10,27.021487060546875,2.702148706054687,0.0018136617898095334,2.7023939208984373,2.7035677001953125,2.704416174316406,2.705094953613281,"[2.70197265625, 2.697788818359375, 2.702718505859375, 2.703379150390625, 2.7020693359375, 2.7013095703125, 2.7052646484375, 2.701328369140625, 2.70283154296875, 2.702824462890625]",tokens/s,23.314779034490705,kWh,7.923303308861126e-05,8.74009368760228e-06,5.241868082380049e-05,0.000140391807600014,tokens/kWh,448744.13312984305,,s,630,27.01925434875488,0.04288770531548394,0.00024527835886048937,0.042839584350585935,0.04304192733764648,0.04312481708526611,0.04451238708496094,"[0.04444156646728516, 0.04303683090209961, 0.042803009033203124, 0.0428120002746582, 0.042782943725585935, 0.042649375915527345, 0.04270486450195313, 0.04277657699584961, 0.04268854522705078, 0.042724735260009764, 0.04273401641845703, 0.04300614547729492, 0.042923038482666015, 0.043199455261230466, 0.043055103302001956, 0.04285235214233398, 0.04270406341552734, 0.04286547088623047, 0.04267827224731445, 0.04275609588623047, 0.04283737564086914, 0.043025150299072265, 0.04293519973754883, 0.043248607635498044, 0.042877086639404295, 0.04295459365844727, 0.042799102783203126, 0.04283801651000976, 0.04288716888427734, 0.04286019134521484, 0.04292233657836914, 0.04276188659667969, 0.042799423217773434, 0.04267216110229492, 0.04277657699584961, 0.04289945602416992, 0.0430571517944336, 0.04291900634765625, 0.04287376022338867, 0.04286848068237305, 0.04288332748413086, 0.042778560638427734, 0.04279062271118164, 0.04290569686889648, 0.043151649475097656, 0.043040737152099606, 0.042969120025634765, 0.042941600799560546, 0.042879806518554685, 0.04281139373779297, 0.04283801651000976, 0.04283801651000976, 0.04276547241210937, 0.042807296752929686, 0.04292620849609375, 0.0428100814819336, 0.042906654357910155, 0.04269120025634766, 0.04271299362182617, 0.04276416015625, 0.042816062927246094, 0.042839103698730466, 0.04287910461425781, 0.044458560943603516, 0.04315571212768555, 0.04294451141357422, 0.042840065002441405, 0.0427147216796875, 0.042723232269287106, 0.04269311904907227, 0.04267737579345703, 0.04273651123046875, 0.0428807373046875, 0.04280319976806641, 0.0428172492980957, 0.04302396774291992, 0.042775104522705075, 0.04268646240234375, 0.04265532684326172, 0.04262790298461914, 0.042674175262451174, 0.04271923065185547, 0.04273971176147461, 0.0426343994140625, 0.042799583435058595, 0.04283536148071289, 0.04284902572631836, 0.04273916625976563, 0.04277078247070312, 0.04264729690551758, 0.042801822662353516, 0.04277596664428711, 0.042773086547851565, 0.04273971176147461, 0.042716320037841794, 0.042713951110839844, 0.04262412643432617, 0.04272012710571289, 0.04281536102294922, 0.042848384857177735, 0.04282745742797851, 0.04278300857543945, 0.042657825469970705, 0.04272127914428711, 0.042788864135742184, 0.04270428848266602, 0.042758750915527347, 0.0429854736328125, 0.04294607925415039, 0.0429859504699707, 0.04288211059570313, 0.042883071899414066, 0.042732479095458985, 0.0428438720703125, 0.04280963134765625, 0.0428741455078125, 0.04283670425415039, 0.04280115127563477, 0.04287807846069336, 0.04272422409057617, 0.04279667282104492, 0.04280358505249023, 0.04284393692016602, 0.04274739074707031, 0.04295139312744141, 0.0428581428527832, 0.04452614212036133, 0.043184127807617184, 0.04284764862060547, 0.04288572692871094, 0.042815486907958986, 0.04268761444091797, 0.04274879837036133, 0.04273561477661133, 0.04272860717773438, 0.04280972671508789, 0.04289728164672851, 0.04288735961914063, 0.04276675033569336, 0.042950016021728515, 0.042749824523925783, 0.042758750915527347, 0.042724544525146485, 0.042816062927246094, 0.04284662246704102, 0.04281753540039063, 0.04297318267822266, 0.04300822448730469, 0.04305887985229492, 0.04292822265625, 0.04297843170166016, 0.04286064147949219, 0.0428633918762207, 0.04301824188232422, 0.042893310546875, 0.042842113494873046, 0.042782463073730466, 0.04284646224975586, 0.04274358367919922, 0.04273955154418945, 0.04284454345703125, 0.04282777786254883, 0.042832927703857424, 0.042971134185791016, 0.04305750274658203, 0.04282953643798828, 0.04278953552246094, 0.04274639892578125, 0.04281894302368164, 0.04295654296875, 0.043026496887207034, 0.04306179046630859, 0.04304006576538086, 0.04287097549438477, 0.04292659378051758, 0.042847999572753905, 0.04279510498046875, 0.0428873291015625, 0.04297727966308594, 0.042907520294189455, 0.04285248184204102, 0.04279257583618164, 0.0427196159362793, 0.042760032653808594, 0.042770401000976566, 0.04306697463989258, 0.043055713653564455, 0.04279814529418945, 0.04293523025512695, 0.04465673446655274, 0.04332950210571289, 0.04286671829223633, 0.04273971176147461, 0.04281081771850586, 0.042971710205078124, 0.04273551940917969, 0.04286268615722656, 0.04305920028686523, 0.042772159576416016, 0.042729312896728516, 0.04274428939819336, 0.042708992004394535, 0.04292144012451172, 0.042791454315185544, 0.042788864135742184, 0.04286259078979492, 0.04283801651000976, 0.04289945602416992, 0.042777854919433596, 0.04288179016113281, 0.043096065521240234, 0.04302547073364258, 0.042973407745361326, 0.04301078414916992, 0.04306470489501953, 0.04291798400878906, 0.04286019134521484, 0.04277478408813477, 0.042756736755371096, 0.042821632385253904, 0.04272515106201172, 0.04285257720947266, 0.042962944030761716, 0.042897407531738284, 0.04273107147216797, 0.042888992309570315, 0.042803230285644533, 0.04273011016845703, 0.04285440063476562, 0.042864543914794925, 0.042840160369873044, 0.04290316772460938, 0.04288550567626953, 0.043097633361816406, 0.042955135345458986, 0.042866783142089845, 0.0429035530090332, 0.04293222427368164, 0.04296908950805664, 0.043074817657470704, 0.04302710342407227, 0.042790302276611326, 0.04279536056518555, 0.04272572708129883, 0.04271462249755859, 0.04294451141357422, 0.04282624053955078, 0.04287676620483399, 0.042848289489746096, 0.04305263900756836, 0.04298761749267578, 0.04274732971191406, 0.044504478454589845, 0.043321758270263674, 0.042931713104248044, 0.04273196792602539, 0.04266009521484375, 0.04270284652709961, 0.04280428695678711, 0.04277139282226562, 0.042823680877685545, 0.042790912628173826, 0.04274380874633789, 0.04270489501953125, 0.042764190673828126, 0.04271452713012695, 0.04273011016845703, 0.04280489730834961, 0.042795425415039064, 0.042759521484375, 0.04268508911132812, 0.0426618881225586, 0.04265484619140625, 0.042801471710205076, 0.04325843048095703, 0.043374591827392575, 0.04311040115356445, 0.043054622650146486, 0.04292860794067383, 0.04284415817260742, 0.04280464172363281, 0.04297379302978516, 0.042840065002441405, 0.042872833251953124, 0.042790431976318356, 0.042834335327148435, 0.04277459335327148, 0.04281958389282227, 0.042794719696044925, 0.04278492736816406, 0.042741153717041014, 0.04291043090820312, 0.04297727966308594, 0.04278025436401367, 0.042764705657958986, 0.043034175872802734, 0.04291219329833985, 0.04300320053100586, 0.042998462677001956, 0.043036670684814454, 0.04295884704589844, 0.04306739044189453, 0.042939712524414066, 0.04281817626953125, 0.0427613754272461, 0.042824607849121094, 0.0428295669555664, 0.043014400482177736, 0.042780670166015625, 0.04286259078979492, 0.04277862548828125, 0.04272915267944336, 0.042925567626953126, 0.04286751937866211, 0.04281283187866211, 0.04451561737060547, 0.0431346549987793, 0.04294854354858398, 0.042864864349365234, 0.0428851203918457, 0.042896831512451175, 0.042818111419677736, 0.04284415817260742, 0.04273766326904297, 0.04276406478881836, 0.04275737762451172, 0.04272803115844727, 0.04288345718383789, 0.04293427276611328, 0.04278441619873047, 0.04280355072021484, 0.04278476715087891, 0.04280649566650391, 0.04267702484130859, 0.042782718658447266, 0.04291340637207031, 0.04305881500244141, 0.04311427307128906, 0.043058143615722654, 0.042891265869140625, 0.042870849609375, 0.04280928039550781, 0.042780670166015625, 0.04260825729370117, 0.042874496459960935, 0.04288710403442383, 0.04283065414428711, 0.04275609588623047, 0.04286185455322265, 0.042758880615234376, 0.04274585723876953, 0.042700801849365234, 0.04281958389282227, 0.04278179168701172, 0.0427529296875, 0.04279286575317383, 0.04288931274414062, 0.04279500961303711, 0.0429117431640625, 0.0429117431640625, 0.04288716888427734, 0.043162784576416015, 0.043117408752441404, 0.04292607879638672, 0.042921760559082034, 0.042805152893066405, 0.04279328155517578, 0.042815486907958986, 0.04276428985595703, 0.042840065002441405, 0.04279635238647461, 0.04284070587158203, 0.042876991271972656, 0.042864639282226565, 0.04275923156738281, 0.042775390625, 0.04281967926025391, 0.042812767028808596, 0.044538944244384766, 0.04325062561035156, 0.04303247833251953, 0.04281100845336914, 0.04291836929321289, 0.042889217376708984, 0.042934207916259765, 0.04292147064208984, 0.042818111419677736, 0.0429854736328125, 0.04278681564331055, 0.04283526229858398, 0.04289401626586914, 0.042848255157470705, 0.04267612838745117, 0.042840415954589844, 0.04278656005859375, 0.0427760009765625, 0.04288774490356445, 0.0429051513671875, 0.04281593704223633, 0.04326399993896484, 0.04316364669799805, 0.043107902526855466, 0.04293875122070313, 0.042934337615966794, 0.042921375274658204, 0.04276079940795898, 0.04287897491455078, 0.04289535903930664, 0.04289535903930664, 0.04274995040893555, 0.04280934524536133, 0.042786785125732425, 0.04284204864501953, 0.042817726135253906, 0.042979328155517575, 0.043005790710449215, 0.042886238098144534, 0.04282262420654297, 0.04278476715087891, 0.042853694915771484, 0.04306172943115234, 0.042938591003417965, 0.04311014556884766, 0.04309148788452148, 0.04302511978149414, 0.042997760772705076, 0.043007137298583985, 0.042903968811035156, 0.043100574493408206, 0.0428928337097168, 0.04295731353759766, 0.0429752311706543, 0.04293017578125, 0.04294819259643555, 0.04300252914428711, 0.04290848159790039, 0.04269891357421875, 0.04276508712768555, 0.042805057525634765, 0.04282726287841797, 0.04284281539916992, 0.044598560333251956, 0.04320537567138672, 0.04294652938842773, 0.042893310546875, 0.042774528503417966, 0.04274585723876953, 0.04275814437866211, 0.04275948715209961, 0.04278956985473633, 0.04282572937011719, 0.042842113494873046, 0.042735294342041014, 0.04279328155517578, 0.042858497619628906, 0.04277766418457031, 0.04283603286743164, 0.04278499221801758, 0.04268304061889648, 0.042771903991699216, 0.042775104522705075, 0.04282767868041992, 0.04283564758300781, 0.04295065689086914, 0.04320707321166992, 0.04313087844848633, 0.04301824188232422, 0.04293427276611328, 0.042872833251953124, 0.0428353271484375, 0.04278540802001953, 0.04274358367919922, 0.042901729583740236, 0.04282572937011719, 0.042853824615478514, 0.0428650894165039, 0.042821758270263674, 0.04271615982055664, 0.042801822662353516, 0.04277196884155274, 0.04275491333007812, 0.04278476715087891, 0.04281865692138672, 0.04281564712524414, 0.04299033737182617, 0.04286975860595703, 0.04286800003051758, 0.04291926574707031, 0.042920318603515625, 0.04300799942016602, 0.04294041442871094, 0.04288889694213867, 0.0428895378112793, 0.04277862548828125, 0.04277657699584961, 0.04274585723876953, 0.04268396759033203, 0.042866657257080075, 0.04283622360229492, 0.04289257431030274, 0.04286313629150391, 0.04279951858520508, 0.04279478454589844, 0.042733440399169924, 0.04454291152954101, 0.04317184066772461, 0.042891265869140625, 0.042984798431396486, 0.0427977294921875, 0.042796993255615236, 0.04275791931152344, 0.04274332809448242, 0.04279372787475586, 0.04283715057373047, 0.04287910461425781, 0.042963680267333985, 0.042798751831054686, 0.042772830963134764, 0.042774528503417966, 0.042730720520019534, 0.042736030578613284, 0.0426926383972168, 0.042655681610107424, 0.04276828765869141, 0.04301260757446289, 0.043063297271728515, 0.04310943984985351, 0.0429917106628418, 0.04308598327636719, 0.04282969665527344, 0.04291052627563476, 0.042969024658203125, 0.042993438720703124, 0.04285184097290039, 0.04280928039550781, 0.04294128036499024, 0.042816543579101564, 0.04276732635498047, 0.04271664047241211, 0.04279267120361328, 0.042762046813964845, 0.042894336700439455, 0.04282921600341797, 0.042715744018554686, 0.04268780899047851, 0.04278496170043945, 0.04280319976806641, 0.04286022567749023, 0.043175872802734376, 0.04305763244628906, 0.04308969497680664, 0.04295068740844726, 0.042947006225585935, 0.0428873291015625, 0.04284793472290039, 0.04280966567993164, 0.0428985595703125, 0.04303142547607422, 0.04288211059570313, 0.042855358123779295, 0.042902622222900394, 0.043117183685302735, 0.04273404693603516, 0.04279590225219727, 0.042838657379150394, 0.04283599853515625, 0.04287055969238281, 0.044707870483398436, 0.043235294342041014, 0.0429035530090332, 0.042829822540283204, 0.042788864135742184, 0.04274380874633789, 0.04267769622802734, 0.042693183898925784, 0.04277811050415039, 0.042732032775878906, 0.042774528503417966, 0.042772384643554685, 0.04272457504272461, 0.042756542205810544, 0.04267257690429688, 0.04265100860595703, 0.04278745651245117, 0.04279500961303711, 0.04265574264526367, 0.042788864135742184, 0.042858497619628906, 0.042898624420166016, 0.04300003051757813, 0.043012702941894534, 0.042872833251953124, 0.042942047119140625, 0.04347331237792969, 0.04296908950805664, 0.04287311935424805, 0.04278243255615234, 0.042831871032714845, 0.04279500961303711, 0.04280883026123047, 0.04277503967285156, 0.042883071899414066, 0.04278681564331055, 0.0429054069519043, 0.04280899047851563, 0.04272329711914063, 0.042695232391357425, 0.042764225006103516, 0.042925567626953126, 0.04290412902832031, 0.04292607879638672, 0.04303257751464844, 0.04301004791259765, 0.042893310546875, 0.04291788864135742, 0.043020286560058595, 0.04299980926513672, 0.04298294448852539, 0.04303071975708008, 0.04327657699584961, 0.04297068786621094, 0.04291219329833985, 0.04280313491821289, 0.04277814483642578, 0.04281331253051758, 0.04287276840209961, 0.04296777725219727, 0.04302796936035156, 0.042813953399658204, 0.04278659057617187]",tokens/s,23.31670563029553,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 1001, in __init__ self.model = GemmaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 780, in __init__ [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 780, in [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 571, in __init__ self.mlp = GemmaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 166, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 288.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 166.12 MiB is free. Process 139554 has 14.58 GiB memory in use. Of the allocated memory 14.46 GiB is allocated by PyTorch, and 1.74 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,783.659008,1106.182144,0.0,710.934528,657.419264,s,1,7.05105859375,7.05105859375,0.0,7.05105859375,7.05105859375,7.05105859375,7.05105859375,[7.05105859375],,kWh,2.202895187519971e-06,2.3594645826461773e-07,0.0,2.438841645784589e-06,,MB,1154.048,1150.222336,0.0,744.48896,582.372352,s,21,0.34496889877319337,0.01642709041777111,0.0007742651983539773,0.016256927490234375,0.016360639572143554,0.016419744491577147,0.01918410911560059,"[0.019875200271606445, 0.01612614440917969, 0.0162511043548584, 0.01623356819152832, 0.016419744491577147, 0.01624127960205078, 0.016256927490234375, 0.01615715217590332, 0.01620195198059082, 0.01619811248779297, 0.016309696197509764, 0.01617840003967285, 0.016360639572143554, 0.01628441619873047, 0.016258655548095705, 0.016328128814697265, 0.016202848434448244, 0.016271615982055666, 0.016319295883178712, 0.01632364845275879, 0.01617036819458008]",tokens/s,15584.013570842391,kWh,6.129782504288806e-07,6.759974087109422e-08,4.079006531176538e-07,1.0884786444176286e-06,tokens/kWh,235190650.0994958,MB,1165.881344,1171.193856,0.0,765.46048,582.374912,s,21,9.861971099853514,0.46961767142159594,0.0015522680961810973,0.46928976440429687,0.4714923095703125,0.4716328125,0.47389763183593747,"[0.47017724609375, 0.46980416870117186, 0.47446383666992187, 0.4695044860839844, 0.4688964538574219, 0.469240234375, 0.4675565490722656, 0.4714923095703125, 0.46747354125976565, 0.4716328125, 0.47092059326171876, 0.47007916259765625, 0.46998968505859373, 0.46915087890625, 0.4682867736816406, 0.46879379272460936, 0.46901904296875, 0.46928976440429687, 0.4695080261230469, 0.46755807495117185, 0.4691336669921875]",tokens/s,134.15168089669734,kWh,1.3432311777348723e-05,1.481352660628371e-06,6.6641552690726686e-06,2.1577819707049762e-05,tokens/kWh,2919664.7694399385,,s,1323,9.856276663780205,0.007449944568239011,0.0001204959173266853,0.007427680015563965,0.007527481746673584,0.0076103262424469,0.007899578285217285,"[0.007407072067260742, 0.007580192089080811, 0.007585792064666748, 0.007608160018920899, 0.007400864124298095, 0.007393919944763184, 0.007436351776123047, 0.0074158720970153805, 0.007421567916870118, 0.007475840091705322, 0.007452415943145752, 0.007387135982513428, 0.007468255996704101, 0.007508768081665039, 0.007419648170471191, 0.007436575889587402, 0.007427296161651611, 0.0074882559776306154, 0.007559167861938477, 0.007354368209838867, 0.007419424057006836, 0.007387616157531738, 0.007409664154052734, 0.007437983989715576, 0.007419360160827637, 0.007389535903930664, 0.007455264091491699, 0.007455840110778809, 0.007428864002227783, 0.00744217586517334, 0.00741212797164917, 0.0073975038528442385, 0.007477119922637939, 0.00740556812286377, 0.007437695980072021, 0.007452864170074463, 0.007414112091064453, 0.0073966398239135745, 0.0076471037864685055, 0.007437248229980469, 0.00738099193572998, 0.00740556812286377, 0.007440447807312012, 0.0074584641456604, 0.0074263358116149905, 0.007433504104614258, 0.007424960136413574, 0.00747708797454834, 0.007441823959350586, 0.007471648216247559, 0.007431551933288574, 0.007453311920166015, 0.00745027208328247, 0.007756256103515625, 0.00747705602645874, 0.007513567924499511, 0.007440832138061524, 0.0074683837890625, 0.007492288112640381, 0.007512191772460938, 0.007458816051483155, 0.007505375862121582, 0.007615007877349853, 0.007315360069274903, 0.007415040016174317, 0.007428864002227783, 0.007435872077941895, 0.0074817600250244145, 0.007426047801971435, 0.007429887771606445, 0.00740169620513916, 0.007442463874816894, 0.007539807796478271, 0.007417984008789062, 0.007439136028289795, 0.007409023761749268, 0.007393407821655274, 0.007364416122436523, 0.007374911785125732, 0.0074117441177368164, 0.007432000160217285, 0.0074202880859375, 0.007436831951141357, 0.007401343822479248, 0.007411712169647216, 0.007417856216430664, 0.007487520217895508, 0.007441760063171387, 0.0074369277954101564, 0.007448351860046386, 0.007407584190368652, 0.007387392044067383, 0.007401472091674805, 0.007441855907440185, 0.007426623821258545, 0.007428095817565918, 0.007431263923645019, 0.007513311862945557, 0.007406655788421631, 0.007678592205047607, 0.007600128173828125, 0.007513887882232666, 0.007694560050964356, 0.007522175788879395, 0.007507264137268066, 0.00761033582687378, 0.007455584049224854, 0.007415359973907471, 0.007388959884643555, 0.007451295852661133, 0.007460864067077637, 0.007479296207427978, 0.007480800151824951, 0.007470623970031738, 0.007416831970214844, 0.007391232013702393, 0.007452672004699707, 0.007497727870941162, 0.007448095798492432, 0.007465439796447754, 0.007469056129455566, 0.007407616138458252, 0.007442431926727295, 0.007532735824584961, 0.007550784111022949, 0.007448768138885498, 0.007382847785949707, 0.00748035192489624, 0.00744543981552124, 0.007409599781036377, 0.007370751857757568, 0.007407616138458252, 0.0074301438331604, 0.007458943843841553, 0.0074852161407470705, 0.007488768100738525, 0.007443295955657959, 0.007393280029296875, 0.007415840148925781, 0.007446335792541504, 0.007454912185668946, 0.007443903923034668, 0.007442848205566406, 0.007511648178100586, 0.0074287037849426266, 0.007440063953399658, 0.007423423767089844, 0.007391327857971191, 0.007450975894927978, 0.0074225602149963375, 0.007393055915832519, 0.00738099193572998, 0.007368351936340332, 0.0074568638801574706, 0.007427616119384766, 0.007444384098052978, 0.007439551830291748, 0.0074460158348083495, 0.007510144233703614, 0.007405663967132568, 0.007434144020080567, 0.007522592067718506, 0.007433951854705811, 0.007462528228759766, 0.008919424057006835, 0.009375519752502441, 0.008029664039611816, 0.007535359859466553, 0.0074992961883544925, 0.00748528003692627, 0.007486239910125732, 0.0074750399589538575, 0.007434400081634521, 0.0074217281341552735, 0.007513311862945557, 0.007480160236358642, 0.007527488231658936, 0.007543200016021728, 0.007480991840362549, 0.007480192184448242, 0.0075920639038085935, 0.007440256118774414, 0.007401472091674805, 0.0074629120826721195, 0.007831552028656007, 0.007510015964508057, 0.0076249918937683105, 0.007566112041473389, 0.007506879806518554, 0.007452640056610107, 0.007468959808349609, 0.007427807807922363, 0.007417952060699463, 0.007442527770996093, 0.007432415962219239, 0.007439839839935303, 0.007483551979064942, 0.007399807929992676, 0.007415808200836181, 0.007389023780822754, 0.007397535800933838, 0.00771398401260376, 0.007424543857574463, 0.007419392108917237, 0.007381792068481445, 0.007391232013702393, 0.007407616138458252, 0.007442048072814941, 0.007442815780639649, 0.007460864067077637, 0.007447711944580078, 0.007435103893280029, 0.007383039951324463, 0.007362559795379638, 0.007517248153686523, 0.007460063934326172, 0.0074237117767333985, 0.007442431926727295, 0.007400544166564942, 0.007368800163269043, 0.007379776000976563, 0.007421887874603271, 0.007423615932464599, 0.007440832138061524, 0.007419551849365234, 0.00740835189819336, 0.0074297599792480466, 0.007420928001403809, 0.007437312126159668, 0.007411712169647216, 0.007753727912902832, 0.007716127872467041, 0.007525087833404541, 0.007485439777374267, 0.0074235520362854, 0.007436736106872559, 0.007527455806732177, 0.007490528106689453, 0.00747276782989502, 0.007473536014556885, 0.0074601278305053715, 0.007395423889160156, 0.007387775897979737, 0.007400864124298095, 0.007414400100708008, 0.007458591938018799, 0.007426239967346191, 0.007427807807922363, 0.007409887790679932, 0.00737286376953125, 0.00744652795791626, 0.007483391761779785, 0.007422143936157226, 0.007585951805114746, 0.007640575885772705, 0.00750438404083252, 0.00743612813949585, 0.007407616138458252, 0.00738099193572998, 0.007406816005706787, 0.007391615867614746, 0.007399648189544678, 0.007426080226898194, 0.007413919925689697, 0.007360191822052002, 0.0073173117637634275, 0.007405600070953369, 0.007395328044891358, 0.007776735782623291, 0.007437664031982422, 0.007567903995513916, 0.007434368133544922, 0.0074670081138610836, 0.007802879810333252, 0.007406847953796387, 0.00744649600982666, 0.007453472137451172, 0.0074301438331604, 0.007444447994232177, 0.007536672115325928, 0.007374847888946533, 0.007376575946807861, 0.007460319995880127, 0.007406271934509277, 0.0074403839111328125, 0.007419871807098389, 0.007452191829681397, 0.007372767925262451, 0.00735097599029541, 0.0074301438331604, 0.007407360076904297, 0.007417247772216797, 0.007450719833374023, 0.007387807846069336, 0.0074011521339416506, 0.007398848056793213, 0.0073769278526306156, 0.0075560321807861324, 0.007428095817565918, 0.007411903858184814, 0.00736627197265625, 0.0073118720054626465, 0.007388768196105957, 0.007389279842376709, 0.007413856029510498, 0.0073827199935913084, 0.007421664237976074, 0.007391007900238037, 0.007389120101928711, 0.007427999973297119, 0.007391808032989502, 0.007438079833984375, 0.007660096168518067, 0.007426047801971435, 0.007370751857757568, 0.007354207992553711, 0.007397600173950195, 0.007415584087371826, 0.007527455806732177, 0.007455711841583252, 0.0074481601715087895, 0.007407519817352295, 0.0073751678466796875, 0.007334080219268799, 0.007368288040161133, 0.007378528118133545, 0.007381984233856201, 0.00741974401473999, 0.007387423992156982, 0.007290080070495606, 0.00737334394454956, 0.00769209623336792, 0.00739958381652832, 0.007368703842163086, 0.007409664154052734, 0.007308928012847901, 0.007321983814239502, 0.007374335765838623, 0.007381504058837891, 0.007369984149932862, 0.007940864086151123, 0.007437952041625976, 0.007358880043029785, 0.007376863956451416, 0.007382847785949707, 0.00743228816986084, 0.007380256175994873, 0.007414591789245605, 0.007385024070739746, 0.0074263038635253905, 0.007372608184814453, 0.007368703842163086, 0.007439616203308105, 0.007448895931243897, 0.007502272129058838, 0.007419072151184082, 0.007472991943359375, 0.0074122557640075686, 0.007456416130065918, 0.007459424018859863, 0.007434271812438965, 0.007768159866333008, 0.007684160232543946, 0.007593503952026367, 0.007549407958984375, 0.007499872207641601, 0.007534143924713135, 0.007540863990783691, 0.007573215961456299, 0.007495520114898682, 0.0075000319480896, 0.007479712009429932, 0.007510015964508057, 0.007399456024169922, 0.007374815940856934, 0.007408991813659668, 0.007397215843200683, 0.007425983905792236, 0.00738047981262207, 0.007551487922668457, 0.007374847888946533, 0.007343552112579346, 0.007354015827178955, 0.007488416194915771, 0.007394591808319092, 0.007375296115875244, 0.007397247791290283, 0.007342495918273926, 0.007376383781433105, 0.007406079769134521, 0.007397247791290283, 0.007417503833770752, 0.007436768054962158, 0.007397408008575439, 0.007335360050201416, 0.007328288078308105, 0.007387487888336181, 0.0076836800575256345, 0.007445792198181153, 0.00743609619140625, 0.007431136131286621, 0.0073842878341674805, 0.007342879772186279, 0.007415808200836181, 0.007376128196716308, 0.007487711906433106, 0.00743887996673584, 0.007378943920135498, 0.007329792022705078, 0.007319551944732666, 0.007378592014312744, 0.007395679950714111, 0.007423615932464599, 0.007360896110534668, 0.007347936153411865, 0.007358304023742676, 0.007383488178253174, 0.007364607810974121, 0.007419904232025146, 0.007387135982513428, 0.007358335971832276, 0.007286911964416504, 0.007387135982513428, 0.007447999954223633, 0.007424255847930908, 0.007395135879516602, 0.007380671977996826, 0.007723328113555908, 0.007463263988494873, 0.007483551979064942, 0.007490943908691406, 0.007450496196746826, 0.0074531202316284175, 0.007446847915649414, 0.007388288021087646, 0.00737779188156128, 0.007606272220611572, 0.0076943359375, 0.007422175884246826, 0.007450399875640869, 0.007413760185241699, 0.007372960090637207, 0.0077940158843994144, 0.007420576095581054, 0.007388319969177246, 0.007392096042633057, 0.007423999786376953, 0.007378655910491944, 0.0074932479858398435, 0.007708928108215332, 0.008310527801513671, 0.008026783943176269, 0.007952415943145752, 0.007511168003082275, 0.007591904163360596, 0.007392288208007813, 0.007366655826568603, 0.007411392211914063, 0.0074544320106506344, 0.007393343925476074, 0.00742416000366211, 0.007653600215911866, 0.007419392108917237, 0.0073671360015869145, 0.007442080020904541, 0.007440767765045166, 0.007423679828643798, 0.007395648002624512, 0.007377920150756836, 0.007325695991516113, 0.00733900785446167, 0.007447648048400879, 0.007426271915435791, 0.007381696224212647, 0.007378496170043945, 0.0073482880592346195, 0.0073381118774414065, 0.007358719825744629, 0.007440224170684815, 0.007422111988067627, 0.008077312469482421, 0.007475200176239013, 0.0074035201072692874, 0.0073424320220947265, 0.007351583957672119, 0.007418240070343017, 0.007383264064788818, 0.007390463829040527, 0.0073794879913330075, 0.007421440124511719, 0.007358975887298584, 0.007361599922180176, 0.007543680191040039, 0.00767955207824707, 0.00768665599822998, 0.0075304961204528805, 0.0074563522338867184, 0.007442431926727295, 0.007427775859832763, 0.0073796801567077635, 0.007462207794189453, 0.007448863983154297, 0.00746127986907959, 0.007429696083068847, 0.007374752044677735, 0.007442368030548096, 0.007401408195495606, 0.007373760223388672, 0.007421919822692871, 0.007397408008575439, 0.00738918399810791, 0.007427680015563965, 0.007356832027435303, 0.007309567928314209, 0.007367616176605225, 0.007445312023162841, 0.007370751857757568, 0.007423647880554199, 0.00739686393737793, 0.007344992160797119, 0.007358560085296631, 0.0074198079109191895, 0.0074301438331604, 0.007413760185241699, 0.007540736198425293, 0.0074035201072692874, 0.007390336036682129, 0.007358496189117432, 0.007430592060089111, 0.007410079956054688, 0.007412864208221436, 0.007410560131072998, 0.007407616138458252, 0.007406720161437988, 0.007391520023345947, 0.007400383949279785, 0.007418591976165772, 0.007455679893493652, 0.007460864067077637, 0.0073400321006774905, 0.007350143909454346, 0.007530623912811279, 0.007385087966918945, 0.007391488075256348, 0.0074254398345947265, 0.007417600154876709, 0.007342688083648682, 0.0074629120826721195, 0.007442431926727295, 0.0074301438331604, 0.007433311939239502, 0.0074208321571350095, 0.007413536071777344, 0.00737718391418457, 0.007407551765441895, 0.007442431926727295, 0.007521279811859131, 0.007668928146362304, 0.007501023769378662, 0.007489920139312744, 0.007422175884246826, 0.00738918399810791, 0.0073619518280029295, 0.007420032024383545, 0.007465312004089356, 0.007407519817352295, 0.007407839775085449, 0.007373792171478271, 0.007370463848114014, 0.0073883838653564455, 0.007637824058532715, 0.007456768035888672, 0.007451968193054199, 0.00745472002029419, 0.0074414081573486324, 0.007372576236724854, 0.007309279918670654, 0.007415743827819824, 0.007435840129852295, 0.007417856216430664, 0.0073855361938476565, 0.007383039951324463, 0.007337120056152344, 0.00753872013092041, 0.007477119922637939, 0.007472064018249512, 0.00745472002029419, 0.007441792011260986, 0.007864960193634033, 0.00751529598236084, 0.007526527881622314, 0.008338144302368164, 0.007725056171417236, 0.007474431991577149, 0.007439104080200196, 0.007466271877288818, 0.007449312210083008, 0.007481344223022461, 0.0074503359794616695, 0.0074570560455322265, 0.0074275522232055665, 0.007432735919952392, 0.007501823902130127, 0.00740556812286377, 0.007450623989105225, 0.007444543838500977, 0.007413119792938233, 0.007363135814666748, 0.007387135982513428, 0.007434239864349365, 0.007563551902770996, 0.007470816135406494, 0.007419904232025146, 0.007391232013702393, 0.007383039951324463, 0.007472447872161865, 0.007438047885894776, 0.007432608127593994, 0.007492479801177979, 0.007435967922210693, 0.007408927917480468, 0.007396063804626465, 0.0073842878341674805, 0.007424799919128418, 0.007815167903900147, 0.007796735763549805, 0.007600128173828125, 0.007546879768371582, 0.007561215877532959, 0.0074670081138610836, 0.00742195177078247, 0.00738262414932251, 0.007324128150939941, 0.007419839859008789, 0.007368703842163086, 0.007436287879943848, 0.007368703842163086, 0.00738108777999878, 0.008138655662536621, 0.008627679824829102, 0.007445024013519287, 0.00740556812286377, 0.00739737606048584, 0.007443456172943115, 0.007414783954620361, 0.0074035201072692874, 0.007380256175994873, 0.00740825605392456, 0.007333759784698486, 0.007383296012878418, 0.0073862080574035646, 0.007526912212371826, 0.007465343952178955, 0.007472832202911377, 0.007377120018005371, 0.007395008087158203, 0.007360447883605957, 0.007432960033416748, 0.007436351776123047, 0.007419551849365234, 0.007577600002288819, 0.0074301438331604, 0.0074113597869873045, 0.007399775981903076, 0.007409664154052734, 0.007395328044891358, 0.007401792049407959, 0.0074011521339416506, 0.007358463764190673, 0.00739081621170044, 0.007375264167785644, 0.007415808200836181, 0.00740499210357666, 0.00742790412902832, 0.00745907211303711, 0.007436607837677002, 0.0073975038528442385, 0.007505824089050293, 0.007488800048828125, 0.007597152233123779, 0.0076203842163085934, 0.007491583824157715, 0.007473152160644531, 0.007438208103179932, 0.0075285758972167965, 0.0075304961204528805, 0.007903232097625732, 0.00749289608001709, 0.007549920082092285, 0.007505663871765137, 0.00744217586517334, 0.00740172815322876, 0.00739686393737793, 0.007305471897125244, 0.007360320091247558, 0.007437856197357178, 0.007431136131286621, 0.007433504104614258, 0.0074700479507446285, 0.0074135041236877445, 0.007395328044891358, 0.008044544219970704, 0.007440159797668457, 0.007446559906005859, 0.00750816011428833, 0.00744652795791626, 0.00745472002029419, 0.0074702720642089845, 0.007406400203704834, 0.00738646411895752, 0.007617184162139893, 0.007479296207427978, 0.007491583824157715, 0.0075304961204528805, 0.007475200176239013, 0.007409023761749268, 0.007414400100708008, 0.007385087966918945, 0.007485439777374267, 0.007526400089263916, 0.0074338879585266115, 0.007626431941986084, 0.007477536201477051, 0.007487872123718262, 0.007419904232025146, 0.007427680015563965, 0.0074203200340271, 0.0073994240760803225, 0.007412064075469971, 0.007441376209259033, 0.007369408130645752, 0.007415167808532715, 0.007383679866790772, 0.007423999786376953, 0.007428095817565918, 0.007405600070953369, 0.007391200065612793, 0.007455935955047607, 0.0074225602149963375, 0.007565248012542725, 0.0074336638450622555, 0.007439199924468994, 0.007491583824157715, 0.007419904232025146, 0.007391232013702393, 0.007406943798065185, 0.007446944236755371, 0.007446752071380615, 0.0074486079216003415, 0.007439487934112548, 0.0074720001220703125, 0.007372479915618896, 0.007389503955841065, 0.0074403839111328125, 0.0074711360931396485, 0.007798367977142334, 0.007540287971496582, 0.007563712120056153, 0.007497727870941162, 0.007479296207427978, 0.007411231994628906, 0.007533023834228516, 0.00742195177078247, 0.007458816051483155, 0.007550655841827392, 0.007440703868865967, 0.007460031986236572, 0.007408671855926514, 0.007374623775482178, 0.007401408195495606, 0.0074169921875, 0.007418496131896973, 0.0074304318428039555, 0.007526656150817871, 0.007386879920959473, 0.007339583873748779, 0.007367104053497314, 0.007415520191192627, 0.007423871994018554, 0.007408031940460205, 0.00745030403137207, 0.007413919925689697, 0.007388864040374756, 0.007479775905609131, 0.007452672004699707, 0.007448575973510742, 0.007458367824554443, 0.007560736179351807, 0.007478176116943359, 0.007426047801971435, 0.0074217281341552735, 0.00746723222732544, 0.007437952041625976, 0.0076282558441162105, 0.007475776195526123, 0.007463263988494873, 0.007477375984191894, 0.00736243200302124, 0.007403295993804931, 0.007423327922821045, 0.007402368068695068, 0.007419904232025146, 0.007438240051269532, 0.007412064075469971, 0.007378464221954346, 0.0075155520439147945, 0.007463871955871582, 0.007443456172943115, 0.007430751800537109, 0.007419616222381592, 0.007465536117553711, 0.007428095817565918, 0.007413760185241699, 0.007446656227111817, 0.0076102399826049804, 0.007510015964508057, 0.0076574721336364745, 0.007514111995697022, 0.007511392116546631, 0.007523071765899658, 0.007569407939910889, 0.007491583824157715, 0.00743833589553833, 0.007493631839752197, 0.0074403839111328125, 0.007436287879943848, 0.007428095817565918, 0.007425568103790283, 0.007390687942504883, 0.007561215877532959, 0.00744755220413208, 0.007400703907012939, 0.00744649600982666, 0.007418144226074219, 0.007456607818603515, 0.007346848011016846, 0.007398655891418457, 0.007400383949279785, 0.007483104228973389, 0.0074170241355896, 0.0074085121154785155, 0.0073825597763061525, 0.0074611520767211914, 0.007413983821868897, 0.007434239864349365, 0.007411712169647216, 0.007398719787597656, 0.007439040184020996, 0.007444447994232177, 0.007393311977386474, 0.007379199981689453, 0.007575295925140381, 0.007439871788024902, 0.0074882559776306154, 0.0074237117767333985, 0.007401855945587158, 0.007413407802581787, 0.007401472091674805, 0.0074997758865356446, 0.007466047763824463, 0.007564223766326904, 0.007479296207427978, 0.007432191848754883, 0.007407264232635498, 0.0073885760307312014, 0.007574463844299316, 0.0074479360580444335, 0.007455359935760498, 0.007464799880981445, 0.007559328079223633, 0.0074405760765075685, 0.007398655891418457, 0.0074143362045288085, 0.00740880012512207, 0.0074577279090881346, 0.007437376022338868, 0.007437151908874512, 0.007385087966918945, 0.00743552017211914, 0.007395296096801758, 0.007406623840332032, 0.0074319357872009275, 0.00738486385345459, 0.007407360076904297, 0.007766496181488037, 0.0076943359375, 0.00752569580078125, 0.007405663967132568, 0.007405824184417724, 0.007588160037994385, 0.007437439918518066, 0.007469984054565429, 0.0074237117767333985, 0.007376448154449463, 0.007404255867004395, 0.0073690562248229985, 0.007399072170257568, 0.007444575786590576, 0.007448480129241943, 0.007468704223632812, 0.007481152057647705, 0.00737337589263916, 0.007390655994415283, 0.007387680053710937, 0.0073990077972412105, 0.007410079956054688, 0.00742195177078247, 0.007417856216430664, 0.007344128131866455, 0.00739247989654541, 0.007396128177642822, 0.007407616138458252, 0.007449600219726562, 0.007411903858184814, 0.007356959819793701, 0.007446815967559814, 0.007407616138458252, 0.007407616138458252, 0.007437632083892822, 0.007407680034637452, 0.007431871891021728, 0.0074559998512268065, 0.00749241590499878, 0.0074126081466674805, 0.007424191951751709, 0.007415616035461426, 0.00746073579788208, 0.00737395191192627, 0.007387872219085693, 0.007395167827606201, 0.007418303966522217, 0.00740067195892334, 0.00740835189819336, 0.007394368171691894, 0.007358719825744629, 0.007348991870880127, 0.007358367919921875, 0.007444575786590576, 0.00742195177078247, 0.00742412805557251, 0.007561183929443359, 0.007392831802368164, 0.0074915518760681156, 0.007392928123474121, 0.007399648189544678, 0.00737065601348877, 0.007585311889648437, 0.007486015796661377, 0.007456831932067871, 0.007435840129852295, 0.007395423889160156, 0.007447135925292969, 0.007476736068725586, 0.007402847766876221, 0.007405824184417724, 0.007419519901275635, 0.007384031772613525, 0.007343520164489746, 0.007360127925872803, 0.007427040100097656, 0.007428319931030274, 0.007886623859405518, 0.0074668159484863285, 0.0074544639587402345, 0.0074592318534851074, 0.007425151824951172, 0.007443359851837158, 0.007409664154052734, 0.00738918399810791, 0.007421088218688965, 0.007418303966522217, 0.007317920207977295, 0.007359712123870849, 0.007398176193237305, 0.007395328044891358, 0.0074297599792480466, 0.007418240070343017, 0.007505919933319092, 0.007425407886505127, 0.007376704216003418, 0.007424831867218018, 0.007641088008880615, 0.007438623905181884, 0.0074503359794616695, 0.007475391864776611, 0.007395103931427002, 0.0073554558753967285, 0.007379936218261719, 0.007421599864959717, 0.007389408111572265, 0.0074154877662658695, 0.007376319885253906, 0.007459839820861816, 0.0075071358680725096, 0.007457087993621827, 0.007444128036499024, 0.007396192073822022, 0.007419360160827637, 0.007414271831512451, 0.007413792133331299, 0.007429471969604492, 0.0074349122047424315, 0.007423999786376953, 0.0074301438331604, 0.007482528209686279, 0.007555935859680176, 0.00745472002029419, 0.007386528015136719, 0.007298751831054688, 0.0074652800559997555, 0.0074193282127380375, 0.0074471039772033695, 0.007477248191833496, 0.007444223880767822, 0.007436543941497803, 0.007573503971099854, 0.007650911808013916, 0.0076763200759887695, 0.007480639934539795, 0.0076622719764709475, 0.007489568233489991, 0.007480319976806641, 0.0074572482109069825, 0.007378687858581543, 0.007402239799499511, 0.007432447910308838, 0.00743398380279541, 0.007485439777374267, 0.0074403839111328125, 0.007407360076904297, 0.007409920215606689, 0.007356416225433349, 0.0073744959831237794, 0.007479648113250733, 0.007458816051483155, 0.00740556812286377, 0.007411712169647216, 0.007346496105194091, 0.007355743885040283, 0.007385183811187744, 0.007421567916870118, 0.007430784225463867, 0.007426047801971435, 0.007415103912353516, 0.00738483190536499, 0.007377855777740479, 0.007409664154052734, 0.007395328044891358, 0.007437664031982422, 0.007402143955230713, 0.007478816032409668, 0.0074572482109069825, 0.007405151844024658, 0.0074551358222961425, 0.0074301438331604, 0.007538591861724854, 0.007511616230010986, 0.007451168060302734, 0.007403456211090088, 0.007400896072387695, 0.007399487972259522, 0.0074654722213745115, 0.007441855907440185, 0.007434879779815674, 0.007417856216430664, 0.0074059200286865235, 0.007390143871307373, 0.007428800106048584, 0.0074108800888061524, 0.0074422721862792965, 0.007484384059906006, 0.007384768009185791, 0.00740556812286377, 0.007364607810974121, 0.007553311824798584, 0.007501535892486573, 0.007477248191833496, 0.007483200073242187, 0.007476672172546387, 0.007478015899658203, 0.00744652795791626, 0.007552927970886231, 0.007425183773040771, 0.007475776195526123, 0.007471487998962402, 0.007505472183227539, 0.007452864170074463, 0.007397823810577393, 0.0073807997703552244, 0.007491583824157715, 0.007438496112823486, 0.007454815864562988, 0.007425087928771973, 0.007422656059265137, 0.0074217281341552735, 0.007438208103179932, 0.0073753600120544435, 0.0074074559211730956, 0.007362368106842041, 0.0074180479049682614, 0.0074033279418945315, 0.007390399932861328, 0.007400415897369385, 0.007370783805847168, 0.007423391819000244, 0.007436895847320556, 0.007414944171905517, 0.007420767784118652, 0.007516160011291504, 0.0074035201072692874, 0.007380415916442871, 0.007457344055175781, 0.007866112232208252, 0.007475456237792969, 0.007447999954223633, 0.007459392070770263, 0.007374080181121826, 0.007372896194458008, 0.007385695934295654, 0.007450816154479981, 0.0074626879692077635, 0.00753059196472168, 0.007440320014953613, 0.007413824081420898, 0.0073722882270812985, 0.007404032230377197, 0.007432191848754883, 0.007458816051483155, 0.0074414401054382325, 0.007435232162475586, 0.007406688213348388, 0.0073693118095397945, 0.007425504207611084, 0.007719776153564453, 0.007370719909667969, 0.0073920321464538575, 0.007440032005310059, 0.007444479942321777, 0.007384575843811035, 0.007323647975921631, 0.007406079769134521, 0.007419904232025146, 0.007425536155700683, 0.007435935974121094, 0.007397280216217041, 0.007416768074035645, 0.007402624130249023, 0.0078017921447753906, 0.007726367950439453, 0.007510111808776855, 0.007517983913421631, 0.0075541439056396485, 0.00749126386642456, 0.007434239864349365, 0.00739737606048584, 0.007385087966918945, 0.007434239864349365, 0.007497727870941162, 0.007429279804229736, 0.007428959846496582, 0.007427999973297119, 0.007390528202056885, 0.007346816062927246, 0.0074057278633117675, 0.007405151844024658, 0.007436384201049804, 0.007452991962432862, 0.007391232013702393, 0.007507967948913574, 0.0074301438331604, 0.0074301438331604, 0.00763862419128418, 0.007478847980499268, 0.007473311901092529, 0.007442527770996093, 0.007415775775909424, 0.007389120101928711, 0.007461567878723144, 0.007417856216430664, 0.007423327922821045, 0.0074349122047424315, 0.00741103982925415, 0.007395999908447266, 0.00737721586227417, 0.007433919906616211, 0.007442463874816894, 0.0074254398345947265, 0.0074834561347961424, 0.007457024097442627, 0.007503712177276611, 0.007458752155303955, 0.007427807807922363, 0.007461311817169189, 0.007455039978027344, 0.0074824318885803225, 0.007519167900085449, 0.007429471969604492, 0.007389535903930664, 0.007477248191833496, 0.0074141759872436526, 0.007448575973510742, 0.007409952163696289, 0.007431903839111328, 0.007427519798278809, 0.007442527770996093, 0.007365087985992432, 0.0073702077865600586, 0.007425759792327881, 0.007432064056396484, 0.007401855945587158, 0.007418432235717773, 0.007424032211303711, 0.00736681604385376, 0.007321407794952392, 0.007401023864746094, 0.007405663967132568, 0.007436575889587402, 0.007403584003448487, 0.007368703842163086, 0.00739302396774292, 0.007388480186462402, 0.007915743827819824, 0.007415616035461426, 0.0074126400947570805, 0.007550816059112549, 0.007433728218078613, 0.007363232135772705, 0.007391232013702393, 0.007391232013702393, 0.007413760185241699, 0.0073935680389404295, 0.0074563841819763185, 0.007415904045104981, 0.00738918399810791, 0.00734611177444458, 0.0074271678924560545, 0.007408607959747315, 0.00742195177078247, 0.007436287879943848, 0.007361792087554932, 0.007377247810363769, 0.0073703999519348145, 0.007486207962036133, 0.0073985280990600585, 0.007390207767486572, 0.0073788161277770995, 0.007368703842163086, 0.007464831829071045, 0.0074460158348083495, 0.0074154877662658695, 0.007406527996063232, 0.0073994240760803225, 0.007427807807922363, 0.007379231929779052, 0.007372799873352051, 0.007428095817565918, 0.007441792011260986, 0.007406208038330078, 0.007455904006958008, 0.007374720096588135, 0.0074290881156921385, 0.007436287879943848, 0.007396416187286377, 0.007447487831115722, 0.007448768138885498, 0.007438144207000732, 0.007436287879943848, 0.007382656097412109, 0.007389567852020264, 0.007370751857757568, 0.007396383762359619, 0.007451615810394287, 0.007420928001403809, 0.007565695762634278, 0.007374591827392578, 0.007317696094512939, 0.007388959884643555, 0.007411808013916016, 0.007525184154510498, 0.007819263935089112, 0.007655168056488037, 0.007550687789916992, 0.007457312107086182, 0.007350272178649903, 0.007395328044891358, 0.007411392211914063, 0.007461184024810791, 0.007456768035888672, 0.007456768035888672, 0.007401472091674805, 0.007415808200836181, 0.007362559795379638, 0.007639039993286132, 0.007485439777374267, 0.007468639850616455, 0.007450047969818115, 0.007506912231445313, 0.007417119979858398, 0.007436160087585449, 0.007389344215393066, 0.0074124159812927245, 0.007407904148101807, 0.007435999870300293, 0.0074035201072692874, 0.007391488075256348, 0.007367487907409668, 0.007447648048400879, 0.007462080001831055, 0.007447199821472168, 0.007439455986022949, 0.007427072048187256, 0.007501120090484619, 0.007405856132507324, 0.00743996810913086, 0.0074124479293823245, 0.007433919906616211, 0.0074693760871887204, 0.007474559783935547, 0.007369344234466553, 0.007403071880340576, 0.0074514241218566896, 0.007447711944580078, 0.007429855823516846]",tokens/s,134.2291866523748,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,dbrx,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1234, in __init__ self.transformer = DbrxModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1007, in __init__ self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1007, in self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 783, in __init__ self.norm_attn_norm = DbrxNormAttentionNorm( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 595, in __init__ self.attn = DBRX_ATTENTION_CLASSES[config._attn_implementation]( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 287, in __init__ self.Wqkv = nn.Linear( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 192.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 190.12 MiB is free. Process 110268 has 14.55 GiB memory in use. Of the allocated memory 14.44 GiB is allocated by PyTorch, and 1.55 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,784.490496,1835.99104,0.0,1440.743424,1427.743744,s,1,7.05362646484375,7.05362646484375,0.0,7.05362646484375,7.05362646484375,7.05362646484375,7.05362646484375,[7.05362646484375],,kWh,3.1605274458532523e-06,3.4151649806889433e-07,1.0275008220025916e-06,4.529544765924738e-06,,MB,1122.238464,1905.197056,0.0,1499.46368,1436.386304,s,12,0.5033521575927734,0.041946013132731115,0.002437993024933074,0.041618270874023436,0.042279608917236325,0.04542972679138183,0.048501982345581056,"[0.04927004623413086, 0.0406033935546875, 0.04117107009887695, 0.041630622863769534, 0.04228764724731445, 0.04175177764892578, 0.0382490234375, 0.041605918884277344, 0.04119152069091797, 0.042180385589599606, 0.04120348739624023, 0.0422072639465332]",tokens/s,6103.083007911408,kWh,1.6151644267725357e-06,1.7801160114274064e-07,1.0779382472486129e-06,2.871114275163889e-06,tokens/kWh,89163988.425848,MB,1134.297088,1947.140096,0.0,1541.40672,1461.974016,s,12,10.205782958984374,0.8504819132486979,0.004450718362695324,0.8499222717285156,0.8550165710449218,0.8571534606933594,0.8591819616699219,"[0.8453379516601562, 0.8471861572265625, 0.84700537109375, 0.8516913452148438, 0.855078857421875, 0.8440980834960937, 0.8474777221679688, 0.8596890869140625, 0.8511321411132813, 0.8539178466796875, 0.8544559936523437, 0.84871240234375]",tokens/s,74.07564936842759,kWh,2.4443933527395122e-05,2.6958722395343424e-06,1.371781433008491e-05,4.0857620097014364e-05,tokens/kWh,1541940.031025049,,s,756,10.199776342391967,0.013491767648666624,0.0003095512837554598,0.013427152156829835,0.013713024139404298,0.013854999780654909,0.014646281766891499,"[0.01340822410583496, 0.013647263526916503, 0.013458016395568848, 0.01344332790374756, 0.013385472297668457, 0.013342720031738281, 0.013332480430603028, 0.014006624221801758, 0.013272831916809082, 0.013309856414794922, 0.013288928031921386, 0.013208095550537109, 0.013518560409545898, 0.013271231651306153, 0.013410400390625, 0.013361215591430664, 0.013408479690551757, 0.01322979164123535, 0.013428735733032226, 0.013270591735839844, 0.013275584220886231, 0.013336031913757325, 0.01352348804473877, 0.013321375846862793, 0.013333344459533691, 0.013344127655029297, 0.013388416290283204, 0.01339577579498291, 0.013289376258850098, 0.013285663604736328, 0.01333078384399414, 0.01328444766998291, 0.01333420753479004, 0.013455391883850098, 0.013326592445373535, 0.01332694435119629, 0.013494272232055664, 0.013565664291381835, 0.013385120391845704, 0.013366144180297851, 0.013340703964233399, 0.013662176132202148, 0.01349619197845459, 0.013391231536865235, 0.013453920364379883, 0.013270719528198242, 0.014025343894958495, 0.014036255836486817, 0.013308608055114746, 0.013387455940246581, 0.01335324764251709, 0.01330515193939209, 0.013455039978027343, 0.013410816192626953, 0.013345439910888672, 0.013300895690917969, 0.013264479637145997, 0.01327945613861084, 0.013420639991760254, 0.013355263710021973, 0.013418944358825683, 0.013468671798706054, 0.01372809600830078, 0.01319696044921875, 0.013486720085144044, 0.013742143630981446, 0.013416128158569336, 0.013461471557617188, 0.013457375526428223, 0.013316415786743164, 0.013350879669189453, 0.01339395236968994, 0.016293600082397462, 0.014012319564819336, 0.013524864196777344, 0.013332127571105957, 0.013531040191650391, 0.013469951629638672, 0.013308735847473144, 0.01332038402557373, 0.013338080406188965, 0.013319519996643067, 0.013375840187072753, 0.013427328109741211, 0.013338527679443359, 0.013627391815185547, 0.0134269437789917, 0.013291359901428223, 0.013361056327819825, 0.013373056411743163, 0.013236288070678712, 0.0133220796585083, 0.013337408065795898, 0.013377183914184571, 0.013356191635131836, 0.013342816352844239, 0.013502304077148437, 0.013654175758361817, 0.013277952194213866, 0.013316448211669923, 0.013428383827209473, 0.013324480056762695, 0.013279040336608887, 0.013289471626281739, 0.013314047813415527, 0.013381855964660645, 0.013432607650756836, 0.013284768104553223, 0.013314656257629395, 0.013371135711669922, 0.013319647789001465, 0.013308256149291993, 0.013320575714111329, 0.013322208404541016, 0.013276960372924805, 0.013396415710449219, 0.013391103744506836, 0.013347455978393555, 0.013483807563781739, 0.013443296432495117, 0.013432479858398438, 0.013350496292114258, 0.013302528381347656, 0.013484383583068848, 0.01351030445098877, 0.013400159835815429, 0.01305628776550293, 0.013363200187683106, 0.013541407585144043, 0.01337936019897461, 0.013598912239074707, 0.013531423568725586, 0.013371104240417481, 0.013404159545898438, 0.013520895957946777, 0.013326335906982421, 0.013740032196044923, 0.013465023994445801, 0.013394495964050294, 0.013385472297668457, 0.01391641616821289, 0.013385727882385253, 0.013502464294433594, 0.013448543548583984, 0.013494688034057617, 0.013322400093078614, 0.01336508846282959, 0.01334502410888672, 0.013443072319030762, 0.013334527969360351, 0.013436927795410156, 0.013346816062927246, 0.013340543746948243, 0.013359392166137695, 0.013380479812622071, 0.013283712387084961, 0.01342131233215332, 0.01337123203277588, 0.013348863601684571, 0.013537280082702637, 0.013381695747375489, 0.01333891201019287, 0.013424287796020508, 0.013277376174926758, 0.013459263801574707, 0.01361315155029297, 0.013475104331970215, 0.013499072074890137, 0.013500288009643554, 0.013486080169677735, 0.013534496307373047, 0.013417247772216798, 0.013428288459777832, 0.013474464416503906, 0.013387776374816895, 0.013714495658874512, 0.013518912315368652, 0.013438719749450684, 0.01352079963684082, 0.013454336166381836, 0.01346560001373291, 0.01348198413848877, 0.01336729621887207, 0.013351072311401367, 0.013444255828857422, 0.013365728378295898, 0.013443296432495117, 0.01343283176422119, 0.013365023612976075, 0.013445152282714843, 0.013670368194580078, 0.01389363193511963, 0.013668000221252441, 0.013844415664672852, 0.013506655693054198, 0.013579808235168456, 0.01340681552886963, 0.013412544250488281, 0.013544544219970703, 0.01354640007019043, 0.013340671539306641, 0.013625344276428223, 0.013496128082275391, 0.013654208183288575, 0.013518143653869628, 0.013585087776184081, 0.01368883228302002, 0.013862175941467285, 0.013517536163330079, 0.013381983757019043, 0.013548928260803223, 0.013458047866821289, 0.013364288330078125, 0.013541983604431153, 0.013402112007141113, 0.013481344223022461, 0.013352704048156739, 0.013351743698120117, 0.013287487983703614, 0.013450240135192871, 0.013369791984558106, 0.01331884765625, 0.013378623962402345, 0.013407039642333984, 0.013369471549987792, 0.013414239883422852, 0.013477055549621583, 0.01341648006439209, 0.013447999954223633, 0.013365344047546386, 0.013301952362060547, 0.013393183708190919, 0.013314496040344239, 0.013352095603942871, 0.013357919692993164, 0.013282655715942383, 0.013346752166748048, 0.013581024169921876, 0.013391039848327636, 0.013487008094787598, 0.01352079963684082, 0.013613056182861329, 0.013782143592834473, 0.013744000434875489, 0.0137739839553833, 0.01427228832244873, 0.01369491195678711, 0.01354150390625, 0.0134717435836792, 0.013450592041015626, 0.013504223823547363, 0.013583295822143555, 0.01328774356842041, 0.013508607864379883, 0.013430111885070801, 0.013505184173583984, 0.013428447723388671, 0.013557279586791992, 0.013537887573242188, 0.013537535667419434, 0.013779935836791992, 0.01362831974029541, 0.01411689567565918, 0.013744256019592286, 0.013943872451782226, 0.01387609577178955, 0.013835455894470215, 0.013697792053222656, 0.013537599563598632, 0.013730496406555175, 0.01357852840423584, 0.013553407669067383, 0.01427295970916748, 0.013732383728027344, 0.013717503547668456, 0.013940799713134765, 0.014055328369140625, 0.013815839767456055, 0.014133248329162598, 0.013613056182861329, 0.013536704063415528, 0.013923935890197754, 0.01353212833404541, 0.0134717435836792, 0.01345529556274414, 0.013439040184020996, 0.013359135627746582, 0.013436896324157715, 0.013484064102172852, 0.013417856216430664, 0.013386336326599121, 0.013424223899841308, 0.013386143684387206, 0.01343283176422119, 0.013434687614440917, 0.013345184326171875, 0.01337116813659668, 0.013613056182861329, 0.013378687858581543, 0.013348896026611328, 0.013351743698120117, 0.013328415870666504, 0.013459456443786622, 0.013330431938171386, 0.013371392250061035, 0.013540736198425293, 0.013556351661682129, 0.013577471733093262, 0.013585503578186036, 0.013409279823303222, 0.01340073585510254, 0.013334624290466309, 0.01334876823425293, 0.013356672286987305, 0.013375871658325196, 0.013189120292663574, 0.01337929630279541, 0.013275424003601074, 0.013559679985046386, 0.013383808135986329, 0.013305855751037597, 0.013293408393859863, 0.013280768394470215, 0.013607487678527833, 0.013598464012145995, 0.013479488372802734, 0.013421183586120605, 0.013342944145202637, 0.013311936378479003, 0.013330431938171386, 0.013222975730895996, 0.01327785587310791, 0.013295904159545898, 0.013545503616333008, 0.013604576110839844, 0.013579520225524902, 0.013306879997253418, 0.013303263664245606, 0.013306400299072266, 0.014053279876708985, 0.01340544033050537, 0.013426976203918457, 0.013216320037841798, 0.013614527702331543, 0.013408672332763672, 0.013406368255615234, 0.013430784225463867, 0.013444543838500977, 0.013392448425292969, 0.013703328132629394, 0.013373279571533203, 0.013720735549926758, 0.01353164768218994, 0.013404671669006347, 0.013342559814453125, 0.013473024368286133, 0.013214495658874512, 0.01333347225189209, 0.013247488021850586, 0.01329315185546875, 0.01334928035736084, 0.013363455772399902, 0.013242303848266601, 0.013319168090820312, 0.013223936080932617, 0.013257599830627442, 0.013401439666748047, 0.013256608009338379, 0.013238975524902344, 0.013502816200256347, 0.0133024320602417, 0.013310144424438477, 0.013302304267883302, 0.013311615943908691, 0.013327008247375488, 0.013455360412597657, 0.013381631851196289, 0.013362591743469238, 0.01315881633758545, 0.013442655563354493, 0.013373855590820313, 0.01336025619506836, 0.013410464286804199, 0.013302080154418945, 0.013273664474487305, 0.013451104164123534, 0.01343446445465088, 0.013415936470031739, 0.013366175651550292, 0.013602815628051757, 0.013381119728088378, 0.013449983596801758, 0.013314047813415527, 0.013498111724853516, 0.013358847618103027, 0.013291040420532226, 0.013425375938415527, 0.013330207824707032, 0.013285056114196777, 0.013379936218261718, 0.013373439788818359, 0.013357248306274414, 0.013774847984313965, 0.013658016204833985, 0.01364521598815918, 0.013893919944763184, 0.013737631797790526, 0.013673215866088868, 0.013637632369995116, 0.013557600021362306, 0.013457695960998535, 0.013634783744812012, 0.013416192054748536, 0.013355936050415039, 0.013399040222167969, 0.01359769630432129, 0.013463071823120117, 0.013420096397399902, 0.013398943901062011, 0.013385727882385253, 0.01359017562866211, 0.013733375549316406, 0.01360588836669922, 0.0133855037689209, 0.013579520225524902, 0.013425472259521485, 0.01345695972442627, 0.013344863891601562, 0.01333091163635254, 0.013332351684570313, 0.013292896270751952, 0.013351584434509277, 0.013404159545898438, 0.013340031623840332, 0.013387968063354492, 0.013299455642700195, 0.013388480186462402, 0.013527039527893067, 0.013305024147033691, 0.013390496253967285, 0.013375264167785644, 0.013187935829162598, 0.013324288368225098, 0.013229920387268066, 0.013330592155456542, 0.01332953643798828, 0.01343564796447754, 0.013451680183410645, 0.013403871536254882, 0.0133471040725708, 0.013383392333984376, 0.013256064414978027, 0.013317055702209472, 0.013346495628356934, 0.013234272003173828, 0.013270751953125, 0.013400128364562988, 0.013412287712097168, 0.013514687538146972, 0.013644351959228515, 0.013603584289550781, 0.013654975891113282, 0.013507967948913574, 0.013492287635803223, 0.013406304359436036, 0.013365728378295898, 0.01333897590637207, 0.013368960380554198, 0.013288800239562987, 0.013314463615417481, 0.014231295585632324, 0.015139583587646485, 0.014092320442199708, 0.014249728202819825, 0.013601792335510255, 0.013624320030212403, 0.013719552040100098, 0.013667424201965333, 0.01382691192626953, 0.014200063705444336, 0.014885536193847656, 0.013934752464294434, 0.01367676830291748, 0.013635199546813965, 0.013492095947265624, 0.013604831695556641, 0.013545791625976562, 0.013523072242736816, 0.013444992065429687, 0.013432479858398438, 0.014450528144836427, 0.016224992752075194, 0.014380831718444825, 0.01373369598388672, 0.013545663833618164, 0.013573439598083496, 0.0135600004196167, 0.013368160247802734, 0.013286111831665039, 0.013406271934509278, 0.013334783554077148, 0.01372873592376709, 0.013534879684448243, 0.013379584312438965, 0.013154335975646973, 0.013436767578125, 0.013322400093078614, 0.013309568405151366, 0.013239680290222168, 0.013417471885681152, 0.013260767936706544, 0.01321894359588623, 0.013327263832092285, 0.013352800369262695, 0.013333919525146485, 0.013380319595336913, 0.013496352195739745, 0.013463520050048828, 0.01349465560913086, 0.013536928176879882, 0.013527039527893067, 0.013529088020324707, 0.013454591751098633, 0.013445152282714843, 0.013431232452392578, 0.013770432472229003, 0.013558431625366211, 0.01348761558532715, 0.013430303573608398, 0.013540255546569823, 0.013412256240844727, 0.013521023750305176, 0.013347135543823243, 0.013308768272399902, 0.01348691177368164, 0.013363295555114747, 0.013340479850769043, 0.013470975875854493, 0.013453920364379883, 0.013558015823364258, 0.01375267219543457, 0.013517663955688477, 0.013513759613037109, 0.01379139232635498, 0.013650976181030273, 0.013588864326477051, 0.013482208251953126, 0.013535231590270995, 0.013499903678894042, 0.013358912467956542, 0.013498656272888184, 0.01354793643951416, 0.013576319694519043, 0.01362502384185791, 0.013687232017517089, 0.013771776199340821, 0.01354422378540039, 0.013483231544494628, 0.013433792114257813, 0.013432640075683594, 0.013468768119812012, 0.01371337604522705, 0.013863615989685059, 0.013946304321289063, 0.013582367897033692, 0.013761311531066895, 0.013766143798828125, 0.017545183181762694, 0.014981120109558106, 0.013744128227233888, 0.01373139190673828, 0.013594847679138183, 0.013659520149230957, 0.013460639953613282, 0.013712672233581543, 0.01352131175994873, 0.013421792030334473, 0.013508671760559083, 0.013365983963012695, 0.01340403175354004, 0.013718879699707032, 0.013368063926696778, 0.013304863929748535, 0.013448127746582031, 0.013428223609924317, 0.013513248443603515, 0.013458944320678711, 0.013468000411987304, 0.01358403205871582, 0.013468192100524903, 0.013364607810974122, 0.013478752136230468, 0.013426464080810547, 0.013340319633483887, 0.013387743949890136, 0.013408448219299316, 0.013535743713378906, 0.01342835235595703, 0.013518912315368652, 0.013524991989135742, 0.013370495796203613, 0.01336793613433838, 0.013439104080200196, 0.013313183784484863, 0.013307200431823731, 0.013407551765441894, 0.013386079788208008, 0.013381631851196289, 0.013327360153198242, 0.013468192100524903, 0.0135665283203125, 0.013418399810791015, 0.013371392250061035, 0.013445440292358399, 0.013379263877868652, 0.013270688056945801, 0.013412416458129883, 0.013650208473205567, 0.013378879547119141, 0.013341376304626465, 0.01328553581237793, 0.013424480438232422, 0.013518815994262695, 0.013494175910949707, 0.013553055763244629, 0.013540063858032227, 0.013414400100708008, 0.013497823715209962, 0.01349891185760498, 0.013346015930175781, 0.013265983581542969, 0.01369388771057129, 0.013721599578857421, 0.013452896118164063, 0.013446944236755371, 0.013460096359252929, 0.013307904243469238, 0.013406016349792481, 0.013371583938598632, 0.013271039962768554, 0.013409631729125977, 0.013331071853637695, 0.013559712409973144, 0.016088479995727538, 0.014421792030334472, 0.013710335731506347, 0.013552895545959473, 0.013431776046752929, 0.013673760414123536, 0.013530591964721679, 0.013454303741455079, 0.013502495765686035, 0.013475808143615722, 0.013440959930419922, 0.01350214385986328, 0.01333523178100586, 0.01333625602722168, 0.013387776374816895, 0.013421919822692871, 0.013480607986450194, 0.013439264297485352, 0.01340608024597168, 0.013406047821044922, 0.013414400100708008, 0.013426688194274903, 0.013448320388793945, 0.013335424423217774, 0.013364992141723632, 0.013394304275512695, 0.01339788818359375, 0.01346889591217041, 0.014002079963684083, 0.013525664329528808, 0.0135863676071167, 0.015020319938659668, 0.013725695610046386, 0.013516799926757812, 0.013505536079406738, 0.013541567802429199, 0.013402303695678712, 0.013486592292785645, 0.013396096229553223, 0.013385727882385253, 0.013565695762634278, 0.013357312202453613, 0.013466976165771484, 0.013393856048583985, 0.013417247772216798, 0.013852607727050782, 0.013526399612426758, 0.013433792114257813, 0.013498047828674316, 0.013420415878295898, 0.013270591735839844, 0.013412799835205078, 0.01350607967376709, 0.013365728378295898, 0.013545056343078614, 0.013685152053833008, 0.013596672058105469, 0.013448863983154298, 0.013770591735839844, 0.01367910385131836, 0.013684736251831055, 0.01406771183013916, 0.013525247573852539, 0.013422335624694824, 0.013424639701843261, 0.013389823913574218, 0.013389408111572266, 0.01344758415222168, 0.013356287956237793, 0.013380640029907227, 0.013453023910522461, 0.013321503639221192, 0.013586496353149414, 0.013456031799316407, 0.013325887680053711, 0.013464287757873535, 0.0134550724029541, 0.01358847999572754, 0.01370307159423828, 0.01363270378112793, 0.013635680198669434, 0.01342950439453125, 0.013340736389160156, 0.013404159545898438, 0.013271072387695312, 0.01328438377380371, 0.013447360038757324, 0.013423616409301758, 0.013270848274230957, 0.013330623626708985, 0.013438495635986328, 0.013371616363525391, 0.013604864120483399, 0.01338761615753174, 0.013346976280212402, 0.013465344429016113, 0.013562111854553223, 0.013656384468078613, 0.013416128158569336, 0.013345888137817383, 0.01353324794769287, 0.013357536315917969, 0.013326560020446777, 0.013439135551452637, 0.013342720031738281, 0.013330528259277344, 0.013381535530090333, 0.013297663688659669, 0.013287487983703614, 0.013334464073181153, 0.013524991989135742, 0.013743103981018067, 0.013544608116149902]",tokens/s,74.11927228815188,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 609, in __init__ self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 400.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 312.12 MiB is free. Process 40162 has 14.43 GiB memory in use. Of the allocated memory 14.31 GiB is allocated by PyTorch, and 12.96 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt2,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 582, in __init__ self.transformer = CodeGenModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 400, in __init__ self.h = nn.ModuleList([CodeGenBlock(config) for _ in range(config.n_layer)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 400, in self.h = nn.ModuleList([CodeGenBlock(config) for _ in range(config.n_layer)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 258, in __init__ self.mlp = CodeGenMLP(inner_dim, config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 236, in __init__ self.fc_in = nn.Linear(embed_dim, intermediate_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 2.12 MiB is free. Process 102068 has 14.74 GiB memory in use. Of the allocated memory 14.62 GiB is allocated by PyTorch, and 6.49 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float32-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,,float32,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,818.118656,2127.495168,0.0,1732.247552,1728.316416,s,1,7.90771826171875,7.90771826171875,0.0,7.90771826171875,7.90771826171875,7.90771826171875,7.90771826171875,[7.90771826171875],,kWh,9.499211254145242e-06,1.040675102756e-06,3.082502466000836e-06,1.3622388822902077e-05,,MB,1110.9376,2328.82176,0.0,1923.088384,1891.2,s,10,0.48508626937866217,0.048508626937866214,0.0029105012856569454,0.047908863067626956,0.04953007087707519,0.05320087604522704,0.05613752017974854,"[0.056871681213378905, 0.048147838592529295, 0.04766988754272461, 0.0456190071105957, 0.04682697677612305, 0.04732592010498047, 0.048253406524658204, 0.047424320220947266, 0.04871433639526367, 0.04823289489746094]",tokens/s,5277.411795800891,kWh,1.8499921940927998e-06,2.040192039538802e-07,1.2289935992278652e-06,3.2830049972745454e-06,tokens/kWh,77977340.94603075,MB,1120.669696,2328.82176,0.0,1923.088384,1895.80032,s,10,12.342516357421875,1.2342516357421873,0.010719832370455143,1.2334990234375,1.2469368408203125,1.2498820556640624,1.2522382275390624,"[1.24167626953125, 1.2302158203125, 1.239170654296875, 1.2462823486328125, 1.2367822265625, 1.2528272705078125, 1.228632080078125, 1.227983154296875, 1.2144898681640626, 1.2244566650390625]",tokens/s,51.04307596247703,kWh,3.597472274965803e-05,3.967591333625105e-06,1.8983994793373237e-05,5.892630887665637e-05,tokens/kWh,1069131.9582204039,,s,630,12.339980672836315,0.019587270909263974,0.00045158069869127306,0.019530303955078127,0.01990556468963623,0.020072346115112303,0.02086324857711792,"[0.019812416076660157, 0.019705663681030272, 0.019674335479736328, 0.01954867172241211, 0.019330944061279297, 0.020469568252563478, 0.02086579132080078, 0.019900543212890625, 0.01983852767944336, 0.01953638458251953, 0.019448863983154298, 0.0195001277923584, 0.019581663131713868, 0.019593408584594726, 0.01961859130859375, 0.019644416809082032, 0.01983888053894043, 0.019578336715698242, 0.01976179122924805, 0.019737920761108398, 0.019557056427001954, 0.020711423873901368, 0.021198816299438476, 0.019617824554443358, 0.019466239929199217, 0.019545856475830077, 0.019523839950561523, 0.01981439971923828, 0.019611648559570313, 0.019566848754882814, 0.019605119705200194, 0.019908992767333985, 0.019617183685302735, 0.01945840072631836, 0.019310592651367187, 0.019538047790527344, 0.019540128707885743, 0.019650495529174805, 0.01965648078918457, 0.01973446464538574, 0.019793983459472655, 0.01971548843383789, 0.019530176162719726, 0.019464351654052733, 0.01949894332885742, 0.01960870361328125, 0.01951584053039551, 0.01951590347290039, 0.019480064392089845, 0.019564447402954103, 0.019626592636108397, 0.019834880828857423, 0.01981177520751953, 0.019692256927490236, 0.01969136047363281, 0.019765247344970704, 0.019911712646484375, 0.019792863845825195, 0.01966640090942383, 0.019493408203125, 0.019562496185302734, 0.01957606315612793, 0.01969843292236328, 0.019678848266601563, 0.019524063110351562, 0.019511295318603517, 0.019324928283691405, 0.01941663932800293, 0.019515104293823242, 0.01956732749938965, 0.019517440795898438, 0.019328479766845704, 0.019384735107421874, 0.019412960052490234, 0.019599103927612306, 0.01948099136352539, 0.019326175689697266, 0.01927779197692871, 0.01957356834411621, 0.01943280029296875, 0.019587743759155275, 0.02006220817565918, 0.019517440795898438, 0.01957587242126465, 0.019624895095825195, 0.019646368026733398, 0.01965411186218262, 0.019597087860107422, 0.0193670711517334, 0.019575519561767576, 0.019530431747436523, 0.019435808181762694, 0.01941209602355957, 0.01928598403930664, 0.019555103302001952, 0.01952479934692383, 0.019637216567993165, 0.019605472564697267, 0.019529792785644533, 0.019593151092529296, 0.01942118453979492, 0.01951091194152832, 0.019318304061889648, 0.0194747200012207, 0.019573343276977538, 0.01951299285888672, 0.019451488494873048, 0.019372127532958985, 0.019557088851928712, 0.019744672775268556, 0.019781631469726564, 0.019568384170532225, 0.01992483139038086, 0.019501472473144533, 0.01936720085144043, 0.019409631729125975, 0.019597503662109376, 0.01942310333251953, 0.019425472259521483, 0.019443456649780273, 0.01956003189086914, 0.019443391799926758, 0.019442399978637694, 0.02000486373901367, 0.019402463912963866, 0.0195382080078125, 0.019469087600708007, 0.019619840621948242, 0.01944576072692871, 0.01977289581298828, 0.019482431411743165, 0.020191776275634767, 0.02085702323913574, 0.019685375213623048, 0.01961369514465332, 0.01950627136230469, 0.019452192306518554, 0.019260063171386718, 0.019414655685424803, 0.01946454429626465, 0.019826688766479493, 0.01928390312194824, 0.01918777656555176, 0.019335168838500977, 0.019343360900878907, 0.01927529525756836, 0.019466720581054687, 0.019537919998168944, 0.019728384017944335, 0.019806367874145508, 0.019565792083740235, 0.01952422332763672, 0.019351232528686525, 0.019390783309936523, 0.01956211280822754, 0.019507007598876955, 0.01941766357421875, 0.019363840103149413, 0.01927577590942383, 0.0194969596862793, 0.019306495666503908, 0.01927987289428711, 0.019414688110351564, 0.0196713924407959, 0.019738624572753907, 0.019647680282592773, 0.019612031936645506, 0.01945849609375, 0.01945599937438965, 0.02042790412902832, 0.019753856658935545, 0.01964195251464844, 0.019612064361572267, 0.019688608169555664, 0.01966374397277832, 0.020831615447998046, 0.02157606315612793, 0.020117727279663086, 0.019996480941772463, 0.019928319931030274, 0.020118463516235353, 0.019701984405517577, 0.01965648078918457, 0.019777536392211914, 0.01984547233581543, 0.019679967880249023, 0.019657663345336914, 0.01961759948730469, 0.019537471771240236, 0.019827552795410156, 0.01962940788269043, 0.019669696807861327, 0.019953056335449217, 0.019628543853759766, 0.019597375869750976, 0.019766271591186522, 0.019853311538696287, 0.01990518379211426, 0.019775903701782227, 0.019691328048706054, 0.019640064239501952, 0.01958540725708008, 0.01982796859741211, 0.019710847854614258, 0.019709823608398437, 0.019568479537963868, 0.019514751434326173, 0.019859903335571288, 0.019670751571655272, 0.019626720428466797, 0.019706975936889647, 0.019616479873657226, 0.019805503845214845, 0.01995475196838379, 0.019903488159179687, 0.019913440704345704, 0.019910655975341796, 0.020494335174560546, 0.019853311538696287, 0.01973587226867676, 0.019932064056396484, 0.019552095413208008, 0.01975699234008789, 0.019773439407348634, 0.019877824783325195, 0.0201646728515625, 0.02000486373901367, 0.020002815246582033, 0.020330495834350586, 0.019965951919555663, 0.019933183670043944, 0.019937280654907227, 0.01986355209350586, 0.019958944320678712, 0.01985174369812012, 0.019871551513671874, 0.019755456924438478, 0.019779136657714844, 0.019685407638549805, 0.019509183883666993, 0.01955718421936035, 0.019519264221191407, 0.019793920516967774, 0.019775199890136718, 0.019566335678100587, 0.01959494400024414, 0.01967804718017578, 0.01963212776184082, 0.01963212776184082, 0.019525632858276368, 0.019501056671142578, 0.01982259178161621, 0.019886079788208007, 0.019711999893188475, 0.01964851188659668, 0.019625120162963867, 0.019503007888793944, 0.01937504005432129, 0.01930201530456543, 0.019267135620117188, 0.01944403266906738, 0.019579231262207033, 0.019525184631347656, 0.01957539176940918, 0.01967513656616211, 0.019684831619262697, 0.019632671356201174, 0.019599552154541015, 0.019656192779541014, 0.01986137580871582, 0.019732032775878906, 0.01990233612060547, 0.019679231643676756, 0.019647487640380858, 0.019512928009033204, 0.01971241569519043, 0.01960550308227539, 0.020002815246582033, 0.019564544677734375, 0.019486719131469727, 0.019441471099853516, 0.019546112060546874, 0.01964771270751953, 0.019746816635131836, 0.019745567321777343, 0.01970195198059082, 0.01979167938232422, 0.019599552154541015, 0.019695615768432616, 0.019762752532958984, 0.019816896438598634, 0.02004787254333496, 0.01954310417175293, 0.01939708709716797, 0.019503583908081056, 0.019451776504516603, 0.019779136657714844, 0.0198699836730957, 0.019851200103759764, 0.019763551712036132, 0.019659839630126952, 0.019915103912353516, 0.019663455963134766, 0.019548160552978516, 0.019475616455078126, 0.019438175201416014, 0.019484928131103516, 0.01945756721496582, 0.01946054458618164, 0.01955574417114258, 0.01959766387939453, 0.01952195167541504, 0.019593088150024415, 0.019492416381835936, 0.019562944412231446, 0.020164575576782227, 0.01981439971923828, 0.01967513656616211, 0.01957475280761719, 0.01961974334716797, 0.020203647613525392, 0.027420448303222655, 0.021888511657714844, 0.019779680252075195, 0.020435232162475586, 0.019833183288574217, 0.019912704467773438, 0.019854623794555663, 0.020156768798828124, 0.020091264724731446, 0.019713247299194336, 0.01957484817504883, 0.01959017562866211, 0.019619232177734376, 0.019826208114624023, 0.01963033676147461, 0.019452415466308593, 0.019442911148071288, 0.019478368759155273, 0.019630624771118165, 0.019357791900634767, 0.019720512390136717, 0.020288639068603516, 0.019825504302978515, 0.019886112213134764, 0.019459999084472657, 0.01944585609436035, 0.019501056671142578, 0.01960515213012695, 0.02037705612182617, 0.01965679931640625, 0.01939740753173828, 0.01939263916015625, 0.019355199813842774, 0.01946451187133789, 0.019494911193847657, 0.01927724838256836, 0.019249727249145508, 0.01951670455932617, 0.019647199630737303, 0.019689472198486328, 0.01943552017211914, 0.01941913604736328, 0.020133184432983398, 0.021340959548950194, 0.019939231872558593, 0.01986284828186035, 0.019925376892089845, 0.019730655670166016, 0.01960540771484375, 0.019660991668701173, 0.019572736740112305, 0.019382272720336914, 0.019288063049316406, 0.019517440795898438, 0.020083711624145507, 0.020059135437011717, 0.019608671188354493, 0.01992176055908203, 0.019710016250610352, 0.019525568008422853, 0.019580703735351562, 0.019800191879272462, 0.019455904006958007, 0.019377952575683595, 0.0193089599609375, 0.019570688247680663, 0.019535680770874024, 0.019398847579956056, 0.01927577590942383, 0.019697664260864257, 0.01932195281982422, 0.019790752410888672, 0.0196997127532959, 0.019552255630493166, 0.019525568008422853, 0.01940275192260742, 0.019412479400634765, 0.019446176528930666, 0.01942252731323242, 0.019389280319213865, 0.019316736221313476, 0.01922867202758789, 0.01941094398498535, 0.019343360900878907, 0.01939241600036621, 0.019341407775878908, 0.01947644805908203, 0.019638303756713868, 0.019689151763916016, 0.019580352783203126, 0.01968124771118164, 0.019585952758789063, 0.019597312927246095, 0.01947161674499512, 0.019518016815185547, 0.019476512908935546, 0.019436800003051757, 0.01948054313659668, 0.01955936050415039, 0.0193832950592041, 0.019497983932495116, 0.01960140800476074, 0.01985740852355957, 0.019805952072143553, 0.019699296951293944, 0.019505023956298828, 0.01946659278869629, 0.019496927261352538, 0.0194069766998291, 0.01936345672607422, 0.019314783096313477, 0.019286655426025392, 0.01952902412414551, 0.01948847961425781, 0.01943440055847168, 0.019360927581787108, 0.019380352020263673, 0.019385120391845704, 0.019429567337036133, 0.019350431442260743, 0.01984921646118164, 0.019939327239990236, 0.019949567794799804, 0.019838016510009767, 0.01976211166381836, 0.019789663314819336, 0.019663007736206054, 0.019542015075683594, 0.019352832794189454, 0.01931248092651367, 0.019272607803344728, 0.01934115219116211, 0.02026019287109375, 0.019282751083374024, 0.01927577590942383, 0.01935478401184082, 0.01928201675415039, 0.019244096755981446, 0.01928876876831055, 0.019339935302734375, 0.019280223846435546, 0.019454015731811523, 0.01953171157836914, 0.0195379524230957, 0.019353567123413087, 0.019331071853637697, 0.01942732810974121, 0.019529727935791014, 0.019331071853637697, 0.02199519920349121, 0.019581247329711914, 0.019335168838500977, 0.019664896011352538, 0.019359743118286133, 0.01929360008239746, 0.019278047561645507, 0.01938470458984375, 0.019363840103149413, 0.019455808639526367, 0.019504640579223635, 0.01944646453857422, 0.019466239929199217, 0.019357696533203125, 0.019171327590942384, 0.019269567489624023, 0.019229791641235353, 0.019346399307250975, 0.01921558380126953, 0.01924892807006836, 0.019259584426879882, 0.019102527618408204, 0.019264896392822264, 0.019452512741088866, 0.01922380828857422, 0.019234943389892577, 0.019174272537231446, 0.020500255584716798, 0.019840576171875, 0.01998054313659668, 0.01927596855163574, 0.019269632339477538, 0.01919811248779297, 0.01927939224243164, 0.019228479385375977, 0.019286144256591798, 0.019247167587280272, 0.01930031967163086, 0.019257375717163086, 0.019080543518066408, 0.019159711837768555, 0.019212223052978514, 0.01912166404724121, 0.019226528167724608, 0.019077791213989257, 0.019147775650024415, 0.019212383270263672, 0.019465120315551757, 0.01920204734802246, 0.019164255142211914, 0.01913484764099121, 0.01951798439025879, 0.019194976806640625, 0.019213375091552735, 0.019060575485229492, 0.019191808700561523, 0.01923891258239746, 0.01924870491027832, 0.01927212715148926, 0.019197887420654296, 0.01929427146911621, 0.019451904296875, 0.019400703430175782, 0.019234560012817384, 0.01920742416381836, 0.019194879531860352, 0.019224576950073242, 0.019258752822875976, 0.019260032653808594, 0.019247007369995118, 0.01925948715209961, 0.01920796775817871, 0.019334688186645507, 0.01926144027709961, 0.019251903533935546, 0.019167327880859376, 0.019211551666259766, 0.019399391174316407, 0.019759008407592774, 0.01940787124633789, 0.019243808746337892, 0.01916486358642578, 0.019185344696044923, 0.019573600769042968, 0.019156991958618166, 0.01922662353515625, 0.01920204734802246, 0.019277023315429687, 0.019385120391845704, 0.02008064079284668, 0.01925065612792969, 0.019330656051635742, 0.019352224349975584, 0.019329536437988282, 0.019299552917480468, 0.01925155258178711, 0.019240192413330078, 0.019551744461059572, 0.019479360580444336, 0.01919990348815918, 0.019531871795654295, 0.019371936798095703, 0.019929183959960937, 0.019296255111694336, 0.019318784713745117, 0.019320831298828126, 0.01934262466430664, 0.01942710494995117, 0.019311552047729493, 0.01943731117248535, 0.019506591796875, 0.019460960388183592, 0.019404800415039062, 0.019191808700561523, 0.0191441593170166, 0.019188255310058595, 0.0196011848449707, 0.01970812797546387, 0.019826688766479493, 0.019688608169555664, 0.019453887939453126, 0.019518367767333983, 0.019314687728881837, 0.019416767120361327, 0.01938163185119629, 0.01936684799194336, 0.020107616424560548, 0.01946998405456543, 0.01966080093383789, 0.0192491512298584, 0.019220224380493166, 0.019259647369384767, 0.019277824401855468, 0.019663999557495117, 0.01927891159057617, 0.019241823196411132, 0.019403968811035156, 0.0192325439453125, 0.019158559799194334, 0.019164703369140626, 0.019177471160888672, 0.01919276809692383, 0.019180864334106446, 0.019253952026367187, 0.019406688690185546, 0.019194015502929686, 0.019238304138183594, 0.019276384353637696, 0.01958502388000488, 0.01934329605102539, 0.019250560760498046, 0.019255136489868162, 0.019677728652954102, 0.019296575546264648, 0.019269632339477538, 0.020627231597900392, 0.020057695388793945, 0.019626623153686525, 0.01962188720703125, 0.01959446334838867]",tokens/s,51.05356456406804,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 890, in __init__ self.model = OPTModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 822, in __init__ self.decoder = OPTDecoder(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in __init__ self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 373, in __init__ self.self_attn = OPT_ATTENTION_CLASSES[config._attn_implementation](config=config, is_decoder=True) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 116, in __init__ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 120.12 MiB is free. Process 128379 has 14.62 GiB memory in use. Of the allocated memory 14.51 GiB is allocated by PyTorch, and 2.29 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,739.06176,6315.507712,0.0,5920.260096,5695.433728,s,1,7.27074365234375,7.27074365234375,0.0,7.27074365234375,7.27074365234375,7.27074365234375,7.27074365234375,[7.27074365234375],,kWh,8.849139250005086e-06,9.601664135668122e-07,3.5350028280006773e-06,1.3344308491572575e-05,,MB,1099.22304,6330.187776,0.0,5922.357248,5577.220096,s,10,0.9366836853027344,0.09366836853027345,0.0030483283167822284,0.09478851318359374,0.09545802764892578,0.09604574813842773,0.09651592453002929,"[0.08512000274658203, 0.0924968032836914, 0.09479142761230469, 0.09525901031494141, 0.09663346862792968, 0.09478559875488281, 0.09532742309570312, 0.09490019226074219, 0.09411737823486328, 0.09325238037109375]",tokens/s,2733.0464276983885,kWh,2.7320048962226894e-06,3.012278133645236e-07,1.8089526413458205e-06,4.8421853509330335e-06,tokens/kWh,52868690.7762983,MB,1132.351488,6330.187776,0.0,5922.357248,5663.963136,s,10,20.591097900390626,2.0591097900390625,0.007451632914587384,2.0561278076171874,2.071295068359375,2.0724998291015626,2.0734636376953124,"[2.0528154296875, 2.0534404296875, 2.0631806640625, 2.055403564453125, 2.05194140625, 2.052717529296875, 2.060014892578125, 2.07370458984375, 2.07102734375, 2.05685205078125]",tokens/s,30.595745940678984,kWh,6.005933179169355e-05,6.624405903750141e-06,3.9696497229654024e-05,0.00010638023492509772,tokens/kWh,592215.2742411058,,s,630,20.58804969024657,0.032679443952772357,0.0004708449742492666,0.032596769332885744,0.033009909057617186,0.033275018310546876,0.03555262310028076,"[0.03432243347167969, 0.03297459030151367, 0.032454910278320315, 0.03223551940917969, 0.032292385101318356, 0.03224812698364258, 0.03224387359619141, 0.03234201431274414, 0.032307201385498044, 0.032263648986816405, 0.0322911376953125, 0.03226144027709961, 0.03232364654541016, 0.032174945831298825, 0.03224576187133789, 0.03224316787719726, 0.032309791564941404, 0.03238284683227539, 0.03230847930908203, 0.03240419387817383, 0.03236054229736328, 0.03234796905517578, 0.03244800186157227, 0.03227507019042969, 0.03243171310424805, 0.03240512084960938, 0.03257436752319336, 0.0323583984375, 0.03238281631469726, 0.03249987030029297, 0.03256320190429687, 0.033054271697998044, 0.03274911880493164, 0.03263577651977539, 0.03254886245727539, 0.03263897705078125, 0.0328007698059082, 0.03266892623901367, 0.03268703842163086, 0.03300947189331055, 0.03318937683105469, 0.032669952392578125, 0.03259827041625977, 0.03242598342895508, 0.03255091094970703, 0.032415744781494144, 0.032557056427001956, 0.03248252868652344, 0.03248617553710938, 0.03242393493652344, 0.03273318481445313, 0.03280486297607422, 0.032851966857910156, 0.032745471954345705, 0.0327823371887207, 0.03270041656494141, 0.03265945434570312, 0.032729087829589845, 0.03288883209228516, 0.032849918365478514, 0.03283148956298828, 0.03287449645996094, 0.03319388961791992, 0.03557328033447266, 0.03347711944580078, 0.032763870239257815, 0.03256115341186523, 0.03227606582641602, 0.03232400131225586, 0.03228684616088867, 0.032153472900390626, 0.03226009750366211, 0.03231868743896484, 0.03229977416992187, 0.03213520050048828, 0.0321712646484375, 0.03218035125732422, 0.03226483154296875, 0.03253657531738281, 0.03257539367675781, 0.03239945602416992, 0.03248537445068359, 0.032337024688720704, 0.0324554557800293, 0.03232688140869141, 0.03245555114746094, 0.03251980972290039, 0.03249728012084961, 0.03241241455078125, 0.032437950134277346, 0.032640960693359374, 0.03255043029785156, 0.032537345886230466, 0.03254595184326172, 0.032607135772705076, 0.032732383728027344, 0.0325599365234375, 0.03255302429199219, 0.03277536010742187, 0.03246697616577148, 0.032507648468017576, 0.0325022087097168, 0.03244086456298828, 0.03241923141479492, 0.03241427230834961, 0.032585536956787106, 0.03244815826416016, 0.03255558395385742, 0.03244230270385742, 0.03282134246826172, 0.03263654327392578, 0.03261270523071289, 0.03256729507446289, 0.03261561584472656, 0.03268281555175781, 0.03265327835083008, 0.03275503921508789, 0.03256390380859375, 0.03253644943237305, 0.03253216171264649, 0.03258188629150391, 0.032825023651123046, 0.0328279037475586, 0.03304150390625, 0.03306588745117187, 0.03305472183227539, 0.03558595275878906, 0.03328992080688477, 0.03272745513916016, 0.03239731216430664, 0.032384864807128905, 0.03238723373413086, 0.032284671783447266, 0.032148799896240234, 0.03224031829833984, 0.03232153701782227, 0.03247420883178711, 0.032462753295898435, 0.032508926391601564, 0.03259187316894531, 0.032546142578125, 0.03241846466064453, 0.03237273788452148, 0.032376094818115236, 0.03255574417114258, 0.03249356842041016, 0.03260211181640625, 0.032449920654296874, 0.032487808227539064, 0.03277350234985352, 0.03250627136230469, 0.032541152954101565, 0.03249116897583008, 0.03248777770996094, 0.03259187316894531, 0.0328803825378418, 0.03286412811279297, 0.032883071899414064, 0.032860160827636715, 0.032794624328613284, 0.03405619049072266, 0.03339059066772461, 0.032616127014160154, 0.032549182891845704, 0.03267379379272461, 0.03277619171142578, 0.032718017578125, 0.032645118713378905, 0.03276473617553711, 0.03261439895629883, 0.03263071823120117, 0.032706623077392576, 0.0328243522644043, 0.032611297607421874, 0.03273241424560547, 0.03259059143066406, 0.03261439895629883, 0.03278643035888672, 0.03346803283691406, 0.03329840087890625, 0.033012126922607424, 0.032896736145019534, 0.032792865753173826, 0.03270655822753906, 0.032868350982666016, 0.033073150634765625, 0.03308297729492188, 0.032864063262939454, 0.03275632095336914, 0.0354752311706543, 0.03328752136230469, 0.03272998428344726, 0.032495201110839846, 0.0325184326171875, 0.032315521240234374, 0.0325522575378418, 0.03220908737182617, 0.032323455810546874, 0.03230374526977539, 0.03227238464355469, 0.03222118377685547, 0.032315391540527344, 0.03239731216430664, 0.03265068817138672, 0.032490047454833984, 0.03262464141845703, 0.0324956169128418, 0.03246249771118164, 0.03266185760498047, 0.03256524658203125, 0.03259088134765625, 0.0324884147644043, 0.03246080017089844, 0.03266940689086914, 0.0325819206237793, 0.03255014419555664, 0.03246771240234375, 0.032589824676513675, 0.032589824676513675, 0.032745471954345705, 0.03327084732055664, 0.032604415893554686, 0.032662208557128904, 0.03268198394775391, 0.03256320190429687, 0.03266355133056641, 0.032471038818359374, 0.03244646453857422, 0.032290817260742184, 0.03241187286376953, 0.032383937835693356, 0.03241244888305664, 0.03257759857177735, 0.032601089477539064, 0.03262102508544922, 0.03244287872314453, 0.032489246368408206, 0.03265766525268555, 0.032595966339111326, 0.03279667282104492, 0.0327344970703125, 0.03267068862915039, 0.03264281463623047, 0.03253225708007813, 0.032620319366455076, 0.03264956665039063, 0.03267139053344727, 0.03266521453857422, 0.032694366455078124, 0.03285385513305664, 0.03281711959838867, 0.0328262710571289, 0.035722145080566405, 0.03348278427124023, 0.03267334365844726, 0.032811454772949215, 0.03270870590209961, 0.03228457641601563, 0.03223302459716797, 0.032284862518310545, 0.03231564712524414, 0.032126976013183595, 0.032405502319335935, 0.03233792114257812, 0.03232745742797852, 0.0329475212097168, 0.032904094696044925, 0.03233996963500976, 0.03255897521972656, 0.032221057891845706, 0.03231769561767578, 0.032368640899658206, 0.03230713653564453, 0.03232361602783203, 0.032274463653564456, 0.03225190353393555, 0.03236025619506836, 0.03247446441650391, 0.03244323348999024, 0.03240755081176758, 0.03241068649291992, 0.03254278564453125, 0.03257228851318359, 0.03262464141845703, 0.0325591049194336, 0.032546817779541014, 0.03254476928710937, 0.03247459030151367, 0.032485919952392577, 0.03246284866333008, 0.03245414352416992, 0.03239350509643555, 0.03236044692993164, 0.03247305679321289, 0.03244857788085938, 0.03234998321533203, 0.03244668960571289, 0.03227865600585938, 0.03259603118896484, 0.032456703186035156, 0.032544670104980467, 0.032503326416015624, 0.0326682243347168, 0.032530433654785154, 0.03283763122558594, 0.032812896728515624, 0.03256083297729492, 0.0325882568359375, 0.03263059234619141, 0.03255519866943359, 0.032589824676513675, 0.03275702285766602, 0.03285475158691406, 0.032755680084228515, 0.032784416198730466, 0.03550204849243164, 0.033290241241455076, 0.03271692657470703, 0.03255699157714844, 0.03241542434692383, 0.03225798416137695, 0.03220012664794922, 0.032194561004638675, 0.03265951919555664, 0.03214416122436523, 0.032214366912841796, 0.032432830810546875, 0.032368640899658206, 0.03225804901123047, 0.03240716934204101, 0.03221952056884766, 0.03280879974365234, 0.032851486206054686, 0.03239619064331055, 0.03235523223876953, 0.03241862487792969, 0.032411102294921876, 0.03236713409423828, 0.03234611129760742, 0.03228672027587891, 0.032350208282470705, 0.03233187103271484, 0.03240950393676758, 0.032513729095458986, 0.0326690559387207, 0.032722080230712894, 0.0327083854675293, 0.03268175888061523, 0.03269859313964844, 0.03265945434570312, 0.03254441452026367, 0.032522590637207034, 0.032481151580810545, 0.032444000244140625, 0.03240131378173828, 0.032411903381347654, 0.03254719924926758, 0.03260950469970703, 0.03251279830932617, 0.032505855560302735, 0.03282665634155273, 0.032602848052978514, 0.0324587516784668, 0.032530433654785154, 0.03243417739868164, 0.03256489562988281, 0.03260860824584961, 0.03256524658203125, 0.03266355133056641, 0.032589824676513675, 0.03258569717407227, 0.03262262344360352, 0.03256115341186523, 0.03279872131347656, 0.03269734573364258, 0.032796897888183595, 0.03281999969482422, 0.03288604736328125, 0.03569382476806641, 0.03369647979736328, 0.032696319580078126, 0.032513473510742186, 0.03242969512939453, 0.032325950622558594, 0.03236108779907226, 0.03225980758666992, 0.03257503890991211, 0.03226454544067383, 0.03242409515380859, 0.032293087005615236, 0.03227852630615234, 0.03238054275512695, 0.03228652954101562, 0.032260673522949215, 0.032400928497314456, 0.032362911224365236, 0.032428096771240235, 0.03233990478515625, 0.03244022369384766, 0.03230326461791992, 0.03249356842041016, 0.032540672302246096, 0.032454303741455075, 0.03233827209472656, 0.032419551849365236, 0.03240784072875977, 0.03265705490112305, 0.03257276916503906, 0.032799232482910154, 0.03291596984863281, 0.032952320098876955, 0.03299123382568359, 0.032794017791748044, 0.03273174285888672, 0.03266300964355469, 0.0325453109741211, 0.03266336059570313, 0.0324568977355957, 0.03249151992797852, 0.03301580810546875, 0.032599903106689455, 0.032503231048583985, 0.03260079956054687, 0.03258755111694336, 0.03273292922973633, 0.03260435104370117, 0.03263449478149414, 0.03273795318603516, 0.032683967590332035, 0.03279264068603516, 0.03292111968994141, 0.0332784309387207, 0.032991008758544924, 0.03290544128417969, 0.03294822311401367, 0.03300966262817383, 0.0330189437866211, 0.03315603256225586, 0.03301375961303711, 0.03303184127807617, 0.03300128173828125, 0.03610348892211914, 0.03358787155151367, 0.033070465087890626, 0.03280140686035156, 0.032742401123046876, 0.032653343200683596, 0.03257648086547851, 0.03250790405273438, 0.03259801483154297, 0.032573089599609376, 0.032565601348876955, 0.03263692855834961, 0.033966079711914066, 0.03266764831542969, 0.032630561828613285, 0.032731361389160156, 0.03261161422729492, 0.03257110214233398, 0.03269734573364258, 0.03252364730834961, 0.032696670532226565, 0.03280310440063477, 0.03273318481445313, 0.03277536010742187, 0.032670528411865234, 0.03248534393310547, 0.03259532928466797, 0.03263555145263672, 0.03274137496948242, 0.033972225189208984, 0.03308889770507813, 0.03305971145629883, 0.03284966278076172, 0.032935455322265626, 0.03305065536499024, 0.03283808135986328, 0.03305446243286133, 0.032727294921875, 0.032718849182128903, 0.03279052734375, 0.03271424102783203, 0.033012161254882814, 0.03276332855224609, 0.03273587036132813, 0.03295356750488281, 0.032887584686279295, 0.03278035354614258, 0.03269740676879883, 0.033089534759521484, 0.032912254333496094, 0.032911361694335936, 0.03285606384277344, 0.03295641708374023, 0.033091583251953126, 0.032925697326660154, 0.03282329559326172, 0.03284377670288086, 0.032871681213378905, 0.03293056106567383, 0.032884735107421875, 0.03312607955932617, 0.033259136199951175, 0.0332848014831543, 0.03605833435058594, 0.033718048095703126, 0.03292873764038086, 0.032722782135009766, 0.03274716949462891, 0.03256086349487305, 0.03277494430541992, 0.03317878341674805, 0.0325384635925293, 0.03249049758911133, 0.032568801879882814, 0.03249615859985352, 0.03261644744873047, 0.03250102233886719, 0.032654048919677735, 0.03252617645263672, 0.0326657600402832, 0.03254476928710937, 0.03262259292602539, 0.032659263610839845, 0.03259616088867188, 0.03265331268310547, 0.03271225738525391, 0.03264556884765625, 0.03266969680786133, 0.032622337341308594, 0.032702720642089844, 0.03276595306396484, 0.03285932922363281, 0.03355433654785156, 0.033325984954833986, 0.03310182571411133, 0.032950271606445314, 0.03278643035888672, 0.03289817428588867, 0.03281798553466797, 0.032736961364746096, 0.032688350677490235, 0.032729248046875, 0.032778240203857424, 0.032833534240722655, 0.032699649810791015, 0.03275635147094726, 0.032745601654052735, 0.033252574920654296, 0.03287324905395508, 0.03330047988891602, 0.032806686401367184, 0.03267606353759766, 0.032591552734375, 0.03268025588989258, 0.03278643035888672, 0.032833534240722655, 0.032982078552246094, 0.03280499267578125, 0.03272582244873047, 0.0328600959777832, 0.03286227035522461, 0.033414337158203126, 0.03298537445068359, 0.03310851287841797, 0.03306496047973633, 0.0329090576171875, 0.036259166717529295, 0.03353593444824219, 0.03302060699462891, 0.03259737777709961, 0.03249379348754883, 0.03247964859008789, 0.03244879913330078, 0.0325013427734375, 0.03274150466918945, 0.03235363388061523, 0.032301055908203126, 0.03225228881835938, 0.03242790222167969, 0.03234857559204102, 0.032468353271484375, 0.03225254440307617, 0.03228876876831055, 0.0323133430480957, 0.03251718521118164, 0.03238547134399414, 0.03253299331665039, 0.032405502319335935, 0.03236454391479492, 0.03273510360717773, 0.03264313507080078, 0.03253359985351562, 0.03265840148925781, 0.032464897155761716, 0.03249356842041016, 0.03262464141845703, 0.032737281799316405, 0.03264716720581055, 0.03266463851928711, 0.032591934204101565, 0.03250166320800781, 0.032414688110351565, 0.03245843124389648, 0.032358497619628904, 0.03253190231323242, 0.03243907165527344, 0.032411361694335936, 0.032319774627685545, 0.03244851303100586, 0.03265945434570312, 0.03250175857543945, 0.032589824676513675, 0.032486976623535155, 0.03242438507080078, 0.03246284866333008, 0.03255817413330078, 0.03261123275756836, 0.03262156677246094, 0.03268505477905274, 0.03261439895629883, 0.03279433441162109, 0.03260649490356445, 0.032894977569580076, 0.03278646469116211, 0.033670398712158205, 0.032911327362060545, 0.03290995025634766, 0.03292787170410156, 0.032839744567871094]",tokens/s,30.600275862868994,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,,MB,869.462016,13880.918016,0.0,13478.395904,13476.849152,s,1,7.5127373046875,7.5127373046875,0.0,7.5127373046875,7.5127373046875,7.5127373046875,7.5127373046875,[7.5127373046875],,kWh,8.448187008358824e-06,9.244879588549403e-07,4.340281250000966e-06,1.371295621721473e-05,,MB,1312.055296,14117.896192,0.0,13702.791168,13671.637504,s,10,2.142603302001953,0.2142603302001953,0.0032002173542180906,0.21508135986328125,0.21687847747802735,0.21736887283325196,0.21776118911743164,"[0.20613471984863282, 0.21500837707519532, 0.21630178833007813, 0.21676950073242188, 0.21639010620117188, 0.21418392944335937, 0.21267900085449218, 0.21785926818847656, 0.21212226867675782, 0.21515434265136718]",tokens/s,1194.808202530095,kWh,6.200510575607786e-06,6.836348524032833e-07,4.122908390916807e-06,1.1007053818927877e-05,tokens/kWh,23257813.054368734,MB,1368.502272,14119.993344,0.0,13702.791168,13671.640064,s,10,37.22296093749999,3.7222960937500007,0.009062326274916746,3.7242001953125,3.7331612304687503,3.733816455078125,3.734340634765625,"[3.705755615234375, 3.71341015625, 3.7137265625, 3.71710986328125, 3.7257529296875, 3.722679443359375, 3.733015625, 3.7344716796875, 3.731318115234375, 3.725720947265625]",tokens/s,16.92503723864995,kWh,0.0001092476945518876,1.2050020720617328e-05,7.260618077008299e-05,0.00019390389604258786,tokens/kWh,324903.2189954712,,s,630,37.21966119003297,0.0590788272857666,0.0005726381996114669,0.059006175994873046,0.05951906929016113,0.05966496410369873,0.06263012916564942,"[0.06160947036743164, 0.05885203170776367, 0.05832908630371094, 0.05827289581298828, 0.05827824020385742, 0.05835830307006836, 0.05838848114013672, 0.05847449493408203, 0.058243072509765625, 0.05830553436279297, 0.05839974212646484, 0.058912769317626956, 0.0587407341003418, 0.058638206481933595, 0.05865484619140625, 0.058845184326171876, 0.059109375, 0.059109375, 0.05896761703491211, 0.058910369873046875, 0.0586923828125, 0.058449920654296876, 0.0584192008972168, 0.05849702453613281, 0.05853308868408203, 0.05853817749023438, 0.058571361541748045, 0.05873395156860352, 0.05873027038574219, 0.05873955154418945, 0.05864812850952148, 0.058698177337646484, 0.058877952575683595, 0.05896806335449219, 0.058982398986816405, 0.059010112762451175, 0.05892192077636719, 0.058926239013671874, 0.058778465270996096, 0.05866291046142578, 0.05873049545288086, 0.05882265472412109, 0.05876502227783203, 0.05863862228393555, 0.05876531219482422, 0.05883699035644531, 0.058787841796875, 0.05885030364990235, 0.05900377655029297, 0.05912345504760742, 0.05923263931274414, 0.05914828872680664, 0.05909065628051758, 0.05913961410522461, 0.059415294647216794, 0.05895568084716797, 0.05872572708129883, 0.059232959747314455, 0.05877542495727539, 0.05880031967163086, 0.05891439819335938, 0.05898076629638672, 0.0589760627746582, 0.06244979095458984, 0.059692577362060545, 0.05884719848632813, 0.05847702407836914, 0.05840281677246094, 0.0587503662109375, 0.05862051010131836, 0.05847177505493164, 0.05853046417236328, 0.058568702697753904, 0.0586217269897461, 0.05862403106689453, 0.058617408752441404, 0.05851609420776367, 0.05861171340942383, 0.05886771011352539, 0.059201377868652344, 0.05917228698730469, 0.05907939147949219, 0.05895727920532227, 0.05885551834106445, 0.05867555236816406, 0.05864572906494141, 0.058862014770507814, 0.05869750213623047, 0.05865852737426758, 0.058628128051757815, 0.05859145736694336, 0.05865132904052734, 0.05867270278930664, 0.05867305755615235, 0.0587883186340332, 0.05920272064208985, 0.059435520172119144, 0.05935968017578125, 0.059174209594726565, 0.05912396621704102, 0.05932806396484375, 0.05886243057250977, 0.05866700744628906, 0.05875711822509765, 0.05869158554077149, 0.05871155166625976, 0.05898060989379883, 0.059015422821044924, 0.05911097717285156, 0.05891116714477539, 0.05889023971557617, 0.05905817413330078, 0.05938585662841797, 0.05918076705932617, 0.05897449493408203, 0.05893529510498047, 0.058993663787841794, 0.05885030364990235, 0.05889228820800781, 0.05900207901000976, 0.05901391983032227, 0.059000831604003906, 0.05901689529418945, 0.05897248077392578, 0.05902511978149414, 0.05911171340942383, 0.0625830078125, 0.05954140853881836, 0.058599040985107424, 0.05837257766723633, 0.0583636474609375, 0.058441215515136716, 0.05844863891601562, 0.058449920654296876, 0.05851955032348633, 0.05852931213378906, 0.05842172622680664, 0.05846835327148438, 0.058396671295166014, 0.0585145263671875, 0.05855324935913086, 0.05895951843261719, 0.059343231201171874, 0.0594595832824707, 0.059281375885009764, 0.059057857513427736, 0.05886598587036133, 0.05859507369995117, 0.05843584060668945, 0.05849292755126953, 0.05863423919677734, 0.05856249618530274, 0.05860755157470703, 0.05868966293334961, 0.0586130256652832, 0.058697662353515624, 0.058818687438964845, 0.05894588851928711, 0.05901753616333008, 0.05921996688842773, 0.05920534515380859, 0.05928521728515625, 0.05924710464477539, 0.059033374786376956, 0.05891443252563477, 0.05874867248535156, 0.05870236968994141, 0.05881894302368164, 0.058810367584228515, 0.05882060623168945, 0.05894937515258789, 0.05876556777954101, 0.058666240692138674, 0.059039775848388674, 0.059140830993652346, 0.059338752746582034, 0.059448448181152344, 0.059355358123779296, 0.059685569763183594, 0.05951679992675781, 0.059188896179199216, 0.059184768676757815, 0.058983230590820314, 0.05902950286865234, 0.0590561294555664, 0.059049537658691406, 0.0588900146484375, 0.05904655838012695, 0.059015167236328124, 0.06309932708740235, 0.06004988861083985, 0.05903564834594727, 0.05856662368774414, 0.05845734405517578, 0.05851990509033203, 0.05844220733642578, 0.058456062316894535, 0.05857865524291992, 0.058517791748046874, 0.05851119995117188, 0.0584436149597168, 0.058472320556640624, 0.05854048156738281, 0.05857791900634766, 0.05928860855102539, 0.0594923210144043, 0.05971753692626953, 0.059496543884277345, 0.05901286315917969, 0.05872844696044922, 0.05870150375366211, 0.058608192443847656, 0.0585747184753418, 0.05869785690307617, 0.05868492889404297, 0.05872076797485352, 0.05883270263671875, 0.05875321578979492, 0.05871590423583985, 0.05901337432861328, 0.05892675018310547, 0.059084190368652346, 0.05929260635375976, 0.059308032989501956, 0.05929983901977539, 0.059243648529052735, 0.059004993438720704, 0.0588787841796875, 0.05881651306152344, 0.05895126342773437, 0.058929569244384764, 0.05895372772216797, 0.05904540634155273, 0.058882526397705075, 0.05870320129394531, 0.05872092819213867, 0.05883679962158203, 0.05910547256469727, 0.059254783630371094, 0.05937136077880859, 0.05949577713012695, 0.05945625686645508, 0.05932790374755859, 0.05911004638671875, 0.05896768188476562, 0.05889814376831055, 0.058900127410888674, 0.05879043197631836, 0.05886812973022461, 0.059090625762939455, 0.05900735855102539, 0.05896806335449219, 0.06305996704101563, 0.060028926849365234, 0.05902092742919922, 0.05882918548583985, 0.05866684722900391, 0.0587672004699707, 0.05877382278442383, 0.05864198303222656, 0.05855680084228516, 0.058484798431396486, 0.05860287857055664, 0.0584505615234375, 0.05858041763305664, 0.05856313705444336, 0.05857484817504883, 0.059025409698486325, 0.05957427215576172, 0.059635711669921876, 0.05935923385620117, 0.05896787261962891, 0.058777729034423826, 0.05867116928100586, 0.05856972885131836, 0.058718238830566406, 0.058708961486816404, 0.05865574264526367, 0.058605918884277346, 0.05864089584350586, 0.05882281494140625, 0.05902336120605469, 0.05887516784667969, 0.058914752960205076, 0.05916511917114258, 0.059604961395263674, 0.05953779220581055, 0.05966979217529297, 0.05942959976196289, 0.05926291275024414, 0.059038944244384765, 0.05918396759033203, 0.059098464965820316, 0.05913212966918945, 0.05897177505493164, 0.05895660781860351, 0.05902950286865234, 0.05917491149902344, 0.059154430389404294, 0.05907660675048828, 0.05922611236572266, 0.05933260726928711, 0.059453441619873044, 0.05966438293457031, 0.05963359832763672, 0.05954729461669922, 0.05941494369506836, 0.059291648864746097, 0.059350879669189456, 0.05941823959350586, 0.0593554573059082, 0.059354526519775394, 0.05928019332885742, 0.059130977630615235, 0.05927167892456055, 0.06264937591552734, 0.05975126266479492, 0.05892051315307617, 0.05882870483398438, 0.05887209701538086, 0.05896012878417969, 0.058973888397216796, 0.05903814315795899, 0.05895782470703125, 0.05889023971557617, 0.05886361694335938, 0.05873455810546875, 0.05869097518920898, 0.05897052764892578, 0.058894561767578124, 0.0590274543762207, 0.05963164901733398, 0.05950870513916016, 0.05924227142333984, 0.059111137390136716, 0.05891884613037109, 0.05897654342651367, 0.05854345703125, 0.05858195114135742, 0.058607009887695315, 0.05872700881958008, 0.058722270965576175, 0.058713729858398435, 0.05874918365478515, 0.058775489807128906, 0.05886751937866211, 0.05892057418823242, 0.059200286865234375, 0.0591646728515625, 0.05901839828491211, 0.058913440704345704, 0.05893734359741211, 0.05892319869995117, 0.05884928131103516, 0.058799808502197265, 0.05896633529663086, 0.05909052658081055, 0.05892115020751953, 0.05891644668579102, 0.05886800003051758, 0.05893564987182617, 0.05872751998901367, 0.058820575714111326, 0.05907551956176758, 0.059203136444091795, 0.05922860717773438, 0.05927936172485351, 0.05933443069458008, 0.05935331344604492, 0.05941862487792969, 0.059299713134765626, 0.05935030364990234, 0.059380577087402346, 0.05938345718383789, 0.05944332885742187, 0.059267295837402346, 0.05933260726928711, 0.059248126983642575, 0.0627578239440918, 0.05985603332519531, 0.058906494140625, 0.058665313720703126, 0.05866681671142578, 0.058778430938720705, 0.058793983459472655, 0.05873049545288086, 0.05874038314819336, 0.058829151153564456, 0.05878169631958008, 0.058963966369628903, 0.05893075180053711, 0.0590074234008789, 0.05904793548583984, 0.05935059356689453, 0.05976655960083008, 0.05981865692138672, 0.059627521514892576, 0.059412479400634766, 0.05911859130859375, 0.058840065002441405, 0.05879808044433594, 0.0587955207824707, 0.05898291015625, 0.058959873199462894, 0.05895782470703125, 0.05897216033935547, 0.059049983978271485, 0.05909503936767578, 0.05913324737548828, 0.05933644866943359, 0.05945033645629883, 0.059700286865234375, 0.059587486267089845, 0.05944319915771484, 0.05917900848388672, 0.05912496185302735, 0.059232959747314455, 0.05924774551391602, 0.05906070327758789, 0.059063873291015624, 0.0591200942993164, 0.059138526916503904, 0.05904383850097656, 0.05915177536010742, 0.059386463165283204, 0.05902336120605469, 0.059342079162597657, 0.05984131240844726, 0.059574241638183596, 0.0595722541809082, 0.0594813117980957, 0.05933692932128906, 0.059466270446777346, 0.059344894409179685, 0.05937152099609375, 0.059308032989501956, 0.05928345489501953, 0.05926816177368164, 0.059362239837646484, 0.05933574295043945, 0.05935539245605469, 0.06297183990478515, 0.059966880798339846, 0.05914278411865234, 0.05877254486083985, 0.05857510375976562, 0.058718463897705075, 0.05878572845458984, 0.058699745178222656, 0.05891052627563476, 0.05889228820800781, 0.05897289657592773, 0.058949630737304685, 0.05901302337646484, 0.05910095977783203, 0.05916678237915039, 0.059353248596191406, 0.05952105712890625, 0.05951884841918945, 0.05936352157592773, 0.05919251251220703, 0.058966846466064454, 0.05892505645751953, 0.05890662384033203, 0.05889148712158203, 0.05894582366943359, 0.05905846405029297, 0.059214046478271484, 0.059082401275634765, 0.05893769454956055, 0.05903564834594727, 0.05903974533081055, 0.059211360931396485, 0.059541919708251956, 0.05941846466064453, 0.059420833587646486, 0.05947964859008789, 0.059302303314208986, 0.059356414794921875, 0.05920025634765625, 0.05911347198486328, 0.0590431022644043, 0.059179744720458984, 0.059230209350585934, 0.05932207870483398, 0.05931977462768555, 0.059147071838378903, 0.059240447998046876, 0.059254783630371094, 0.0595777587890625, 0.059550304412841794, 0.059578369140625, 0.059516128540039064, 0.05962627029418945, 0.05953305435180664, 0.05945779037475586, 0.05939548873901367, 0.05931068801879883, 0.059254783630371094, 0.059215873718261716, 0.059426815032958984, 0.05948825454711914, 0.059543422698974606, 0.059248767852783206, 0.06286083221435547, 0.05990447998046875, 0.05908067321777344, 0.05896188735961914, 0.05882796859741211, 0.05893820953369141, 0.05884511947631836, 0.058906688690185546, 0.05872758483886719, 0.05887062454223633, 0.058947582244873044, 0.059118942260742186, 0.05894124984741211, 0.058864479064941404, 0.05913600158691406, 0.05948806381225586, 0.05981203079223633, 0.05995040130615235, 0.05956639862060547, 0.059348384857177736, 0.059112415313720704, 0.059092609405517575, 0.05890022277832031, 0.0589315185546875, 0.05898044967651367, 0.05907440185546875, 0.059048320770263674, 0.05925888061523438, 0.05916262435913086, 0.05921177673339844, 0.05924179077148437, 0.05939459228515625, 0.059563838958740234, 0.059765087127685544, 0.05966543960571289, 0.059377918243408205, 0.05905433654785156, 0.05902121734619141, 0.05894406509399414, 0.058799198150634766, 0.05874764633178711, 0.05887606430053711, 0.05887376022338867, 0.05901855850219727, 0.058872608184814455, 0.05884636688232422, 0.058951553344726564, 0.05895471954345703, 0.05915990447998047, 0.05924854278564453, 0.059381633758544924, 0.05952934265136719, 0.059412574768066405, 0.05931280136108399, 0.059140094757080076, 0.058982398986816405, 0.059205631256103515, 0.05953059387207031, 0.0590588493347168, 0.05942639923095703, 0.059205665588378906, 0.059297534942626955, 0.05923487854003906, 0.06285004806518554, 0.05984374237060547, 0.05886444854736328, 0.058638080596923825, 0.05863759994506836, 0.05860451126098633, 0.058552318572998044, 0.05860678482055664, 0.05858137512207031, 0.058493377685546875, 0.05849497604370117, 0.05859436798095703, 0.05856118392944336, 0.05868572616577149, 0.0586580810546875, 0.05922889709472656, 0.05970249557495117, 0.05971023941040039, 0.059396095275878906, 0.05935923385620117, 0.058931198120117184, 0.0587407341003418, 0.05850316619873047, 0.05864243316650391, 0.058545951843261716, 0.05872019195556641, 0.05867139053344726, 0.0587960319519043, 0.058755039215087894, 0.05888617706298828, 0.05896384048461914, 0.05891263961791992, 0.05907199859619141, 0.05965289688110351, 0.05965411376953125, 0.05948211288452149, 0.059420673370361325, 0.05933369445800781, 0.05918339157104492, 0.059294368743896486, 0.059262977600097654, 0.05911920166015625, 0.059111839294433595, 0.059049983978271485, 0.05922566223144531, 0.059314399719238284, 0.05926681518554688, 0.05923657608032227, 0.05929580688476563, 0.05956735992431641, 0.05957932662963867, 0.059672161102294924, 0.05960540771484375, 0.05954969787597656, 0.05937152099609375, 0.05918515014648437, 0.059222015380859375, 0.05923612976074219, 0.05915465545654297, 0.05897830581665039, 0.05902115249633789, 0.05912137603759766, 0.05907295989990234]",tokens/s,16.926537745290048,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,838.209536,9637.39648,0.0,9242.148864,8603.568128,s,1,7.56006689453125,7.56006689453125,0.0,7.56006689453125,7.56006689453125,7.56006689453125,7.56006689453125,[7.56006689453125],,kWh,1.2805606391702895e-05,1.4049791025938898e-06,6.6475053179942956e-06,2.085809081229108e-05,,MB,1194.815488,9889.05472,0.0,9481.224192,8972.090368,s,10,1.128035583496094,0.11280355834960938,0.0011751249572338504,0.11267300796508789,0.11414554901123046,0.11428141555786132,0.11439010879516602,"[0.11201679992675781, 0.11153091430664062, 0.11100089263916016, 0.1131654052734375, 0.11218061065673827, 0.11388262176513672, 0.11441728210449219, 0.11393654632568359, 0.11178915405273437, 0.1141153564453125]",tokens/s,2269.431955387305,kWh,3.5066526572917507e-06,3.867173765259819e-07,2.328391412976124e-06,6.221761446793857e-06,tokens/kWh,41145904.12847147,MB,1223.151616,9893.249024,0.0,9485.418496,8972.092928,s,10,25.124321044921878,2.512432104492188,0.01365794814109764,2.508675903320312,2.5302686279296878,2.5304315551757814,2.530561896972656,"[2.523666748046875, 2.509734130859375, 2.530594482421875, 2.527587890625, 2.530232421875, 2.502421875, 2.49313671875, 2.495555908203125, 2.503773193359375, 2.50761767578125]",tokens/s,25.07530447782331,kWh,7.272253918687309e-05,8.02116478447727e-06,4.820976012862395e-05,0.0001289534640999743,tokens/kWh,488548.333615588,,s,630,25.12142214202883,0.03987527324131557,0.0008178128978666541,0.03974924850463867,0.04038665008544922,0.04076124038696289,0.044132319068908694,"[0.04416851043701172, 0.04000019073486328, 0.03940556716918946, 0.03972051239013672, 0.039725440979003906, 0.039647296905517576, 0.03943219375610352, 0.04027801513671875, 0.039779903411865235, 0.039735744476318356, 0.04018399810791016, 0.039707744598388675, 0.03994112014770508, 0.03994384002685547, 0.039516448974609375, 0.040199966430664064, 0.039792640686035156, 0.03975167846679688, 0.03993600082397461, 0.040013824462890625, 0.040013824462890625, 0.03999667358398438, 0.03985897445678711, 0.04008752059936523, 0.039755775451660154, 0.03988889694213867, 0.0397918701171875, 0.03990399932861328, 0.03994236755371094, 0.03968115234375, 0.039760543823242185, 0.039757694244384766, 0.040193214416503906, 0.039801151275634765, 0.039828033447265626, 0.040419391632080075, 0.04000153732299805, 0.039726112365722654, 0.03989193725585938, 0.03954457473754883, 0.039815425872802734, 0.040129791259765624, 0.03973936080932617, 0.039678752899169924, 0.04025324630737305, 0.03996895980834961, 0.039814334869384765, 0.03992659378051758, 0.039997665405273435, 0.043370079040527344, 0.0397457275390625, 0.03973494338989258, 0.039780033111572265, 0.04000425720214844, 0.039890209197998044, 0.03996131134033203, 0.03978854370117187, 0.04299980926513672, 0.040011489868164066, 0.04002025604248047, 0.040199649810791015, 0.039909919738769534, 0.03989871978759765, 0.04362803268432617, 0.039938526153564455, 0.03957350540161133, 0.039777313232421875, 0.04047766494750977, 0.04005062484741211, 0.03976134490966797, 0.040256126403808594, 0.0399441909790039, 0.03975065612792969, 0.039638015747070314, 0.03959366226196289, 0.0398191032409668, 0.03998972702026367, 0.03973484802246094, 0.03990367889404297, 0.04003180694580078, 0.039500064849853515, 0.03930944061279297, 0.039690273284912106, 0.04067132949829102, 0.039699615478515624, 0.04114246368408203, 0.039737503051757814, 0.04002012634277344, 0.03959436798095703, 0.03970220947265625, 0.0393238410949707, 0.03935388946533203, 0.03992009735107422, 0.039215103149414066, 0.03931340789794922, 0.039476577758789065, 0.039860897064208985, 0.03951366424560547, 0.0393322868347168, 0.03911679840087891, 0.039360321044921875, 0.039183616638183594, 0.03932841491699219, 0.03906588745117188, 0.03933388900756836, 0.039585792541503906, 0.03956326293945313, 0.03936595153808594, 0.040080062866210936, 0.04001331329345703, 0.040178176879882815, 0.04095795059204101, 0.03959177780151367, 0.03958297729492188, 0.0397334098815918, 0.03973606491088867, 0.03968819046020508, 0.040269824981689455, 0.0397127685546875, 0.039538272857666014, 0.039542911529541015, 0.039417537689208984, 0.04095651245117188, 0.04067532730102539, 0.03991551971435547, 0.03972614288330078, 0.044502368927001955, 0.04037311935424805, 0.04230348968505859, 0.03965692901611328, 0.039975456237792965, 0.03926607894897461, 0.03982521438598633, 0.03956089782714844, 0.03954147338867187, 0.03987017440795899, 0.039893280029296874, 0.039809024810791016, 0.03949756622314453, 0.03942211151123047, 0.03929087829589844, 0.039122943878173826, 0.03937068939208985, 0.03959609603881836, 0.03932160186767578, 0.039790592193603515, 0.039686145782470705, 0.040296192169189456, 0.04003036880493164, 0.04019619369506836, 0.04005478286743164, 0.040038047790527345, 0.03989132690429688, 0.04014182281494141, 0.040133598327636716, 0.0404370231628418, 0.04017635345458984, 0.039981056213378906, 0.04025276947021485, 0.04007183837890625, 0.040153087615966795, 0.040099071502685546, 0.040174335479736326, 0.040293697357177735, 0.03999609756469726, 0.040237056732177735, 0.04029644775390625, 0.04022995376586914, 0.04005574417114258, 0.040118270874023435, 0.040002750396728515, 0.040003616333007815, 0.04000611114501953, 0.040255809783935545, 0.04002191925048828, 0.04069136047363281, 0.040188350677490235, 0.04013868713378906, 0.04013388824462891, 0.04007404708862305, 0.04065280151367188, 0.04011212921142578, 0.04064051055908203, 0.04130815887451172, 0.04233027267456055, 0.0404826545715332, 0.040065025329589846, 0.03983769607543945, 0.040325023651123046, 0.04454598236083984, 0.04073878479003906, 0.03982432174682617, 0.03990867233276367, 0.039755550384521485, 0.03968912124633789, 0.03947708892822266, 0.03940572738647461, 0.039686145782470705, 0.04053919982910156, 0.039947200775146484, 0.039876609802246096, 0.0398289909362793, 0.04188415908813477, 0.039866336822509764, 0.040192031860351564, 0.040310081481933595, 0.04068239974975586, 0.04062547302246094, 0.039874561309814455, 0.04004092788696289, 0.040021854400634764, 0.03982966232299805, 0.03983564758300781, 0.03964723205566406, 0.04021247863769531, 0.04009769439697266, 0.03981286239624023, 0.04001827239990234, 0.0397946891784668, 0.039583744049072264, 0.03993190383911133, 0.039774208068847655, 0.040564735412597655, 0.039880702972412106, 0.03983564758300781, 0.040054336547851566, 0.03994854354858399, 0.040683712005615234, 0.03969228744506836, 0.040185855865478515, 0.04021583938598633, 0.04042211151123047, 0.04015465545654297, 0.03976611328125, 0.04021491241455078, 0.03987043380737305, 0.039779552459716795, 0.03981110382080078, 0.03974943923950195, 0.04038339233398437, 0.04019401550292969, 0.039888065338134764, 0.040308734893798825, 0.039697246551513674, 0.03986188888549805, 0.0402334098815918, 0.039749057769775394, 0.040632896423339844, 0.04041638565063477, 0.03982368087768555, 0.04014547348022461, 0.039853279113769534, 0.04419638442993164, 0.040647262573242186, 0.04017289733886719, 0.039680416107177735, 0.03966988754272461, 0.03995647811889649, 0.039876094818115236, 0.03988460922241211, 0.03977462387084961, 0.040083999633789065, 0.04032396697998047, 0.0397334098815918, 0.0398394889831543, 0.04041596984863281, 0.03963452911376953, 0.039674495697021486, 0.03987254333496094, 0.03968172836303711, 0.04043193435668945, 0.0401860466003418, 0.03982460784912109, 0.040020481109619144, 0.040244895935058596, 0.039877056121826175, 0.040994430541992186, 0.03979507064819336, 0.040101886749267575, 0.04036403274536133, 0.040013824462890625, 0.04011196899414062, 0.040183967590332034, 0.03992521667480469, 0.040024608612060544, 0.0398047981262207, 0.04005625534057617, 0.04019587326049805, 0.04310927963256836, 0.03971686553955078, 0.03985190582275391, 0.03957078552246094, 0.039772415161132814, 0.039893535614013674, 0.03971651077270508, 0.04048112106323242, 0.04131148910522461, 0.04000214385986328, 0.039860641479492184, 0.04032460784912109, 0.04018320083618164, 0.04069462585449219, 0.039874561309814455, 0.040310176849365234, 0.03986697769165039, 0.03973500823974609, 0.040054656982421874, 0.03984016036987305, 0.040597503662109374, 0.04007872009277344, 0.03984022521972656, 0.03994844818115234, 0.04029439926147461, 0.03989654541015625, 0.03979727935791016, 0.044315807342529295, 0.04021337509155273, 0.039763904571533205, 0.03956121444702149, 0.039376895904541014, 0.039636863708496096, 0.039701759338378904, 0.039457439422607425, 0.039912990570068356, 0.039701183319091796, 0.0393438720703125, 0.03923993682861328, 0.03911654281616211, 0.03942015838623047, 0.03958784103393555, 0.03967795181274414, 0.039964672088623046, 0.039901153564453125, 0.039487232208251954, 0.039534881591796876, 0.039232990264892575, 0.03936105728149414, 0.03945062255859375, 0.039583744049072264, 0.03944607925415039, 0.039637439727783205, 0.03950175857543945, 0.03947731018066406, 0.03930112075805664, 0.03944156646728516, 0.03965574264526367, 0.03964339065551758, 0.03953692626953125, 0.04002627182006836, 0.04156947326660156, 0.0396151351928711, 0.039196670532226564, 0.03935539245605469, 0.039152641296386716, 0.03936460876464844, 0.03943219375610352, 0.03949977493286133, 0.03947865676879883, 0.03946470260620117, 0.0392487678527832, 0.04017110443115234, 0.043108768463134765, 0.03973324966430664, 0.039403518676757815, 0.03924780654907226, 0.03909145736694336, 0.039322433471679685, 0.03950796890258789, 0.03980287933349609, 0.03946905517578125, 0.03958335876464844, 0.039518592834472656, 0.04061974334716797, 0.03964137649536133, 0.03956121444702149, 0.04031488037109375, 0.03924979019165039, 0.03921702575683594, 0.046403553009033205, 0.04075110244750976, 0.039499839782714846, 0.03943529510498047, 0.039175071716308595, 0.0390184326171875, 0.040470592498779295, 0.03879731369018555, 0.039651329040527344, 0.03889926528930664, 0.038986270904541015, 0.03884431838989258, 0.03925785446166992, 0.03955532836914062, 0.039172096252441405, 0.038997791290283204, 0.039230846405029295, 0.039050048828125, 0.03960335922241211, 0.0401396484375, 0.03922083282470703, 0.03927081680297852, 0.039115806579589844, 0.03900310516357422, 0.03983564758300781, 0.03937279891967774, 0.03908185577392578, 0.03906572723388672, 0.039093505859375, 0.039185150146484375, 0.039066879272460935, 0.039472991943359376, 0.039142433166503905, 0.03929651260375976, 0.04003478240966797, 0.039954334259033206, 0.039480705261230466, 0.039244415283203125, 0.039218433380126955, 0.03912726211547852, 0.03949350357055664, 0.03929155349731445, 0.0395338249206543, 0.04009651184082031, 0.040769535064697264, 0.041603073120117184, 0.04005411148071289, 0.039471073150634764, 0.03953129577636719, 0.03940752029418945, 0.03930646514892578, 0.039581985473632814, 0.0392545280456543, 0.039403263092041015, 0.03940991973876953, 0.039272449493408204, 0.03945808029174805, 0.03982566452026367, 0.03963913726806641, 0.039672191619873044, 0.03934620666503906, 0.0390491828918457, 0.03919664001464844, 0.04495942306518555, 0.040583839416503904, 0.03956115341186523, 0.03994585418701172, 0.039266529083251955, 0.03923510360717773, 0.03886137771606445, 0.03885391998291016, 0.038742881774902344, 0.03907583999633789, 0.039065601348876954, 0.03985203170776367, 0.0394886703491211, 0.03958208084106445, 0.0388325424194336, 0.03878713607788086, 0.03895065689086914, 0.03881804656982422, 0.038825984954833984, 0.03919257736206055, 0.0394886703491211, 0.039656288146972654, 0.03964271926879883, 0.03931584167480469, 0.03894889450073242, 0.039060993194580076, 0.03941017532348633, 0.03950140762329102, 0.0398803825378418, 0.03954537582397461, 0.0392869758605957, 0.03935027313232422, 0.03939689636230469, 0.039379425048828125, 0.03932956695556641, 0.039485088348388674, 0.03970073699951172, 0.03971097564697266, 0.03979388809204101, 0.03952316665649414, 0.039479297637939455, 0.039569408416748046, 0.039577598571777346, 0.039652862548828126, 0.03975628662109375, 0.03971072006225586, 0.03957468795776367, 0.03950646209716797, 0.0420560302734375, 0.039530464172363285, 0.03953039932250976, 0.040149089813232425, 0.039907329559326174, 0.040314208984375, 0.03966195297241211, 0.03973926544189453, 0.039666046142578126, 0.0394486083984375, 0.0398616943359375, 0.039561790466308595, 0.03949382400512695, 0.03981497573852539, 0.0398131217956543, 0.04395113754272461, 0.04020611190795898, 0.03978374481201172, 0.039664222717285154, 0.03952588653564453, 0.039413761138916016, 0.03952620697021485, 0.0396973762512207, 0.039757823944091795, 0.03965340805053711, 0.03953865432739258, 0.03948134231567383, 0.039559295654296875, 0.03969216156005859, 0.03980489730834961, 0.039830944061279294, 0.03978099060058594, 0.03984998321533203, 0.039642688751220706, 0.03972121429443359, 0.039819454193115236, 0.03972403335571289, 0.03970560073852539, 0.03982953643798828, 0.039514080047607425, 0.04192051315307617, 0.04002220916748047, 0.039862079620361326, 0.03935846328735351, 0.03936665725708008, 0.03949772644042969, 0.0397844467163086, 0.04230348968505859, 0.039981056213378906, 0.039775390625, 0.03953286361694336, 0.0399318733215332, 0.03956793594360351, 0.04051116943359375, 0.03909049606323242, 0.03952560043334961, 0.03932140731811523, 0.03964617538452148, 0.03977011108398437, 0.03956934356689453, 0.039849952697753904, 0.0393155517578125, 0.03943958282470703, 0.03950048065185547, 0.03920294570922851, 0.03937071990966797, 0.03948134231567383, 0.03990854263305664, 0.039586624145507815, 0.03920896148681641, 0.03927603149414063, 0.039284801483154295, 0.03922784042358399, 0.03924582290649414, 0.03894476699829102, 0.03919177627563476, 0.039348896026611326, 0.03906777572631836, 0.0440437126159668, 0.04017593765258789, 0.039144832611083986, 0.03923238372802734, 0.039236961364746095, 0.0405654067993164, 0.040202239990234374, 0.04010598373413086, 0.0396943359375, 0.039696063995361325, 0.03956972885131836, 0.03943833541870117, 0.03944607925415039, 0.03920665740966797, 0.03946566390991211, 0.039865665435791016, 0.039497665405273434, 0.039578369140625, 0.039043041229248045, 0.03991059112548828, 0.0393155517578125, 0.039556926727294925, 0.039772319793701175, 0.04103408050537109, 0.03951270294189453, 0.03949926376342774, 0.039133502960205076, 0.03932364654541016, 0.03923286437988281, 0.03954140853881836, 0.03996464157104492, 0.03998275375366211, 0.039741825103759766, 0.039790592193603515, 0.041825439453125, 0.04246409606933594, 0.039567359924316405, 0.03976396942138672, 0.039642528533935545, 0.040071041107177734, 0.039570335388183595, 0.03959174346923828, 0.0391511344909668, 0.03928931045532227, 0.03916799926757813, 0.03944985580444336, 0.03984870529174805, 0.04031049728393555, 0.039741569519042966, 0.03960438537597656, 0.039365665435791015, 0.03961318588256836, 0.03951638412475586, 0.03954278564453125, 0.039288833618164064, 0.039292606353759765, 0.04049270248413086, 0.03993814468383789, 0.03994812774658203, 0.04008009719848633, 0.039653377532958986, 0.03951577758789063, 0.03950627136230469]",tokens/s,25.07819805893844,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm2,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 1138, in __init__ self.model = InternLM2Model(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 918, in __init__ [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 918, in [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 709, in __init__ self.feed_forward = InternLM2MLP(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 205, in __init__ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 192.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 136.12 MiB is free. Process 151197 has 14.61 GiB memory in use. Of the allocated memory 14.49 GiB is allocated by PyTorch, and 3.07 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,deci,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,810.344448,14639.104,0.0,14243.856384,14221.3376,s,1,7.5134609375,7.5134609375,0.0,7.5134609375,7.5134609375,7.5134609375,7.5134609375,[7.5134609375],,kWh,1.4797649766668522e-05,1.591941333074149e-06,6.8258387939997694e-06,2.321542989374244e-05,,MB,1185.431552,14737.670144,0.0,14329.839616,14290.688,s,10,2.1331998596191406,0.21331998596191407,0.00621579085342007,0.21396086120605468,0.21881604003906252,0.21890145874023437,0.21896979370117187,"[0.19669474792480468, 0.21166371154785157, 0.21879705810546876, 0.2109894714355469, 0.21761846923828124, 0.2128002166748047, 0.2177275848388672, 0.21898687744140624, 0.21454396057128905, 0.2133777618408203]",tokens/s,1200.075083661903,kWh,6.355655424999946e-06,7.009066060996178e-07,4.22104202417391e-06,1.1277604055273475e-05,tokens/kWh,22699857.056986574,MB,1206.10816,14752.350208,0.0,14344.51968,14290.69056,s,10,38.713044921874996,3.8713044921874995,0.006590696282903404,3.87208447265625,3.8785936767578124,3.8798875366210934,3.8809226245117188,"[3.859248046875, 3.86244873046875, 3.86632080078125, 3.871842529296875, 3.87074365234375, 3.872326416015625, 3.873673095703125, 3.8769541015625, 3.87830615234375, 3.881181396484375]",tokens/s,16.273584298816427,kWh,0.00011356573131749991,1.2526579352459377e-05,7.55003828640261e-05,0.00020159269353398537,tokens/kWh,312511.32615765755,,s,630,38.70906281661986,0.06144295685177758,0.0005424991378040025,0.06134395027160645,0.06177381134033203,0.06188752746582031,0.06480036430358888,"[0.06405974578857422, 0.062161758422851564, 0.061213825225830076, 0.061046974182128906, 0.06102067184448242, 0.06102588653564453, 0.06105859375, 0.061370399475097655, 0.060830398559570314, 0.06098457717895508, 0.061190654754638675, 0.06119014358520508, 0.06118239974975586, 0.061128158569335934, 0.060923839569091795, 0.06110879898071289, 0.0611409912109375, 0.061515777587890626, 0.06115024185180664, 0.061141983032226566, 0.061265918731689455, 0.06106524658203125, 0.061020160675048826, 0.06111142349243164, 0.060992351531982424, 0.061216766357421876, 0.06101196670532227, 0.06129641723632812, 0.061335777282714846, 0.06107340621948242, 0.061034015655517575, 0.06101449584960938, 0.06148294448852539, 0.061482494354248046, 0.06132297515869141, 0.06133436965942383, 0.061079425811767576, 0.06098956680297852, 0.06104883193969726, 0.061042686462402344, 0.06105702209472656, 0.061110271453857425, 0.06110819244384766, 0.06100380706787109, 0.061159423828125, 0.06123846435546875, 0.061217601776123044, 0.06126182556152344, 0.06138380813598633, 0.061367198944091796, 0.06120240020751953, 0.06129244613647461, 0.06142985534667969, 0.061459583282470705, 0.061295486450195315, 0.061402240753173826, 0.06144438552856445, 0.06120684814453125, 0.06145817565917969, 0.06136819076538086, 0.06121539306640625, 0.061302143096923827, 0.06120054244995117, 0.06465602874755859, 0.06275273513793946, 0.06161552047729492, 0.061132480621337894, 0.06117264175415039, 0.060909599304199216, 0.061389888763427734, 0.0613139533996582, 0.06109779357910156, 0.06121039962768555, 0.061082015991210936, 0.06079484939575195, 0.061273887634277345, 0.06093644714355469, 0.061143039703369144, 0.06141241455078125, 0.06156793594360352, 0.06172390365600586, 0.06135270309448242, 0.06141747283935547, 0.06125139236450195, 0.06113670349121094, 0.06125606536865234, 0.06111203384399414, 0.06100409698486328, 0.06098873519897461, 0.061203102111816406, 0.06111161422729492, 0.061023937225341794, 0.06088806533813477, 0.06140620803833008, 0.0612259521484375, 0.06145753479003906, 0.06153696060180664, 0.06148323059082031, 0.06149264144897461, 0.0613361930847168, 0.0610629768371582, 0.061033824920654296, 0.061020992279052735, 0.060911296844482425, 0.06089324951171875, 0.06098479843139649, 0.06093011093139648, 0.06114905548095703, 0.06103740692138672, 0.06117788696289062, 0.06132940673828125, 0.06159356689453125, 0.0613642578125, 0.06163644790649414, 0.06142755126953125, 0.06164620971679687, 0.061475391387939456, 0.06109961700439453, 0.06142355346679688, 0.061069408416748044, 0.06094716644287109, 0.061197662353515626, 0.06124816131591797, 0.06109731292724609, 0.06121129608154297, 0.061208576202392576, 0.06485542297363281, 0.06265711975097656, 0.06143939208984375, 0.06112515258789063, 0.06097708892822266, 0.06115686416625977, 0.061233726501464844, 0.061061214447021485, 0.06128201675415039, 0.06125324630737305, 0.06087478256225586, 0.06093827056884766, 0.061078113555908205, 0.061085697174072265, 0.06107340621948242, 0.061419551849365234, 0.061773792266845706, 0.061714305877685546, 0.061689823150634766, 0.06156623840332031, 0.061286945343017575, 0.06143830490112305, 0.06100937652587891, 0.061139198303222654, 0.06111577606201172, 0.06101417541503906, 0.06101295852661133, 0.0612534065246582, 0.06137235260009766, 0.06130233764648438, 0.06127872085571289, 0.06145228958129883, 0.061548030853271485, 0.06157158279418945, 0.06163148880004883, 0.061395263671875, 0.061344158172607424, 0.061329696655273436, 0.0611247673034668, 0.06118182373046875, 0.06091772842407227, 0.06098912048339844, 0.061028705596923825, 0.06106662368774414, 0.06148492813110352, 0.061117023468017576, 0.06129411315917969, 0.061630207061767577, 0.061518688201904294, 0.06158502578735352, 0.06167385482788086, 0.061818878173828126, 0.061603839874267576, 0.061284351348876956, 0.061290496826171874, 0.061297760009765626, 0.06114985656738281, 0.06131305694580078, 0.061212512969970705, 0.0610873908996582, 0.06108438491821289, 0.06104012680053711, 0.06132371139526367, 0.06549359893798828, 0.06340780639648437, 0.06182675170898438, 0.06153043365478516, 0.06103481674194336, 0.0612044792175293, 0.06116966247558594, 0.06127740859985351, 0.06131180953979492, 0.061102046966552734, 0.061292030334472655, 0.0610302734375, 0.06105145645141601, 0.06128582382202148, 0.061446784973144535, 0.0619310417175293, 0.06177142333984375, 0.06179235076904297, 0.06195609664916992, 0.06155747222900391, 0.061504798889160155, 0.06134473419189453, 0.061091167449951175, 0.06111891174316406, 0.06104256057739258, 0.06120803070068359, 0.061134624481201175, 0.060991424560546875, 0.061037471771240234, 0.061134273529052735, 0.06114572906494141, 0.06125155258178711, 0.06130217742919922, 0.06152969741821289, 0.06139136123657227, 0.06145894241333008, 0.061573089599609374, 0.06163455963134765, 0.061663230895996096, 0.061386302947998045, 0.061129150390625, 0.06150147247314453, 0.06124540710449219, 0.06134550476074219, 0.061205982208251956, 0.06107769775390625, 0.0612083854675293, 0.061449024200439455, 0.06146262359619141, 0.06161801528930664, 0.06183260726928711, 0.06138745498657226, 0.06167548751831055, 0.061464576721191405, 0.06129257583618164, 0.06130252838134766, 0.06130691146850586, 0.061220447540283204, 0.061176414489746096, 0.06134579086303711, 0.061394622802734375, 0.06124585723876953, 0.0612020149230957, 0.06507174682617188, 0.06283673477172852, 0.06168899154663086, 0.06141219329833984, 0.06101916885375976, 0.061273056030273436, 0.06110617446899414, 0.061040481567382815, 0.06103673553466797, 0.06110822296142578, 0.06123721694946289, 0.06088911819458008, 0.061052894592285155, 0.06095449447631836, 0.06125743865966797, 0.061843841552734376, 0.06178118515014648, 0.06166409683227539, 0.06170355224609375, 0.061309024810791014, 0.06105667114257812, 0.06101900863647461, 0.06122905731201172, 0.06129663848876953, 0.0611545295715332, 0.061481536865234374, 0.06128051376342773, 0.061205951690673825, 0.06129052734375, 0.06101046371459961, 0.06132035064697266, 0.06150444793701172, 0.06157913589477539, 0.06192127990722656, 0.06160588836669922, 0.06149529647827148, 0.06140313720703125, 0.06115433502197266, 0.06117270278930664, 0.061451519012451175, 0.061069278717041015, 0.06116854476928711, 0.06120230484008789, 0.06117113494873047, 0.06129248046875, 0.060985504150390626, 0.06140156936645508, 0.06138016128540039, 0.061305248260498046, 0.061755008697509765, 0.06182454299926758, 0.06186809539794922, 0.06161491012573242, 0.06155673599243164, 0.061615455627441404, 0.06146323013305664, 0.06136201477050781, 0.06124291229248047, 0.061305438995361325, 0.06146358489990234, 0.06120732879638672, 0.061507774353027345, 0.06168169784545898, 0.06466556549072265, 0.06253107070922852, 0.061438465118408205, 0.061255233764648434, 0.06116582489013672, 0.06119142532348633, 0.06115423965454102, 0.06128572845458984, 0.06117238235473633, 0.061142433166503904, 0.06126208114624023, 0.06081571197509766, 0.061050880432128904, 0.0611748161315918, 0.061510623931884764, 0.0617775993347168, 0.06179257583618164, 0.061795520782470706, 0.06164896011352539, 0.06141414260864258, 0.06140723037719727, 0.06124550247192383, 0.06114297485351562, 0.06145788955688476, 0.061262367248535156, 0.061240638732910156, 0.061120609283447265, 0.061131393432617184, 0.061357601165771485, 0.06121516799926758, 0.06135948944091797, 0.06160857772827148, 0.061779712677001955, 0.06189494323730469, 0.06155043029785156, 0.06169817733764649, 0.0617341423034668, 0.06122371292114258, 0.061570625305175784, 0.061399486541748045, 0.06124291229248047, 0.061345600128173826, 0.06150822448730469, 0.06172256088256836, 0.06127817535400391, 0.06114009475708008, 0.06144099044799805, 0.06143952178955078, 0.06145395278930664, 0.06174601745605469, 0.061586624145507814, 0.061315902709960936, 0.06138851165771484, 0.06130847930908203, 0.061207263946533204, 0.06127382278442383, 0.06144419097900391, 0.06122304153442383, 0.06159097671508789, 0.06143606567382812, 0.061253566741943356, 0.06135657501220703, 0.06160761642456054, 0.06552387237548828, 0.06310531234741211, 0.06176358413696289, 0.06137011337280274, 0.061208831787109376, 0.06110614395141602, 0.06117529678344726, 0.06137702560424805, 0.061128799438476565, 0.061093505859375, 0.06117814254760742, 0.06114896011352539, 0.061085952758789065, 0.06111433410644531, 0.061222911834716794, 0.06164070510864258, 0.06162432098388672, 0.0617960319519043, 0.06167279815673828, 0.06167820739746094, 0.0615181770324707, 0.06148473739624023, 0.06120393753051758, 0.06121353530883789, 0.06115900802612305, 0.06126019287109375, 0.06116761779785156, 0.061216766357421876, 0.061400577545166014, 0.06131353759765625, 0.061315071105957034, 0.06141033554077149, 0.06149014282226563, 0.06166540908813477, 0.061505409240722654, 0.061505535125732425, 0.061547584533691406, 0.06129350280761719, 0.061357471466064455, 0.061212417602539065, 0.0615629768371582, 0.061743358612060546, 0.061288032531738285, 0.06129462432861328, 0.061270912170410155, 0.061314720153808594, 0.061404960632324215, 0.06149289703369141, 0.061657279968261716, 0.061811424255371096, 0.061765216827392576, 0.06176607894897461, 0.06161814498901367, 0.06157699203491211, 0.06162579345703125, 0.0613507194519043, 0.06119366455078125, 0.061118080139160154, 0.06132815933227539, 0.06107968139648438, 0.061192192077636716, 0.06131011199951172, 0.06128271865844727, 0.06490729522705078, 0.06290224075317383, 0.06169935989379883, 0.061251808166503906, 0.06106291198730469, 0.06126438522338867, 0.061257984161376955, 0.061337631225585935, 0.061112289428710935, 0.06115523147583008, 0.06118550491333008, 0.06122150421142578, 0.061282302856445314, 0.06110396957397461, 0.061593536376953126, 0.061829345703125, 0.06195199966430664, 0.06179635238647461, 0.06191241455078125, 0.06165724945068359, 0.06142617416381836, 0.061252769470214845, 0.06119715118408203, 0.06113644790649414, 0.06141996765136719, 0.061484897613525394, 0.0612138557434082, 0.06158848190307617, 0.061292545318603515, 0.06124748611450195, 0.06173081588745117, 0.061598846435546875, 0.06177471923828125, 0.061683521270751954, 0.0616833610534668, 0.06150191879272461, 0.061472801208496096, 0.061304862976074216, 0.06131670379638672, 0.061357952117919924, 0.06108009719848633, 0.06115532684326172, 0.061259777069091796, 0.06173286437988281, 0.06170169448852539, 0.061558334350585935, 0.06179449462890625, 0.06170800018310547, 0.061812961578369144, 0.06168857574462891, 0.061951648712158205, 0.06179232025146485, 0.061642559051513675, 0.06140137481689453, 0.061327232360839846, 0.06134201431274414, 0.06127558517456055, 0.06108127975463867, 0.06125657653808594, 0.06148668670654297, 0.06120223999023437, 0.061424320220947265, 0.06167337417602539, 0.06490252685546875, 0.0627410545349121, 0.061370433807373045, 0.061381729125976565, 0.061295520782470705, 0.06139884948730469, 0.06143814468383789, 0.06172819137573242, 0.06134841537475586, 0.06134172821044922, 0.06159312057495117, 0.06148051071166992, 0.061610881805419924, 0.06125686264038086, 0.06164771270751953, 0.06206991958618164, 0.06199980926513672, 0.061773983001708985, 0.06157267379760742, 0.06140777587890625, 0.06142556762695312, 0.06117375946044922, 0.06101308822631836, 0.06097958374023438, 0.061122718811035155, 0.06119417572021484, 0.06146297454833984, 0.06147174453735352, 0.06133248138427734, 0.0614799690246582, 0.061510623931884764, 0.06154764938354492, 0.06175836944580078, 0.06185964965820313, 0.06160604858398438, 0.06156492614746094, 0.0615731201171875, 0.06144371032714844, 0.06142102432250977, 0.061295486450195315, 0.06126515197753906, 0.06117574310302734, 0.06120534515380859, 0.0612426872253418, 0.061216545104980466, 0.06138070297241211, 0.06146131134033203, 0.06125158309936524, 0.06174460983276367, 0.061858177185058594, 0.061878463745117185, 0.06186188888549805, 0.06161539077758789, 0.061731521606445315, 0.061505569458007815, 0.06158137512207031, 0.06166281509399414, 0.06156934356689453, 0.061413406372070316, 0.06146656036376953, 0.061319137573242186, 0.06157708740234375, 0.06130291366577149, 0.06526566314697266, 0.06307129669189453, 0.06162454223632813, 0.061301441192626954, 0.061367454528808596, 0.061354881286621095, 0.06135539245605469, 0.06131110382080078, 0.06135424041748047, 0.06147865676879883, 0.06132374572753906, 0.06146047973632812, 0.061704193115234375, 0.06123865509033203, 0.06153263854980469, 0.06226755142211914, 0.0620687370300293, 0.06199071884155274, 0.061742431640625, 0.06163337707519531, 0.06154415893554688, 0.061792545318603516, 0.06119571304321289, 0.06167577743530273, 0.06123689651489258, 0.06145500946044922, 0.061095294952392576, 0.06138937759399414, 0.06120864105224609, 0.0614420166015625, 0.0613458251953125, 0.0615096321105957, 0.061677120208740235, 0.06167596817016602, 0.06187539291381836, 0.061778751373291016, 0.061679359436035155, 0.06149321746826172, 0.061411231994628904, 0.06134374237060547, 0.06133388900756836, 0.06134991836547852, 0.06119222259521485, 0.061450302124023436, 0.06161328125, 0.06117609786987305, 0.06134777450561523, 0.06139731216430664, 0.06151910400390625, 0.0614365119934082, 0.06169411087036133, 0.06185324859619141, 0.06180720138549805, 0.06185881423950195, 0.06153014373779297, 0.0614835205078125, 0.06164665603637695, 0.06137305450439453, 0.061421600341796875, 0.06141334533691406, 0.06154214477539063, 0.06155427169799805, 0.06148735809326172]",tokens/s,16.275258406140157,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 689, in __init__ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 357, in __init__ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 18.12 MiB is free. Process 165985 has 14.72 GiB memory in use. Of the allocated memory 14.60 GiB is allocated by PyTorch, and 3.02 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,783.192064,6162.415616,0.0,5767.168,5561.701376,s,1,7.0833408203125,7.0833408203125,0.0,7.0833408203125,7.0833408203125,7.0833408203125,7.0833408203125,[7.0833408203125],,kWh,4.374286525001026e-06,4.733619233300679e-07,3.067780232006434e-06,7.915428680337528e-06,,MB,1231.310848,6174.998528,0.0,5767.168,5440.258048,s,10,0.6849548149108887,0.06849548149108886,0.0032129089914807356,0.0690937614440918,0.07194749374389649,0.07268680152893066,0.073278247756958,"[0.06620457458496094, 0.06829011535644532, 0.06989740753173829, 0.06389587020874024, 0.07090982055664062, 0.071783203125, 0.07342610931396484, 0.06422950744628907, 0.06538047790527343, 0.07093772888183594]",tokens/s,3737.4728146601196,kWh,2.0920897395833054e-06,2.307189349801322e-07,1.3824693599428466e-06,3.705278034506284e-06,tokens/kWh,69090631.69239637,MB,1263.910912,6177.09568,0.0,5769.265152,5523.463168,s,10,19.087283813476564,1.908728381347656,0.004012082060044164,1.9088529052734375,1.9145850219726563,1.9150225524902345,1.9153725769042969,"[1.9088482666015625, 1.9154600830078126, 1.9088575439453126, 1.9078658447265624, 1.9109705810546875, 1.904739013671875, 1.909282470703125, 1.902086669921875, 1.904685546875, 1.91448779296875]",tokens/s,33.00626774120627,kWh,5.550871305083376e-05,6.1223510974629865e-06,3.695667242245729e-05,9.858773657075404e-05,tokens/kWh,639024.7123158814,,s,630,19.084383964538585,0.03029267295958504,0.0005190133975847884,0.03017751979827881,0.030649503326416014,0.030884998321533203,0.032696515808105474,"[0.03146159934997558, 0.03105177688598633, 0.03055561637878418, 0.030380224227905272, 0.030060895919799803, 0.030156415939331056, 0.029970720291137697, 0.030058591842651368, 0.02999295997619629, 0.030320575714111328, 0.03008723258972168, 0.03038412857055664, 0.030294015884399415, 0.030639711380004882, 0.029993440628051756, 0.030153760910034178, 0.030007776260375978, 0.03035385513305664, 0.029988319396972656, 0.030358047485351564, 0.030067840576171876, 0.03037068748474121, 0.0301527042388916, 0.030025087356567382, 0.03007961654663086, 0.030531583786010744, 0.03010950469970703, 0.030531295776367186, 0.02992585563659668, 0.030649471282958984, 0.030029823303222656, 0.030886783599853515, 0.030426368713378907, 0.030683904647827148, 0.030091072082519533, 0.030546016693115234, 0.03017532730102539, 0.030500864028930662, 0.030059904098510743, 0.03004684829711914, 0.029916608810424804, 0.03051558494567871, 0.03141651153564453, 0.03047327995300293, 0.029953216552734373, 0.030328575134277343, 0.03000934410095215, 0.029798559188842774, 0.030139328002929688, 0.030430112838745117, 0.030164703369140625, 0.030545280456542968, 0.0301495361328125, 0.03055411148071289, 0.02997452735900879, 0.029973760604858398, 0.030028543472290038, 0.030567615509033204, 0.029936063766479493, 0.0305032958984375, 0.030236671447753907, 0.03061555290222168, 0.03018047904968262, 0.03335168075561523, 0.03271417617797852, 0.030953119277954102, 0.030671104431152344, 0.030286495208740234, 0.030453760147094725, 0.030303871154785156, 0.030187328338623046, 0.03026915168762207, 0.03039740753173828, 0.030144384384155273, 0.030208223342895506, 0.030134048461914063, 0.03039232063293457, 0.030158111572265625, 0.03021059226989746, 0.03008230400085449, 0.031126176834106446, 0.030175071716308594, 0.0304071044921875, 0.03011599922180176, 0.030327999114990234, 0.030067359924316406, 0.030213855743408204, 0.03010588836669922, 0.03037113571166992, 0.03012272071838379, 0.03048393630981445, 0.029986400604248047, 0.03093391990661621, 0.03018956756591797, 0.030267391204833984, 0.030345216751098632, 0.03078758430480957, 0.03033087921142578, 0.030736383438110353, 0.030099456787109374, 0.03042508888244629, 0.030072256088256834, 0.030152864456176758, 0.03010950469970703, 0.030544479370117186, 0.030007295608520508, 0.03046540832519531, 0.0299866886138916, 0.03049139213562012, 0.029881664276123047, 0.030003904342651367, 0.030031871795654298, 0.03049407958984375, 0.030017984390258788, 0.030595264434814452, 0.030246912002563478, 0.030622976303100586, 0.030231296539306642, 0.030072416305541992, 0.03005891227722168, 0.030882816314697265, 0.030247711181640626, 0.030488000869750977, 0.0299935359954834, 0.030513343811035157, 0.030422336578369142, 0.033067489624023436, 0.03184448051452637, 0.030672447204589844, 0.030425504684448244, 0.030107648849487304, 0.03034726333618164, 0.0299683837890625, 0.03017523193359375, 0.02995734405517578, 0.03032512092590332, 0.03005289649963379, 0.03038604736328125, 0.030043167114257814, 0.030327775955200195, 0.03012403106689453, 0.030121023178100587, 0.02993846321105957, 0.030316703796386717, 0.030281728744506835, 0.030182432174682618, 0.030081695556640625, 0.030290239334106444, 0.030066688537597655, 0.029915136337280275, 0.029977920532226563, 0.03046067237854004, 0.03015465545654297, 0.030334239959716798, 0.029983488082885743, 0.03041689682006836, 0.030244863510131836, 0.029997055053710937, 0.029998655319213866, 0.03074246406555176, 0.030197664260864256, 0.030617727279663085, 0.03015318489074707, 0.030611455917358397, 0.030220287322998047, 0.03021843147277832, 0.02992681694030762, 0.030552480697631838, 0.030146047592163085, 0.030609920501708986, 0.029868192672729492, 0.030548063278198243, 0.02994764709472656, 0.03004585647583008, 0.029968095779418946, 0.030609920501708986, 0.030011520385742188, 0.0305664005279541, 0.030316543579101563, 0.03036796760559082, 0.029904512405395507, 0.03012556838989258, 0.030021663665771484, 0.030545888900756837, 0.030076671600341796, 0.030659488677978516, 0.029962240219116212, 0.030559999465942383, 0.029875808715820313, 0.03265327835083008, 0.03167990493774414, 0.030740480422973632, 0.030514015197753906, 0.03013430404663086, 0.030364383697509767, 0.03005238342285156, 0.029987424850463868, 0.030009727478027343, 0.03031587219238281, 0.03020867156982422, 0.030719200134277345, 0.03016281509399414, 0.030321760177612303, 0.030218048095703123, 0.02998899269104004, 0.03024883270263672, 0.03043507194519043, 0.030001407623291017, 0.030389631271362304, 0.02985228729248047, 0.030310047149658202, 0.029867616653442383, 0.029872896194458008, 0.029824735641479493, 0.03035696029663086, 0.030016191482543947, 0.030380159378051757, 0.029878271102905272, 0.03023676872253418, 0.029809728622436523, 0.030004064559936525, 0.030056447982788087, 0.030510271072387695, 0.03014121627807617, 0.030572576522827147, 0.030277631759643556, 0.030496000289916992, 0.03004083251953125, 0.030043136596679686, 0.029952064514160156, 0.03037820816040039, 0.02992201614379883, 0.030564607620239256, 0.030152448654174803, 0.030567968368530273, 0.030058719635009765, 0.03017763137817383, 0.03000294494628906, 0.030564512252807617, 0.030038015365600586, 0.0305930233001709, 0.03014656066894531, 0.030704896926879884, 0.03008793640136719, 0.03015283203125, 0.0299652156829834, 0.030573535919189453, 0.030085119247436523, 0.030533760070800782, 0.029998975753784178, 0.030620672225952147, 0.030032800674438476, 0.03475116729736328, 0.03217139053344727, 0.0310032958984375, 0.030599296569824217, 0.03022831916809082, 0.030273216247558594, 0.030043519973754883, 0.029955007553100585, 0.030113727569580077, 0.03027769660949707, 0.03010742378234863, 0.03039254379272461, 0.02998851203918457, 0.030426687240600585, 0.03010860824584961, 0.030232032775878905, 0.030422719955444336, 0.030503583908081056, 0.030156831741333007, 0.030319744110107422, 0.02998566436767578, 0.030223424911499024, 0.03035366439819336, 0.03008755111694336, 0.02999443244934082, 0.030331775665283202, 0.02995408058166504, 0.030426847457885743, 0.030009727478027343, 0.030394239425659178, 0.029837312698364257, 0.029934623718261718, 0.030096639633178712, 0.030572256088256835, 0.031022207260131836, 0.0305133113861084, 0.030030559539794922, 0.03042902374267578, 0.030040063858032227, 0.03001919937133789, 0.029954591751098634, 0.03046307182312012, 0.029971136093139648, 0.03038172721862793, 0.029915456771850587, 0.030333120346069335, 0.029806207656860352, 0.029820608139038085, 0.029907487869262697, 0.030388448715209963, 0.02991641616821289, 0.030526208877563476, 0.02995814323425293, 0.030788639068603515, 0.030806144714355468, 0.030155616760253905, 0.029962240219116212, 0.030449663162231445, 0.03002716827392578, 0.030388832092285156, 0.029959232330322265, 0.03048271942138672, 0.030011072158813476, 0.03337580871582031, 0.03178246307373047, 0.030845504760742187, 0.0303472957611084, 0.03007107162475586, 0.030244863510131836, 0.029951295852661132, 0.02997248077392578, 0.029849855422973633, 0.030200031280517577, 0.029804767608642577, 0.030212095260620117, 0.029809696197509766, 0.030172128677368164, 0.029800447463989257, 0.029822975158691405, 0.029911039352416992, 0.030320640563964843, 0.030048128128051757, 0.03017740821838379, 0.029894624710083008, 0.030234655380249022, 0.029868032455444334, 0.029849599838256836, 0.029841407775878907, 0.030309600830078123, 0.029795103073120117, 0.030224384307861327, 0.029859840393066408, 0.03016080093383789, 0.02980406379699707, 0.0299117431640625, 0.030087039947509765, 0.030447616577148437, 0.030928991317749024, 0.031110528945922852, 0.030093311309814453, 0.030349855422973634, 0.02999839973449707, 0.029896863937377928, 0.03002217674255371, 0.03030988883972168, 0.03025766372680664, 0.030252735137939454, 0.029824352264404295, 0.03032310485839844, 0.02995462417602539, 0.031079647064208984, 0.029862495422363283, 0.030465887069702147, 0.029923583984375, 0.030748800277709962, 0.029949920654296875, 0.030638080596923828, 0.03004729652404785, 0.029851999282836914, 0.029974399566650392, 0.03047907257080078, 0.03012166404724121, 0.030517248153686522, 0.030038335800170898, 0.030506656646728515, 0.029918912887573243, 0.035480991363525394, 0.03224636840820312, 0.030865407943725585, 0.030525215148925783, 0.030844287872314455, 0.03047920036315918, 0.030058143615722656, 0.030181024551391603, 0.030339712142944335, 0.0302807674407959, 0.030051328659057616, 0.030259199142456054, 0.029937664031982423, 0.03017103958129883, 0.02997158432006836, 0.02998780822753906, 0.030058719635009765, 0.030271263122558595, 0.030154272079467772, 0.030310495376586914, 0.030648704528808593, 0.030394367218017578, 0.029963327407836915, 0.02991804885864258, 0.029927520751953124, 0.030361600875854492, 0.029884416580200194, 0.03033443260192871, 0.029723167419433594, 0.030328832626342773, 0.0298591365814209, 0.029848255157470704, 0.029949951171875, 0.03077631950378418, 0.030089439392089842, 0.030421791076660157, 0.030044160842895507, 0.03041302490234375, 0.030061567306518554, 0.030060831069946288, 0.030154272079467772, 0.030612415313720703, 0.030074911117553713, 0.03032841682434082, 0.02987785530090332, 0.030462783813476564, 0.029789247512817384, 0.02988435173034668, 0.029834239959716798, 0.030443519592285157, 0.029865983963012696, 0.030584735870361326, 0.029890655517578125, 0.03042064094543457, 0.0298950080871582, 0.02993471908569336, 0.029881216049194335, 0.030508575439453126, 0.030025535583496094, 0.03053225517272949, 0.029984800338745118, 0.03046396827697754, 0.030076927185058593, 0.031486976623535154, 0.03155216026306153, 0.030861824035644532, 0.03070262336730957, 0.030047008514404297, 0.030263296127319338, 0.03001753616333008, 0.029917184829711913, 0.03000553512573242, 0.030133567810058593, 0.030062143325805663, 0.030359807968139647, 0.029964895248413087, 0.030402528762817384, 0.03004377555847168, 0.02981929588317871, 0.03042070388793945, 0.030206239700317383, 0.03002560043334961, 0.03034556770324707, 0.029918079376220704, 0.03014543914794922, 0.029793760299682618, 0.029899007797241212, 0.029901088714599608, 0.03034726333618164, 0.029894655227661132, 0.03031449508666992, 0.029943071365356445, 0.030243455886840822, 0.030191455841064453, 0.030199424743652344, 0.02985638427734375, 0.030439136505126953, 0.030054239273071288, 0.03061356735229492, 0.0300865592956543, 0.030415775299072266, 0.029982784271240234, 0.02984351921081543, 0.029890464782714843, 0.030381696701049805, 0.029933984756469727, 0.03042905616760254, 0.0299716796875, 0.03034419250488281, 0.02993756866455078, 0.029796607971191408, 0.02981452751159668, 0.030357503890991212, 0.029908992767333983, 0.030849023818969725, 0.029997055053710937, 0.03040870475769043, 0.02975334358215332, 0.030016735076904298, 0.029864736557006836, 0.030468320846557616, 0.02998454475402832, 0.030478080749511718, 0.029931776046752928, 0.03059702491760254, 0.02996643257141113, 0.032292865753173826, 0.0317174072265625, 0.03065443229675293, 0.030453760147094725, 0.030134271621704102, 0.030158271789550783, 0.02997920036315918, 0.029839359283447265, 0.029871200561523436, 0.03032579231262207, 0.02998054313659668, 0.030358688354492187, 0.029938528060913086, 0.030128128051757814, 0.029879615783691405, 0.02999718475341797, 0.030034496307373048, 0.030296064376831053, 0.030016767501831056, 0.030464767456054687, 0.029962240219116212, 0.030271488189697264, 0.02997248077392578, 0.02993292808532715, 0.03013910484313965, 0.030346944808959962, 0.03001318359375, 0.030353151321411132, 0.03008790397644043, 0.03043142318725586, 0.029984575271606445, 0.03000339126586914, 0.03005558395385742, 0.030517919540405274, 0.030083072662353515, 0.03054364776611328, 0.02995395278930664, 0.030505279541015624, 0.030213119506835938, 0.030059104919433595, 0.029976896286010742, 0.03040233612060547, 0.029944128036499023, 0.03027315139770508, 0.030019968032836915, 0.03034316825866699, 0.02989593505859375, 0.02979302406311035, 0.029917184829711913, 0.030356576919555664, 0.02994883155822754, 0.030486623764038087, 0.02991401672363281, 0.030448896408081055, 0.03007676887512207, 0.030353567123413087, 0.029941503524780273, 0.03050070381164551, 0.03008118438720703, 0.030840831756591795, 0.030101503372192383, 0.03069705581665039, 0.030132320404052733, 0.03303260803222656, 0.03164384078979492, 0.03116851234436035, 0.030525215148925783, 0.030113216400146484, 0.030249759674072264, 0.030066688537597655, 0.029934623718261718, 0.029981664657592774, 0.030336479187011718, 0.030072832107543947, 0.030302463531494142, 0.029950239181518554, 0.03020185661315918, 0.02998588752746582, 0.029946239471435546, 0.030197887420654296, 0.030345632553100587, 0.03019980812072754, 0.030719295501708984, 0.030017791748046876, 0.03062419128417969, 0.030156736373901368, 0.03012931251525879, 0.030405824661254882, 0.030424800872802735, 0.030203903198242187, 0.030418848037719725, 0.03002992057800293, 0.030509056091308592, 0.030084320068359375, 0.030278432846069337, 0.030427135467529298, 0.030718975067138672, 0.03017420768737793, 0.03072204780578613, 0.03052067184448242, 0.030554784774780273, 0.02999100875854492, 0.03002979278564453, 0.030090656280517578, 0.030613759994506835, 0.030037855148315428, 0.030529983520507814, 0.029943328857421875, 0.030665184020996095, 0.030185760498046874, 0.030349023818969728, 0.0301212158203125, 0.030464096069335936, 0.030005504608154297, 0.03052729606628418, 0.030268224716186523, 0.030649791717529296, 0.03015875244140625, 0.030314815521240233, 0.03018720054626465, 0.03091209602355957, 0.030580671310424804, 0.03080284881591797, 0.03039660835266113, 0.03070694351196289, 0.03022496032714844]",tokens/s,33.01128300345597,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,phi,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1004.064768,7156.465664,0.0,6761.218048,6730.975744,s,1,7.08850537109375,7.08850537109375,0.0,7.08850537109375,7.08850537109375,7.08850537109375,7.08850537109375,[7.08850537109375],,kWh,7.473964341640263e-06,8.138492495711588e-07,4.322225680003511e-06,1.2610039271214931e-05,,MB,1527.885824,7196.311552,0.0,6784.28672,5879.090688,s,10,3.6730435485839843,0.3673043548583984,0.004754656938597579,0.36560081481933593,0.3695772918701172,0.3752982437133789,0.3798750051879883,"[0.3654117431640625, 0.3666231689453125, 0.3810191955566406, 0.36740234375, 0.36578988647460936, 0.36830596923828124, 0.36518331909179685, 0.36410806274414065, 0.36380136108398436, 0.36539849853515627]",tokens/s,696.9696836257006,kWh,1.07758625104168e-05,1.1883993905485938e-06,5.3282483102145325e-06,1.7292510211179925e-05,tokens/kWh,14804097.084441293,MB,1573.31456,7198.408704,0.0,6786.383872,5879.093248,s,10,23.891348876953124,2.3891348876953122,0.004509357251511045,2.3890838623046875,2.3951504638671874,2.3954573120117186,2.3957027905273436,"[2.385606201171875, 2.395082275390625, 2.39576416015625, 2.382531494140625, 2.39032275390625, 2.3897607421875, 2.388406982421875, 2.386313720703125, 2.383421875, 2.394138671875]",tokens/s,26.369377603779075,kWh,7.006303175333226e-05,7.725936789977188e-06,4.655107097098468e-05,0.00012434003951429412,tokens/kWh,506675.08427771996,,s,630,23.889669300079365,0.03792011000012595,0.0003598356810397235,0.037836273193359374,0.03816456489562988,0.03840336837768555,0.03975314315795899,"[0.038434814453125, 0.03816425704956055, 0.03808422470092773, 0.037837406158447266, 0.03790643310546875, 0.03793100738525391, 0.037820415496826174, 0.037976062774658204, 0.03801603317260742, 0.03786800003051758, 0.037982719421386715, 0.03776847839355469, 0.03777199935913086, 0.0378081283569336, 0.037742176055908204, 0.037695518493652345, 0.03802076721191406, 0.03784982299804687, 0.038254432678222657, 0.038082721710205075, 0.03779087829589844, 0.03768406295776367, 0.037840385437011716, 0.037827072143554685, 0.03774054336547852, 0.03768025588989258, 0.03773251342773438, 0.03790431976318359, 0.03773110580444336, 0.03775830459594726, 0.037687454223632816, 0.03779840087890625, 0.037689342498779296, 0.03775283050537109, 0.03774399948120117, 0.037767807006835935, 0.03783459091186524, 0.03771139144897461, 0.03772377777099609, 0.03799126434326172, 0.03793936157226562, 0.038174720764160154, 0.037937152862548826, 0.03777769470214844, 0.03779759979248047, 0.03797401428222656, 0.03793920135498047, 0.03785836791992187, 0.03794425582885742, 0.03795264053344727, 0.037802879333496096, 0.03795065689086914, 0.03774166488647461, 0.03783651351928711, 0.037926910400390625, 0.03780198287963867, 0.03795711898803711, 0.03777177429199219, 0.037639934539794924, 0.03777356719970703, 0.037789215087890626, 0.037832801818847656, 0.03792079925537109, 0.038636512756347656, 0.038199295043945314, 0.038258689880371094, 0.038529022216796875, 0.037872638702392575, 0.03786444854736328, 0.03786137771606445, 0.037806079864501956, 0.03787980651855469, 0.038117374420166016, 0.03805593490600586, 0.037904384613037106, 0.037601280212402347, 0.03767705535888672, 0.03782553482055664, 0.03781324768066406, 0.03779993438720703, 0.037698558807373043, 0.03775993728637695, 0.0376954574584961, 0.03825878524780273, 0.03870089721679688, 0.03788508987426758, 0.041063423156738284, 0.03853107070922852, 0.03816387176513672, 0.03805782318115234, 0.03796003341674805, 0.0378056640625, 0.03813580703735352, 0.037873760223388675, 0.03774556732177734, 0.037574462890625, 0.03764950561523438, 0.03788604736328125, 0.03783353424072266, 0.03786115264892578, 0.03772633743286133, 0.03767036819458008, 0.03768502426147461, 0.037714622497558595, 0.037858783721923826, 0.03765523147583008, 0.038035457611083984, 0.03771187210083008, 0.0377050895690918, 0.03790911865234375, 0.03769155120849609, 0.037741790771484374, 0.03762860870361328, 0.03762099075317383, 0.037823169708251954, 0.037986209869384766, 0.037822559356689454, 0.037994014739990235, 0.03832889556884766, 0.03784672164916992, 0.04024716949462891, 0.03815663909912109, 0.03842435073852539, 0.03794966506958008, 0.03811328125, 0.038016223907470705, 0.03837593460083008, 0.038176769256591796, 0.0381030387878418, 0.037910526275634765, 0.0380882568359375, 0.03814035034179687, 0.03785318374633789, 0.03795119857788086, 0.03909356689453125, 0.038056926727294924, 0.03779103851318359, 0.03817305755615234, 0.04041555023193359, 0.03816758346557617, 0.038406753540039064, 0.038395713806152344, 0.037953407287597656, 0.03768083190917969, 0.03786041641235351, 0.03771590423583984, 0.03778511810302734, 0.03791001510620117, 0.03801113510131836, 0.03784368133544922, 0.03771372985839844, 0.037888446807861326, 0.03804134368896484, 0.038209537506103515, 0.03793664169311523, 0.03776358413696289, 0.03782358551025391, 0.03805072021484375, 0.03785846328735352, 0.037921630859375, 0.03786140823364258, 0.03977977752685547, 0.03834940719604492, 0.03797804641723633, 0.03786297607421875, 0.03781660842895508, 0.03781798553466797, 0.038386207580566406, 0.038121440887451175, 0.037815807342529296, 0.0376407356262207, 0.03754940795898438, 0.037763553619384764, 0.03775052642822266, 0.038021183013916014, 0.0379233283996582, 0.03773632049560547, 0.03786649703979492, 0.037735424041748046, 0.037820415496826174, 0.03783603286743164, 0.03769625473022461, 0.03760947036743164, 0.03804774475097656, 0.037814273834228515, 0.03789766311645508, 0.037923393249511717, 0.03799846267700195, 0.03811094284057617, 0.03832179260253906, 0.0380994873046875, 0.03804716873168945, 0.03781027221679688, 0.03779756927490235, 0.037935009002685545, 0.037829345703125, 0.03785932922363281, 0.03811328125, 0.037647903442382814, 0.03764249420166016, 0.0379005126953125, 0.03772415924072266, 0.0376627197265625, 0.03760332870483398, 0.03804323196411133, 0.03783107376098633, 0.03789823913574219, 0.03793920135498047, 0.037814529418945315, 0.037817310333251954, 0.037782302856445314, 0.03792892837524414, 0.03779996871948242, 0.03774828720092773, 0.03779423904418945, 0.037622974395751956, 0.03761849594116211, 0.0376545295715332, 0.03785113525390625, 0.03779174423217774, 0.037736160278320316, 0.03776124954223633, 0.03802096176147461, 0.03775305557250976, 0.03767059326171875, 0.037636417388916016, 0.03779587173461914, 0.03766812896728516, 0.037665470123291016, 0.03766835021972656, 0.03763776016235352, 0.03774284744262695, 0.037720832824707035, 0.03762777709960938, 0.037976062774658204, 0.037907455444335936, 0.037894878387451175, 0.03793331146240234, 0.037927169799804684, 0.03783452987670898, 0.03777926254272461, 0.037811614990234374, 0.037776161193847656, 0.03793100738525391, 0.038027263641357424, 0.037806079864501956, 0.03783580780029297, 0.037740768432617186, 0.037808895111083984, 0.037664768218994144, 0.03790447998046875, 0.037769119262695314, 0.038642559051513675, 0.03816447830200195, 0.03803750228881836, 0.037916160583496096, 0.03790041732788086, 0.03790240097045899, 0.03778591918945313, 0.03785308837890625, 0.03779779052734375, 0.03788937759399414, 0.037947967529296876, 0.03820163345336914, 0.0377262077331543, 0.037897247314453125, 0.03803340911865234, 0.0378131217956543, 0.03796326446533203, 0.03779612731933594, 0.037967903137207035, 0.038585792541503905, 0.03793596649169922, 0.03817788696289062, 0.038064800262451175, 0.03789030456542969, 0.03776041412353515, 0.03781488037109375, 0.037876960754394534, 0.03804012680053711, 0.037824737548828126, 0.03780531311035156, 0.037628353118896486, 0.03768998336791992, 0.037779136657714846, 0.0377077751159668, 0.03771596908569336, 0.03807369613647461, 0.037896800994873046, 0.03780819320678711, 0.037617504119873045, 0.03782857513427734, 0.0376956787109375, 0.038141952514648435, 0.03801702499389648, 0.03789823913574219, 0.03804111862182617, 0.037763774871826174, 0.03833792114257813, 0.039895294189453125, 0.03823132705688476, 0.037769248962402344, 0.03767612838745117, 0.037643966674804685, 0.037576766967773435, 0.03785728073120117, 0.03790659332275391, 0.03810876846313477, 0.038156097412109374, 0.037888446807861326, 0.037863201141357425, 0.03758451080322266, 0.037757118225097655, 0.03773404693603516, 0.0378502082824707, 0.038300830841064455, 0.03816534423828125, 0.03787980651855469, 0.03788185501098633, 0.03778335952758789, 0.0377243537902832, 0.03780198287963867, 0.03772118377685547, 0.03764876937866211, 0.0381459846496582, 0.03790428924560547, 0.03791737747192383, 0.03779174423217774, 0.037649951934814456, 0.03769596862792969, 0.037838462829589845, 0.03769996643066406, 0.037607425689697264, 0.03761356735229492, 0.03768326568603515, 0.037650367736816404, 0.03772313690185547, 0.03770880126953125, 0.037771263122558595, 0.037797409057617186, 0.03767036819458008, 0.037694465637207034, 0.03773795318603516, 0.03828489685058594, 0.038448062896728516, 0.03934419250488281, 0.038096481323242185, 0.03772988891601563, 0.03765935897827148, 0.03780732727050781, 0.03952313613891602, 0.03856588745117188, 0.03796495819091797, 0.03774176025390625, 0.03772089767456055, 0.03878998565673828, 0.03778889465332031, 0.03792156982421875, 0.03783171081542969, 0.03762063980102539, 0.03766019058227539, 0.037668609619140626, 0.0376321907043457, 0.03772025680541992, 0.037684703826904295, 0.03793171310424805, 0.03801523208618164, 0.037944862365722656, 0.037730785369873045, 0.03801430511474609, 0.03781292724609375, 0.03772822570800781, 0.0382435188293457, 0.038894657135009766, 0.03807206344604492, 0.03813759994506836, 0.03780764770507813, 0.037838592529296874, 0.03833196640014649, 0.038144542694091794, 0.037967071533203126, 0.037937950134277344, 0.03792051315307617, 0.03784320068359375, 0.03798361587524414, 0.03780672073364258, 0.03947017669677735, 0.03788451385498047, 0.03791865539550781, 0.03789043045043945, 0.03765043258666992, 0.037789695739746096, 0.03793113708496094, 0.03787753677368164, 0.03781846237182617, 0.0381399040222168, 0.03807027053833008, 0.037893825531005856, 0.037875648498535155, 0.03790172958374023, 0.03782345581054687, 0.03780953598022461, 0.03784767913818359, 0.037934398651123045, 0.038052543640136716, 0.037705726623535156, 0.03768320083618164, 0.037855232238769534, 0.0376545295715332, 0.037996543884277346, 0.037649471282958986, 0.037959617614746095, 0.038599327087402345, 0.037719745635986325, 0.037808799743652345, 0.03771161651611328, 0.03765663909912109, 0.03771731185913086, 0.03761446380615235, 0.03779993438720703, 0.03777740859985351, 0.03774604797363281, 0.03780467224121094, 0.03795500946044922, 0.03803577423095703, 0.03774272155761719, 0.037728382110595704, 0.037787647247314454, 0.03776716613769531, 0.03790182495117188, 0.03777155303955078, 0.037739936828613284, 0.037747520446777344, 0.03780176162719726, 0.037822017669677736, 0.03902032089233398, 0.03791347122192383, 0.037846782684326175, 0.037920639038085936, 0.03796384048461914, 0.037800254821777346, 0.038555519104003906, 0.03826496124267578, 0.037771263122558595, 0.03783427047729492, 0.037980640411376956, 0.03775897598266602, 0.03785894393920899, 0.03772003173828125, 0.0376959342956543, 0.037846656799316404, 0.037879550933837894, 0.038142559051513675, 0.03794940948486328, 0.03780611038208008, 0.0384450569152832, 0.03787081527709961, 0.037873985290527344, 0.03773680114746094, 0.03794956970214844, 0.03789328002929687, 0.037862239837646486, 0.037860671997070314, 0.03783545684814453, 0.03831193542480469, 0.03799587249755859, 0.0380577278137207, 0.03786985778808594, 0.037939838409423825, 0.0381214714050293, 0.03782428741455078, 0.03795785522460938, 0.03787366485595703, 0.03786342239379883, 0.0377262077331543, 0.03781868743896484, 0.037829822540283206, 0.03780454254150391, 0.03788819122314453, 0.03781574249267578, 0.03781843185424805, 0.03775110244750977, 0.038109054565429686, 0.03778268814086914, 0.037739105224609375, 0.03766502380371094, 0.037723297119140624, 0.0376104621887207, 0.037811519622802735, 0.03765523147583008, 0.037779006958007816, 0.037659072875976564, 0.037822463989257815, 0.0377828483581543, 0.03780019378662109, 0.0378015022277832, 0.03798659133911133, 0.037791454315185546, 0.038163360595703126, 0.03786259078979492, 0.0376163215637207, 0.03792294311523438, 0.037680801391601564, 0.03772428894042969, 0.03827519989013672, 0.037943294525146484, 0.0378488655090332, 0.03766191864013672, 0.03773747253417969, 0.03784703826904297, 0.03768729782104492, 0.03775651168823242, 0.037685054779052735, 0.03786140823364258, 0.03796640014648438, 0.03793920135498047, 0.03797401428222656, 0.03784703826904297, 0.037781505584716796, 0.03771529769897461, 0.03775305557250976, 0.037765216827392575, 0.037851776123046875, 0.03784249496459961, 0.03773155212402344, 0.03809913635253906, 0.037743358612060546, 0.03768320083618164, 0.03755984115600586, 0.03756233596801758, 0.03798476791381836, 0.03779481506347656, 0.03805628967285156, 0.03779446411132813, 0.03784835052490235, 0.03787567901611328, 0.03769625473022461, 0.03778169631958008, 0.03766457748413086, 0.03769728088378906, 0.03770908737182617, 0.03789836883544922, 0.038037376403808595, 0.04062108612060547, 0.0381275520324707, 0.03795558547973633, 0.0377663688659668, 0.037724960327148435, 0.03787273788452149, 0.037632831573486326, 0.03768124771118164, 0.03786547088623047, 0.037691009521484374, 0.03761190414428711, 0.03772825622558594, 0.03746771240234375, 0.03764678573608399, 0.03766057586669922, 0.03766486358642578, 0.03766032028198242, 0.037609375, 0.03763420867919922, 0.03766896057128906, 0.037775550842285156, 0.03768320083618164, 0.03787980651855469, 0.03766499328613281, 0.038867198944091796, 0.03826956939697266, 0.03811532974243164, 0.039931999206542966, 0.03806915283203125, 0.03805728149414062, 0.0378856315612793, 0.037855232238769534, 0.037689342498779296, 0.037797374725341795, 0.03769190216064453, 0.03763814544677734, 0.03763558578491211, 0.037658496856689455, 0.03863820648193359, 0.037969696044921876, 0.03779401779174805, 0.037750049591064455, 0.037840736389160155, 0.038257537841796876, 0.037897632598876956, 0.03791523361206055, 0.037926910400390625, 0.03776921463012695, 0.03791817474365235, 0.03778531265258789, 0.03782534408569336, 0.03807436752319336, 0.037814273834228515, 0.03781631851196289, 0.0376995849609375, 0.03910860824584961, 0.03814179229736328, 0.03794140625, 0.03839923095703125, 0.03822668838500977, 0.03804159927368164, 0.038139713287353515, 0.03775289535522461, 0.037806209564208985, 0.037943294525146484, 0.037901630401611326, 0.03783340835571289, 0.037951648712158205, 0.038068000793457034, 0.037781566619873044, 0.03783270263671875, 0.03799971389770508, 0.037824798583984375, 0.03798409652709961, 0.037764991760253906, 0.037835296630859376, 0.037719871520996096, 0.0378721923828125, 0.03968793487548828, 0.038011104583740234, 0.03791049575805664, 0.03794745635986328, 0.03784000015258789, 0.03769027328491211, 0.03772003173828125, 0.03775283050537109, 0.03767695999145508]",tokens/s,26.371231517964443,, float16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gptj,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,843.194368,12640.518144,0.0,12245.270528,12234.440192,s,1,7.641587890625,7.641587890625,0.0,7.641587890625,7.641587890625,7.641587890625,7.641587890625,[7.641587890625],,kWh,1.3793814154164843e-05,1.512477956816801e-06,6.774172085997551e-06,2.2080464196979194e-05,,MB,1152.118784,12925.730816,0.0,12517.900288,12440.744448,s,10,1.8887086944580078,0.18887086944580078,0.0031780540365539452,0.18875924682617187,0.19160263061523436,0.19316996765136718,0.19442383728027343,"[0.18195571899414062, 0.18829545593261718, 0.1900277099609375, 0.18892422485351562, 0.1861235809326172, 0.1881266632080078, 0.19125433349609375, 0.19066943359375, 0.18859426879882812, 0.1947373046875]",tokens/s,1355.4234210451543,kWh,5.656758292948766e-06,6.235645935288457e-07,3.7684218181538376e-06,1.004874470463145e-05,tokens/kWh,25475818.87337729,MB,1174.585344,12988.645376,0.0,12580.814848,12543.681024,s,10,36.67357470703126,3.667357470703125,0.006592214839360489,3.6670753173828126,3.675392626953125,3.677593408203125,3.679354033203125,"[3.655662109375, 3.6608779296875, 3.6623349609375, 3.66615576171875, 3.667674072265625, 3.668391357421875, 3.6664765625, 3.67130419921875, 3.674903564453125, 3.679794189453125]",tokens/s,17.17858171811141,kWh,0.000107243756794551,1.1829444516997074e-05,7.122219372984619e-05,0.00019029539504139423,tokens/kWh,331064.23824021517,,s,630,36.67032344436643,0.05820686261010548,0.0005326349760603359,0.058130367279052735,0.0585946159362793,0.05883475112915039,0.06157141201019287,"[0.0616734733581543, 0.05863423919677734, 0.05784972763061524, 0.05770662307739258, 0.057624576568603515, 0.057617568969726564, 0.05753273773193359, 0.05757804870605469, 0.05756480026245117, 0.057741630554199216, 0.057827487945556644, 0.057826751708984374, 0.05787897491455078, 0.057568862915039064, 0.05755945587158203, 0.057540607452392575, 0.058060832977294925, 0.058225822448730466, 0.05803606414794922, 0.05805721664428711, 0.05789334487915039, 0.057665313720703125, 0.057708415985107425, 0.057831424713134766, 0.0577724494934082, 0.057638240814208985, 0.05784870529174805, 0.05781884765625, 0.05777151870727539, 0.05781145477294922, 0.05788217544555664, 0.05788499069213867, 0.05808697509765625, 0.058490943908691403, 0.05812905502319336, 0.058234752655029295, 0.05814064025878906, 0.05808153533935547, 0.057945503234863284, 0.05794198226928711, 0.057885311126708985, 0.058000385284423826, 0.0578897590637207, 0.05812339019775391, 0.0579131851196289, 0.058012481689453124, 0.058137985229492185, 0.058095840454101565, 0.05795449447631836, 0.05808355331420898, 0.05812588882446289, 0.05821488189697266, 0.058198177337646484, 0.05842105484008789, 0.05818982315063476, 0.05820415878295898, 0.05817958450317383, 0.05830854415893555, 0.05828607940673828, 0.05811820983886719, 0.05816729736328125, 0.05801574325561523, 0.058159103393554686, 0.06135603332519531, 0.05881856155395508, 0.0578416633605957, 0.057649150848388675, 0.05765529632568359, 0.05750697708129883, 0.05751007843017578, 0.057581600189208985, 0.05787881469726563, 0.05784998321533203, 0.05774153518676758, 0.057775711059570314, 0.05756707382202148, 0.05762217712402344, 0.05780368041992188, 0.05773926544189453, 0.05796393585205078, 0.058261566162109375, 0.05823542404174804, 0.05810383987426758, 0.05805385589599609, 0.05791206359863281, 0.05784521484375, 0.057858463287353515, 0.05776947021484375, 0.05791603088378906, 0.057891040802001956, 0.057966400146484375, 0.05798908615112305, 0.05797683334350586, 0.05801574325561523, 0.058011425018310546, 0.058046783447265625, 0.05829827117919922, 0.058298366546630856, 0.05848905563354492, 0.058240352630615236, 0.05824121475219726, 0.058396961212158205, 0.058135711669921875, 0.05802169418334961, 0.05827276611328125, 0.05820828628540039, 0.05797990417480469, 0.05795267105102539, 0.058194496154785155, 0.05815091323852539, 0.05809878540039062, 0.05804864120483398, 0.05812067031860352, 0.05827616119384765, 0.058324417114257815, 0.05850300979614258, 0.05853257751464844, 0.05838582229614258, 0.05826211166381836, 0.05826969528198242, 0.05825081634521485, 0.05815311813354492, 0.058105792999267575, 0.05817379379272461, 0.058175487518310545, 0.0582509765625, 0.061288478851318356, 0.05884662246704102, 0.0577562255859375, 0.057779743194580076, 0.0576475830078125, 0.057667423248291015, 0.057686302185058595, 0.05767750549316406, 0.05754604721069336, 0.05775040054321289, 0.05773311996459961, 0.05769625473022461, 0.05776793670654297, 0.05793791961669922, 0.05784371185302734, 0.057843742370605467, 0.058286048889160155, 0.05846550369262695, 0.05837424087524414, 0.058184383392333984, 0.05807923126220703, 0.05792486572265625, 0.05814080047607422, 0.057872608184814454, 0.05783388900756836, 0.05795782470703125, 0.05798380661010742, 0.057955265045166016, 0.05798937606811523, 0.058036800384521484, 0.05816128158569336, 0.05801504135131836, 0.058073665618896486, 0.05829571151733398, 0.05840342330932617, 0.058386016845703125, 0.05839846420288086, 0.05822127914428711, 0.058230720520019534, 0.05830656051635742, 0.058064479827880856, 0.05800592041015625, 0.05788195037841797, 0.05806707382202148, 0.058001953125, 0.05800703811645508, 0.05803641510009765, 0.05803852844238281, 0.05801910400390625, 0.058120990753173826, 0.058464256286621094, 0.05837004852294922, 0.05837619018554688, 0.058396129608154296, 0.05832553482055664, 0.058139999389648436, 0.058433727264404295, 0.05831727981567383, 0.05819801712036133, 0.058396671295166014, 0.05809561538696289, 0.05808745574951172, 0.05809968185424805, 0.061937248229980466, 0.058886463165283204, 0.05790934371948242, 0.057737342834472655, 0.05775347137451172, 0.05772675323486328, 0.05765987014770508, 0.05816239929199219, 0.05766403198242188, 0.05779632186889649, 0.05808566284179688, 0.058039905548095704, 0.05792809677124024, 0.0579090576171875, 0.058187839508056644, 0.057853214263916014, 0.0582309455871582, 0.0582171516418457, 0.05822895812988281, 0.05819369506835938, 0.05803945541381836, 0.05786710357666015, 0.057788448333740236, 0.057823200225830075, 0.05781449508666992, 0.05793804931640625, 0.05796905517578125, 0.058058303833007814, 0.05800377655029297, 0.058011775970458986, 0.05803392028808594, 0.05801398468017578, 0.05798908615112305, 0.05843360137939453, 0.058247104644775394, 0.0583741455078125, 0.05818982315063476, 0.058191295623779296, 0.058186302185058596, 0.05840812683105469, 0.05827462387084961, 0.05813452911376953, 0.05814476776123047, 0.05810358428955078, 0.05801596832275391, 0.05831270217895508, 0.058114078521728514, 0.05805871963500977, 0.058133823394775394, 0.0581802864074707, 0.05827993774414063, 0.0584571533203125, 0.058373054504394534, 0.05859942245483398, 0.05828006362915039, 0.05865039825439453, 0.05836582565307617, 0.05834979248046875, 0.058322017669677734, 0.05820883178710937, 0.0583355827331543, 0.058308609008789064, 0.058353824615478514, 0.06163248062133789, 0.05907939147949219, 0.058413311004638674, 0.05795753479003906, 0.05793264007568359, 0.05788832092285156, 0.05788681411743164, 0.057938270568847657, 0.05790291213989258, 0.057914718627929684, 0.0578138542175293, 0.057775390625, 0.057747711181640626, 0.057811233520507814, 0.0580753288269043, 0.05834854507446289, 0.05808425521850586, 0.058314655303955076, 0.058380481719970706, 0.058340545654296874, 0.05800815963745117, 0.057971073150634767, 0.0579192008972168, 0.058131679534912106, 0.05806991958618164, 0.057929729461669924, 0.057995262145996096, 0.058060798645019535, 0.05798425674438477, 0.05794892883300781, 0.057903102874755856, 0.057987167358398435, 0.05805670547485352, 0.058149856567382814, 0.05824812698364258, 0.05852057647705078, 0.05824124908447265, 0.05825414276123047, 0.058138206481933595, 0.05839091110229492, 0.05828607940673828, 0.058226432800292965, 0.05800508880615234, 0.058120193481445315, 0.058038463592529295, 0.05821900939941406, 0.05804848098754883, 0.05807686233520508, 0.05805692672729492, 0.058310047149658206, 0.05832112121582031, 0.05838691329956055, 0.05820751953125, 0.05841340637207031, 0.05839091110229492, 0.058170528411865235, 0.05818454360961914, 0.058449790954589846, 0.05850284957885742, 0.05835558319091797, 0.05830227279663086, 0.05860547256469727, 0.058536575317382815, 0.06161423873901367, 0.05906713485717773, 0.057949695587158206, 0.0576847038269043, 0.057638687133789064, 0.057654529571533206, 0.057655071258544924, 0.05794611358642578, 0.057909854888916014, 0.05792601776123047, 0.0577760009765625, 0.057771678924560546, 0.057739742279052736, 0.05770153427124024, 0.057680736541748046, 0.057731071472167966, 0.05841100692749023, 0.05871206283569336, 0.05843548965454102, 0.05842339324951172, 0.05799718475341797, 0.05806041717529297, 0.057786880493164064, 0.05802598571777344, 0.05802188873291016, 0.05797884750366211, 0.05802384185791016, 0.05796486282348633, 0.057984832763671876, 0.058001407623291014, 0.058076351165771485, 0.05796851348876953, 0.05839763259887695, 0.05820137786865234, 0.05828003311157227, 0.05855705642700195, 0.0582902717590332, 0.05828303909301758, 0.058184288024902345, 0.058386848449707034, 0.05818966293334961, 0.058285953521728516, 0.05816361618041992, 0.058119937896728514, 0.058052223205566404, 0.05816972732543945, 0.05845196914672852, 0.058916862487792966, 0.05815929412841797, 0.05833504104614258, 0.058400032043457034, 0.05854844665527344, 0.05841542434692383, 0.05842963027954102, 0.05844521713256836, 0.05847715377807617, 0.058343425750732425, 0.05825235366821289, 0.058385345458984376, 0.058375457763671874, 0.05823766326904297, 0.05859123229980469, 0.05842943954467773, 0.06165760040283203, 0.05901926422119141, 0.05797628784179688, 0.057740833282470705, 0.05768499374389648, 0.057631935119628906, 0.05777635192871094, 0.057844318389892575, 0.05765439987182617, 0.05771353530883789, 0.05787551879882812, 0.05794911956787109, 0.05778988647460938, 0.057635391235351566, 0.05779251098632812, 0.05804854583740234, 0.058268798828125, 0.05844678497314453, 0.05824911880493164, 0.058060798645019535, 0.05790924835205078, 0.057857185363769534, 0.05771731185913086, 0.057743648529052734, 0.05776176071166992, 0.05784579086303711, 0.05814700698852539, 0.05791084671020508, 0.05798937606811523, 0.05800755310058594, 0.057915233612060545, 0.05803206253051758, 0.058183456420898436, 0.0583623046875, 0.05857024002075195, 0.05865727996826172, 0.05826150512695313, 0.05819913482666016, 0.058188705444335936, 0.058191871643066405, 0.05809561538696289, 0.05825107192993164, 0.05810195159912109, 0.05813398361206055, 0.05816128158569336, 0.05863862228393555, 0.0581448974609375, 0.05803113555908203, 0.05799417495727539, 0.05817971038818359, 0.058480545043945314, 0.05858083343505859, 0.05881174468994141, 0.05870998382568359, 0.058953857421875, 0.058290912628173826, 0.05819801712036133, 0.05841100692749023, 0.05837209701538086, 0.05823897552490234, 0.058357982635498046, 0.05840070343017578, 0.05833916854858399, 0.06146656036376953, 0.05897689437866211, 0.05806694412231445, 0.05793344116210938, 0.05790156936645508, 0.057880447387695315, 0.05782284927368164, 0.057710975646972654, 0.05769625473022461, 0.05794377517700195, 0.05803036880493164, 0.05779235076904297, 0.057893024444580075, 0.05796422576904297, 0.05791379165649414, 0.05787839889526367, 0.0580423698425293, 0.05851340866088867, 0.05823833465576172, 0.05798086547851562, 0.05786495971679687, 0.057939903259277344, 0.057953472137451174, 0.05807596969604492, 0.057890655517578125, 0.05794972610473633, 0.05808780670166016, 0.057995521545410156, 0.05799321746826172, 0.05809721755981445, 0.05807558441162109, 0.05800860977172852, 0.05804540634155273, 0.058353023529052736, 0.05957900619506836, 0.058922721862792966, 0.05843356704711914, 0.058372318267822264, 0.05828406524658203, 0.058294273376464846, 0.05822067260742188, 0.058423168182373045, 0.05816134262084961, 0.0582031021118164, 0.05802275085449219, 0.05811366271972656, 0.05840934371948242, 0.058287361145019534, 0.058327392578125, 0.05847046279907227, 0.0585272331237793, 0.05861891174316406, 0.058858463287353516, 0.05869657516479492, 0.05857686233520508, 0.05832089614868164, 0.05841030502319336, 0.05831955337524414, 0.05824012756347656, 0.05850815963745117, 0.05858015823364258, 0.05853084945678711, 0.05831248092651367, 0.06185087966918945, 0.05904569625854492, 0.05799580764770508, 0.05780115127563477, 0.05783555221557617, 0.05787865447998047, 0.057888641357421874, 0.05790105438232422, 0.057665534973144535, 0.05787798309326172, 0.05777385711669922, 0.05783148956298828, 0.05865542221069336, 0.05798083114624023, 0.05780284881591797, 0.057951904296875, 0.05830595016479492, 0.058912704467773434, 0.05862707138061524, 0.05808246231079101, 0.05822671890258789, 0.0578870735168457, 0.05800598526000977, 0.058011905670166015, 0.05805849456787109, 0.05798092651367188, 0.058062110900878906, 0.05802671813964844, 0.0579317741394043, 0.057888736724853514, 0.05804035186767578, 0.05799935913085937, 0.0582369270324707, 0.058504768371582035, 0.05880201721191406, 0.058650337219238284, 0.05866175842285156, 0.0585011215209961, 0.05823823928833008, 0.05825404739379883, 0.058080734252929686, 0.05811049652099609, 0.058068416595458985, 0.05834169769287109, 0.05840908813476563, 0.05831897735595703, 0.05826355361938477, 0.058369407653808596, 0.05838502502441406, 0.05859449768066406, 0.05870675277709961, 0.05885737609863281, 0.058687454223632814, 0.058579071044921875, 0.05866889572143555, 0.05865654373168945, 0.05839091110229492, 0.058498783111572264, 0.058288448333740236, 0.058234848022460935, 0.0592097282409668, 0.05863116836547851, 0.058595680236816404, 0.06166793441772461, 0.059229598999023435, 0.05820905685424805, 0.058025054931640625, 0.05783795166015625, 0.05795801544189453, 0.057971614837646485, 0.05809673690795898, 0.05787289428710937, 0.057966529846191404, 0.058038558959960934, 0.058005599975585936, 0.05794569778442383, 0.05803891372680664, 0.058046337127685546, 0.05823078536987305, 0.05875500869750976, 0.0588936653137207, 0.05862614440917969, 0.058468673706054686, 0.058207775115966795, 0.058098464965820315, 0.05799116897583008, 0.05799731063842774, 0.058072929382324216, 0.05810515213012695, 0.05821295928955078, 0.058517696380615235, 0.05804652786254883, 0.058173439025878904, 0.05814803314208984, 0.05814969635009765, 0.05838569641113281, 0.05866934585571289, 0.05889683151245117, 0.05884467315673828, 0.05898291015625, 0.05861580657958984, 0.05827913665771484, 0.05830073547363281, 0.05828384017944336, 0.05819881439208984, 0.05824908828735351, 0.058224639892578124, 0.058327041625976565, 0.05828403091430664, 0.058265598297119144, 0.05857279968261719, 0.058241024017333984, 0.05871820831298828, 0.05850931167602539, 0.05901724624633789, 0.05894553756713867, 0.05882262420654297, 0.05869772720336914, 0.05854412841796875, 0.058422721862792966, 0.05828054428100586, 0.05827171325683594, 0.05846137619018555, 0.058391361236572265, 0.058619903564453124, 0.05849087905883789]",tokens/s,17.18010480479645,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 134.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 52.12 MiB is free. Process 96146 has 14.69 GiB memory in use. Of the allocated memory 14.47 GiB is allocated by PyTorch, and 108.93 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 614, in __init__ self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 274, in __init__ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 30.12 MiB is free. Process 84165 has 14.71 GiB memory in use. Of the allocated memory 14.37 GiB is allocated by PyTorch, and 229.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,737.046528,804.192256,0.0,408.94464,387.119104,s,1,7.05956787109375,7.05956787109375,0.0,7.05956787109375,7.05956787109375,7.05956787109375,7.05956787109375,[7.05956787109375],,kWh,6.266552395828739e-06,6.837814345044297e-07,2.0188905040033345e-06,8.969224334336502e-06,,MB,1100.791808,829.35808,0.0,421.527552,354.083328,s,18,0.19807555103302,0.011004197279612223,0.00019689022549573127,0.010912367820739746,0.011292044830322265,0.011378513336181641,0.011422403717041014,"[0.010825087547302246, 0.010987551689147949, 0.011236991882324219, 0.01096713638305664, 0.010945504188537597, 0.010912384033203125, 0.011231648445129394, 0.010849023818969726, 0.010844736099243165, 0.010888416290283203, 0.010819135665893554, 0.01087177562713623, 0.010912351608276367, 0.011368831634521485, 0.010868127822875977, 0.011433376312255859, 0.011259136199951171, 0.010854335784912109]",tokens/s,23263.850464976505,kWh,3.2461778655451273e-07,3.579943586903562e-08,2.1631923126807694e-07,5.767364536916254e-07,tokens/kWh,443876918.75790524,MB,1135.0016,844.038144,0.0,436.207616,354.085888,s,18,10.186482849121093,0.5659157138400608,0.003745610212349325,0.5648192138671875,0.5710327026367187,0.5727525726318359,0.5730854754638672,"[0.5703270874023437, 0.5690594482421875, 0.573168701171875, 0.5664511108398438, 0.5726791381835937, 0.5663496704101563, 0.563966796875, 0.56943896484375, 0.5603001708984375, 0.5606165161132812, 0.562454833984375, 0.565671630859375, 0.5635009765625, 0.5637919921875, 0.5637879638671875, 0.56255029296875, 0.5684378662109375, 0.5639296875]",tokens/s,111.3239983610087,kWh,1.634629071205645e-05,1.8027229825864778e-06,7.3478997830654334e-06,2.5496913477708366e-05,tokens/kWh,2470887.3117163815,,s,1134,10.178151805877684,0.008975442509592316,0.00019099574927967507,0.008945232391357421,0.009071491050720214,0.009170578908920288,0.009812120027542118,"[0.009137824058532714, 0.009097567558288574, 0.00898252773284912, 0.009009023666381837, 0.009011327743530273, 0.008945088386535644, 0.009015071868896484, 0.009052927970886231, 0.009056480407714843, 0.009009152412414552, 0.009011008262634278, 0.009056511878967286, 0.009074591636657714, 0.009189375877380371, 0.009548831939697265, 0.009132831573486329, 0.009123871803283692, 0.00915017604827881, 0.009049632072448731, 0.009048831939697266, 0.009012543678283691, 0.009050815582275391, 0.00902348804473877, 0.009003007888793945, 0.009025216102600098, 0.009080415725708007, 0.009007840156555176, 0.009000960350036622, 0.008997952461242676, 0.009025823593139649, 0.009034303665161133, 0.009019583702087402, 0.009010975837707519, 0.009037856101989747, 0.009035679817199707, 0.009195712089538574, 0.00897875213623047, 0.00897811222076416, 0.009000448226928711, 0.008964544296264648, 0.008997023582458496, 0.008992447853088378, 0.008976832389831543, 0.008973631858825683, 0.009083359718322755, 0.009020511627197265, 0.008991776466369629, 0.009471360206604005, 0.009014880180358887, 0.008997632026672362, 0.008988479614257812, 0.008968544006347657, 0.009017696380615234, 0.008998335838317871, 0.009035008430480957, 0.009151712417602539, 0.009032671928405761, 0.008999711990356445, 0.008994751930236817, 0.008976608276367188, 0.008974176406860351, 0.009005056381225587, 0.00902143955230713, 0.008769311904907227, 0.009494751930236816, 0.009004159927368164, 0.009003904342651367, 0.009001184463500976, 0.009057056427001954, 0.009067520141601563, 0.008968192100524902, 0.009027392387390136, 0.00905401611328125, 0.008992159843444824, 0.009010144233703613, 0.008992511749267578, 0.0089967679977417, 0.009047648429870606, 0.008999679565429687, 0.00902348804473877, 0.009119744300842286, 0.00898252773284912, 0.009002528190612792, 0.00897276782989502, 0.009006208419799804, 0.008973183631896973, 0.008964096069335938, 0.008923487663269043, 0.009096927642822265, 0.009033087730407716, 0.009003583908081054, 0.009103455543518067, 0.008970047950744629, 0.008980575561523438, 0.009026592254638671, 0.008998944282531738, 0.00913094425201416, 0.009051775932312012, 0.008988991737365722, 0.008951871871948243, 0.00904371166229248, 0.008993247985839843, 0.00904576015472412, 0.009056351661682128, 0.009014528274536132, 0.00898464012145996, 0.009095040321350098, 0.008970944404602051, 0.00900921630859375, 0.009030752182006836, 0.00897321605682373, 0.00898579216003418, 0.009022239685058595, 0.00903593635559082, 0.009080448150634766, 0.008999168395996094, 0.008972288131713867, 0.009151583671569824, 0.008969120025634766, 0.008976479530334473, 0.008951295852661132, 0.009032095909118652, 0.008974047660827636, 0.008980768203735352, 0.00932044792175293, 0.009140352249145507, 0.0087706241607666, 0.009126272201538086, 0.009007072448730469, 0.00904428768157959, 0.009025919914245605, 0.00902143955230713, 0.009004735946655273, 0.009082240104675293, 0.008997856140136718, 0.009000384330749511, 0.009013536453247071, 0.008972288131713867, 0.009103487968444825, 0.008988544464111329, 0.0090316801071167, 0.009035776138305664, 0.009076031684875488, 0.009068767547607421, 0.009346752166748047, 0.008968992233276367, 0.008945664405822755, 0.008984448432922364, 0.009828479766845703, 0.011249855995178222, 0.009828255653381348, 0.00908620834350586, 0.009038144111633301, 0.009036416053771973, 0.008990431785583496, 0.009518495559692383, 0.008997471809387207, 0.00897433567047119, 0.008980480194091797, 0.008976127624511719, 0.008984224319458008, 0.00896236801147461, 0.009088768005371093, 0.009089568138122558, 0.008971263885498047, 0.008946687698364257, 0.00899401569366455, 0.009017248153686524, 0.00898374366760254, 0.008918911933898925, 0.008994624137878418, 0.008944671630859375, 0.008948736190795899, 0.008976320266723632, 0.008967583656311034, 0.009449600219726562, 0.009001312255859375, 0.010072511672973633, 0.008954719543457031, 0.00895680046081543, 0.008951711654663085, 0.008962143898010254, 0.008945856094360351, 0.008910047531127929, 0.008933728218078613, 0.008943776130676269, 0.00888764762878418, 0.008884991645812988, 0.008945664405822755, 0.008706048011779785, 0.009000960350036622, 0.008965279579162598, 0.008974847793579101, 0.008954208374023437, 0.00894976043701172, 0.00901734447479248, 0.009000736236572266, 0.008962271690368652, 0.008951807975769043, 0.008937472343444825, 0.00896777629852295, 0.008984992027282715, 0.0090665922164917, 0.009185183525085449, 0.0090316801071167, 0.008988672256469727, 0.008967647552490235, 0.008953696250915527, 0.008970399856567383, 0.008978976249694823, 0.008965344429016113, 0.008989472389221192, 0.008951935768127441, 0.00894553565979004, 0.008922240257263184, 0.008962944030761718, 0.008976479530334473, 0.00898185634613037, 0.008960576057434081, 0.008990847587585449, 0.008982399940490722, 0.008973471641540528, 0.008950719833374024, 0.008976287841796875, 0.008943615913391113, 0.008915295600891113, 0.008933024406433105, 0.00898185634613037, 0.008942079544067384, 0.00893331241607666, 0.00893280029296875, 0.00891481590270996, 0.008938015937805176, 0.009398655891418457, 0.009093119621276855, 0.009000960350036622, 0.00908886432647705, 0.009031840324401855, 0.009029664039611817, 0.00901961612701416, 0.009029343605041503, 0.00900710391998291, 0.009029919624328614, 0.009041119575500488, 0.008948543548583984, 0.008942496299743653, 0.008981311798095703, 0.009000960350036622, 0.00898252773284912, 0.008974559783935547, 0.008929023742675781, 0.008986368179321289, 0.008785216331481934, 0.009026176452636718, 0.009002335548400879, 0.00898464012145996, 0.009005727767944336, 0.008969887733459473, 0.009035648345947266, 0.00897596836090088, 0.009030719757080079, 0.00893836784362793, 0.008986656188964843, 0.008960927963256836, 0.008961343765258789, 0.008983103752136231, 0.008978816032409668, 0.009004544258117676, 0.009025279998779296, 0.008970111846923827, 0.009185919761657715, 0.009011199951171875, 0.009117695808410644, 0.009033727645874023, 0.009165120124816895, 0.009333951950073242, 0.009162879943847657, 0.010742207527160645, 0.008967904090881348, 0.009015520095825196, 0.008978431701660156, 0.009088768005371093, 0.00914409637451172, 0.008944095611572266, 0.008947039604187012, 0.009011872291564941, 0.008927231788635253, 0.009019392013549805, 0.008947711944580078, 0.00959705638885498, 0.008957823753356934, 0.008956000328063965, 0.00896985626220703, 0.008967616081237794, 0.008928095817565918, 0.00893337631225586, 0.009177087783813476, 0.00942080020904541, 0.008964096069335938, 0.008973504066467285, 0.008978528022766113, 0.009897024154663085, 0.01069660758972168, 0.00896291160583496, 0.008958175659179687, 0.008913311958312988, 0.008945376396179198, 0.008962080001831055, 0.008947936058044434, 0.008923456192016602, 0.009050111770629882, 0.008951711654663085, 0.008939040184020997, 0.008958271980285645, 0.008921343803405762, 0.00875443172454834, 0.008990880012512206, 0.008987296104431152, 0.009158592224121093, 0.00908841609954834, 0.008999039649963379, 0.008962528228759765, 0.008971936225891113, 0.008991071701049805, 0.008939647674560547, 0.009008959770202636, 0.008978431701660156, 0.00899283218383789, 0.00901529598236084, 0.008965696334838867, 0.008952223777770996, 0.00904924774169922, 0.008999808311462403, 0.008920991897583008, 0.008984607696533203, 0.008973823547363282, 0.008921664237976074, 0.008966015815734864, 0.008990847587585449, 0.009000384330749511, 0.009159232139587402, 0.00917039966583252, 0.009271840095520019, 0.009023679733276366, 0.009033184051513671, 0.009029631614685058, 0.008994943618774414, 0.009064224243164063, 0.009004896163940429, 0.009021280288696289, 0.009006879806518554, 0.00898259162902832, 0.008967071533203126, 0.009000960350036622, 0.008934975624084473, 0.009033696174621582, 0.00897276782989502, 0.00899443244934082, 0.00897267246246338, 0.008947168350219727, 0.008981023788452148, 0.009142144203186035, 0.009027711868286133, 0.009003007888793945, 0.009070079803466797, 0.008939552307128906, 0.008937536239624023, 0.008933792114257813, 0.008874112129211426, 0.0088472318649292, 0.00887168025970459, 0.00885756778717041, 0.008816927909851073, 0.008893600463867187, 0.008858016014099121, 0.008866239547729492, 0.008845312118530273, 0.00897862434387207, 0.009006815910339356, 0.008960864067077638, 0.00903987216949463, 0.00890880012512207, 0.00890880012512207, 0.008888128280639649, 0.008837311744689942, 0.008914752006530762, 0.008958144187927246, 0.008960000038146973, 0.00888371181488037, 0.008897024154663086, 0.008880127906799316, 0.009155712127685546, 0.00903052806854248, 0.008970111846923827, 0.008937600135803223, 0.008921088218688965, 0.008887519836425781, 0.008849632263183594, 0.008978848457336425, 0.008933247566223145, 0.008890175819396972, 0.008888928413391114, 0.008902560234069825, 0.008902624130249023, 0.00889241600036621, 0.008887871742248536, 0.00893075180053711, 0.008920063972473144, 0.008976384162902832, 0.008914496421813965, 0.008962559700012206, 0.008916864395141602, 0.00895302391052246, 0.008913791656494141, 0.008887295722961425, 0.008957056045532227, 0.008968064308166504, 0.008885855674743653, 0.008903072357177735, 0.00892518424987793, 0.008921088218688965, 0.008968416213989258, 0.008981887817382812, 0.009764863967895507, 0.009005536079406738, 0.008982463836669922, 0.00890675163269043, 0.008900735855102539, 0.008920960426330567, 0.008970239639282226, 0.008943615913391113, 0.008904735565185546, 0.0089169282913208, 0.008929280281066895, 0.00890713596343994, 0.009020352363586425, 0.008877056121826172, 0.008953568458557128, 0.008898112297058105, 0.008870335578918457, 0.008886272430419923, 0.009011967658996582, 0.009527423858642577, 0.010597472190856933, 0.00901734447479248, 0.009564031600952148, 0.00898960018157959, 0.008937472343444825, 0.009236479759216308, 0.008867839813232421, 0.008927231788635253, 0.008934528350830077, 0.008893183708190918, 0.008869983673095704, 0.008902688026428223, 0.008881664276123047, 0.008915455818176269, 0.008934752464294433, 0.008876704216003417, 0.008883487701416016, 0.008926239967346192, 0.008890048027038574, 0.008812543869018554, 0.008889439582824708, 0.008922016143798828, 0.008900768280029297, 0.00902284812927246, 0.009218527793884277, 0.008939519882202148, 0.00893507194519043, 0.00905465602874756, 0.008983551979064941, 0.008872544288635254, 0.008955264091491699, 0.008931488037109374, 0.008887295722961425, 0.008875807762145997, 0.008892031669616699, 0.008971936225891113, 0.009998687744140625, 0.010410112380981445, 0.008892671585083008, 0.00894115161895752, 0.008933216094970704, 0.008880991935729981, 0.008809503555297851, 0.00890505599975586, 0.008877887725830078, 0.008937631607055664, 0.009109919548034667, 0.009170911788940429, 0.009135552406311035, 0.009003487586975098, 0.008915040016174316, 0.008939871788024903, 0.008928192138671876, 0.008884127616882325, 0.008897343635559081, 0.008877087593078613, 0.008876031875610351, 0.009171744346618653, 0.009044159889221191, 0.008893664360046388, 0.008873791694641113, 0.008613887786865235, 0.00901244831085205, 0.008910688400268554, 0.008889280319213867, 0.008882176399230958, 0.008865344047546386, 0.008845760345458984, 0.008863743782043456, 0.008790335655212402, 0.008894399642944336, 0.008988191604614258, 0.008881695747375488, 0.00887177562713623, 0.008928064346313477, 0.00894979190826416, 0.009023679733276366, 0.008904512405395509, 0.008896736145019532, 0.008971936225891113, 0.008865440368652344, 0.008864224433898926, 0.008863455772399902, 0.008865056037902832, 0.008890591621398925, 0.008915743827819823, 0.008851455688476563, 0.008894463539123536, 0.008861696243286133, 0.008939359664916992, 0.008925344467163086, 0.008896415710449218, 0.008954015731811524, 0.008912832260131835, 0.008880352020263672, 0.008883999824523927, 0.008887935638427734, 0.008909184455871582, 0.00889628791809082, 0.008868032455444336, 0.008837151527404784, 0.008847776412963868, 0.008887904167175293, 0.008857600212097168, 0.008817760467529297, 0.008866432189941407, 0.008881855964660644, 0.008893024444580079, 0.008822303771972656, 0.008804224014282226, 0.00885750389099121, 0.00887059211730957, 0.008857760429382324, 0.008854784011840821, 0.008821215629577637, 0.008871392250061035, 0.008911520004272462, 0.008843263626098634, 0.008863903999328614, 0.009018912315368652, 0.008825311660766602, 0.009039711952209473, 0.009011072158813476, 0.008870016098022461, 0.008655551910400391, 0.008943807601928712, 0.009016384124755859, 0.008961119651794434, 0.00889020824432373, 0.008921279907226562, 0.008935232162475586, 0.008964096069335938, 0.008851455688476563, 0.008873727798461914, 0.008916447639465332, 0.008842047691345214, 0.00887395191192627, 0.00892518424987793, 0.008870176315307617, 0.00890828800201416, 0.00890447998046875, 0.008918784141540527, 0.008917695999145507, 0.008870016098022461, 0.008871071815490723, 0.008870623588562011, 0.008803808212280273, 0.008863840103149414, 0.00891539192199707, 0.008870176315307617, 0.008849120140075684, 0.008910176277160644, 0.008909472465515137, 0.008946975708007813, 0.008862431526184083, 0.008910847663879394, 0.008881888389587402, 0.008933216094970704, 0.008911456108093262, 0.00889241600036621, 0.008841055870056153, 0.008877344131469726, 0.008862015724182128, 0.008817055702209472, 0.008837120056152344, 0.008857695579528809, 0.008853407859802246, 0.008871935844421386, 0.00899071979522705, 0.008895584106445312, 0.008932607650756836, 0.008904224395751953, 0.008887968063354491, 0.008850048065185547, 0.008893280029296876, 0.0089303035736084, 0.008912896156311035, 0.008828736305236817, 0.008876480102539063, 0.008830240249633789, 0.008900992393493653, 0.009200960159301759, 0.008878879547119141, 0.00885372829437256, 0.008891231536865234, 0.008850367546081542, 0.008857664108276367, 0.008593952178955078, 0.008912960052490234, 0.008914336204528809, 0.008884511947631835, 0.00891321563720703, 0.008880127906799316, 0.008840543746948242, 0.008895392417907716, 0.008975296020507813, 0.00886457633972168, 0.008879360198974609, 0.008915840148925781, 0.008854623794555663, 0.008888447761535644, 0.008868736267089844, 0.008899935722351074, 0.00892563247680664, 0.00885536003112793, 0.008855744361877442, 0.008848671913146972, 0.008874496459960938, 0.008904159545898438, 0.008903424263000488, 0.008954943656921387, 0.008942048072814941, 0.008923199653625489, 0.00888259220123291, 0.008871520042419433, 0.008923583984375, 0.008875455856323242, 0.008937824249267578, 0.00887827205657959, 0.008898655891418457, 0.008873824119567872, 0.008931391716003418, 0.008912608146667481, 0.008882080078125, 0.008919424057006835, 0.008906720161437988, 0.008916416168212891, 0.008938079833984374, 0.009110976219177246, 0.008884703636169434, 0.008951904296875, 0.008867839813232421, 0.009244671821594238, 0.009105024337768554, 0.008950143814086915, 0.00891926383972168, 0.009200608253479004, 0.00897878360748291, 0.008982975959777833, 0.00885587215423584, 0.008951519966125488, 0.008898303985595704, 0.008964192390441895, 0.008887807846069335, 0.008917792320251465, 0.008879615783691406, 0.008987168312072753, 0.008916671752929688, 0.009005215644836426, 0.008991071701049805, 0.008660991668701172, 0.008982208251953125, 0.00905247974395752, 0.008912896156311035, 0.008900927543640138, 0.008951199531555177, 0.00891932773590088, 0.008934847831726074, 0.008946592330932618, 0.00893507194519043, 0.008929280281066895, 0.008894463539123536, 0.008898591995239258, 0.008879872322082519, 0.009021663665771484, 0.008986559867858887, 0.009072095870971679, 0.008870847702026367, 0.008940320014953613, 0.008896832466125488, 0.008882623672485351, 0.008933024406433105, 0.008882656097412109, 0.00894547176361084, 0.0088721923828125, 0.008957887649536133, 0.00931174373626709, 0.008978943824768066, 0.008910976409912109, 0.00893939208984375, 0.00892751979827881, 0.00926796817779541, 0.009779359817504883, 0.009499456405639648, 0.009337183952331542, 0.00898739242553711, 0.0089934720993042, 0.008973952293395995, 0.008955743789672852, 0.008946528434753418, 0.008875103950500488, 0.008930432319641112, 0.008897631645202637, 0.00886025619506836, 0.008954879760742187, 0.008954463958740234, 0.008958368301391602, 0.008867839813232421, 0.008910847663879394, 0.008943615913391113, 0.009089152336120605, 0.00913599967956543, 0.00899891185760498, 0.008937472343444825, 0.0089169921875, 0.008888319969177246, 0.008931327819824218, 0.008923135757446288, 0.008894335746765137, 0.008899999618530273, 0.00883187198638916, 0.008865856170654296, 0.008875136375427245, 0.008702752113342285, 0.009015232086181641, 0.008942655563354492, 0.008967103958129883, 0.008927552223205567, 0.00901088047027588, 0.008879551887512207, 0.00890937614440918, 0.008877568244934082, 0.008948415756225585, 0.008918975830078125, 0.008908672332763672, 0.00892518424987793, 0.008926560401916504, 0.008905376434326172, 0.008888319969177246, 0.008920512199401855, 0.008886240005493163, 0.008903583526611329, 0.008860960006713867, 0.008895296096801758, 0.008916576385498047, 0.008983903884887696, 0.00915715217590332, 0.008957823753356934, 0.008972479820251464, 0.00899897575378418, 0.008980480194091797, 0.008881312370300293, 0.009073504447937012, 0.00926540756225586, 0.008988415718078614, 0.009005056381225587, 0.008964096069335938, 0.008959967613220215, 0.008938624382019042, 0.008940223693847657, 0.008904000282287598, 0.008949664115905762, 0.0089303035736084, 0.008893856048583984, 0.008921088218688965, 0.008923744201660156, 0.008893440246582032, 0.008874591827392577, 0.009052895545959472, 0.008894144058227539, 0.008923135757446288, 0.0088853759765625, 0.00894809627532959, 0.008890239715576172, 0.008945504188537597, 0.009025856018066407, 0.008859935760498048, 0.008933568000793457, 0.008946911811828613, 0.008891519546508788, 0.008926495552062989, 0.008922816276550293, 0.008927935600280762, 0.00887929630279541, 0.008893024444580079, 0.00888371181488037, 0.008677696228027344, 0.009243807792663573, 0.009261919975280761, 0.009233823776245117, 0.008949376106262208, 0.009182175636291505, 0.008947232246398925, 0.009021696090698242, 0.008952159881591797, 0.008926176071166992, 0.009024319648742675, 0.009607263565063476, 0.009040096282958984, 0.008916768074035644, 0.008856896400451661, 0.008910592079162599, 0.009089983940124512, 0.008924927711486817, 0.00889680004119873, 0.008931296348571777, 0.008935423851013183, 0.008884223937988281, 0.008861632347106933, 0.008851519584655762, 0.008857600212097168, 0.008900959968566895, 0.008877728462219238, 0.008855263710021972, 0.00892137622833252, 0.00896828842163086, 0.009012864112854005, 0.0089901123046875, 0.00901414394378662, 0.008975584030151368, 0.008956704139709473, 0.00889241600036621, 0.008953791618347168, 0.008878144264221191, 0.008941727638244629, 0.00889020824432373, 0.008905759811401367, 0.008969183921813964, 0.008934816360473634, 0.008964703559875489, 0.008918304443359375, 0.008935968399047851, 0.008923328399658204, 0.008893471717834472, 0.00885654354095459, 0.008951359748840333, 0.008855135917663574, 0.008889023780822753, 0.008849056243896484, 0.008833760261535645, 0.008855648040771484, 0.008879743576049804, 0.008839391708374023, 0.008855392456054687, 0.008802111625671388, 0.008835264205932617, 0.008874176025390625, 0.008844703674316405, 0.00886240005493164, 0.008654848098754882, 0.008904704093933105, 0.008857600212097168, 0.008908479690551759, 0.008855968475341798, 0.009045439720153809, 0.008837183952331544, 0.008886688232421875, 0.008870240211486816, 0.008867487907409669, 0.008876031875610351, 0.008877568244934082, 0.008885791778564453, 0.008889632225036621, 0.009145952224731446, 0.009100864410400391, 0.00895849609375, 0.008951680183410644, 0.008949888229370118, 0.008971839904785157, 0.008976832389831543, 0.008951359748840333, 0.008934880256652832, 0.008987615585327149, 0.008943615913391113, 0.008972288131713867, 0.008902655601501466, 0.008965472221374511, 0.009087615966796875, 0.008990752220153808, 0.008942720413208007, 0.00890345573425293, 0.009000288009643555, 0.008995903968811034, 0.008918560028076172, 0.008921567916870116, 0.008883904457092286, 0.008912320137023927, 0.008898528099060058, 0.008861824035644532, 0.008899264335632324, 0.008894368171691895, 0.008910400390625, 0.008853183746337891, 0.008902527809143067, 0.008889439582824708, 0.008984224319458008, 0.00899071979522705, 0.008861696243286133, 0.008943488121032715, 0.009140352249145507, 0.009281439781188965, 0.008859744071960449, 0.00883619213104248, 0.008895392417907716, 0.008873311996459961, 0.008854016304016114, 0.00914243221282959, 0.00891881561279297, 0.009480192184448242, 0.00888649559020996, 0.008845312118530273, 0.008931551933288574, 0.008653663635253906, 0.008993856430053711, 0.009318719863891602, 0.00901734447479248, 0.008932000160217285, 0.008916768074035644, 0.008904800415039063, 0.008928352355957032, 0.008895392417907716, 0.00886796760559082, 0.00889408016204834, 0.00894092845916748, 0.008914912223815918, 0.008922016143798828, 0.008896672248840332, 0.008914079666137695, 0.008946623802185059, 0.009038975715637207, 0.008854047775268555, 0.008953951835632324, 0.008939519882202148, 0.00900710391998291, 0.008919039726257324, 0.00894761562347412, 0.009020928382873536, 0.008893024444580079, 0.008897695541381836, 0.008866047859191895, 0.008956512451171876, 0.008896512031555176, 0.008896608352661133, 0.008878080368041993, 0.008919072151184083, 0.008946623802185059, 0.008887231826782227, 0.008843647956848144, 0.008887455940246583, 0.008895135879516602, 0.008898367881774902, 0.008935423851013183, 0.00890060806274414, 0.00894713592529297, 0.008972127914428711, 0.00894819164276123, 0.008915264129638672, 0.00891487979888916, 0.008912320137023927, 0.008911423683166504, 0.00890880012512207, 0.008895520210266114, 0.008903583526611329, 0.008941632270812988, 0.008899871826171874, 0.008886752128601074, 0.008877951622009278, 0.009083264350891114, 0.008898816108703612, 0.008826656341552734, 0.008880096435546875, 0.008889375686645508, 0.008906815528869629, 0.008925151824951173, 0.00888044834136963, 0.008795007705688477, 0.008994720458984374, 0.008986144065856934, 0.008937952041625976, 0.008996479988098145, 0.008992704391479492, 0.00893177604675293, 0.008969280242919922, 0.008973247528076172, 0.008919039726257324, 0.009000767707824707, 0.00890454387664795, 0.008946016311645507, 0.008954143524169922, 0.008999967575073242, 0.008999615669250489, 0.008962143898010254, 0.008976287841796875, 0.008996864318847657, 0.008955424308776855, 0.009003487586975098, 0.00898470401763916, 0.008962271690368652, 0.008916319847106934, 0.008885951995849609, 0.008923775672912597, 0.0089169921875, 0.00890988826751709, 0.008919551849365234, 0.008908224105834962, 0.00909823989868164, 0.009174176216125488, 0.00900972843170166, 0.008935359954833985, 0.009021792411804199, 0.009041440010070801, 0.009005215644836426, 0.008977888107299804, 0.008967167854309082, 0.008914719581604004, 0.008906463623046874, 0.011077887535095214, 0.01050767993927002, 0.009095871925354004, 0.008998432159423829, 0.009001152038574219, 0.009000639915466308, 0.009007072448730469, 0.009011967658996582, 0.008905856132507325, 0.008966912269592285, 0.008970432281494141, 0.008959263801574706, 0.00892182445526123, 0.008931136131286621, 0.008917280197143555, 0.008926943778991699, 0.008873215675354004, 0.008895551681518555, 0.008826560020446777, 0.008836735725402832, 0.008888575553894043, 0.008872063636779785, 0.008608927726745605, 0.008928095817565918, 0.008939616203308106, 0.008893600463867187, 0.008931679725646973, 0.008914560317993163, 0.008863615989685058, 0.008928159713745117, 0.008906559944152832, 0.008829119682312012, 0.008929120063781739, 0.008972448348999023, 0.008923135757446288, 0.008939616203308106, 0.008962176322937011, 0.008949343681335448, 0.008931520462036133, 0.008904704093933105, 0.008867487907409669, 0.008892191886901855, 0.008954239845275878, 0.008945631980895995, 0.009013471603393554, 0.00924079990386963, 0.009044960021972656, 0.009075136184692382, 0.009023872375488282, 0.009025216102600098, 0.009023615837097168, 0.008994400024414062, 0.008991328239440918, 0.008929632186889648, 0.009197216033935546, 0.008946016311645507, 0.009021087646484375, 0.008965279579162598, 0.008894911766052246, 0.009099072456359863, 0.008882783889770507, 0.008843168258666993, 0.008895711898803711, 0.008893312454223633, 0.008922975540161132, 0.008878496170043946, 0.008840255737304688, 0.008901311874389648, 0.008878080368041993, 0.009174528121948243, 0.009058943748474121, 0.008927295684814453, 0.00887715244293213, 0.008926943778991699, 0.008909824371337891, 0.0089169921875, 0.00892080020904541, 0.008907039642333985, 0.008970047950744629, 0.009015487670898438, 0.00889260768890381, 0.008906815528869629, 0.008901663780212402, 0.008934111595153808, 0.00890287971496582]",tokens/s,111.41511952544634,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1066.164224,2079.260672,0.0,1684.013056,1657.439232,s,1,7.20651171875,7.20651171875,0.0,7.20651171875,7.20651171875,7.20651171875,7.20651171875,[7.20651171875],,kWh,3.902005829168804e-06,4.2313658090350484e-07,1.08944531600208e-06,5.414587726074389e-06,,MB,1465.778176,2121.203712,0.0,1713.373184,1302.298112,s,10,0.2045635223388672,0.020456352233886716,9.982592927681153e-05,0.020436384201049804,0.020562000274658203,0.020579784393310548,0.020594011688232425,"[0.02054652786254883, 0.020274528503417967, 0.020597568511962892, 0.02044051170349121, 0.020333696365356445, 0.02040687942504883, 0.020550016403198243, 0.020558048248291015, 0.0204322566986084, 0.02042348861694336]",tokens/s,12514.450136223524,kWh,6.115423075575541e-07,6.744228202231944e-08,4.052339364602495e-07,1.0842185260401231e-06,tokens/kWh,236114762.70838627,MB,1498.3168,2167.341056,0.0,1759.510528,1302.300672,s,10,10.629517578125,1.0629517578125,0.006288410895526865,1.0607664184570313,1.0732203857421874,1.074286279296875,1.075138994140625,"[1.0546771240234376, 1.05889404296875, 1.0729835205078124, 1.0753521728515625, 1.0589505615234376, 1.05885888671875, 1.066343994140625, 1.05998388671875, 1.0615489501953126, 1.0619244384765625]",tokens/s,59.26891746211583,kWh,3.077133158369081e-05,3.3935785457500333e-06,1.673241866253999e-05,5.089732879198083e-05,tokens/kWh,1237785.9800360685,,s,630,10.627107385635394,0.016868424421643456,0.00040986439613106514,0.01679119968414307,0.01704718360900879,0.01721332950592041,0.01900769989013672,"[0.01665843200683594, 0.01665843200683594, 0.016521215438842773, 0.01657478332519531, 0.016576192855834962, 0.016639999389648438, 0.016680959701538087, 0.016615423202514648, 0.016570144653320313, 0.016547775268554686, 0.016611616134643556, 0.01687721633911133, 0.016636255264282227, 0.01659222412109375, 0.016642719268798827, 0.016620832443237303, 0.016692256927490233, 0.016608383178710936, 0.016656959533691406, 0.01665417671203613, 0.016699552536010742, 0.01661952018737793, 0.01658470344543457, 0.01661337661743164, 0.016656415939331055, 0.016823520660400392, 0.01691929626464844, 0.016719871520996094, 0.016637855529785157, 0.01686128044128418, 0.01677107238769531, 0.016785408020019533, 0.016709632873535156, 0.016602304458618163, 0.01662406349182129, 0.01672835159301758, 0.016683103561401368, 0.016672767639160157, 0.01656012725830078, 0.0165928955078125, 0.01664793586730957, 0.017186912536621093, 0.01675507164001465, 0.01666640090942383, 0.01685417556762695, 0.016728927612304687, 0.0168222713470459, 0.01663542366027832, 0.016701919555664062, 0.016535295486450195, 0.01656563186645508, 0.01680678367614746, 0.016769023895263673, 0.016614463806152342, 0.019633087158203125, 0.01718262481689453, 0.016664991378784178, 0.016662208557128907, 0.01678451156616211, 0.016681856155395507, 0.016777215957641603, 0.016618656158447265, 0.01665011215209961, 0.016661888122558595, 0.01660108757019043, 0.01672256088256836, 0.01658880043029785, 0.016580160140991212, 0.016563711166381837, 0.016647104263305665, 0.016604448318481447, 0.016658880233764647, 0.016658527374267578, 0.016732608795166016, 0.016657472610473633, 0.01674825668334961, 0.016662687301635743, 0.016660287857055665, 0.016670816421508788, 0.016659360885620117, 0.01680179214477539, 0.016722015380859375, 0.016606271743774412, 0.016587615966796875, 0.016800928115844726, 0.016880767822265625, 0.017581024169921876, 0.01807846450805664, 0.017460832595825194, 0.016946720123291015, 0.01682111930847168, 0.01681203269958496, 0.016605440139770507, 0.01666806411743164, 0.016666112899780275, 0.016698047637939452, 0.016691360473632812, 0.01655513572692871, 0.016620416641235352, 0.018130048751831055, 0.01666736030578613, 0.016629856109619142, 0.01672198486328125, 0.016586751937866212, 0.016752639770507814, 0.017182144165039062, 0.016682655334472656, 0.016650751113891603, 0.01692207908630371, 0.016742591857910157, 0.016763647079467772, 0.016777151107788085, 0.016703296661376953, 0.016651935577392578, 0.016863840103149414, 0.01675491142272949, 0.016938783645629882, 0.016781312942504883, 0.016985279083251953, 0.01686809539794922, 0.016810239791870116, 0.016829568862915038, 0.016884128570556642, 0.016855327606201172, 0.01680384063720703, 0.01700864028930664, 0.016789024353027343, 0.016935327529907226, 0.016791616439819336, 0.016758687973022462, 0.016646240234375, 0.016774656295776368, 0.016712255477905273, 0.016670656204223634, 0.016556032180786134, 0.01660848045349121, 0.016707391738891603, 0.016712671279907228, 0.01659699249267578, 0.016613471984863282, 0.01661942481994629, 0.01658880043029785, 0.01682636833190918, 0.01706188774108887, 0.016717824935913086, 0.016812288284301757, 0.016685983657836915, 0.016661376953125, 0.016721887588500975, 0.01715123176574707, 0.017185535430908203, 0.016848096847534178, 0.016904991149902345, 0.0168407039642334, 0.016821247100830078, 0.016696319580078126, 0.017006591796875, 0.01700249671936035, 0.016957439422607423, 0.016793600082397463, 0.016908287048339844, 0.016664480209350584, 0.016773216247558592, 0.017092607498168946, 0.021839967727661135, 0.017072032928466797, 0.01712460708618164, 0.020431583404541015, 0.018933792114257813, 0.017072128295898437, 0.016891904830932617, 0.016786880493164062, 0.016894048690795898, 0.016875999450683594, 0.017046655654907227, 0.01685593605041504, 0.016848384857177736, 0.01697990417480469, 0.01680851173400879, 0.01780672073364258, 0.0170250244140625, 0.016953311920166015, 0.016801599502563477, 0.016819040298461915, 0.01677712059020996, 0.01682009506225586, 0.016908512115478516, 0.017313791275024415, 0.016842975616455078, 0.01675913619995117, 0.017279392242431642, 0.01679363250732422, 0.016916032791137695, 0.01683888053894043, 0.017410560607910155, 0.01682316780090332, 0.016827232360839845, 0.01693187141418457, 0.016777503967285157, 0.016781503677368165, 0.016845312118530274, 0.017086463928222655, 0.01691628837585449, 0.017076416015625, 0.01694246482849121, 0.016940736770629884, 0.01687238311767578, 0.01733843231201172, 0.01693631935119629, 0.017021503448486328, 0.016883712768554687, 0.01680793571472168, 0.016942975997924804, 0.017090688705444335, 0.017305599212646485, 0.01723494338989258, 0.01704652786254883, 0.017084415435791016, 0.01689727973937988, 0.016767744064331055, 0.018114559173583983, 0.01698147201538086, 0.016859136581420898, 0.020581184387207033, 0.017000160217285155, 0.016838239669799804, 0.016867744445800782, 0.016807872772216795, 0.017558847427368164, 0.019430143356323242, 0.01700454330444336, 0.017092096328735353, 0.01696614456176758, 0.01685264015197754, 0.01687366485595703, 0.016856895446777344, 0.016826719284057618, 0.016953472137451173, 0.01706585693359375, 0.017606367111206056, 0.01693110466003418, 0.0168035831451416, 0.016799104690551757, 0.016827264785766603, 0.01689219284057617, 0.01677510452270508, 0.0168341121673584, 0.016752864837646483, 0.016763935089111327, 0.01681884765625, 0.016722240447998048, 0.016876928329467772, 0.01676697540283203, 0.016748544692993163, 0.016867551803588867, 0.016664352416992188, 0.016713727951049806, 0.01679952049255371, 0.016843040466308593, 0.016741472244262694, 0.016914527893066408, 0.016818944931030273, 0.01681510353088379, 0.01676310348510742, 0.016748863220214842, 0.016734687805175782, 0.017934335708618163, 0.016680959701538087, 0.016676864624023437, 0.016672063827514648, 0.016681663513183592, 0.0167956485748291, 0.01675200080871582, 0.016749183654785157, 0.0167587833404541, 0.016871103286743162, 0.01705401611328125, 0.016913631439208984, 0.017064512252807616, 0.017062335968017577, 0.016860960006713867, 0.016807424545288087, 0.016747007369995116, 0.01683865547180176, 0.0168222713470459, 0.016776832580566406, 0.016797088623046876, 0.01673520088195801, 0.01678163146972656, 0.016686784744262696, 0.016744447708129884, 0.016728063583374024, 0.01670297622680664, 0.016687616348266602, 0.017059839248657227, 0.016957439422607423, 0.01679088020324707, 0.016756704330444336, 0.016863935470581053, 0.016762208938598634, 0.016718496322631837, 0.01672719955444336, 0.016794815063476562, 0.016663455963134767, 0.016786176681518553, 0.016725791931152343, 0.016783584594726564, 0.01679155158996582, 0.016812000274658203, 0.016734079360961916, 0.01674051284790039, 0.01674355125427246, 0.016774015426635744, 0.016668672561645507, 0.016732160568237304, 0.01670515251159668, 0.01674278450012207, 0.016801504135131835, 0.017024351119995118, 0.01688435173034668, 0.016761152267456055, 0.016891359329223633, 0.016757280349731445, 0.016924671173095703, 0.016736255645751954, 0.01671977615356445, 0.016769119262695312, 0.016737823486328126, 0.01668921661376953, 0.0166297607421875, 0.016774848937988283, 0.016734687805175782, 0.016710016250610353, 0.016795520782470704, 0.016773120880126953, 0.016852991104125976, 0.01797292709350586, 0.01683692741394043, 0.016760831832885743, 0.0168222713470459, 0.01679155158996582, 0.01680384063720703, 0.01680588722229004, 0.01683046340942383, 0.016861183166503906, 0.01684787178039551, 0.016755712509155272, 0.01677516746520996, 0.016742303848266603, 0.016744543075561523, 0.016735519409179687, 0.016720447540283203, 0.016660640716552735, 0.016723455429077147, 0.016908031463623047, 0.01682441520690918, 0.016751264572143553, 0.016687103271484375, 0.016738304138183592, 0.016703744888305665, 0.01716592025756836, 0.016797855377197267, 0.01676288032531738, 0.016696928024291992, 0.01669571113586426, 0.016780799865722656, 0.016779359817504884, 0.016757152557373048, 0.016754623413085937, 0.016805952072143554, 0.016723968505859374, 0.01704694366455078, 0.016796607971191407, 0.016746143341064453, 0.016736255645751954, 0.01677516746520996, 0.016772607803344726, 0.016801408767700195, 0.01692857551574707, 0.0168221435546875, 0.016729984283447265, 0.01682681655883789, 0.016717824935913086, 0.016893951416015626, 0.01678950309753418, 0.016756736755371093, 0.016748544692993163, 0.016693248748779296, 0.01712115287780762, 0.018301055908203124, 0.016889856338500975, 0.016972063064575195, 0.01692393684387207, 0.016882015228271485, 0.016988256454467773, 0.017327840805053712, 0.016838783264160155, 0.01678758430480957, 0.01673539161682129, 0.01671993637084961, 0.01672684860229492, 0.0167873592376709, 0.016750688552856444, 0.01680335998535156, 0.01702140808105469, 0.016848255157470703, 0.01688230323791504, 0.016788768768310546, 0.016754751205444337, 0.016844959259033204, 0.016845312118530274, 0.01675984001159668, 0.016726079940795897, 0.016656320571899415, 0.016780256271362304, 0.016672767639160157, 0.01683046340942383, 0.01679302406311035, 0.01681772804260254, 0.016753664016723634, 0.01675468826293945, 0.016734399795532227, 0.01672697639465332, 0.01693084716796875, 0.016837472915649413, 0.016738239288330077, 0.01673222351074219, 0.019037887573242186, 0.019138879776000976, 0.017323200225830077, 0.016909120559692382, 0.01685910415649414, 0.01676700782775879, 0.016732160568237304, 0.0167359676361084, 0.016781600952148437, 0.016856351852416993, 0.016861919403076173, 0.016701440811157226, 0.016871423721313478, 0.016831552505493164, 0.016726207733154298, 0.01677267265319824, 0.016757728576660157, 0.01681407928466797, 0.01707827186584473, 0.016875520706176757, 0.01677926445007324, 0.016781183242797853, 0.016742528915405272, 0.016747520446777343, 0.016749088287353515, 0.016843231201171874, 0.01695267105102539, 0.016800416946411132, 0.01670710372924805, 0.016727584838867188, 0.01672492790222168, 0.016738304138183592, 0.01680384063720703, 0.016756736755371093, 0.0167587833404541, 0.016726015090942382, 0.016731136322021483, 0.017054975509643553, 0.01690387153625488, 0.016793664932250978, 0.016780479431152344, 0.016810272216796877, 0.016790048599243164, 0.01681407928466797, 0.016737855911254883, 0.01671331214904785, 0.016819295883178712, 0.016946943283081054, 0.016774591445922853, 0.01677574348449707, 0.016736255645751954, 0.01678873634338379, 0.016757503509521484, 0.017344127655029296, 0.016799583435058593, 0.016771007537841796, 0.016869983673095702, 0.016797151565551758, 0.01683919906616211, 0.016770591735839845, 0.01690889549255371, 0.016869247436523436, 0.01680931282043457, 0.016818815231323243, 0.01676291275024414, 0.016869375228881836, 0.016867328643798828, 0.01681407928466797, 0.016807199478149414, 0.016714399337768554, 0.017149248123168946, 0.016843103408813478, 0.016843328475952147, 0.016811872482299806, 0.01682636833190918, 0.01685055923461914, 0.016892288208007814, 0.01677663993835449, 0.016749120712280272, 0.016664447784423827, 0.01675276756286621, 0.01672742462158203, 0.016775808334350585, 0.016772192001342775, 0.017090591430664062, 0.016978815078735353, 0.016720991134643554, 0.016748575210571288, 0.01670172882080078, 0.016800031661987305, 0.016755008697509767, 0.016884960174560548, 0.016746944427490234, 0.016769247055053713, 0.016754816055297852, 0.01680303955078125, 0.016735008239746094, 0.01695929527282715, 0.017031360626220703, 0.016852991104125976, 0.016737472534179686, 0.01676576042175293, 0.0168341121673584, 0.016904640197753906, 0.017299455642700197, 0.016787424087524414, 0.016754720687866213, 0.0167475528717041, 0.016769439697265624, 0.01697350311279297, 0.016783519744873045, 0.016788192749023437, 0.01675468826293945, 0.016793600082397463, 0.01685830307006836, 0.01691935920715332, 0.01672563171386719, 0.016808319091796874, 0.01676838493347168, 0.016771743774414063, 0.016877119064331054, 0.01694761657714844, 0.01681407928466797, 0.01704934310913086, 0.016877824783325196, 0.016817279815673828, 0.01685183906555176, 0.017075519561767578, 0.01739641571044922, 0.016778335571289063, 0.01696656036376953, 0.016990207672119142, 0.016936063766479492, 0.01684979248046875, 0.016781312942504883, 0.016924671173095703, 0.016856191635131836, 0.01685513687133789, 0.016744672775268556, 0.01682899284362793, 0.016793952941894532, 0.017362943649291994, 0.016879615783691407, 0.016850240707397462, 0.0167740478515625, 0.01680771255493164, 0.016746400833129883, 0.016742719650268554, 0.016735872268676757, 0.016844959259033204, 0.01680588722229004, 0.016783071517944337, 0.016715423583984375, 0.01685183906555176, 0.01676406478881836, 0.016787296295166017, 0.016726112365722655, 0.017075872421264647, 0.01700147247314453, 0.016958879470825194, 0.01673423957824707, 0.016710208892822265, 0.01683785629272461, 0.016816928863525392, 0.016777568817138672, 0.016715423583984375, 0.01678982353210449, 0.016846015930175783, 0.016793888092041017, 0.016709856033325195, 0.01680179214477539, 0.01678892707824707, 0.01681056022644043, 0.017095680236816405, 0.01686809539794922, 0.016824384689331055, 0.016801599502563477, 0.016817920684814452, 0.016794240951538086, 0.01686083221435547, 0.01678780746459961, 0.01673535919189453, 0.016735103607177733, 0.016774911880493164, 0.01692288017272949, 0.016885408401489256, 0.01673456001281738, 0.016769023895263673, 0.01696758460998535, 0.016990304946899414, 0.016850944519042968, 0.016836383819580077, 0.016963808059692383, 0.01690153694152832, 0.016791519165039064, 0.0168239688873291, 0.01679203224182129, 0.016979488372802734, 0.0168253116607666, 0.016911775588989257, 0.016775775909423828, 0.017111040115356444, 0.01761065673828125]",tokens/s,59.28235945480034,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,,MB,869.634048,13880.918016,0.0,13478.395904,13476.849152,s,1,7.35041064453125,7.35041064453125,0.0,7.35041064453125,7.35041064453125,7.35041064453125,7.35041064453125,[7.35041064453125],,kWh,8.439093891668866e-06,9.236513171774608e-07,5.1227818759977395e-06,1.4485527084844066e-05,,MB,1311.862784,14117.896192,0.0,13702.791168,13671.637504,s,10,2.127459121704102,0.2127459121704102,0.00519433418086913,0.214504753112793,0.216806494140625,0.21770822448730467,0.21842960876464843,"[0.20121987915039063, 0.21380003356933594, 0.21627299499511718, 0.21650291442871095, 0.21660610961914062, 0.21860995483398438, 0.2151478729248047, 0.20882572937011717, 0.20661199951171874, 0.21386163330078126]",tokens/s,1203.313367520515,kWh,6.191126560330278e-06,6.823516867686455e-07,4.090581976166618e-06,1.0964060223265541e-05,tokens/kWh,23349014.396762665,MB,1367.769088,14119.993344,0.0,13702.791168,13671.640064,s,10,37.44088891601562,3.744088891601563,0.007610170858894072,3.7435976562500004,3.75319150390625,3.75492119140625,3.75630494140625,"[3.736145263671875, 3.734241455078125, 3.74118798828125, 3.74171337890625, 3.74886767578125, 3.75280712890625, 3.75665087890625, 3.75016748046875, 3.74548193359375, 3.733625732421875]",tokens/s,16.826523574618246,kWh,0.00010880863433841748,1.2002286469289821e-05,7.226475688583382e-05,0.00019307567769354106,tokens/kWh,326296.9253952153,,s,630,37.43761271286017,0.05942478208390492,0.0005483191210658585,0.05936655998229981,0.05980356597900391,0.06000085124969482,0.06286157764434815,"[0.062053726196289065, 0.05935804748535156, 0.05880627059936523, 0.058896190643310545, 0.058714305877685544, 0.058782943725585936, 0.05884543991088867, 0.05893379211425781, 0.058832447052001954, 0.05885116958618164, 0.05887855911254883, 0.05920153427124023, 0.05889190292358398, 0.05875120162963867, 0.05884329605102539, 0.059033599853515625, 0.05957017517089844, 0.05949030303955078, 0.05939567947387695, 0.059095455169677735, 0.05899468612670898, 0.058867233276367184, 0.058796222686767576, 0.05887958526611328, 0.05884179306030273, 0.05907660675048828, 0.059057857513427736, 0.05916067123413086, 0.05914751815795898, 0.059526111602783205, 0.059385665893554686, 0.059380992889404294, 0.059640766143798825, 0.059797088623046876, 0.05989321517944336, 0.05954246520996094, 0.05933055877685547, 0.059272350311279295, 0.05927113723754883, 0.059168960571289064, 0.05920147323608398, 0.05910809707641602, 0.059189247131347655, 0.059399681091308595, 0.05944527816772461, 0.05943913650512695, 0.05948255920410156, 0.05943091201782227, 0.05963529586791992, 0.05961974334716797, 0.05962860870361328, 0.05966739273071289, 0.05953945541381836, 0.059545600891113284, 0.05935222244262695, 0.059310943603515624, 0.059461631774902345, 0.059518081665039066, 0.05938191986083984, 0.05959552001953125, 0.05954761505126953, 0.0594513931274414, 0.05961715316772461, 0.06287769699096679, 0.05943888092041016, 0.05890204620361328, 0.058778305053710934, 0.05869772720336914, 0.05890867233276367, 0.058877216339111325, 0.058880096435546876, 0.05903219223022461, 0.059172863006591796, 0.05897830581665039, 0.059143646240234375, 0.05899318313598633, 0.05896806335449219, 0.0590371208190918, 0.05902579116821289, 0.059668704986572264, 0.059703262329101565, 0.05935923385620117, 0.05921791839599609, 0.05905168151855469, 0.05904624176025391, 0.059224063873291016, 0.058982398986816405, 0.05892214584350586, 0.05884310531616211, 0.05896486282348633, 0.05913779067993164, 0.05919126510620117, 0.05915017700195312, 0.05916511917114258, 0.059122913360595705, 0.05962406539916992, 0.05964313507080078, 0.05971014404296875, 0.059472095489501955, 0.059262977600097654, 0.059246593475341794, 0.05906156921386719, 0.05904441452026367, 0.05911360168457031, 0.05932032012939453, 0.059004257202148434, 0.059019935607910155, 0.059122974395751954, 0.05911561584472656, 0.05917923355102539, 0.059359649658203124, 0.05945334243774414, 0.0595948486328125, 0.05954764938354492, 0.059650047302246094, 0.05960022354125977, 0.0595643196105957, 0.05927471923828125, 0.059176895141601564, 0.05924143981933594, 0.05919075012207031, 0.059146785736083986, 0.05931417465209961, 0.05930099105834961, 0.05947049713134766, 0.05958793640136719, 0.06348534393310547, 0.060346912384033204, 0.05932038497924805, 0.05920476913452148, 0.05878665542602539, 0.058825790405273436, 0.05881676864624023, 0.05874480056762695, 0.05868515014648437, 0.05876633453369141, 0.05878579330444336, 0.058772510528564456, 0.05879072189331055, 0.058977920532226565, 0.05899318313598633, 0.059152416229248043, 0.05960214233398437, 0.05945625686645508, 0.05920336151123047, 0.05917241668701172, 0.05889279937744141, 0.05918044662475586, 0.05906713485717773, 0.05890457534790039, 0.05894496154785156, 0.05896822357177734, 0.05895996856689453, 0.05901526260375976, 0.05875446319580078, 0.058877918243408205, 0.05893616104125977, 0.05907865524291992, 0.05947555160522461, 0.05982249450683594, 0.059675838470458986, 0.059749183654785154, 0.05959065628051758, 0.05950668716430664, 0.05941571044921875, 0.05943350219726563, 0.05945171356201172, 0.05955379104614258, 0.05947596740722656, 0.05943296051025391, 0.0593851203918457, 0.059498207092285156, 0.05944947052001953, 0.05954444885253906, 0.05955350494384765, 0.05979734420776367, 0.05959267044067383, 0.05985446548461914, 0.05979833602905273, 0.059762718200683594, 0.05955379104614258, 0.059611137390136716, 0.05960704040527344, 0.05961884689331055, 0.059601375579833984, 0.05952102279663086, 0.059627521514892576, 0.05971116638183594, 0.05966579055786133, 0.06282211303710937, 0.059854400634765624, 0.05920569610595703, 0.05912547302246094, 0.0590868148803711, 0.059175872802734376, 0.05903936004638672, 0.05902579116821289, 0.059172863006591796, 0.05908889770507812, 0.059264030456542965, 0.05907900619506836, 0.05905062484741211, 0.05906227111816406, 0.059082752227783204, 0.05942844772338867, 0.05979318237304688, 0.06003366470336914, 0.05972377777099609, 0.05963161468505859, 0.05948163223266602, 0.05948668670654297, 0.059324417114257816, 0.059240447998046876, 0.05922537612915039, 0.05936406326293946, 0.05943862533569336, 0.059359264373779294, 0.05923884963989258, 0.059215873718261716, 0.05918851089477539, 0.05929804611206055, 0.05946822357177734, 0.05971478271484375, 0.059418529510498044, 0.05937376022338867, 0.05930451202392578, 0.059351200103759764, 0.05922611236572266, 0.059090206146240234, 0.059146976470947264, 0.05916057586669922, 0.05919948959350586, 0.05915961456298828, 0.059152320861816404, 0.05913625717163086, 0.059112190246582035, 0.05916672134399414, 0.059328510284423826, 0.05957632064819336, 0.05966233444213867, 0.05952511978149414, 0.059487903594970706, 0.05957052612304688, 0.05942272186279297, 0.059338623046875, 0.05929177474975586, 0.05944105529785156, 0.05943091201782227, 0.05957231903076172, 0.05934080123901367, 0.05940838241577148, 0.05926911926269531, 0.0630722541809082, 0.05967871856689453, 0.05885504150390625, 0.05877737426757813, 0.05896809768676758, 0.058986465454101564, 0.05888985443115234, 0.05888713455200195, 0.05890252685546875, 0.059032958984375, 0.059114112854003906, 0.05873600006103516, 0.058757278442382814, 0.05883878326416016, 0.05895199966430664, 0.05933097457885742, 0.05979248046875, 0.05984143829345703, 0.05954927825927735, 0.05934121704101562, 0.05991219329833984, 0.05938534545898438, 0.059343360900878904, 0.059308032989501956, 0.05968076705932617, 0.05944643020629883, 0.059417438507080075, 0.05936265563964844, 0.05921449661254883, 0.059310016632080076, 0.05939820861816406, 0.05945753479003906, 0.05980979156494141, 0.05990371322631836, 0.05979724884033203, 0.05964239883422852, 0.0594595832824707, 0.05948185729980469, 0.05932672119140625, 0.05941657638549805, 0.0594714241027832, 0.05963983917236328, 0.05964432144165039, 0.05975449752807617, 0.05959190368652344, 0.05956467056274414, 0.05943910217285156, 0.0594760627746582, 0.05967059326171875, 0.06001414489746094, 0.05984707260131836, 0.05982006454467773, 0.05978281784057617, 0.05964220809936523, 0.05963350296020508, 0.059616737365722657, 0.059607200622558594, 0.05979804611206055, 0.059469024658203126, 0.0596624641418457, 0.05965856170654297, 0.059674144744873044, 0.05963654327392578, 0.06296361541748047, 0.06002534484863281, 0.05927091217041015, 0.05902524948120117, 0.05901667022705078, 0.05917177581787109, 0.05913600158691406, 0.059084800720214846, 0.0590805778503418, 0.05915865707397461, 0.059156478881835936, 0.05931340789794922, 0.05913993453979492, 0.059253662109375, 0.05949996948242187, 0.05979808044433594, 0.05987942504882812, 0.05985279846191406, 0.05961075210571289, 0.059480159759521485, 0.05931651306152344, 0.05940611267089844, 0.05933692932128906, 0.059308032989501956, 0.05935491180419922, 0.05940860748291016, 0.05936742401123047, 0.059364513397216795, 0.05923712158203125, 0.059504737854003904, 0.05942476654052734, 0.059617088317871096, 0.059811038970947264, 0.05979644775390625, 0.05979097747802734, 0.05971596908569336, 0.05958860778808594, 0.0594200325012207, 0.05955228805541992, 0.05935318374633789, 0.05946515274047852, 0.059496990203857424, 0.059383838653564454, 0.05947779083251953, 0.059496673583984375, 0.05949235153198242, 0.05949849700927735, 0.0596060791015625, 0.05999280166625977, 0.06005168151855469, 0.06004121780395508, 0.06005263900756836, 0.05997449493408203, 0.059813343048095706, 0.059507007598876956, 0.05953968048095703, 0.05953510284423828, 0.05953059387207031, 0.05948448181152344, 0.05948476791381836, 0.05961523056030273, 0.05969100952148437, 0.059631103515625, 0.06307843017578126, 0.06039958572387695, 0.05948403167724609, 0.0592856330871582, 0.05907455825805664, 0.0591196174621582, 0.059099136352539064, 0.059098400115966794, 0.0592283821105957, 0.059130367279052735, 0.059240447998046876, 0.05914940643310547, 0.05920655822753906, 0.059202816009521486, 0.05928217697143555, 0.059662174224853516, 0.06014089584350586, 0.06023779296875, 0.06019158554077148, 0.059692703247070315, 0.059404640197753905, 0.05940137481689453, 0.05924950408935547, 0.05917871856689453, 0.05927145767211914, 0.05930179214477539, 0.05934473419189453, 0.059336959838867186, 0.059344894409179685, 0.05942265701293945, 0.059516128540039064, 0.05962633514404297, 0.05986716842651367, 0.060006366729736325, 0.060063007354736325, 0.05998873519897461, 0.05992035293579102, 0.05978505706787109, 0.05945564651489258, 0.05929305648803711, 0.059425407409667966, 0.059438240051269534, 0.059312992095947266, 0.05945468902587891, 0.05929859161376953, 0.059478015899658204, 0.05952716827392578, 0.05943203353881836, 0.05965475082397461, 0.05998732757568359, 0.060187583923339845, 0.06010815811157227, 0.06012985610961914, 0.059985984802246095, 0.05999411010742187, 0.05989580917358398, 0.059719680786132816, 0.05968620681762695, 0.05953196716308594, 0.05955583953857422, 0.05955136108398437, 0.059627742767333985, 0.05952671813964844, 0.0635392951965332, 0.060434337615966796, 0.0594738883972168, 0.05931836700439453, 0.059291648864746097, 0.059271167755126954, 0.05908591842651367, 0.05913692855834961, 0.05907791900634766, 0.059170528411865236, 0.05911616134643555, 0.05930841445922851, 0.05917452621459961, 0.059246177673339846, 0.059234622955322266, 0.059363807678222656, 0.059805694580078124, 0.06017843246459961, 0.05987855911254883, 0.05971760177612305, 0.05970758438110352, 0.059512672424316404, 0.059401054382324216, 0.05934009552001953, 0.05926982498168945, 0.05928889465332031, 0.05932860946655273, 0.05931804656982422, 0.05925116729736328, 0.0592979850769043, 0.059340641021728514, 0.059365695953369144, 0.05964492797851562, 0.05971795272827148, 0.05967327880859375, 0.05967603302001953, 0.059533950805664065, 0.05948147201538086, 0.059375648498535154, 0.05940079879760742, 0.05915372848510742, 0.05914831924438477, 0.059120288848876955, 0.059033599853515625, 0.05899433517456055, 0.05902550506591797, 0.059205886840820315, 0.05920767974853516, 0.05950048065185547, 0.05970131301879883, 0.06003046417236328, 0.06007244873046875, 0.06010265731811523, 0.05976406478881836, 0.05990467071533203, 0.059842559814453126, 0.059727264404296876, 0.05980332946777344, 0.059388832092285154, 0.05930758285522461, 0.05928553771972656, 0.05944566345214844, 0.059370689392089844, 0.06245580673217774, 0.05978521728515625, 0.058916862487792966, 0.0587386245727539, 0.05874630355834961, 0.059071006774902346, 0.05902140808105469, 0.059099136352539064, 0.059229278564453126, 0.059187744140625, 0.05915276718139648, 0.059116798400878905, 0.05902191925048828, 0.059092639923095706, 0.059183551788330076, 0.059305599212646484, 0.05949030303955078, 0.05964847946166992, 0.0594820785522461, 0.059252288818359374, 0.05941004943847656, 0.05933343887329102, 0.059246593475341794, 0.059291488647460935, 0.05924879837036133, 0.05938979339599609, 0.05925289535522461, 0.05927923202514648, 0.0594310417175293, 0.05950054550170898, 0.059331966400146485, 0.05937740707397461, 0.05943580627441406, 0.05953545761108398, 0.05963776016235352, 0.05964799880981445, 0.05973798370361328, 0.059377792358398435, 0.05936332702636719, 0.059355136871337894, 0.05952716827392578, 0.05943296051025391, 0.059385185241699216, 0.05948262405395508, 0.05931161499023437, 0.05940291213989258, 0.059578369140625, 0.059495712280273436, 0.05949923324584961, 0.059908096313476565, 0.059738014221191404, 0.059819488525390624, 0.059623359680175785, 0.059800254821777345, 0.059478015899658204, 0.05943500900268555, 0.05948604965209961, 0.059539615631103514, 0.05959065628051758, 0.05969100952148437, 0.05963980865478516, 0.05948332977294922, 0.05961795043945312, 0.06289328002929688, 0.05986764907836914, 0.05911996841430664, 0.058947582244873044, 0.05892095947265625, 0.05902310562133789, 0.05901465606689453, 0.058983169555664065, 0.05904905700683594, 0.0591121597290039, 0.059148414611816406, 0.05912112045288086, 0.05901923370361328, 0.05918377685546875, 0.059127777099609376, 0.059551742553710936, 0.059952926635742185, 0.060023006439208985, 0.0594411506652832, 0.05955728149414063, 0.05928992080688476, 0.059113761901855466, 0.059146240234375, 0.059219200134277346, 0.05908118438720703, 0.059187488555908205, 0.059252288818359374, 0.05930368041992187, 0.05931897735595703, 0.05941452789306641, 0.0594505615234375, 0.05953004837036133, 0.05961011123657227, 0.05978214263916016, 0.059598175048828125, 0.05930255889892578, 0.059163745880126954, 0.05908777618408203, 0.05882265472412109, 0.05879788970947265, 0.05881782531738281, 0.05879011154174805, 0.05882060623168945, 0.05887251281738281, 0.05885708618164062, 0.05895814514160156, 0.058988574981689454, 0.05909097671508789, 0.05932358551025391, 0.059484062194824217, 0.0593636474609375, 0.05932297515869141, 0.059387073516845704, 0.059329345703125, 0.059224063873291016, 0.05922611236572266, 0.05907580947875977, 0.05906716918945312, 0.058926334381103514, 0.05891468811035156, 0.05903023910522461, 0.05895926284790039, 0.059003646850585935]",tokens/s,16.827996080625898,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,738.668544,3450.79808,0.0,3055.550464,2937.680896,s,1,7.21254931640625,7.21254931640625,0.0,7.21254931640625,7.21254931640625,7.21254931640625,7.21254931640625,[7.21254931640625],,kWh,7.65544858750123e-06,8.368047426373106e-07,2.206668432001846e-06,1.0698921762140386e-05,,MB,1104.44544,3522.101248,0.0,3114.27072,2817.473024,s,10,0.44898410034179687,0.04489841003417969,0.0006442349365678308,0.04467651176452637,0.045460602951049804,0.045966013526916503,0.046370341987609864,"[0.0464714241027832, 0.04416009521484375, 0.04534828948974609, 0.04467161560058594, 0.044681407928466796, 0.044641857147216794, 0.04422576141357422, 0.04450051116943359, 0.045274112701416014, 0.04500902557373047]",tokens/s,5701.760926614453,kWh,1.4554342901533722e-06,1.6050690768969044e-07,9.612100005870587e-07,2.577151198430121e-06,tokens/kWh,99334490.01981068,MB,1137.303552,3522.101248,0.0,3114.27072,2877.80864,s,10,11.548456054687499,1.15484560546875,0.004692471931810019,1.1568258666992188,1.159875244140625,1.1607574462890626,1.1614632080078124,"[1.15967919921875, 1.1498546142578125, 1.1500992431640624, 1.1482830810546876, 1.158281494140625, 1.1577117919921875, 1.1616396484375, 1.157550537109375, 1.1561011962890626, 1.1492552490234376]",tokens/s,54.55274687946568,kWh,3.3499842479430185e-05,3.6945752013604073e-06,2.2181919625012554e-05,5.937633730580316e-05,tokens/kWh,1061028.7339809134,,s,630,11.545618431091308,0.018326378462049698,0.00035041837722673565,0.018253119468688964,0.01856883583068848,0.018941068649291994,0.02004849069595337,"[0.019441120147705077, 0.018897504806518556, 0.018577791213989257, 0.018319360733032225, 0.01818009567260742, 0.01811395263671875, 0.0181376953125, 0.01805516815185547, 0.018792287826538086, 0.01797881507873535, 0.018034912109375, 0.018000383377075196, 0.01800707244873047, 0.018150367736816407, 0.018104032516479494, 0.018001855850219725, 0.018032703399658203, 0.017952640533447264, 0.0186841926574707, 0.019297632217407226, 0.018570016860961915, 0.018333023071289062, 0.018301567077636718, 0.018230464935302733, 0.018131231307983397, 0.018145856857299806, 0.01803059196472168, 0.018101503372192383, 0.018078208923339844, 0.018112768173217775, 0.018370559692382812, 0.018124671936035158, 0.018210079193115233, 0.01824166488647461, 0.018274112701416014, 0.018315168380737306, 0.01822003173828125, 0.018127967834472656, 0.018076576232910157, 0.02145484733581543, 0.02059833526611328, 0.01829692840576172, 0.018153823852539063, 0.018128896713256838, 0.018214879989624025, 0.018157535552978516, 0.018324800491333008, 0.018264223098754882, 0.018227071762084962, 0.01828883171081543, 0.018386720657348633, 0.01861299133300781, 0.018579200744628908, 0.018620512008666993, 0.01860009574890137, 0.018563072204589845, 0.018582847595214842, 0.01859654426574707, 0.018521247863769533, 0.018420576095581054, 0.01840127944946289, 0.018359935760498047, 0.018319744110107422, 0.02004256057739258, 0.019277215957641602, 0.0187807674407959, 0.018503679275512695, 0.01824358367919922, 0.018319360733032225, 0.01814240074157715, 0.0180948486328125, 0.018171968460083007, 0.018112512588500978, 0.01799692726135254, 0.017949567794799805, 0.01803379249572754, 0.01827315139770508, 0.01845043182373047, 0.018017696380615233, 0.018100223541259765, 0.01859849548339844, 0.0181942081451416, 0.0182458553314209, 0.018163711547851562, 0.01802614402770996, 0.017993471145629884, 0.018073728561401367, 0.018119136810302736, 0.018112512588500978, 0.018167808532714845, 0.018083839416503905, 0.01804287910461426, 0.01805891227722168, 0.01837910461425781, 0.018259967803955078, 0.01809769630432129, 0.018040895462036133, 0.018178464889526368, 0.01814303970336914, 0.018370752334594728, 0.018167327880859375, 0.018139392852783202, 0.018094303131103516, 0.018212160110473632, 0.018203136444091796, 0.018085376739501953, 0.018096832275390624, 0.018192127227783204, 0.01819878387451172, 0.018238880157470702, 0.018201183319091797, 0.01816966438293457, 0.018155712127685547, 0.018137088775634767, 0.01826742362976074, 0.018295520782470702, 0.018316287994384766, 0.0182609920501709, 0.018274303436279296, 0.018302047729492187, 0.018383743286132813, 0.01833782386779785, 0.01823744010925293, 0.01825382423400879, 0.018253568649291993, 0.018254079818725587, 0.020050912857055663, 0.01904665565490723, 0.01877577590942383, 0.01840947151184082, 0.01841289520263672, 0.018205343246459962, 0.018056224822998047, 0.01803539276123047, 0.018009824752807616, 0.0179836483001709, 0.017973535537719725, 0.01800124740600586, 0.018036735534667968, 0.01798838424682617, 0.018008064270019532, 0.01805232048034668, 0.018002431869506837, 0.01808332824707031, 0.018016223907470704, 0.018058048248291016, 0.018325504302978517, 0.018069503784179687, 0.01802649688720703, 0.018067455291748045, 0.018092031478881835, 0.018182144165039063, 0.018155519485473632, 0.0182108154296875, 0.0195665283203125, 0.018267263412475587, 0.01817900848388672, 0.01825564765930176, 0.018129119873046873, 0.01823744010925293, 0.01798534393310547, 0.01826416015625, 0.018155168533325196, 0.018157855987548828, 0.018122880935668946, 0.01809187126159668, 0.018155647277832032, 0.018132095336914063, 0.01811756706237793, 0.018147552490234375, 0.01820444869995117, 0.018202207565307618, 0.018227615356445313, 0.01823904037475586, 0.0181907844543457, 0.018153472900390624, 0.018343551635742188, 0.018272287368774415, 0.01823094367980957, 0.018311872482299804, 0.018300928115844727, 0.018350080490112306, 0.01846067237854004, 0.018495487213134765, 0.01833683204650879, 0.018367424011230468, 0.018282495498657226, 0.018328704833984376, 0.01823798370361328, 0.019194976806640625, 0.018704416275024414, 0.01843494415283203, 0.018249727249145507, 0.01810207939147949, 0.01808118438720703, 0.01797961616516113, 0.017997983932495118, 0.018024864196777343, 0.01824470329284668, 0.018082719802856445, 0.01804697608947754, 0.018231231689453124, 0.018101343154907225, 0.018097120285034178, 0.01817190361022949, 0.01803664016723633, 0.01806959915161133, 0.018118656158447266, 0.018094079971313477, 0.01803264045715332, 0.018084991455078126, 0.018082687377929688, 0.01823744010925293, 0.01827596855163574, 0.018207103729248046, 0.01818623924255371, 0.018226207733154295, 0.018109407424926758, 0.018171104431152343, 0.018326303482055665, 0.018145280838012694, 0.01807548713684082, 0.018100383758544922, 0.018056928634643556, 0.018112127304077148, 0.01824835205078125, 0.018120704650878908, 0.01811155128479004, 0.018160575866699218, 0.018122047424316407, 0.018115264892578125, 0.01810963249206543, 0.01811689567565918, 0.018221311569213867, 0.01827577590942383, 0.018258623123168945, 0.018294464111328124, 0.01824611282348633, 0.018186176300048828, 0.018133056640625, 0.01846451187133789, 0.018353567123413086, 0.018408287048339845, 0.01844793510437012, 0.018360767364501953, 0.01836182403564453, 0.018527776718139648, 0.018380992889404296, 0.018408256530761717, 0.018350080490112306, 0.018410816192626953, 0.018313087463378907, 0.019470464706420897, 0.01901523208618164, 0.018704832077026366, 0.02062335968017578, 0.018351903915405275, 0.018208255767822267, 0.01820537567138672, 0.018087711334228516, 0.01817011260986328, 0.01832476806640625, 0.018268735885620117, 0.018169824600219726, 0.01845471954345703, 0.018206720352172853, 0.018241535186767577, 0.018317312240600587, 0.01820582389831543, 0.018191232681274414, 0.01820057678222656, 0.01825779151916504, 0.018161792755126954, 0.018228736877441407, 0.018332160949707032, 0.018159616470336915, 0.018210432052612305, 0.01832979202270508, 0.018228607177734377, 0.018266944885253905, 0.018124351501464842, 0.018182207107543945, 0.018248064041137695, 0.01827840042114258, 0.018147327423095702, 0.01826576042175293, 0.018175872802734375, 0.01826243209838867, 0.018264127731323243, 0.018159616470336915, 0.018232416152954102, 0.018289567947387696, 0.018331615447998047, 0.018345279693603514, 0.018403711318969725, 0.018319520950317383, 0.018521791458129884, 0.018456064224243163, 0.018375680923461913, 0.018341888427734376, 0.01837401580810547, 0.018310848236083983, 0.018323999404907226, 0.018416128158569335, 0.018479007720947266, 0.018542591094970702, 0.018486751556396484, 0.01855855941772461, 0.018458719253540038, 0.01855574417114258, 0.018458303451538087, 0.018567487716674803, 0.01834716796875, 0.01833660888671875, 0.018450048446655272, 0.019408895492553712, 0.01905254364013672, 0.018589696884155273, 0.01841766357421875, 0.018388063430786132, 0.01826883125305176, 0.018311424255371092, 0.018264064788818358, 0.018297855377197265, 0.018291711807250977, 0.018176000595092775, 0.018231296539306642, 0.018192384719848635, 0.018265792846679688, 0.018349632263183594, 0.018975488662719725, 0.01824563217163086, 0.0182959041595459, 0.018356672286987306, 0.01840176010131836, 0.018222272872924803, 0.01831808090209961, 0.018214975357055664, 0.018284543991088868, 0.01830076789855957, 0.018393184661865233, 0.018222368240356446, 0.01823209571838379, 0.01825584030151367, 0.01816988754272461, 0.018259967803955078, 0.018140512466430662, 0.018146976470947266, 0.01819340705871582, 0.018075424194335936, 0.018150848388671877, 0.01821776008605957, 0.018198528289794923, 0.018229248046875, 0.01823539161682129, 0.01824358367919922, 0.01840643119812012, 0.018381919860839844, 0.018252927780151366, 0.018303712844848632, 0.01835830307006836, 0.01846067237854004, 0.018499584197998048, 0.018276159286499023, 0.01839676856994629, 0.018418272018432616, 0.01855897521972656, 0.018593599319458008, 0.018501663208007814, 0.018515647888183592, 0.018444255828857423, 0.018643455505371095, 0.018642112731933592, 0.018447168350219728, 0.018384735107421876, 0.018410816192626953, 0.018413408279418945, 0.0184901123046875, 0.02029657554626465, 0.019533632278442382, 0.018962623596191407, 0.018689504623413088, 0.018543039321899414, 0.018348127365112304, 0.018325504302978517, 0.018363967895507812, 0.018264511108398437, 0.01820159912109375, 0.0182794246673584, 0.018206016540527344, 0.018141887664794923, 0.018247007369995117, 0.01821558380126953, 0.01817724800109863, 0.018201375961303713, 0.018096128463745118, 0.018161184310913087, 0.01811020851135254, 0.018088672637939455, 0.018096063613891603, 0.018208831787109376, 0.01841971206665039, 0.01942639923095703, 0.018357152938842772, 0.018197919845581053, 0.0181847038269043, 0.018232608795166017, 0.018635583877563477, 0.01835759925842285, 0.018571680068969726, 0.018249504089355467, 0.018267871856689454, 0.018494207382202147, 0.018386528015136717, 0.018779808044433594, 0.018420480728149415, 0.01831260871887207, 0.018351871490478514, 0.01845737648010254, 0.018376319885253907, 0.018330047607421875, 0.018373695373535157, 0.01832441520690918, 0.01861631965637207, 0.018990816116333006, 0.018379039764404297, 0.018372608184814454, 0.018347583770751952, 0.018295232772827148, 0.01832111930847168, 0.018352415084838865, 0.01828236770629883, 0.01837273597717285, 0.01843404769897461, 0.01836636734008789, 0.018614368438720705, 0.01856870460510254, 0.01849395179748535, 0.01849475288391113, 0.018399967193603515, 0.018394975662231444, 0.02001456069946289, 0.019399200439453125, 0.018933536529541016, 0.018665439605712892, 0.018368543624877928, 0.01822537612915039, 0.018158815383911134, 0.018148128509521484, 0.01816192054748535, 0.018150400161743165, 0.018252159118652345, 0.018279903411865233, 0.018332351684570314, 0.018387168884277345, 0.01839891242980957, 0.01830940818786621, 0.018393119812011718, 0.018561023712158203, 0.01826201629638672, 0.01844223976135254, 0.01820876884460449, 0.018141183853149414, 0.018108287811279298, 0.018130943298339842, 0.019060863494873046, 0.018253311157226563, 0.018081663131713867, 0.01808857536315918, 0.018181888580322266, 0.018157184600830076, 0.018258432388305663, 0.018249120712280274, 0.018106592178344726, 0.019118080139160155, 0.01835372734069824, 0.018269119262695314, 0.018288639068603514, 0.01816294479370117, 0.018143999099731446, 0.0181341438293457, 0.01825267219543457, 0.018364416122436524, 0.01829033660888672, 0.018319711685180665, 0.01847279930114746, 0.01838038444519043, 0.018395263671875, 0.018411968231201174, 0.018206720352172853, 0.018206464767456056, 0.018265535354614258, 0.01829555130004883, 0.018421823501586915, 0.01836796760559082, 0.018405920028686525, 0.01834297561645508, 0.01830393600463867, 0.018485248565673826, 0.018291807174682616, 0.01829318428039551, 0.018301408767700197, 0.018431999206542968, 0.01842790412902832, 0.019533344268798828, 0.01897318458557129, 0.01865727996826172, 0.018380800247192384, 0.018247360229492186, 0.01813478469848633, 0.01809056091308594, 0.018039072036743164, 0.018177440643310547, 0.01807097625732422, 0.018834304809570313, 0.020147552490234377, 0.01827702331542969, 0.018348031997680665, 0.0184682559967041, 0.01815932846069336, 0.018144128799438476, 0.018235328674316407, 0.01825388717651367, 0.01824563217163086, 0.018151424407958985, 0.018040256500244142, 0.01806710433959961, 0.018103200912475585, 0.01822105598449707, 0.01827596855163574, 0.01814156723022461, 0.0181343994140625, 0.01813350486755371, 0.018144800186157228, 0.018174560546875, 0.018233343124389647, 0.018116607666015624, 0.018184192657470705, 0.018323392868041993, 0.018362432479858398, 0.01835212707519531, 0.018298879623413086, 0.018182144165039063, 0.018431999206542968, 0.01894723129272461, 0.01914147186279297, 0.01836851119995117, 0.01830431938171387, 0.018262815475463868, 0.018249536514282228, 0.01823321533203125, 0.01825200080871582, 0.018153472900390624, 0.0182108154296875, 0.01823744010925293, 0.018288639068603514, 0.018298784255981446, 0.018393184661865233, 0.018378400802612306, 0.01832940864562988, 0.018415136337280272, 0.018397344589233398, 0.018363231658935546, 0.01826201629638672, 0.018290687561035156, 0.018284543991088868, 0.018293792724609376, 0.02017750358581543, 0.01919308853149414, 0.018897632598876953, 0.018549983978271484, 0.018272735595703124, 0.018253536224365235, 0.01811721611022949, 0.018184032440185547, 0.01820022392272949, 0.018203136444091796, 0.018100223541259765, 0.01820364761352539, 0.018240575790405274, 0.018229183197021485, 0.018308927536010742, 0.018093568801879883, 0.018043519973754883, 0.018061376571655272, 0.01800720024108887, 0.018025344848632812, 0.018081504821777342, 0.018102527618408203, 0.01818009567260742, 0.01814851188659668, 0.01812156867980957, 0.018233343124389647, 0.018110464096069336, 0.018069503784179687, 0.018046464920043945, 0.018092544555664062, 0.018114559173583983, 0.018149375915527344, 0.018077695846557617, 0.018104320526123048, 0.01807155227661133, 0.018167808532714845, 0.01809328079223633, 0.01814159965515137, 0.0180731201171875, 0.018094560623168946, 0.018055551528930663, 0.01819161605834961, 0.018098943710327147, 0.01811625671386719, 0.018104671478271484, 0.018173215866088867, 0.018162399291992187, 0.018185792922973634, 0.018135488510131834, 0.018181568145751954, 0.018158143997192382, 0.018241535186767577, 0.018251775741577148, 0.018284543991088868, 0.018279455184936524, 0.01827939224243164, 0.018284479141235353, 0.018391008377075194, 0.018400415420532227, 0.01830121612548828, 0.0182524471282959, 0.01845583915710449, 0.018370399475097655]",tokens/s,54.56615457717421,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mixtral,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 890, in __init__ self.model = OPTModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 822, in __init__ self.decoder = OPTDecoder(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in __init__ self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 373, in __init__ self.self_attn = OPT_ATTENTION_CLASSES[config._attn_implementation](config=config, is_decoder=True) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 115, in __init__ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 98.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 44.12 MiB is free. Process 125268 has 14.70 GiB memory in use. Of the allocated memory 14.58 GiB is allocated by PyTorch, and 3.80 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2_moe,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 1203, in __init__ self.model = Qwen2MoeModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 977, in __init__ [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 977, in [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 750, in __init__ self.self_attn = QWEN2MOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 349, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 12.12 MiB is free. Process 93193 has 14.73 GiB memory in use. Of the allocated memory 12.32 GiB is allocated by PyTorch, and 2.30 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,815.378432,3354.329088,0.0,2959.081472,2942.567424,s,1,7.59777783203125,7.59777783203125,0.0,7.59777783203125,7.59777783203125,7.59777783203125,7.59777783203125,[7.59777783203125],,kWh,1.0297370037498391e-05,1.121980236473022e-06,4.496670263996749e-06,1.5916020537968165e-05,,MB,1163.268096,3547.267072,0.0,3139.436544,3105.830912,s,10,0.3488427925109863,0.03488427925109863,0.0011933682254219404,0.034781984329223636,0.03551321678161621,0.036841905021667475,0.037904855613708495,"[0.03817059326171875, 0.03403852844238281, 0.03426652908325195, 0.03401894378662109, 0.03521795272827148, 0.034831169128417966, 0.03476364898681641, 0.03480031967163086, 0.03368713760375976, 0.035047969818115234]",tokens/s,7338.54921173232,kWh,1.27505811024383e-06,1.406140795955646e-07,8.462379404541586e-07,2.2619101302935532e-06,tokens/kWh,113178678.75094402,MB,1196.326912,3589.210112,0.0,3181.379584,3162.0096,s,10,13.277565917968753,1.327756591796875,0.016408054098027577,1.3364856567382812,1.344683605957031,1.3461151794433592,1.3472604382324218,"[1.3368380126953125, 1.33793359375, 1.344365478515625, 1.33613330078125, 1.3231259765625, 1.30058984375, 1.3064454345703125, 1.3065584716796874, 1.338029052734375, 1.3475467529296874]",tokens/s,47.44845583085455,kWh,3.8813193528505906e-05,4.278620239660743e-06,2.502147719814582e-05,6.811329096631246e-05,tokens/kWh,924929.6151489523,,s,630,13.274697385787961,0.021070948231409464,0.00038994736390604915,0.021117759704589845,0.021469849586486817,0.021614044857025148,0.022120639095306396,"[0.021445440292358398, 0.02127846336364746, 0.02119500732421875, 0.023240703582763672, 0.021192703247070312, 0.021016576766967773, 0.02101158332824707, 0.02126265525817871, 0.02144927978515625, 0.021168127059936523, 0.021344255447387696, 0.02114905548095703, 0.02105926322937012, 0.020975711822509766, 0.020939552307128906, 0.021288671493530274, 0.02179475212097168, 0.021631391525268554, 0.021535808563232423, 0.02113801574707031, 0.020969823837280275, 0.021112255096435547, 0.02108448028564453, 0.021238016128540038, 0.021021984100341798, 0.021002559661865233, 0.021172191619873045, 0.020953439712524415, 0.020791391372680663, 0.020873376846313477, 0.02087299156188965, 0.020998144149780275, 0.021208831787109375, 0.021528736114501953, 0.0214399356842041, 0.021305215835571288, 0.02120585632324219, 0.02116399955749512, 0.021085664749145507, 0.02106985664367676, 0.021425920486450194, 0.021189088821411132, 0.021127328872680665, 0.020967456817626955, 0.020961408615112306, 0.02085273551940918, 0.020821535110473632, 0.020932863235473633, 0.020996192932128906, 0.021123327255249024, 0.021369728088378906, 0.021338560104370116, 0.021809728622436523, 0.02177142333984375, 0.02173551940917969, 0.021191423416137695, 0.021202943801879884, 0.021178112030029297, 0.02120729637145996, 0.021104639053344726, 0.02106268882751465, 0.021034175872802735, 0.02096089553833008, 0.021179424285888673, 0.02136684799194336, 0.02144758415222168, 0.02149305534362793, 0.021473983764648437, 0.02106902313232422, 0.021183135986328126, 0.02105308723449707, 0.02142220878601074, 0.02127702331542969, 0.021182464599609374, 0.021155839920043946, 0.02141798400878906, 0.021146623611450196, 0.02104729652404785, 0.02111110305786133, 0.02112553596496582, 0.020848928451538087, 0.021029951095581055, 0.02156572723388672, 0.021389984130859376, 0.0213319034576416, 0.02118796730041504, 0.021289215087890626, 0.0210948486328125, 0.02120832061767578, 0.02116275215148926, 0.021296319961547853, 0.021080896377563475, 0.021213184356689452, 0.021012224197387696, 0.02101478385925293, 0.02110054397583008, 0.021182464599609374, 0.02101862335205078, 0.021123071670532227, 0.02170172882080078, 0.021394271850585938, 0.021262399673461913, 0.021137407302856445, 0.02130454444885254, 0.021207328796386718, 0.021219839096069337, 0.02138230323791504, 0.02120585632324219, 0.02138256072998047, 0.02109644889831543, 0.021119583129882814, 0.021368671417236328, 0.021295263290405275, 0.02111692810058594, 0.021106399536132813, 0.021463199615478514, 0.021354623794555664, 0.021303295135498047, 0.021209087371826172, 0.02117571258544922, 0.021078624725341798, 0.021149696350097655, 0.02117580795288086, 0.02182809638977051, 0.021103647232055663, 0.02117875289916992, 0.02110963249206543, 0.021383007049560546, 0.0211396484375, 0.021096416473388672, 0.021251136779785157, 0.021496768951416015, 0.021287967681884765, 0.021165023803710936, 0.021156991958618164, 0.021197696685791016, 0.021365983963012695, 0.021249984741210936, 0.021094655990600585, 0.021262304306030273, 0.021434944152832033, 0.02131155204772949, 0.021184511184692383, 0.021217279434204102, 0.02126643180847168, 0.02118828773498535, 0.021045568466186524, 0.021123071670532227, 0.021474496841430664, 0.02161337661743164, 0.02187264060974121, 0.021370880126953123, 0.021131263732910157, 0.021167903900146483, 0.021584096908569335, 0.021256223678588867, 0.02131350326538086, 0.021555200576782226, 0.021567487716674806, 0.021338111877441408, 0.021514240264892577, 0.02123366355895996, 0.021151744842529296, 0.021223232269287108, 0.021230783462524414, 0.02108435249328613, 0.02133024024963379, 0.0215314884185791, 0.021751455307006836, 0.02123513603210449, 0.022677120208740235, 0.022493280410766602, 0.02135536003112793, 0.02128691291809082, 0.021217279434204102, 0.021288864135742186, 0.021229663848876954, 0.021280960083007814, 0.021273504257202147, 0.021166175842285157, 0.021211936950683595, 0.02112719917297363, 0.02111859130859375, 0.021059968948364257, 0.020928512573242186, 0.021348352432250976, 0.02146099281311035, 0.02167193603515625, 0.021257247924804688, 0.021234464645385743, 0.021421087265014647, 0.02132476806640625, 0.021207040786743164, 0.02122137641906738, 0.021103679656982424, 0.021092735290527343, 0.021264959335327148, 0.021078016281127928, 0.020862464904785157, 0.021094112396240233, 0.020934656143188478, 0.020713663101196288, 0.02063327980041504, 0.021711807250976562, 0.021617759704589845, 0.021344383239746093, 0.021137311935424806, 0.02104591941833496, 0.0213505916595459, 0.021317632675170898, 0.021964351654052736, 0.02103107261657715, 0.02153923225402832, 0.021331199645996092, 0.021450719833374023, 0.02111964797973633, 0.021041023254394532, 0.021153663635253905, 0.021084384918212892, 0.02099407958984375, 0.02088332748413086, 0.021297279357910155, 0.021346303939819337, 0.021220703125, 0.02121708869934082, 0.021093023300170897, 0.021053119659423827, 0.021240320205688477, 0.02106572723388672, 0.021048416137695314, 0.020918560028076173, 0.021196928024291992, 0.021336576461791993, 0.021102592468261717, 0.02110873603820801, 0.021157503128051758, 0.021155935287475586, 0.021007904052734373, 0.02088217544555664, 0.021341920852661133, 0.021491327285766602, 0.021435039520263672, 0.021211135864257814, 0.02112512016296387, 0.021186784744262697, 0.021044063568115234, 0.021622720718383788, 0.021212160110473634, 0.021292192459106445, 0.021223615646362305, 0.02123632049560547, 0.021653568267822266, 0.02138585662841797, 0.021348352432250976, 0.02147123146057129, 0.021354496002197267, 0.02145280075073242, 0.021336063385009766, 0.021436416625976562, 0.02143436813354492, 0.02126643180847168, 0.021192703247070312, 0.021247135162353516, 0.02115078353881836, 0.021067327499389648, 0.021122528076171876, 0.02129996871948242, 0.0211878719329834, 0.02115452766418457, 0.02101862335205078, 0.021102592468261717, 0.021164031982421876, 0.021204992294311522, 0.021137247085571288, 0.021241439819335937, 0.02109903907775879, 0.02092198371887207, 0.020760992050170898, 0.020862016677856445, 0.020826271057128906, 0.020798240661621094, 0.020998144149780275, 0.02087468719482422, 0.02091587257385254, 0.02099635124206543, 0.020820640563964845, 0.020769920349121094, 0.02072006416320801, 0.020707775115966796, 0.020707328796386718, 0.020762624740600585, 0.02097737693786621, 0.020985599517822265, 0.020823808670043947, 0.020812576293945312, 0.02088140869140625, 0.020736000061035157, 0.02105958366394043, 0.02088742446899414, 0.020717695236206056, 0.020724767684936522, 0.02059676742553711, 0.020926816940307617, 0.02075094413757324, 0.020752384185791017, 0.020864223480224608, 0.020947744369506836, 0.021319679260253906, 0.02101353645324707, 0.020753376007080077, 0.020569440841674804, 0.020750911712646484, 0.02082953643798828, 0.020912191390991212, 0.020945600509643555, 0.020919456481933593, 0.020802431106567383, 0.02071958351135254, 0.02072313690185547, 0.020562496185302735, 0.0205515193939209, 0.020530847549438475, 0.02050444793701172, 0.02077350425720215, 0.020727807998657227, 0.020592607498168946, 0.020575647354125978, 0.020572799682617188, 0.020580352783203124, 0.020647008895874022, 0.020542367935180664, 0.02045916748046875, 0.020492639541625977, 0.020590431213378908, 0.020573503494262697, 0.020677024841308594, 0.020574655532836914, 0.02047385597229004, 0.02051481628417969, 0.021423999786376952, 0.020484224319458007, 0.020592639923095703, 0.02043894386291504, 0.020627552032470704, 0.020736000061035157, 0.020653312683105468, 0.020526880264282225, 0.020646879196166992, 0.02092995262145996, 0.020655839920043946, 0.0206177921295166, 0.02049465560913086, 0.02050614356994629, 0.020902368545532228, 0.020700416564941405, 0.02054956817626953, 0.020578880310058594, 0.02075052833557129, 0.02061235237121582, 0.020673343658447266, 0.020553728103637696, 0.02060697555541992, 0.020692991256713866, 0.020727807998657227, 0.02063279914855957, 0.02056243133544922, 0.0205130558013916, 0.020463008880615235, 0.020629440307617188, 0.020705951690673827, 0.020516319274902342, 0.020511039733886717, 0.0204781436920166, 0.02058448028564453, 0.02067356872558594, 0.021414688110351562, 0.020586368560791015, 0.02069536018371582, 0.02114121627807617, 0.020877599716186523, 0.020788415908813477, 0.020566783905029296, 0.020602943420410157, 0.020592639923095703, 0.020527103424072265, 0.02058995246887207, 0.020757055282592772, 0.020500383377075194, 0.021074079513549806, 0.022122272491455076, 0.02099404716491699, 0.020866847991943358, 0.0208470401763916, 0.02071673583984375, 0.020874048233032228, 0.020932607650756836, 0.020723072052001953, 0.020683391571044922, 0.020619264602661135, 0.021149280548095704, 0.02116383934020996, 0.020619871139526368, 0.020707328796386718, 0.020547584533691408, 0.020711423873901368, 0.020536447525024416, 0.02109324836730957, 0.020639167785644532, 0.02060076713562012, 0.020574047088623048, 0.020548223495483398, 0.02056947135925293, 0.02063567924499512, 0.020515424728393555, 0.020586496353149415, 0.02053036880493164, 0.020601823806762697, 0.020588544845581053, 0.02065932846069336, 0.020699520111083985, 0.020656576156616212, 0.020621055603027343, 0.02063759994506836, 0.02066912078857422, 0.020679967880249023, 0.02057164764404297, 0.02054390335083008, 0.020552223205566406, 0.020550975799560545, 0.020617919921875, 0.020574207305908202, 0.0205963191986084, 0.020729503631591796, 0.020886272430419923, 0.020844127655029295, 0.020903615951538085, 0.020976127624511717, 0.020999679565429686, 0.020793952941894532, 0.0205927677154541, 0.02053046417236328, 0.02078713607788086, 0.02079545593261719, 0.020638879776000978, 0.020562335968017577, 0.0204968318939209, 0.020493375778198243, 0.020574304580688478, 0.020490751266479493, 0.020548959732055665, 0.020580543518066406, 0.020521696090698243, 0.020641056060791016, 0.020594560623168945, 0.02058950424194336, 0.020614559173583985, 0.02038435173034668, 0.02065203285217285, 0.02049967956542969, 0.02053753662109375, 0.020516576766967772, 0.020607200622558594, 0.021666048049926757, 0.02067292785644531, 0.02049804878234863, 0.020607263565063476, 0.020562015533447265, 0.020594688415527345, 0.02305574417114258, 0.021284479141235352, 0.020751359939575196, 0.020789247512817383, 0.02068889617919922, 0.02061884880065918, 0.020610784530639647, 0.02059436798095703, 0.02063052749633789, 0.02068182373046875, 0.02062393569946289, 0.02066876792907715, 0.020573408126831054, 0.020601535797119142, 0.02051900863647461, 0.0206561279296875, 0.02062303924560547, 0.020816192626953126, 0.021222623825073242, 0.02064259147644043, 0.020923391342163086, 0.021956960678100587, 0.021058208465576173, 0.020938751220703124, 0.020699136734008788, 0.020631103515625, 0.020740543365478516, 0.020968767166137697, 0.02064886474609375, 0.020590368270874022, 0.020702943801879883, 0.020609312057495117, 0.020641792297363282, 0.020584447860717774, 0.020641792297363282, 0.02059878349304199, 0.020643775939941406, 0.02055379295349121, 0.020573919296264648, 0.022116640090942382, 0.02077440071105957, 0.020676704406738283, 0.02059679985046387, 0.020631807327270508, 0.020523103713989257, 0.020547903060913086, 0.020552543640136717, 0.020781919479370116, 0.021319360733032228, 0.02127440071105957, 0.02079497528076172, 0.020624095916748048, 0.020623199462890623, 0.02060326385498047, 0.020566015243530272, 0.020602848052978514, 0.020770847320556642, 0.02072719955444336, 0.020900447845458983, 0.021436416625976562, 0.021220800399780273, 0.021301824569702147, 0.021370880126953123, 0.021463359832763672, 0.022995840072631835, 0.02266828727722168, 0.021261632919311522, 0.021561952590942384, 0.021737375259399415, 0.021401248931884765, 0.02136899185180664, 0.021493919372558595, 0.021702688217163087, 0.021547040939331054, 0.02132905578613281, 0.02117510414123535, 0.021421663284301756, 0.02144118309020996, 0.02173516845703125, 0.021614591598510743, 0.02132921600341797, 0.0214649600982666, 0.021336799621582032, 0.02150614356994629, 0.02145859146118164, 0.021423967361450195, 0.02159872055053711, 0.02167724800109863, 0.021338943481445313, 0.021211135864257814, 0.021292512893676757, 0.021432863235473634, 0.021393407821655275, 0.021398815155029297, 0.02126425552368164, 0.021445472717285155, 0.02123776054382324, 0.02138924789428711, 0.021485631942749023, 0.02138096046447754, 0.021364896774291993, 0.021419103622436524, 0.021246047973632814, 0.02134099197387695, 0.021809152603149414, 0.02146054458618164, 0.021373056411743165, 0.0212457275390625, 0.021385759353637696, 0.021511743545532227, 0.02127302360534668, 0.021307071685791015, 0.02141983985900879, 0.021469696044921875, 0.021266111373901365, 0.021385536193847657, 0.021433408737182618, 0.021534751892089844, 0.02166671943664551, 0.02140332794189453, 0.021264543533325197, 0.021381248474121095, 0.02139753532409668, 0.0212807674407959, 0.021340160369873046, 0.021300928115844726, 0.021461343765258788, 0.02139132881164551, 0.021485183715820314, 0.02143680000305176, 0.02128281593322754, 0.021356544494628905, 0.021147647857666017, 0.021593984603881837, 0.021333536148071288, 0.021547615051269533, 0.02127020835876465, 0.02130758476257324, 0.02129913520812988, 0.021469375610351563, 0.021209087371826172, 0.02138038444519043, 0.021467039108276367, 0.02131769561767578, 0.021439231872558594, 0.021608448028564452, 0.021415935516357423, 0.021550752639770507, 0.021209056854248048, 0.02158355140686035, 0.021309823989868165, 0.021288320541381835, 0.021318368911743164, 0.02134448051452637, 0.02135856056213379, 0.021313568115234376, 0.021553375244140624, 0.02132086372375488, 0.02134489631652832, 0.021372928619384765, 0.021188608169555666, 0.021279775619506835]",tokens/s,47.458708977764346,, float16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,815.153152,3354.329088,0.0,2959.081472,2942.567424,s,1,7.5465380859375,7.5465380859375,0.0,7.5465380859375,7.5465380859375,7.5465380859375,7.5465380859375,[7.5465380859375],,kWh,1.0555499091666812e-05,1.1571333836274744e-06,4.908337259995621e-06,1.6620969735289905e-05,,MB,1184.321536,3547.267072,0.0,3139.436544,3105.830912,s,10,0.35119199752807617,0.03511919975280762,0.0013828462358450484,0.03462977600097656,0.03707234077453613,0.037395865821838375,0.037654685859680175,"[0.037719390869140626, 0.03700044631958008, 0.03378755187988281, 0.03475555038452149, 0.03391804885864258, 0.033634750366210935, 0.03446249771118164, 0.034675006866455076, 0.034584545135498045, 0.03665420913696289]",tokens/s,7289.459947888875,kWh,1.2789389064228766e-06,1.4104498809024023e-07,8.523442044366632e-07,2.27232809894978e-06,tokens/kWh,112659787.16643849,MB,1217.888256,3589.210112,0.0,3181.379584,3162.0096,s,10,13.4394306640625,1.3439430664062502,0.00897286271096474,1.3480936889648438,1.3514184814453125,1.3525001953125,1.35336556640625,"[1.3511781005859376, 1.3503336181640626, 1.346485595703125, 1.35000439453125, 1.324740966796875, 1.3322947998046875, 1.3377889404296874, 1.3497017822265625, 1.3535819091796875, 1.343320556640625]",tokens/s,46.87698577028576,kWh,3.866066860732683e-05,4.263842917494485e-06,2.491350974156387e-05,6.783802126638519e-05,tokens/kWh,928682.7478739787,,s,630,13.436337451934827,0.021327519764975898,0.00045949658176490496,0.02128881549835205,0.02156562919616699,0.021789492511749265,0.02252170030593872,"[0.025484832763671875, 0.02147990417480469, 0.021353759765625, 0.021735328674316406, 0.021275455474853516, 0.02188467216491699, 0.021528831481933595, 0.021968896865844727, 0.02162892723083496, 0.021597440719604493, 0.020981536865234376, 0.02120137596130371, 0.02117683219909668, 0.020975360870361327, 0.021235456466674806, 0.021336576461791993, 0.021432319641113282, 0.021293279647827148, 0.021233728408813476, 0.021144575119018554, 0.02168191909790039, 0.022072288513183595, 0.021098495483398438, 0.021356544494628905, 0.021727231979370116, 0.021579776763916016, 0.021536415100097656, 0.021212959289550783, 0.021146175384521484, 0.021219551086425783, 0.02208745574951172, 0.02122956848144531, 0.02129715156555176, 0.021393760681152344, 0.02120035171508789, 0.021419872283935548, 0.02137481689453125, 0.021351167678833008, 0.02127027130126953, 0.02118560028076172, 0.02111788749694824, 0.021141504287719725, 0.02103500747680664, 0.021503904342651366, 0.022295808792114256, 0.02170128059387207, 0.02116559982299805, 0.021156511306762694, 0.021403200149536134, 0.021295520782470705, 0.02132988739013672, 0.02112828826904297, 0.021343008041381836, 0.021262432098388673, 0.02148467254638672, 0.021503040313720703, 0.02147292709350586, 0.02125644874572754, 0.021250175476074218, 0.02117955207824707, 0.02097545623779297, 0.02098636817932129, 0.021465311050415038, 0.021350112915039063, 0.021180767059326172, 0.021174272537231444, 0.022502527236938477, 0.021385408401489257, 0.021258943557739256, 0.021153791427612305, 0.021301504135131835, 0.021169919967651368, 0.021202943801879884, 0.021227519989013673, 0.021001247406005858, 0.021526655197143554, 0.021387935638427735, 0.02149836730957031, 0.021564960479736328, 0.021033119201660157, 0.02125004768371582, 0.021086208343505858, 0.02129305648803711, 0.021259584426879884, 0.021373632431030274, 0.02117148780822754, 0.021404287338256837, 0.021133407592773438, 0.021807104110717773, 0.027393056869506837, 0.021236703872680663, 0.02124185562133789, 0.021465087890625, 0.021356544494628905, 0.021358591079711914, 0.021346303939819337, 0.021223424911499023, 0.021172224044799806, 0.021239295959472656, 0.02128771209716797, 0.02181011199951172, 0.021377824783325197, 0.021215263366699218, 0.021365760803222656, 0.02114364814758301, 0.02119465637207031, 0.021420160293579103, 0.021414688110351562, 0.02130073547363281, 0.021100191116333007, 0.02103798484802246, 0.02104934310913086, 0.021387264251708983, 0.022521631240844726, 0.021280704498291017, 0.02119708824157715, 0.021329919815063478, 0.02126028823852539, 0.021352479934692383, 0.021065376281738282, 0.021118911743164062, 0.021660032272338866, 0.02143539237976074, 0.021240192413330077, 0.021571647644042968, 0.021176607131958007, 0.021271551132202148, 0.02129180717468262, 0.02112735939025879, 0.021313535690307618, 0.021171680450439455, 0.021158432006835936, 0.021149696350097655, 0.0212108154296875, 0.021391679763793945, 0.021616159439086916, 0.021493728637695313, 0.021182975769042968, 0.021037376403808594, 0.021093503952026367, 0.02125881576538086, 0.021180416107177736, 0.021427711486816405, 0.021248512268066407, 0.021382783889770506, 0.0212392635345459, 0.02144963264465332, 0.021194911956787108, 0.021143392562866212, 0.021522432327270507, 0.02131702423095703, 0.021534303665161132, 0.021300575256347657, 0.021288192749023438, 0.021221792221069336, 0.021159040451049806, 0.02122617530822754, 0.021413408279418945, 0.022235008239746095, 0.02174457550048828, 0.021364223480224608, 0.021289312362670898, 0.021411968231201173, 0.022521728515625, 0.021401599884033205, 0.021296319961547853, 0.02138217544555664, 0.021684160232543947, 0.02135264015197754, 0.021427871704101563, 0.021486879348754883, 0.021301599502563478, 0.021461343765258788, 0.021286943435668945, 0.02123695945739746, 0.021474143981933595, 0.02146268844604492, 0.021434080123901366, 0.021563968658447265, 0.02125971221923828, 0.02124038314819336, 0.02115782356262207, 0.021493824005126953, 0.021478975296020508, 0.021491743087768553, 0.02124355125427246, 0.02125708770751953, 0.021444255828857423, 0.021243360519409178, 0.021372991561889647, 0.021696672439575196, 0.021475488662719727, 0.02132918357849121, 0.021269216537475585, 0.021438304901123046, 0.021353952407836913, 0.02124991989135742, 0.021574464797973633, 0.021442880630493166, 0.021492927551269532, 0.021164287567138673, 0.021096704483032226, 0.021342496871948242, 0.021960416793823243, 0.022095296859741213, 0.021350976943969726, 0.021279104232788087, 0.021372255325317384, 0.021215360641479494, 0.0212010555267334, 0.020927743911743166, 0.021086208343505858, 0.02243168067932129, 0.024996671676635742, 0.02149772834777832, 0.021477504730224608, 0.021243423461914063, 0.02118489646911621, 0.02129007911682129, 0.021154815673828126, 0.02124575996398926, 0.021246143341064453, 0.021217376708984374, 0.02122742462158203, 0.02125619125366211, 0.021130271911621094, 0.021259040832519532, 0.021081279754638672, 0.020943616867065428, 0.02140595245361328, 0.021392576217651366, 0.021216064453125, 0.021114879608154297, 0.021207136154174806, 0.021168031692504884, 0.021233152389526368, 0.021552928924560545, 0.0212891845703125, 0.021281055450439453, 0.021358367919921874, 0.021203392028808592, 0.021184511184692383, 0.021207040786743164, 0.021108896255493163, 0.021249151229858397, 0.021680864334106445, 0.021292160034179688, 0.021727615356445313, 0.023144128799438477, 0.02140652847290039, 0.02125555229187012, 0.021351039886474608, 0.02146268844604492, 0.021379648208618166, 0.02125619125366211, 0.02111724853515625, 0.021103424072265627, 0.02107436752319336, 0.021096895217895508, 0.021220544815063476, 0.021479583740234374, 0.02125686454772949, 0.02109644889831543, 0.021125152587890626, 0.021059551239013673, 0.021129215240478515, 0.021130239486694336, 0.021334943771362306, 0.02104528045654297, 0.021063039779663086, 0.020996799468994142, 0.020996095657348633, 0.021231103897094726, 0.020893440246582032, 0.020781280517578125, 0.021151519775390624, 0.021311616897583006, 0.020980352401733397, 0.020711423873901368, 0.0204902400970459, 0.02066815948486328, 0.02150601577758789, 0.021673824310302733, 0.0210948486328125, 0.02098771286010742, 0.02088159942626953, 0.02082745552062988, 0.021103071212768554, 0.020856224060058593, 0.02084681510925293, 0.021043424606323243, 0.02115519905090332, 0.02082697677612305, 0.020680864334106444, 0.020709375381469726, 0.020779008865356444, 0.020967424392700194, 0.020954944610595702, 0.020994239807128907, 0.020934656143188478, 0.021114879608154297, 0.02090937614440918, 0.020779712677001953, 0.020747711181640625, 0.020931135177612303, 0.02091007995605469, 0.020915456771850586, 0.020951808929443358, 0.020773887634277344, 0.020715551376342775, 0.020848608016967772, 0.020935775756835938, 0.0212042236328125, 0.02102899169921875, 0.021209632873535156, 0.021141504287719725, 0.021004287719726563, 0.02110643196105957, 0.021180416107177736, 0.020915935516357422, 0.020816415786743165, 0.020875423431396485, 0.020854623794555664, 0.021098495483398438, 0.021014528274536134, 0.020785152435302736, 0.020653055191040038, 0.02087424087524414, 0.02104319953918457, 0.020917823791503906, 0.02381430435180664, 0.02199283218383789, 0.021167007446289063, 0.0211844482421875, 0.021076032638549805, 0.020888927459716797, 0.02103932762145996, 0.020947391510009766, 0.021123071670532227, 0.020875263214111327, 0.020959232330322267, 0.021251583099365236, 0.021089887619018553, 0.02106883239746094, 0.021215103149414063, 0.021171455383300782, 0.02113817596435547, 0.021303295135498047, 0.021056640625, 0.021151744842529296, 0.021128063201904298, 0.021137407302856445, 0.021041280746459962, 0.02108403205871582, 0.021168127059936523, 0.021198368072509764, 0.021061279296875, 0.021111007690429687, 0.02100822448730469, 0.021144128799438475, 0.02135264015197754, 0.021245599746704102, 0.02160470390319824, 0.021250207901000975, 0.02115990447998047, 0.021174079895019533, 0.021094463348388673, 0.020938880920410158, 0.020995967864990233, 0.021078079223632813, 0.021150976181030273, 0.021535423278808592, 0.021118431091308593, 0.021120960235595704, 0.02106368064880371, 0.02113539123535156, 0.021119552612304686, 0.02101043128967285, 0.021078655242919922, 0.021012224197387696, 0.021068063735961914, 0.020960607528686524, 0.021207391738891603, 0.02115001678466797, 0.02103500747680664, 0.021021728515625, 0.02104412841796875, 0.021184608459472655, 0.021085792541503907, 0.021053247451782227, 0.021000768661499022, 0.020944896697998046, 0.021090303421020508, 0.020946592330932618, 0.020748640060424806, 0.020672704696655272, 0.020896799087524415, 0.020832895278930664, 0.020897951126098633, 0.02079539108276367, 0.020709632873535156, 0.02071731185913086, 0.02093257522583008, 0.020831935882568358, 0.020732255935668947, 0.020905248641967772, 0.021353183746337892, 0.02127984046936035, 0.02163599967956543, 0.021307392120361326, 0.021403039932250977, 0.02133452796936035, 0.02126857566833496, 0.021310560226440428, 0.021337152481079102, 0.02130518341064453, 0.021485376358032226, 0.021440704345703124, 0.02203228759765625, 0.022298976898193358, 0.02212620735168457, 0.02140787124633789, 0.021329919815063478, 0.02137615966796875, 0.021537696838378906, 0.021384767532348633, 0.021494144439697264, 0.021445791244506837, 0.02131622314453125, 0.021353887557983398, 0.02131974411010742, 0.021448448181152345, 0.021441535949707033, 0.021452863693237303, 0.021415552139282226, 0.0213703670501709, 0.021306175231933594, 0.021349536895751954, 0.021469343185424806, 0.021350080490112305, 0.021399744033813478, 0.021516223907470704, 0.021407615661621093, 0.021469375610351563, 0.02136479949951172, 0.021417919158935546, 0.021399551391601563, 0.021366783142089844, 0.021419136047363282, 0.0212488956451416, 0.021303295135498047, 0.021518047332763673, 0.021420032501220702, 0.021899744033813475, 0.02123347282409668, 0.021344255447387696, 0.021286720275878905, 0.021428415298461914, 0.02128895950317383, 0.02143619155883789, 0.021327232360839842, 0.02189731216430664, 0.021391424179077148, 0.021418527603149416, 0.021340320587158203, 0.02155673599243164, 0.02152931213378906, 0.021307167053222657, 0.021301248550415038, 0.02150809669494629, 0.021329439163208008, 0.021453279495239258, 0.021379072189331053, 0.021465087890625, 0.021364736557006835, 0.02141798400878906, 0.02140563201904297, 0.02131059265136719, 0.021433280944824218, 0.021427967071533202, 0.02122572708129883, 0.021431520462036134, 0.021362720489501955, 0.021348127365112303, 0.02151148796081543, 0.021347999572753906, 0.021342208862304687, 0.021361791610717773, 0.02144879913330078, 0.021672735214233397, 0.02126438331604004, 0.02143951988220215, 0.021262367248535155, 0.02124812889099121, 0.021885408401489257, 0.021545312881469728, 0.021303232192993165, 0.021235103607177733, 0.02154969596862793, 0.02138115119934082, 0.021767967224121092, 0.021264608383178712, 0.021370880126953123, 0.02147532844543457, 0.021577823638916017, 0.02126710319519043, 0.021437984466552734, 0.02164156723022461, 0.021338111877441408, 0.021344160079956053, 0.021549152374267577, 0.021660703659057617, 0.02158896064758301, 0.021397504806518555, 0.021362592697143554, 0.021389408111572264, 0.021489887237548827, 0.02146665573120117, 0.021364992141723632, 0.021227519989013673, 0.021381120681762695, 0.02125619125366211, 0.021521856307983398, 0.021424896240234376, 0.02160416030883789, 0.021456895828247072, 0.021522432327270507, 0.021553152084350585, 0.021831680297851562, 0.021384767532348633, 0.021338560104370116, 0.021425535202026367, 0.021424768447875976, 0.021420032501220702, 0.02146713638305664, 0.02143027114868164, 0.021283136367797852, 0.021311168670654298, 0.021376991271972658, 0.021125152587890626, 0.02144451141357422, 0.02154640007019043, 0.02155926322937012, 0.02156342315673828, 0.02134448051452637, 0.021342079162597657, 0.0216124153137207, 0.02437411117553711, 0.021701536178588866, 0.02130633544921875, 0.02133407974243164, 0.021476703643798827, 0.021541439056396484, 0.021331167221069335, 0.021224159240722656, 0.021302623748779295, 0.0213243522644043, 0.02122083282470703, 0.02181328010559082, 0.02165216064453125, 0.02149580764770508, 0.021630048751831055, 0.02128374481201172, 0.021303295135498047, 0.021321407318115236, 0.02129155158996582, 0.02130668830871582, 0.021362688064575194, 0.02120012855529785, 0.021385728836059572, 0.02110207939147949, 0.021240575790405274, 0.021257663726806642, 0.02102889633178711, 0.021306175231933594, 0.0222696647644043, 0.02151580810546875, 0.021314016342163088, 0.021379072189331053, 0.02126028823852539, 0.02109187126159668, 0.021354719161987303, 0.02109609603881836, 0.021299232482910158, 0.021162559509277343, 0.02127052879333496, 0.021125247955322266, 0.021180288314819336, 0.021178688049316406, 0.021083999633789062, 0.021163040161132813, 0.021089088439941405, 0.02146236801147461, 0.021338783264160156, 0.021349727630615236, 0.021275104522705077, 0.021110847473144533, 0.02122460746765137, 0.021175552368164062, 0.021288671493530274, 0.021370880126953123, 0.02125004768371582, 0.02225107192993164, 0.021290431976318358, 0.02128998374938965, 0.021207040786743164, 0.021319679260253906, 0.021325824737548828, 0.021034112930297853, 0.021149696350097655, 0.02134127998352051, 0.02156224060058594, 0.021418912887573242, 0.021336063385009766, 0.02123366355895996, 0.021237312316894533, 0.021162784576416016, 0.021115776062011718, 0.021231712341308592, 0.02129318428039551, 0.02127145576477051, 0.02251897621154785, 0.021289440155029298, 0.021272319793701172, 0.02138751983642578, 0.021206783294677733, 0.021550432205200195, 0.0216278076171875, 0.02134988784790039, 0.02116441535949707]",tokens/s,46.88777743590243,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 286, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 280.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 42.12 MiB is free. Process 21623 has 14.70 GiB memory in use. Of the allocated memory 14.58 GiB is allocated by PyTorch, and 1.64 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 609, in __init__ self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 200.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 164.12 MiB is free. Process 45393 has 14.58 GiB memory in use. Of the allocated memory 14.46 GiB is allocated by PyTorch, and 4.94 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1034.825728,10975.379456,0.0,10580.13184,10162.029568,s,1,7.04631689453125,7.04631689453125,0.0,7.04631689453125,7.04631689453125,7.04631689453125,7.04631689453125,[7.04631689453125],,kWh,6.928084420822718e-06,7.568928127316525e-07,3.626947345999887e-06,1.1311924579554257e-05,,MB,1421.123584,11097.014272,0.0,10689.183744,9358.065152,s,10,1.2058576965332033,0.12058576965332032,0.0057852438894190296,0.12277670288085937,0.12617377014160158,0.12655339584350586,0.12685709640502932,"[0.10859286499023438, 0.12693302154541017, 0.12593856048583985, 0.12311558532714843, 0.11274288177490234, 0.12307100677490235, 0.11689859008789062, 0.11999337768554688, 0.12608940887451173, 0.12248239898681641]",tokens/s,2122.970237168039,kWh,3.523590479668807e-06,3.885736947396416e-07,2.3340480519758895e-06,6.246212226384339e-06,tokens/kWh,40984838.6064505,MB,1454.32576,11097.014272,0.0,10689.183744,9397.6704,s,10,31.172315673828127,3.1172315673828126,0.005840258230599865,3.116716918945312,3.1216128662109375,3.1267613891601562,3.130880207519531,"[3.117585693359375, 3.111726806640625, 3.111638671875, 3.12046875, 3.110628173828125, 3.119263427734375, 3.11584814453125, 3.11538671875, 3.117859375, 3.131909912109375]",tokens/s,20.21024060554282,kWh,9.067647783991333e-05,1.000147588033289e-05,6.018214084982452e-05,0.00016086009457007072,tokens/kWh,391644.6783671209,,s,630,31.16853237915038,0.049473860919286336,0.00038854894768234087,0.0494033432006836,0.049796352767944335,0.049995362854003904,0.05130727104187012,"[0.050460128784179686, 0.04980380630493164, 0.04919206237792969, 0.0491814079284668, 0.04902108764648438, 0.04915814590454102, 0.049065216064453125, 0.04898278427124023, 0.049199134826660156, 0.04906800079345703, 0.04930323028564453, 0.049395870208740235, 0.049067230224609376, 0.04914886474609375, 0.049059486389160155, 0.049500511169433596, 0.049356353759765624, 0.04949651336669922, 0.04918236923217773, 0.050678112030029296, 0.04948188781738281, 0.049555007934570315, 0.049341854095458985, 0.04965465545654297, 0.04933145523071289, 0.049207103729248046, 0.04929983901977539, 0.04924678421020508, 0.049141216278076175, 0.049293502807617184, 0.04922608184814453, 0.049220703125, 0.04938243103027344, 0.04938915252685547, 0.04924563217163086, 0.049423198699951175, 0.04964761734008789, 0.0498661117553711, 0.04938166427612305, 0.04931964874267578, 0.05000172805786133, 0.0502089614868164, 0.049652385711669925, 0.049543136596679686, 0.04940595245361328, 0.04939977645874023, 0.04940188980102539, 0.049280094146728515, 0.04941712188720703, 0.049495136260986325, 0.049683361053466796, 0.049598464965820314, 0.049772544860839846, 0.04962076950073242, 0.050151649475097655, 0.04963670349121094, 0.04978915023803711, 0.04954294586181641, 0.049879711151123045, 0.04974147033691406, 0.04962543869018555, 0.04969244766235351, 0.04970108795166016, 0.051871742248535156, 0.050220863342285156, 0.04935286331176758, 0.049258529663085936, 0.04914575958251953, 0.04926473617553711, 0.049200191497802734, 0.0492545280456543, 0.04923376083374023, 0.04916118240356445, 0.04910492706298828, 0.04961276626586914, 0.04967833709716797, 0.049240062713623044, 0.04917555236816406, 0.04916121673583984, 0.04900233459472656, 0.049167552947998044, 0.0493864631652832, 0.04923798370361328, 0.04946102523803711, 0.049565216064453126, 0.049259231567382815, 0.049162174224853514, 0.049188926696777345, 0.049209342956542966, 0.04911513519287109, 0.04942438507080078, 0.049235969543457034, 0.0493007698059082, 0.04923043060302734, 0.049200321197509764, 0.049197952270507814, 0.04942444610595703, 0.049121280670166016, 0.04918067169189453, 0.04917657470703125, 0.049291263580322264, 0.04926668930053711, 0.049240062713623044, 0.049237598419189454, 0.04945315170288086, 0.049699134826660156, 0.04950991821289062, 0.04923209762573242, 0.049481983184814456, 0.04921753692626953, 0.0493199348449707, 0.04914176177978516, 0.049212928771972655, 0.04925900650024414, 0.049245567321777345, 0.049344959259033205, 0.04955353546142578, 0.04959196853637695, 0.0494159049987793, 0.04930963134765625, 0.04932275390625, 0.04945305633544922, 0.04950764846801758, 0.04951520156860351, 0.04958003234863281, 0.050753280639648436, 0.05113177490234375, 0.050012256622314455, 0.04933071899414063, 0.04909657669067383, 0.04908863830566406, 0.04917619323730469, 0.04918438339233398, 0.049150718688964846, 0.04933222579956055, 0.04908662414550781, 0.04926857757568359, 0.049014785766601565, 0.049152000427246094, 0.04923116683959961, 0.04904006576538086, 0.04916428756713867, 0.04906982421875, 0.04910617446899414, 0.04924262237548828, 0.049365505218505856, 0.04941955184936524, 0.04929404830932617, 0.049329185485839845, 0.04926784133911133, 0.049173599243164064, 0.04914662551879883, 0.049108097076416016, 0.049307937622070315, 0.04944569778442383, 0.04947903823852539, 0.049183135986328126, 0.049086463928222655, 0.04905984115600586, 0.04941209411621094, 0.04915139389038086, 0.04949660873413086, 0.04916844940185547, 0.04915609741210938, 0.04939980697631836, 0.04950630569458008, 0.04943462371826172, 0.049459201812744144, 0.04952678298950195, 0.04961280059814453, 0.049434593200683594, 0.04942851257324219, 0.04936880111694336, 0.0494431037902832, 0.04960617446899414, 0.04942076873779297, 0.049465343475341796, 0.04953395080566406, 0.049509376525878904, 0.049729534149169925, 0.04971724700927734, 0.04940390396118164, 0.04931923294067383, 0.04940047836303711, 0.049554622650146485, 0.04946211242675781, 0.049516159057617186, 0.04965801620483398, 0.05038463973999024, 0.051326526641845706, 0.04979609680175781, 0.04924588775634765, 0.04942038345336914, 0.049066047668457034, 0.04917270278930664, 0.049176513671875, 0.04911513519287109, 0.049168254852294924, 0.049145984649658206, 0.049176128387451175, 0.049242462158203125, 0.04915980911254883, 0.04930403137207031, 0.04931103897094727, 0.049342334747314455, 0.04958448028564453, 0.04954102325439453, 0.049281089782714844, 0.04965836715698242, 0.04938547134399414, 0.04953497695922852, 0.04945129776000977, 0.049479358673095705, 0.04980534362792969, 0.04986646270751953, 0.04959433746337891, 0.04951513671875, 0.04950803375244141, 0.04939974212646484, 0.049240127563476566, 0.04927078247070313, 0.04930508804321289, 0.04938598251342773, 0.0496517105102539, 0.04944486236572266, 0.04923392105102539, 0.04985020828247071, 0.049551422119140626, 0.04969071960449219, 0.04947353744506836, 0.0497806396484375, 0.049500255584716796, 0.04998758316040039, 0.04956774520874024, 0.04955091094970703, 0.050573760986328126, 0.049649024963378904, 0.04947622299194336, 0.049584095001220706, 0.04924623870849609, 0.04974095916748047, 0.04933718490600586, 0.04946236801147461, 0.049623966217041016, 0.04965785598754883, 0.04947763061523437, 0.04976435089111328, 0.0494815673828125, 0.049653854370117184, 0.04990278244018555, 0.0498205451965332, 0.04941209411621094, 0.051748382568359376, 0.05027068710327148, 0.04927449417114258, 0.04914806365966797, 0.04905801773071289, 0.049110912322998045, 0.04903033447265625, 0.04923078536987305, 0.049254016876220705, 0.04920956802368164, 0.049275039672851566, 0.049145503997802736, 0.04908886337280274, 0.04905779266357422, 0.0491069450378418, 0.04900454330444336, 0.049031169891357425, 0.04912332916259766, 0.04919839859008789, 0.04915679931640625, 0.04934041595458984, 0.04946239852905274, 0.04921379089355469, 0.049164798736572264, 0.04940803146362305, 0.04926816177368164, 0.04905017471313477, 0.04913484954833985, 0.049105567932128905, 0.049172542572021485, 0.04917660903930664, 0.04921123123168945, 0.049100959777832034, 0.04922278213500977, 0.04905868911743164, 0.049285118103027346, 0.04927056121826172, 0.04916633605957031, 0.04921571350097656, 0.04936272048950195, 0.04933222579956055, 0.04961507034301758, 0.04945510482788086, 0.04987603378295898, 0.049511070251464846, 0.04947177505493164, 0.049498111724853515, 0.04925417709350586, 0.04935702514648437, 0.04951859283447266, 0.049436511993408205, 0.04968182373046875, 0.04961561584472656, 0.04945078277587891, 0.049574111938476564, 0.04947916793823242, 0.04960009765625, 0.04960255813598633, 0.0493917121887207, 0.04970927810668945, 0.04959020614624023, 0.04969036865234375, 0.049615776062011716, 0.051260128021240234, 0.05005219268798828, 0.04910787200927735, 0.0501739501953125, 0.049094432830810546, 0.049127647399902344, 0.04922345733642578, 0.04940108871459961, 0.04925040054321289, 0.04924095916748047, 0.049258495330810545, 0.04937862396240234, 0.049498817443847654, 0.049188865661621096, 0.04915785598754883, 0.049111328125, 0.04937286376953125, 0.04923337554931641, 0.04936486434936523, 0.04951897430419922, 0.04941382217407227, 0.049361824035644535, 0.049324031829833984, 0.04931379318237305, 0.049192958831787106, 0.0492786865234375, 0.049324321746826175, 0.0492564468383789, 0.04925235366821289, 0.04926668930053711, 0.04905574417114258, 0.04930559921264648, 0.049127422332763675, 0.04929724884033203, 0.049281185150146484, 0.049452064514160156, 0.04922617721557617, 0.04939193725585937, 0.04937750244140625, 0.04965776062011719, 0.04977993774414063, 0.049689247131347654, 0.04962736129760742, 0.04956159973144531, 0.04961075210571289, 0.04969043350219727, 0.04957408142089844, 0.04961248016357422, 0.049731201171875, 0.0496769905090332, 0.049565696716308595, 0.04950537490844727, 0.0497017936706543, 0.04966195297241211, 0.049551551818847656, 0.049514305114746096, 0.049559040069580076, 0.04970137786865234, 0.0510618896484375, 0.04994547271728516, 0.049838081359863284, 0.04979916763305664, 0.04973263931274414, 0.05154457473754883, 0.05004185485839844, 0.0499455680847168, 0.049858558654785154, 0.049202239990234375, 0.049363327026367185, 0.04911980819702148, 0.04913356781005859, 0.0492564468383789, 0.049375232696533204, 0.0490937614440918, 0.04926348876953125, 0.049212543487548825, 0.04910579299926758, 0.0492564468383789, 0.04936198425292969, 0.04915091323852539, 0.04916595077514648, 0.049017215728759764, 0.04930915069580078, 0.04924265670776367, 0.04973283386230469, 0.049339168548583986, 0.04939571380615235, 0.04947558212280274, 0.04934656143188477, 0.049235969543457034, 0.04951638412475586, 0.04934672164916992, 0.04937900924682617, 0.049969470977783204, 0.049798656463623046, 0.04927542495727539, 0.04926665496826172, 0.049225727081298826, 0.049642879486083986, 0.04918540954589844, 0.04941164779663086, 0.04932163238525391, 0.049576736450195315, 0.04944806289672852, 0.049417247772216795, 0.04938313674926758, 0.049500160217285157, 0.04935059356689453, 0.049411937713623046, 0.04929769515991211, 0.04938067245483398, 0.049351009368896484, 0.049379745483398435, 0.049441856384277345, 0.049344993591308596, 0.05028847885131836, 0.04973590469360351, 0.04945888137817383, 0.04949059295654297, 0.04938143920898438, 0.04968236923217773, 0.04941164779663086, 0.04960496139526367, 0.04947574234008789, 0.04941209411621094, 0.04936816024780273, 0.05148672103881836, 0.04995072174072265, 0.049196990966796875, 0.04914182281494141, 0.04938726425170899, 0.04929951858520508, 0.04919929504394531, 0.049210559844970705, 0.049164833068847655, 0.04939158248901367, 0.04911545562744141, 0.04928102493286133, 0.04923542404174805, 0.04922832107543945, 0.04924540710449219, 0.049294239044189454, 0.04909564971923828, 0.049275135040283205, 0.04920182418823242, 0.04946739196777344, 0.04960665512084961, 0.049643199920654295, 0.049543487548828126, 0.04941625595092773, 0.049417377471923825, 0.049385791778564454, 0.04913401412963867, 0.04923600006103516, 0.049332000732421874, 0.0492606086730957, 0.04920131301879883, 0.049274398803710935, 0.04923235321044922, 0.0492308464050293, 0.04920409774780273, 0.04925766372680664, 0.04923897552490234, 0.049317760467529295, 0.04947350311279297, 0.04951830291748047, 0.04947398376464844, 0.049704959869384766, 0.05000806427001953, 0.049606304168701175, 0.04924777603149414, 0.049507137298583984, 0.049501792907714844, 0.04932767868041992, 0.04958089447021485, 0.049616222381591794, 0.04981987380981445, 0.04948854446411133, 0.049471263885498044, 0.049516544342041016, 0.04952217483520508, 0.04940812683105469, 0.04937356948852539, 0.04956076812744141, 0.049498943328857424, 0.04963273620605469, 0.04987516784667969, 0.04967388916015625, 0.04976873779296875, 0.05205401611328125, 0.05026406478881836, 0.04940185546875, 0.049436351776123044, 0.049508575439453126, 0.049401790618896484, 0.04928435134887695, 0.049170398712158205, 0.04925110244750976, 0.05035404968261719, 0.04985065460205078, 0.049186817169189455, 0.04924620819091797, 0.04968790435791016, 0.04928691101074219, 0.049436832427978514, 0.049257217407226564, 0.04926259231567383, 0.049188865661621096, 0.04949606323242187, 0.04938137435913086, 0.049565696716308595, 0.04939932632446289, 0.04929334259033203, 0.04952844619750976, 0.04924208068847656, 0.04934467315673828, 0.049373886108398435, 0.049153217315673826, 0.04925084686279297, 0.04940972900390625, 0.0492652473449707, 0.049344512939453126, 0.049620990753173826, 0.04926873779296875, 0.049282974243164065, 0.04915139389038086, 0.049490623474121094, 0.04931084823608398, 0.04978982543945312, 0.04963087844848633, 0.049610431671142576, 0.04945772933959961, 0.049549407958984375, 0.04954025650024414, 0.04956963348388672, 0.049296382904052735, 0.04934604644775391, 0.04923766326904297, 0.04933241653442383, 0.04927145767211914, 0.049686527252197264, 0.04948160171508789, 0.04940732955932617, 0.04949414443969727, 0.0495513916015625, 0.049422462463378905, 0.04953107070922851, 0.04937350463867188, 0.04952259063720703, 0.0497501106262207, 0.04951244735717773, 0.04943167877197266, 0.052706592559814455, 0.05042403030395508, 0.049576446533203124, 0.04954111862182617, 0.049301502227783206, 0.04938924789428711, 0.04929977416992187, 0.0493704948425293, 0.050090625762939454, 0.04949769592285156, 0.04938742446899414, 0.049621505737304686, 0.04942233657836914, 0.04932825469970703, 0.04940278244018555, 0.04941683197021484, 0.049359199523925784, 0.049469280242919925, 0.04953104019165039, 0.049777759552001956, 0.04985948944091797, 0.04983603286743164, 0.04970905685424805, 0.04964556884765625, 0.04956108856201172, 0.049562110900878906, 0.04950960159301758, 0.04962284851074219, 0.049695713043212894, 0.049635326385498044, 0.04947148895263672, 0.04940185546875, 0.04976844787597656, 0.049917953491210934, 0.04956905746459961, 0.04984707260131836, 0.050421630859375, 0.04969881439208984, 0.04953251266479492, 0.049506782531738285, 0.04972505569458008, 0.04975040054321289, 0.049632640838623045, 0.04988582229614258, 0.04954876708984375, 0.04960720062255859, 0.04940595245361328, 0.049442817687988284, 0.04952473449707031, 0.04968835067749024, 0.049737247467041015, 0.04959507369995117, 0.049522335052490235, 0.04991827011108398, 0.04943628692626953, 0.04945961761474609, 0.04975523376464844, 0.04991244888305664, 0.051052833557128904, 0.049673633575439455, 0.04988988876342773, 0.049887233734130856, 0.04981350326538086]",tokens/s,20.212693762296833,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 706, in __init__ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.96 GiB. GPU 0 has a total capacity of 14.74 GiB of which 662.12 MiB is free. Process 135842 has 14.09 GiB memory in use. Of the allocated memory 13.97 GiB is allocated by PyTorch, and 6.66 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 134.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 52.12 MiB is free. Process 81168 has 14.69 GiB memory in use. Of the allocated memory 14.47 GiB is allocated by PyTorch, and 108.93 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 248, in __init__ self.model = DeciCoderModel(config) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 215, in __init__ self.layers = nn.ModuleList([DeciCoderDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 215, in self.layers = nn.ModuleList([DeciCoderDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 181, in __init__ self.self_attn = DeciCoderAttention(config=config) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 54, in __init__ self._init_rope() File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1729, in __getattr__ raise AttributeError(f""'{type(self).__name__}' object has no attribute '{name}'"") AttributeError: 'DeciCoderAttention' object has no attribute '_init_rope' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 217, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 258.12 MiB is free. Process 87230 has 14.49 GiB memory in use. Of the allocated memory 14.32 GiB is allocated by PyTorch, and 53.40 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 906, in __init__ self.model = InternLMModel(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in __init__ self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 547, in __init__ self.mlp = InternLMMLP( File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 276, in __init__ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 136.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 18.12 MiB is free. Process 148164 has 14.72 GiB memory in use. Of the allocated memory 14.60 GiB is allocated by PyTorch, and 9.56 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 219, in __init__ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 768.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 286.12 MiB is free. Process 90226 has 14.46 GiB memory in use. Of the allocated memory 14.30 GiB is allocated by PyTorch, and 41.77 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 582, in __init__ self.transformer = CodeGenModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 400, in __init__ self.h = nn.ModuleList([CodeGenBlock(config) for _ in range(config.n_layer)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 400, in self.h = nn.ModuleList([CodeGenBlock(config) for _ in range(config.n_layer)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 258, in __init__ self.mlp = CodeGenMLP(inner_dim, config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 236, in __init__ self.fc_in = nn.Linear(embed_dim, intermediate_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 288.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 172.12 MiB is free. Process 104736 has 14.57 GiB memory in use. Of the allocated memory 14.44 GiB is allocated by PyTorch, and 14.15 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt2,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 286, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 344.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 66.12 MiB is free. Process 171511 has 14.67 GiB memory in use. Of the allocated memory 14.56 GiB is allocated by PyTorch, and 1.71 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 689, in __init__ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 358, in __init__ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 2.12 MiB is free. Process 168744 has 14.74 GiB memory in use. Of the allocated memory 14.53 GiB is allocated by PyTorch, and 90.39 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1032, in __init__ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.16 GiB. GPU 0 has a total capacity of 14.74 GiB of which 774.12 MiB is free. Process 66636 has 13.98 GiB memory in use. Of the allocated memory 13.72 GiB is allocated by PyTorch, and 148.73 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-9b,google/recurrentgemma-9b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py"", line 790, in __init__ self.model = RecurrentGemmaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py"", line 660, in __init__ [RecurrentGemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py"", line 660, in [RecurrentGemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py"", line 490, in __init__ self.mlp_block = RecurrentGemmaMlp(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/recurrent_gemma/modeling_recurrent_gemma.py"", line 472, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 30.12 MiB is free. Process 145097 has 14.71 GiB memory in use. Of the allocated memory 14.59 GiB is allocated by PyTorch, and 1.44 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 608, in __init__ self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 288.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 182.12 MiB is free. Process 37689 has 14.56 GiB memory in use. Of the allocated memory 14.43 GiB is allocated by PyTorch, and 13.08 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mixtral,mistralai/Mixtral-8x22B-v0.1,mistralai/Mixtral-8x22B-v0.1,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,811.667456,12523.077632,0.0,12127.830016,12122.08896,s,1,7.14426513671875,7.14426513671875,0.0,7.14426513671875,7.14426513671875,7.14426513671875,7.14426513671875,[7.14426513671875],,kWh,1.1392105812499171e-05,1.1714825149596346e-06,6.170004935999746e-06,1.8733593263458553e-05,,MB,1160.593408,12697.141248,0.0,12289.31072,12248.586752,s,10,1.8632452697753905,0.1863245269775391,0.0030487712772315654,0.18495963287353517,0.18985733184814454,0.19079213790893554,0.19153998275756837,"[0.18131852722167968, 0.18408697509765626, 0.18430841064453124, 0.18478448486328125, 0.185038818359375, 0.18488044738769532, 0.1880411834716797, 0.18940988159179686, 0.18964959716796875, 0.19172694396972656]",tokens/s,1373.9468665381885,kWh,5.6292487803686115e-06,6.203937768888961e-07,3.7304463604230814e-06,9.98008891768059e-06,tokens/kWh,25651074.064728413,MB,1211.277312,12705.529856,0.0,12297.699328,12248.589312,s,10,33.32199340820313,3.3321993408203125,0.005015908607296032,3.3335286865234375,3.3371913818359373,3.338296496582031,3.3391805883789063,"[3.3286611328125, 3.324007568359375, 3.325651611328125, 3.32798779296875, 3.33694580078125, 3.332620361328125, 3.33443701171875, 3.335543701171875, 3.33673681640625, 3.339401611328125]",tokens/s,18.906431925675495,kWh,9.750761309254812e-05,1.0755634699114251e-05,6.469694171477692e-05,0.0001729601895064393,tokens/kWh,364245.6693634376,,s,630,33.319364505767844,0.05288788016788543,0.0004587038709020352,0.05283310508728027,0.05316370964050293,0.05333808536529541,0.05552307079315186,"[0.05734841537475586, 0.05428630447387695, 0.05302272033691406, 0.052803585052490234, 0.052482048034667966, 0.052830142974853514, 0.052633663177490235, 0.052587711334228515, 0.0524637451171875, 0.05246214294433594, 0.0527402229309082, 0.05251686477661133, 0.05231766510009766, 0.05264028930664062, 0.05259014511108399, 0.05245491027832031, 0.05253011322021484, 0.05258975982666016, 0.05281465530395508, 0.05302259063720703, 0.05293683242797852, 0.053115966796875, 0.05283321762084961, 0.0528337287902832, 0.052582977294921875, 0.05254348754882812, 0.05244723129272461, 0.05250809478759766, 0.05246828842163086, 0.05251606369018555, 0.05244387054443359, 0.05254716873168945, 0.052545921325683594, 0.052770912170410154, 0.05246976089477539, 0.05261052703857422, 0.052816417694091795, 0.05272934341430664, 0.05267302322387695, 0.052926464080810545, 0.05300841522216797, 0.05309222412109375, 0.05288320159912109, 0.05312752151489258, 0.05267385482788086, 0.05265049743652344, 0.05257161712646485, 0.05254422378540039, 0.05251398468017578, 0.052732223510742186, 0.052750049591064455, 0.05285763168334961, 0.0526192626953125, 0.052596736907958984, 0.05299814224243164, 0.053133312225341796, 0.05301248168945313, 0.053008384704589843, 0.053185569763183595, 0.05312364959716797, 0.052830623626708983, 0.053026817321777345, 0.05299817657470703, 0.05548448181152344, 0.053284832000732425, 0.052547584533691405, 0.05254553604125976, 0.05231206512451172, 0.052410369873046876, 0.0523570556640625, 0.05260003280639648, 0.05244185638427734, 0.052516960144042966, 0.052563488006591795, 0.05261052703857422, 0.05270140838623047, 0.05256070327758789, 0.052402145385742185, 0.05242060852050781, 0.05246944046020508, 0.052914497375488284, 0.05344054412841797, 0.052880638122558596, 0.05283299255371094, 0.052910079956054686, 0.05275568008422851, 0.0525709114074707, 0.052450366973876957, 0.0526894416809082, 0.052579967498779294, 0.052575008392333984, 0.05248819351196289, 0.052523006439208986, 0.052866943359375, 0.052637214660644534, 0.05254819107055664, 0.05251894378662109, 0.05272777557373047, 0.052932193756103516, 0.0526192626953125, 0.052969886779785154, 0.052868415832519534, 0.052938465118408204, 0.05284310531616211, 0.05270771026611328, 0.05265983963012695, 0.05270694351196289, 0.052591297149658205, 0.05292348861694336, 0.05270019149780274, 0.05257209777832031, 0.052678398132324215, 0.052604927062988284, 0.05276847839355469, 0.05260857772827148, 0.052548030853271484, 0.05295363235473633, 0.05277040100097656, 0.05268307113647461, 0.053071582794189456, 0.053051265716552734, 0.05296371078491211, 0.05288560104370117, 0.05303696060180664, 0.05309247970581055, 0.05286502456665039, 0.05526432037353515, 0.05338822555541992, 0.052539390563964845, 0.052602336883544924, 0.05231660842895508, 0.05246166229248047, 0.05253276824951172, 0.0525255355834961, 0.05254947280883789, 0.052652191162109375, 0.05240627288818359, 0.05260198211669922, 0.05257100677490235, 0.05269094467163086, 0.052540447235107424, 0.05246870422363281, 0.052400127410888675, 0.052761791229248046, 0.0529898567199707, 0.053182559967041014, 0.05284249496459961, 0.0528023681640625, 0.05271756744384765, 0.052582401275634766, 0.05264527893066406, 0.05265996932983399, 0.05255254364013672, 0.05270025634765625, 0.05258127975463867, 0.05261423873901367, 0.052507232666015625, 0.052660511016845706, 0.05255964660644531, 0.05250073623657227, 0.052703231811523435, 0.05269676971435547, 0.052642112731933595, 0.05308415985107422, 0.053036865234375, 0.05301264190673828, 0.052967105865478516, 0.052902240753173825, 0.05292851257324219, 0.052802974700927735, 0.05271612930297852, 0.052760318756103514, 0.05275222396850586, 0.05268521499633789, 0.052670463562011716, 0.05284249496459961, 0.05278668975830078, 0.05274211120605469, 0.05279510498046875, 0.05299897766113281, 0.05281766510009766, 0.052949153900146484, 0.052772960662841796, 0.05285683059692383, 0.05306316757202149, 0.05293423843383789, 0.052929439544677735, 0.05319683074951172, 0.05294895935058594, 0.055698974609375, 0.053991905212402345, 0.0527496337890625, 0.05255782318115235, 0.05243936157226563, 0.05262374496459961, 0.05244313430786133, 0.05244927978515625, 0.05232025527954102, 0.052580352783203124, 0.05256777572631836, 0.052698623657226565, 0.052515201568603516, 0.052680320739746093, 0.05251561737060547, 0.05245868682861328, 0.052410400390625, 0.052539520263671875, 0.052856639862060545, 0.05334102249145508, 0.052950336456298826, 0.052863681793212894, 0.05256806564331055, 0.05262745666503906, 0.05249433517456055, 0.052453216552734376, 0.05257436752319336, 0.05265340805053711, 0.052748958587646486, 0.05285270309448242, 0.05260086441040039, 0.05269094467163086, 0.05295308685302735, 0.052938335418701174, 0.05277328109741211, 0.052655200958251956, 0.052963390350341796, 0.053392223358154293, 0.053134368896484374, 0.053040096282958984, 0.05305059051513672, 0.052873409271240235, 0.052744670867919924, 0.052678783416748046, 0.05265817642211914, 0.05271039962768555, 0.052724735260009765, 0.052717151641845705, 0.05267283248901367, 0.0527279052734375, 0.05267251205444336, 0.05266227340698242, 0.052770816802978515, 0.052940574645996094, 0.05282595062255859, 0.05314156723022461, 0.05293619155883789, 0.052910911560058595, 0.053065727233886716, 0.052992000579833984, 0.052864032745361327, 0.05309065628051758, 0.052932510375976564, 0.05588336181640625, 0.053460990905761716, 0.05261103820800781, 0.05272419357299805, 0.05245897674560547, 0.052644351959228515, 0.05269504165649414, 0.0526940803527832, 0.05314214324951172, 0.05280931091308594, 0.0525700798034668, 0.05292927932739258, 0.052811775207519535, 0.052730911254882815, 0.052653022766113285, 0.05261417770385742, 0.0525401611328125, 0.05300166320800781, 0.05324675369262695, 0.053320766448974606, 0.05295926284790039, 0.05284751892089844, 0.05267254257202148, 0.05276259231567383, 0.053007678985595705, 0.05275689697265625, 0.05264822387695312, 0.05278656005859375, 0.05271958541870117, 0.052789920806884764, 0.05295513534545898, 0.052924320220947264, 0.052908096313476566, 0.052676513671875, 0.052559009552001955, 0.053002849578857425, 0.053031295776367185, 0.053266433715820315, 0.05321900939941406, 0.05324582290649414, 0.05311328125, 0.052893695831298826, 0.052994049072265625, 0.05319680023193359, 0.05288332748413086, 0.052956958770751954, 0.052959583282470704, 0.05292201614379883, 0.05306777572631836, 0.05290422439575195, 0.05296953582763672, 0.05306777572631836, 0.052819103240966794, 0.05301129531860352, 0.053001537322998046, 0.05321798324584961, 0.05326972961425781, 0.05305219268798828, 0.05292230224609375, 0.052881473541259764, 0.05289516830444336, 0.05324857711791992, 0.05313536071777344, 0.05556966400146485, 0.05402220916748047, 0.05306256103515625, 0.052735904693603515, 0.052545440673828124, 0.052830398559570314, 0.05255372619628906, 0.05260287857055664, 0.05239603042602539, 0.05272576141357422, 0.05289779281616211, 0.052977664947509766, 0.052539295196533206, 0.05258393478393555, 0.05250313568115234, 0.05276793670654297, 0.05254022216796875, 0.05291212844848633, 0.052770816802978515, 0.05297078323364258, 0.0529087028503418, 0.05288534545898437, 0.05268502426147461, 0.05296297454833984, 0.052779361724853514, 0.05269094467163086, 0.052571807861328125, 0.052735774993896485, 0.052615745544433594, 0.05274211120605469, 0.05270735931396484, 0.052547584533691405, 0.05253324890136719, 0.05291417694091797, 0.05284793472290039, 0.05306233596801758, 0.05318000030517578, 0.05310915374755859, 0.05292806243896484, 0.052908031463623044, 0.05298425674438476, 0.05311283111572265, 0.05297151947021484, 0.053040447235107424, 0.052937408447265626, 0.05288729476928711, 0.05290390396118164, 0.0527690544128418, 0.052760574340820314, 0.05289315032958984, 0.0527913932800293, 0.05306320190429688, 0.05277993774414062, 0.05286092758178711, 0.05293670272827149, 0.05294233703613281, 0.05294956970214844, 0.05307795333862304, 0.052864734649658206, 0.053020030975341796, 0.05286800003051758, 0.05316396713256836, 0.05294838333129883, 0.05629574584960938, 0.05414918518066406, 0.052848865509033206, 0.05268035125732422, 0.05243328094482422, 0.052719615936279295, 0.052538654327392575, 0.052570846557617186, 0.05275027084350586, 0.052641281127929686, 0.05257049560546875, 0.05262969589233398, 0.0526376953125, 0.05294480133056641, 0.05270662307739258, 0.05261187362670899, 0.052751937866210935, 0.05268320083618164, 0.05316543960571289, 0.053109375, 0.052817214965820314, 0.05296380615234375, 0.05279151916503906, 0.05297875213623047, 0.052994110107421874, 0.052822593688964845, 0.052657791137695316, 0.052656352996826174, 0.05268473434448242, 0.052685344696044925, 0.05274832153320313, 0.05288140869140625, 0.052623104095458985, 0.052781280517578126, 0.052918270111083986, 0.052780895233154296, 0.05281324768066406, 0.05293129730224609, 0.053026817321777345, 0.05315961456298828, 0.05281824111938477, 0.05294208145141602, 0.05309926223754883, 0.052983070373535154, 0.05284105682373047, 0.05286310577392578, 0.05293260955810547, 0.05304089736938476, 0.05287142562866211, 0.053053279876708985, 0.0529634895324707, 0.05285043334960938, 0.052728065490722655, 0.052836353302001954, 0.052985855102539066, 0.053133312225341796, 0.05303500747680664, 0.053141502380371096, 0.053083774566650394, 0.05291251373291016, 0.052989761352539064, 0.05286076736450195, 0.05306304168701172, 0.055521183013916016, 0.05359487915039062, 0.052647167205810544, 0.05256268692016602, 0.052618240356445314, 0.052716545104980465, 0.05269094467163086, 0.05266230392456055, 0.05250454330444336, 0.05264179229736328, 0.052672126770019534, 0.05286950302124024, 0.05277798461914063, 0.05290256118774414, 0.05316368103027344, 0.05268755340576172, 0.0525926399230957, 0.052875072479248046, 0.0531352653503418, 0.05334249496459961, 0.05294432067871094, 0.05297209548950195, 0.05281587219238281, 0.052803585052490234, 0.052674560546875, 0.05282815933227539, 0.05260902404785156, 0.05268431854248047, 0.05260745620727539, 0.052722686767578124, 0.05300735855102539, 0.05284249496459961, 0.05290111923217773, 0.05269580841064453, 0.0532022705078125, 0.053103263854980466, 0.052872318267822266, 0.05317631912231445, 0.053089153289794924, 0.05310464096069336, 0.05325619125366211, 0.05299932861328125, 0.05287974548339844, 0.05305392074584961, 0.05286896133422852, 0.05291974258422852, 0.053078079223632814, 0.05291689682006836, 0.05288345718383789, 0.05294044876098633, 0.052762943267822264, 0.05281795120239258, 0.05282815933227539, 0.0529714241027832, 0.052956993103027344, 0.0531583023071289, 0.05316908645629883, 0.05302150344848633, 0.05286515045166015, 0.053215232849121094, 0.05301174545288086, 0.05302470397949219, 0.05286515045166015, 0.05575183868408203, 0.053664512634277343, 0.05269855880737305, 0.05265478515625, 0.052402145385742185, 0.0527749137878418, 0.052463390350341796, 0.052744415283203124, 0.05274003219604492, 0.052666046142578124, 0.052636032104492185, 0.0526143684387207, 0.052679454803466794, 0.052784191131591794, 0.05313017654418945, 0.0530513916015625, 0.05279334259033203, 0.052864864349365236, 0.053299072265625, 0.05311308670043945, 0.053006366729736326, 0.05304115295410156, 0.05284592056274414, 0.05278787231445312, 0.05272371292114258, 0.0527988166809082, 0.0528430404663086, 0.05267836761474609, 0.05274988937377929, 0.0528798713684082, 0.052654430389404296, 0.052762496948242185, 0.0526091537475586, 0.052579647064208986, 0.05280223846435547, 0.05283225631713867, 0.052829345703125, 0.053010623931884764, 0.05293052673339844, 0.05302339172363281, 0.052850719451904296, 0.05307932662963867, 0.05294768142700195, 0.05288345718383789, 0.053000190734863284, 0.053096511840820315, 0.052958847045898434, 0.05302508926391602, 0.052780895233154296, 0.05298601531982422, 0.05307372665405274, 0.05300038528442383, 0.05291811370849609, 0.05297782516479492, 0.05312054443359375, 0.05333449554443359, 0.05311283111572265, 0.05305452728271484, 0.05318547058105469, 0.05353881454467774, 0.053384929656982424, 0.053265697479248045, 0.05296844863891602, 0.05552384185791016, 0.053332321166992186, 0.052687007904052736, 0.052741119384765625, 0.052468734741210936, 0.05258195114135742, 0.052500926971435546, 0.05278307342529297, 0.05263552093505859, 0.052746112823486326, 0.052859169006347656, 0.052926464080810545, 0.05285657501220703, 0.05263385772705078, 0.052692928314208985, 0.052735198974609376, 0.05263241577148438, 0.052844192504882814, 0.05311936187744141, 0.05345593643188477, 0.053144481658935545, 0.052944862365722656, 0.052799518585205076, 0.05299574279785156, 0.05278726577758789, 0.05295270538330078, 0.05262931060791016, 0.05269171142578125, 0.05282972717285156, 0.052861503601074215, 0.05280767822265625, 0.05266636657714844, 0.05276671981811523, 0.05288345718383789, 0.052671775817871094, 0.05339619064331055, 0.05359004974365234, 0.05353606414794922, 0.05343913650512695, 0.05336262512207031, 0.05311699295043945, 0.053176158905029296, 0.05283855819702148, 0.05290979385375977, 0.052926624298095706, 0.05289139175415039, 0.05298732757568359, 0.05321350479125977, 0.053023361206054685, 0.0528438720703125, 0.052752063751220706, 0.05310976028442383, 0.05312211227416992, 0.053234592437744144, 0.05284659194946289, 0.05318041610717773, 0.0533256950378418, 0.05345289611816406, 0.05313049697875977, 0.053160736083984375, 0.053381118774414066, 0.05310259246826172, 0.05291215896606445]",tokens/s,18.90792364575088,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 959, in __init__ self.model = MistralModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 711, in __init__ [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 711, in [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 508, in __init__ self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 199, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 24.12 MiB is free. Process 107698 has 14.71 GiB memory in use. Of the allocated memory 14.46 GiB is allocated by PyTorch, and 141.44 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,814.374912,806.289408,0.0,411.041792,391.374848,s,1,7.21324560546875,7.21324560546875,0.0,7.21324560546875,7.21324560546875,7.21324560546875,7.21324560546875,[7.21324560546875],,kWh,5.089960633351135e-06,5.542499003759846e-07,9.938896839908895e-07,6.63810021771801e-06,,MB,1164.005376,881.78688,0.0,473.956352,454.832128,s,15,0.18734287929534915,0.01248952528635661,0.000214234636375093,0.012487648010253906,0.012725933074951172,0.012832464122772218,0.012959427242279054,"[0.012574463844299317, 0.012199999809265137, 0.012470656394958497, 0.012207615852355956, 0.012267423629760741, 0.012245023727416992, 0.012525504112243652, 0.012668160438537598, 0.01249782371520996, 0.012487648010253906, 0.012633376121520996, 0.012485119819641113, 0.012991168022155762, 0.012324447631835938, 0.012764448165893555]",tokens/s,20497.176164065335,kWh,3.6605550480445295e-07,4.0369153673917844e-08,2.2922400883563672e-07,6.356486673140075e-07,tokens/kWh,402738199.8325455,MB,1197.735936,909.049856,0.0,501.219328,454.834688,s,15,10.493724060058597,0.6995816040039063,0.01224672635514582,0.7041112670898437,0.7111708374023438,0.7148606750488281,0.7194729162597656,"[0.6981555786132813, 0.6862251586914062, 0.6848902587890625, 0.6789227294921875, 0.6823243408203125, 0.687145263671875, 0.7206259765625, 0.7078164672851562, 0.7072764892578125, 0.7093423461914062, 0.7089010620117188, 0.7041112670898437, 0.6998896484375, 0.7123898315429688, 0.7057076416015625]",tokens/s,90.05382594315361,kWh,2.0434243422139875e-05,2.2535672322146246e-06,8.911857378097216e-06,3.1599668032451724e-05,tokens/kWh,1993691.830411043,,s,945,10.485675329208373,0.01109595272932103,0.00030792222763291303,0.011096672058105468,0.011409036827087403,0.011485177421569823,0.011998213195800777,"[0.01104911994934082, 0.011024031639099121, 0.011106495857238769, 0.011065312385559082, 0.01126137638092041, 0.011096672058105468, 0.010999808311462403, 0.010935615539550782, 0.010844544410705566, 0.010780351638793945, 0.010936927795410157, 0.010760383605957031, 0.010741888046264648, 0.010798815727233887, 0.01100595188140869, 0.010903552055358886, 0.010816960334777833, 0.010865216255187988, 0.010797408103942871, 0.010756928443908692, 0.010740575790405273, 0.01074995231628418, 0.011136544227600098, 0.011620832443237304, 0.011495424270629882, 0.01131935977935791, 0.011285568237304687, 0.01123136043548584, 0.011076064109802245, 0.011066944122314452, 0.010973119735717773, 0.01094320011138916, 0.010902912139892577, 0.010864800453186035, 0.010868351936340332, 0.010746784210205078, 0.011253824234008789, 0.011358112335205077, 0.011898271560668945, 0.011962623596191406, 0.011379039764404297, 0.011049087524414063, 0.010927712440490723, 0.01104313564300537, 0.011003904342651367, 0.01093126392364502, 0.011457695960998535, 0.010942432403564453, 0.010966848373413086, 0.011017215728759766, 0.010966015815734862, 0.011309023857116698, 0.011564736366271972, 0.01138268756866455, 0.011343615531921387, 0.011266559600830077, 0.011426015853881836, 0.011126144409179688, 0.011018943786621094, 0.010956831932067871, 0.010886048316955567, 0.010931039810180664, 0.010751168251037597, 0.01044863986968994, 0.010719488143920899, 0.010649056434631347, 0.01068841552734375, 0.010758463859558105, 0.010770751953125, 0.010919936180114746, 0.010789024353027343, 0.01073523235321045, 0.010826016426086426, 0.010846143722534179, 0.010852352142333984, 0.01083801555633545, 0.010760191917419434, 0.0107741117477417, 0.01074022388458252, 0.01088092803955078, 0.011402912139892578, 0.011421759605407715, 0.011421919822692871, 0.011208767890930177, 0.0110447998046875, 0.01108572769165039, 0.011053183555603027, 0.011057184219360352, 0.01083407974243164, 0.010747743606567382, 0.010690560340881347, 0.010719231605529785, 0.01075814437866211, 0.01062502384185791, 0.010637151718139648, 0.010708831787109374, 0.010704256057739258, 0.010912704467773437, 0.010979328155517578, 0.01099078369140625, 0.010918047904968262, 0.010865632057189942, 0.010946368217468262, 0.010929216384887695, 0.010896479606628418, 0.010808256149291992, 0.01098198413848877, 0.010878944396972656, 0.010889439582824708, 0.011057151794433593, 0.011282431602478027, 0.011354111671447753, 0.01139737606048584, 0.011128576278686523, 0.011085215568542481, 0.011079968452453614, 0.010791007995605468, 0.010821663856506347, 0.010729280471801758, 0.010681056022644042, 0.010876031875610351, 0.01062332820892334, 0.010674367904663086, 0.010680319786071778, 0.010654879570007323, 0.010726143836975097, 0.0106397123336792, 0.010995231628417968, 0.010972960472106934, 0.011233632087707519, 0.011010272026062012, 0.011095968246459961, 0.010992863655090331, 0.011216927528381347, 0.011000672340393066, 0.010983424186706543, 0.010877951622009278, 0.010894335746765137, 0.011149312019348144, 0.011224191665649414, 0.011041407585144042, 0.010964703559875489, 0.010746399879455566, 0.010637663841247558, 0.01067155170440674, 0.010698975563049317, 0.010717023849487304, 0.010756256103515625, 0.0108373441696167, 0.010782431602478028, 0.010775487899780273, 0.010851840019226074, 0.010862688064575195, 0.010758560180664062, 0.01086019229888916, 0.010879327774047851, 0.010836095809936523, 0.010879039764404297, 0.010874752044677735, 0.010817472457885741, 0.01081884765625, 0.010820544242858887, 0.010900351524353027, 0.01079798412322998, 0.01074790382385254, 0.01074176025390625, 0.010674176216125488, 0.010721280097961425, 0.010739392280578613, 0.010749759674072266, 0.010780672073364257, 0.01095030403137207, 0.011154272079467774, 0.011109631538391113, 0.011065792083740235, 0.0111560640335083, 0.011046976089477538, 0.010964768409729004, 0.010825152397155762, 0.010770879745483398, 0.010755071640014649, 0.010667008399963379, 0.010804479598999023, 0.010699520111083985, 0.010690048217773437, 0.010725312232971192, 0.010682720184326172, 0.010695199966430664, 0.01063043212890625, 0.010497920036315918, 0.010758272171020508, 0.01084812831878662, 0.01076643180847168, 0.01075334358215332, 0.01064793586730957, 0.010676575660705566, 0.01073516845703125, 0.010676671981811523, 0.010854432106018067, 0.010921952247619628, 0.010878975868225099, 0.010799263954162598, 0.010745311737060547, 0.010667936325073242, 0.010664416313171386, 0.01071718406677246, 0.010697728157043456, 0.01064633560180664, 0.010694016456604004, 0.010651488304138184, 0.010693568229675293, 0.010694208145141602, 0.01067363166809082, 0.010705951690673829, 0.010690655708312988, 0.010759903907775878, 0.010771807670593261, 0.010814271926879882, 0.010762335777282715, 0.010835871696472169, 0.010841664314270019, 0.011089344024658204, 0.011036767959594726, 0.0108307523727417, 0.010821632385253906, 0.010809632301330566, 0.011261055946350098, 0.01085910415649414, 0.010768383979797362, 0.010727295875549317, 0.01073964786529541, 0.01066966438293457, 0.010711711883544922, 0.010669631958007813, 0.010686847686767578, 0.010788864135742187, 0.010780672073364257, 0.010767904281616211, 0.010731904029846192, 0.010722720146179199, 0.010708767890930176, 0.010791999816894531, 0.010847519874572754, 0.010791296005249024, 0.01079097557067871, 0.010859904289245605, 0.010831968307495117, 0.010840736389160156, 0.010746111869812012, 0.010733311653137206, 0.01075814437866211, 0.010729663848876953, 0.010457759857177734, 0.010731391906738282, 0.010743136405944825, 0.010785375595092773, 0.010763456344604492, 0.010677056312561035, 0.010666048049926758, 0.010682111740112304, 0.010790271759033203, 0.01087168025970459, 0.010755423545837403, 0.010717087745666504, 0.010778719902038575, 0.011233951568603516, 0.010901535987854004, 0.010813407897949219, 0.010947872161865234, 0.010881759643554688, 0.010932448387145997, 0.010948479652404785, 0.010923359870910644, 0.010750240325927734, 0.010725024223327637, 0.011152000427246093, 0.011138272285461426, 0.010686592102050781, 0.01065231990814209, 0.01067024040222168, 0.010700639724731445, 0.011630592346191406, 0.010881024360656738, 0.010842111587524414, 0.010786751747131347, 0.010938431739807129, 0.010811391830444337, 0.010931296348571777, 0.010865887641906739, 0.010866463661193848, 0.01082096004486084, 0.010855072021484375, 0.010894880294799805, 0.010890656471252442, 0.010869728088378907, 0.01070899200439453, 0.010757599830627441, 0.010746208190917969, 0.010696160316467284, 0.010686207771301269, 0.010886207580566406, 0.010743935585021973, 0.010710111618041992, 0.010701567649841308, 0.010696640014648437, 0.01066105556488037, 0.010761024475097657, 0.010789055824279786, 0.011100192070007325, 0.010786591529846191, 0.010820639610290528, 0.010715519905090332, 0.01102460765838623, 0.010737407684326171, 0.010736255645751954, 0.010813952445983887, 0.011146623611450196, 0.010843232154846191, 0.010769824028015136, 0.010809727668762207, 0.010800224304199219, 0.010845151901245118, 0.010896672248840332, 0.010940735816955566, 0.011014495849609375, 0.010987520217895508, 0.01094976043701172, 0.01087993621826172, 0.010794943809509277, 0.010741503715515136, 0.010705151557922364, 0.010786815643310547, 0.01075820827484131, 0.010828736305236817, 0.010698080062866211, 0.010687520027160644, 0.010813632011413575, 0.010749600410461425, 0.01073027229309082, 0.010702848434448242, 0.010732959747314454, 0.010756799697875977, 0.010694239616394043, 0.01068889617919922, 0.011093952178955079, 0.010784640312194824, 0.010803327560424805, 0.010737088203430176, 0.010715904235839844, 0.010644831657409669, 0.010717663764953613, 0.010730719566345215, 0.01083471965789795, 0.010810720443725585, 0.010859487533569336, 0.01081107234954834, 0.010799103736877442, 0.010862144470214843, 0.010758591651916503, 0.010692831993103027, 0.010692543983459472, 0.010872672080993653, 0.011042240142822266, 0.011163871765136718, 0.011182784080505371, 0.011209792137145996, 0.011177727699279785, 0.011141695976257325, 0.0110862398147583, 0.01116966438293457, 0.011372096061706543, 0.011176416397094727, 0.01115062427520752, 0.01117689609527588, 0.011197312355041504, 0.011204671859741212, 0.011212896347045899, 0.011098719596862794, 0.011572319984436035, 0.011252927780151366, 0.011436511993408203, 0.011271167755126953, 0.011287551879882812, 0.01120076847076416, 0.011609919548034668, 0.01349180793762207, 0.01287987232208252, 0.01152239990234375, 0.01136451244354248, 0.011394911766052247, 0.011286527633666991, 0.011564959526062011, 0.011374688148498536, 0.011431936264038087, 0.011382975578308106, 0.011333279609680176, 0.011485152244567871, 0.011306976318359375, 0.011460096359252929, 0.011399200439453125, 0.011693984031677247, 0.011389951705932617, 0.011428895950317383, 0.011506752014160156, 0.011342559814453125, 0.01187119960784912, 0.011423135757446289, 0.011309599876403809, 0.011347840309143067, 0.011371999740600587, 0.011391488075256348, 0.011335904121398926, 0.01136025619506836, 0.011308320045471191, 0.011335807800292969, 0.011286656379699707, 0.011336095809936523, 0.011331583976745606, 0.011313535690307618, 0.011157183647155762, 0.011183903694152833, 0.011530495643615723, 0.01118553638458252, 0.011270208358764649, 0.011323936462402344, 0.011409279823303222, 0.01146236801147461, 0.011372960090637207, 0.01141875171661377, 0.011410304069519043, 0.011312543869018555, 0.011222880363464355, 0.011207712173461915, 0.011255552291870117, 0.011171520233154297, 0.011385408401489258, 0.011320256233215331, 0.01142249584197998, 0.01143712043762207, 0.011305536270141602, 0.011267840385437012, 0.01099129581451416, 0.011155776023864746, 0.011012096405029297, 0.01113868808746338, 0.011151488304138184, 0.0111843843460083, 0.011106304168701172, 0.011167648315429688, 0.011253376007080079, 0.011305439949035644, 0.011089792251586914, 0.011315327644348144, 0.011237407684326172, 0.011183263778686524, 0.011149312019348144, 0.011125503540039062, 0.011338111877441406, 0.011343296051025391, 0.011342240333557128, 0.011418623924255371, 0.011331775665283202, 0.011313823699951172, 0.011190048217773437, 0.011138463973999023, 0.011123519897460937, 0.011363679885864258, 0.011389599800109864, 0.011231231689453124, 0.011895968437194824, 0.010958815574645996, 0.011047807693481446, 0.011148896217346192, 0.011245984077453614, 0.01125376033782959, 0.011280703544616699, 0.011279552459716798, 0.011327103614807129, 0.011361472129821778, 0.011388031959533692, 0.011409983634948731, 0.011214847564697266, 0.011165151596069336, 0.011143327713012696, 0.011190303802490234, 0.011106559753417969, 0.01111248016357422, 0.011040160179138184, 0.011199135780334473, 0.011200511932373047, 0.011243519783020019, 0.011611328125, 0.011419520378112794, 0.011431039810180664, 0.011313055992126465, 0.011175359725952148, 0.010944992065429688, 0.010928095817565918, 0.010939935684204101, 0.011167679786682129, 0.011417759895324706, 0.011245823860168458, 0.01115561580657959, 0.011192319869995117, 0.010995712280273438, 0.01122441577911377, 0.011407072067260743, 0.011357119560241699, 0.011495743751525879, 0.011495008468627929, 0.011298912048339844, 0.011280384063720703, 0.011234848022460938, 0.011164128303527832, 0.011122943878173829, 0.011105088233947754, 0.011102656364440917, 0.01113548755645752, 0.011032575607299805, 0.011053248405456543, 0.010995519638061524, 0.010946559906005859, 0.010966560363769532, 0.010967519760131836, 0.010989567756652833, 0.010992799758911133, 0.011024928092956543, 0.01202617645263672, 0.011493375778198242, 0.011376064300537109, 0.011268671989440917, 0.011485183715820312, 0.011239423751831054, 0.0123985595703125, 0.011307040214538574, 0.011469056129455566, 0.011386624336242676, 0.011368608474731446, 0.011378496170043946, 0.011263456344604492, 0.01121951961517334, 0.011192319869995117, 0.011122688293457032, 0.01103667163848877, 0.010975232124328613, 0.010950528144836425, 0.010840448379516601, 0.01084832000732422, 0.010852031707763672, 0.010981023788452149, 0.011083647727966309, 0.011108192443847656, 0.011068032264709473, 0.01114521598815918, 0.011182080268859864, 0.011204607963562012, 0.01136025619506836, 0.011312416076660156, 0.011197152137756348, 0.011326815605163574, 0.011356831550598145, 0.01133561611175537, 0.011237343788146973, 0.011327232360839844, 0.01129916763305664, 0.011276288032531738, 0.011059200286865235, 0.010835712432861327, 0.011186431884765625, 0.011399359703063964, 0.011280192375183105, 0.011257439613342286, 0.011248031616210937, 0.01137664031982422, 0.01139673614501953, 0.011561344146728516, 0.011340031623840332, 0.011351807594299317, 0.011415552139282227, 0.011659263610839844, 0.011695679664611816, 0.011420096397399902, 0.01130726432800293, 0.011189408302307129, 0.011092063903808593, 0.01117852783203125, 0.011042783737182617, 0.01098464012145996, 0.011218879699707031, 0.011351167678833008, 0.011310848236083984, 0.011214847564697266, 0.011167743682861327, 0.011070879936218261, 0.01111017608642578, 0.011307840347290038, 0.01125532817840576, 0.011067872047424316, 0.011081248283386231, 0.011223520278930664, 0.011192319869995117, 0.01101414394378662, 0.010973279953002929, 0.011024288177490234, 0.01115135955810547, 0.011157088279724121, 0.011008416175842285, 0.010968928337097167, 0.010987648010253906, 0.011042847633361816, 0.011169695854187011, 0.011120896339416503, 0.011048640251159668, 0.011135328292846679, 0.01110313606262207, 0.011030559539794921, 0.01101296043395996, 0.010987551689147949, 0.010962944030761718, 0.011157504081726074, 0.011356287956237793, 0.011736031532287597, 0.012051360130310058, 0.011530367851257325, 0.01259712028503418, 0.011542528152465821, 0.011416895866394043, 0.011295424461364747, 0.01118723201751709, 0.011197728157043457, 0.011091551780700683, 0.011229696273803711, 0.011439871788024903, 0.01127609634399414, 0.011262463569641114, 0.011289759635925293, 0.011218751907348633, 0.01128275203704834, 0.011302656173706054, 0.011234399795532226, 0.011259200096130371, 0.011311840057373047, 0.01154201602935791, 0.01136415958404541, 0.011208255767822266, 0.011117600440979003, 0.011123616218566895, 0.011203392028808594, 0.011112000465393066, 0.01105174446105957, 0.011013919830322266, 0.010962271690368652, 0.011043359756469726, 0.010995424270629883, 0.010889856338500977, 0.010909152030944825, 0.011052895545959472, 0.010978015899658203, 0.011380479812622071, 0.011441920280456543, 0.011305343627929688, 0.011347200393676758, 0.011344160079956055, 0.011542880058288574, 0.011118656158447265, 0.011388863563537598, 0.011596927642822266, 0.011412575721740722, 0.011286304473876954, 0.011293760299682617, 0.011409503936767578, 0.011481792449951171, 0.011387040138244629, 0.011245023727416993, 0.011227328300476075, 0.011364704132080078, 0.01145036792755127, 0.01133568000793457, 0.01123737621307373, 0.011194368362426758, 0.011214847564697266, 0.011233247756958008, 0.011237407684326172, 0.011367456436157226, 0.011307392120361328, 0.011221887588500977, 0.011260992050170898, 0.011263808250427247, 0.011189087867736817, 0.011233280181884766, 0.011116095542907715, 0.011063424110412598, 0.011079104423522949, 0.010767999649047852, 0.010945440292358399, 0.010964223861694336, 0.010966879844665527, 0.01101318359375, 0.011089759826660156, 0.01132953643798828, 0.011138751983642578, 0.011221088409423829, 0.011124959945678711, 0.01103872013092041, 0.01121008014678955, 0.011263903617858886, 0.011186016082763673, 0.011266176223754882, 0.011132960319519042, 0.011192288398742676, 0.011242431640625, 0.011206239700317382, 0.011083935737609863, 0.011008319854736328, 0.01102729606628418, 0.010988479614257812, 0.0109366397857666, 0.011249343872070312, 0.011360128402709961, 0.01129257583618164, 0.011498784065246582, 0.011520959854125977, 0.011290623664855956, 0.01121452808380127, 0.011243807792663573, 0.011202591896057129, 0.011096351623535157, 0.01106710433959961, 0.01099135971069336, 0.010990847587585449, 0.011031104087829589, 0.011129152297973633, 0.01108176040649414, 0.011298912048339844, 0.011208703994750976, 0.011146528244018555, 0.011084863662719727, 0.011103903770446778, 0.011155776023864746, 0.011342975616455078, 0.011397695541381836, 0.011343968391418458, 0.011261856079101563, 0.011204607963562012, 0.011218655586242675, 0.011323360443115235, 0.011333056449890137, 0.011299615859985351, 0.011040575981140137, 0.010975520133972167, 0.01091811180114746, 0.010937503814697266, 0.011178912162780762, 0.011408160209655762, 0.011390111923217773, 0.011337727546691894, 0.011051072120666503, 0.011112031936645507, 0.011070112228393554, 0.011136704444885254, 0.010982720375061036, 0.010898112297058105, 0.010849504470825196, 0.01094643211364746, 0.011166496276855469, 0.01102451229095459, 0.010778431892395019, 0.010739904403686523, 0.01118019199371338, 0.011407199859619141, 0.01139129638671875, 0.01145030403137207, 0.011411199569702149, 0.011441472053527833, 0.011251423835754394, 0.011129823684692383, 0.011181983947753906, 0.011085439682006835, 0.011002559661865235, 0.011032352447509766, 0.010959872245788574, 0.01076863956451416, 0.010812159538269042, 0.010827072143554687, 0.011067808151245117, 0.011442560195922852, 0.01150592041015625, 0.011335328102111816, 0.011306943893432618, 0.011147071838378906, 0.011100159645080567, 0.010934528350830077, 0.010952704429626465, 0.011068639755249023, 0.010965375900268555, 0.010866751670837402, 0.011052415847778321, 0.011061759948730468, 0.010787296295166015, 0.010821632385253906, 0.01073305606842041, 0.010627584457397461, 0.010682368278503418, 0.01123472023010254, 0.011379487991333008, 0.011349823951721192, 0.011260064125061035, 0.011258943557739258, 0.01130780792236328, 0.011544575691223144, 0.011243776321411133, 0.011101951599121094, 0.011242783546447754, 0.01134665584564209, 0.01136844825744629, 0.011286175727844239, 0.01112508773803711, 0.0108721923828125, 0.010924448013305664, 0.010645824432373047, 0.010887104034423828, 0.010950655937194824, 0.011018207550048828, 0.011208736419677734, 0.011189663887023926, 0.011245632171630859, 0.01142630386352539, 0.011228927612304688, 0.011171104431152344, 0.011117568016052246, 0.011016192436218262, 0.011216287612915038, 0.011459168434143066, 0.011472000122070312, 0.011723135948181152, 0.01140287971496582, 0.011362624168395997, 0.011343487739562988, 0.011295680046081544, 0.011384736061096192, 0.011240703582763672, 0.011266912460327148, 0.011290016174316407, 0.01105731201171875, 0.011125280380249023, 0.011456352233886719, 0.012119359970092773, 0.013842623710632324, 0.011282560348510742, 0.010936448097229004, 0.010832192420959473, 0.010807295799255372, 0.010979104042053222, 0.011178208351135253, 0.011069439888000488, 0.010944512367248535, 0.01096291160583496, 0.01108137607574463, 0.011225024223327636, 0.01112723159790039, 0.01107148838043213, 0.011108448028564453, 0.01094883155822754, 0.010983424186706543, 0.011296544075012207, 0.011419551849365234, 0.011460576057434082, 0.011364383697509766, 0.011425248146057129, 0.011336511611938476, 0.011235039710998535, 0.011241472244262696, 0.011183648109436036, 0.011020959854125977, 0.011261247634887695, 0.011479552268981934, 0.011475008010864257, 0.012947392463684083, 0.012400959968566895, 0.01123078441619873, 0.011155232429504395, 0.011171199798583985, 0.011152480125427246, 0.011137951850891113, 0.011108223915100097, 0.011312416076660156, 0.011361056327819825, 0.011227519989013671, 0.011253439903259277, 0.011395071983337402, 0.011228896141052247, 0.010987808227539062, 0.0109683837890625, 0.010974911689758301, 0.011014431953430175, 0.011070176124572754, 0.011122688293457032, 0.011214912414550781, 0.011094112396240235, 0.011091103553771972, 0.01101484775543213, 0.010966272354125976, 0.011159584045410157, 0.01137235164642334, 0.011465023994445801, 0.011530879974365235, 0.01153657627105713, 0.011378111839294434, 0.011411808013916015, 0.011200480461120606, 0.011111712455749512, 0.011121472358703614, 0.010887200355529786, 0.010950559616088868, 0.011131168365478516, 0.011090911865234376, 0.011148032188415527, 0.01117199993133545, 0.011201696395874023, 0.011233983993530273, 0.011408672332763672, 0.011634464263916016, 0.011401408195495606, 0.01137331199645996, 0.011298208236694337, 0.011332159996032714, 0.011511839866638184, 0.011273568153381347, 0.011416223526000977, 0.011294719696044921, 0.011350048065185548, 0.011157343864440918, 0.011272319793701172, 0.011065119743347169, 0.010928352355957032, 0.010923295974731446, 0.010938431739807129, 0.01119324779510498, 0.011082880020141602, 0.011051872253417968, 0.01114038372039795, 0.011309568405151366, 0.010903136253356933, 0.010908063888549804, 0.01115116786956787]",tokens/s,90.1229506284307,, float16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,816.472064,14274.199552,0.0,13878.951936,13865.632768,s,1,7.765259765625,7.765259765625,0.0,7.765259765625,7.765259765625,7.765259765625,7.765259765625,[7.765259765625],,kWh,1.3779381262509106e-05,1.4764872093362495e-06,7.662228351995592e-06,2.2918096823840947e-05,,MB,1187.766272,14697.824256,0.0,14289.993728,14241.298944,s,10,1.9902919158935548,0.19902919158935545,0.005375349645325746,0.20046517944335937,0.20273565673828123,0.20393392181396483,0.2048925338745117,"[0.18456034851074218, 0.19604205322265625, 0.19803517150878908, 0.1994424591064453, 0.2007923126220703, 0.20222332763671874, 0.20013804626464843, 0.20246937561035155, 0.20513218688964843, 0.20145663452148438]",tokens/s,1286.2434799423236,kWh,5.892661629166924e-06,6.496177779984675e-07,3.9293142545601675e-06,1.047159366172556e-05,tokens/kWh,24447090.697922964,MB,1210.658816,14865.596416,0.0,14457.765888,14413.156352,s,10,41.13065380859375,4.113065380859375,0.008199940178961002,4.114877197265625,4.122566162109375,4.123821899414062,4.124826489257813,"[4.101380859375, 4.10262841796875, 4.10452734375, 4.10723095703125, 4.11317529296875, 4.1165791015625, 4.11658154296875, 4.121185546875, 4.122287109375, 4.12507763671875]",tokens/s,15.317043170083748,kWh,0.00012011495879833228,1.3249209875758396e-05,7.958091922023958e-05,0.00021294508789433027,tokens/kWh,295850.9192344577,,s,630,41.126564216613794,0.06528026066129171,0.00045338844554255027,0.06525511932373046,0.06575869522094727,0.06594753646850586,0.06722484588623047,"[0.06688768005371094, 0.0653589096069336, 0.06472592163085937, 0.0646266860961914, 0.06463184356689453, 0.06459696197509765, 0.06469532775878906, 0.06461334228515625, 0.06452194976806641, 0.0645348129272461, 0.06508707427978516, 0.06486466979980468, 0.06461350250244141, 0.06462886047363281, 0.06497321319580078, 0.0652353286743164, 0.06527587127685547, 0.065017822265625, 0.06500313568115235, 0.06471926116943359, 0.06495184326171875, 0.06478665924072266, 0.06488703918457031, 0.0648458251953125, 0.06476387023925781, 0.06487042999267578, 0.06487654113769531, 0.06481430053710938, 0.06491593933105469, 0.06508985900878907, 0.06543974304199218, 0.0653148193359375, 0.06519344329833984, 0.06514332580566407, 0.06540220642089843, 0.06521878051757812, 0.06534803009033203, 0.06488880157470703, 0.06495030212402343, 0.06569369506835937, 0.06514482879638672, 0.06507724761962891, 0.06527356719970703, 0.06526595306396485, 0.06537529754638671, 0.06530758666992187, 0.06532918548583984, 0.06528809356689454, 0.06539884948730469, 0.06524720001220703, 0.06525257873535156, 0.06532908630371094, 0.06523792266845703, 0.0654130859375, 0.06503977966308594, 0.06519667053222657, 0.065091552734375, 0.0650785903930664, 0.06526412963867187, 0.06522393798828124, 0.06533010864257813, 0.06534143829345704, 0.0655376968383789, 0.06706604766845703, 0.0655789794921875, 0.06449359893798828, 0.06445193481445312, 0.06458777618408203, 0.06454319763183594, 0.0646362533569336, 0.06454262542724609, 0.06444127655029297, 0.06461849975585937, 0.06464511871337891, 0.06460415649414063, 0.06521218872070313, 0.06493001556396484, 0.06509772491455078, 0.06539266967773437, 0.06538851165771484, 0.06515302276611327, 0.06483660888671874, 0.06467276763916016, 0.06472492980957031, 0.06475167846679687, 0.06474931335449219, 0.06476534271240235, 0.0649277114868164, 0.06512115478515625, 0.06497689819335938, 0.06477401733398437, 0.06499894714355468, 0.0650451202392578, 0.06520829010009765, 0.06542131042480469, 0.06580429077148438, 0.06508748626708985, 0.06525468444824219, 0.06502473449707032, 0.06510591888427734, 0.0649233627319336, 0.06504889678955078, 0.06507929229736328, 0.06504035186767577, 0.06524269104003906, 0.06511660766601562, 0.06510358428955078, 0.0651833953857422, 0.06536851501464844, 0.06554803466796875, 0.06540684509277343, 0.0655038070678711, 0.06531276702880859, 0.06527740478515626, 0.06528797149658203, 0.06524390411376953, 0.06513452911376953, 0.06530368041992188, 0.06523385620117188, 0.0651878433227539, 0.065506591796875, 0.06527980804443359, 0.06539907073974609, 0.06554483032226563, 0.0657940444946289, 0.06553600311279296, 0.06737567901611329, 0.06539405059814453, 0.06488127899169922, 0.0645711669921875, 0.0648911361694336, 0.06461030578613282, 0.0646121597290039, 0.06468624114990235, 0.0646176986694336, 0.06475615692138671, 0.06463299560546874, 0.0644935073852539, 0.06460838317871094, 0.06470873260498047, 0.06521446228027344, 0.06551760101318359, 0.06529430389404296, 0.06512985229492188, 0.0649591064453125, 0.06519308471679687, 0.06478265380859374, 0.06483411407470703, 0.06483763122558593, 0.06497478485107422, 0.0647496337890625, 0.06488835144042969, 0.06473571014404297, 0.06473113250732422, 0.06510797119140625, 0.06515007781982422, 0.06530258941650391, 0.06550611114501953, 0.06550732421875, 0.06520809936523438, 0.06514089965820312, 0.06483116912841796, 0.06506739044189454, 0.06518169403076172, 0.06491340637207031, 0.06493593597412109, 0.06508099365234375, 0.06481308746337891, 0.06491986846923828, 0.0650890884399414, 0.06516297912597656, 0.0655101089477539, 0.06561532592773438, 0.06540956878662109, 0.06574479675292969, 0.06530262756347656, 0.06517056274414063, 0.06522073364257812, 0.06521910095214843, 0.06528594970703125, 0.06535004425048828, 0.06526499176025391, 0.06539126586914062, 0.06515711975097656, 0.06522390747070313, 0.0655565414428711, 0.0665013427734375, 0.06575862121582031, 0.06585814666748047, 0.06715280151367188, 0.06544179534912109, 0.06503628540039062, 0.06464102172851563, 0.0646737289428711, 0.06466764831542969, 0.06465340423583985, 0.06470150756835938, 0.06468685150146485, 0.06462592315673828, 0.06469110107421874, 0.06471820831298829, 0.06480140686035156, 0.06497702026367187, 0.06532406616210938, 0.06555734252929687, 0.06548252868652343, 0.06522207641601563, 0.06510262298583984, 0.06478230285644532, 0.06479440307617187, 0.06468019104003907, 0.06480076599121094, 0.0648740463256836, 0.06481881713867188, 0.06490767669677734, 0.06485443115234375, 0.06513664245605469, 0.06508287811279297, 0.06518985748291016, 0.06558979034423829, 0.06535987091064453, 0.0654028778076172, 0.06580633544921875, 0.0653985595703125, 0.06500784301757813, 0.06503823852539062, 0.06486605072021484, 0.06498544311523438, 0.06499132537841797, 0.06516726684570312, 0.06509363555908203, 0.06518169403076172, 0.06511980438232422, 0.06542176055908203, 0.06553314971923828, 0.06557366180419921, 0.06539398193359375, 0.065635009765625, 0.06539059448242188, 0.06529222106933594, 0.06523091125488281, 0.0652465591430664, 0.06516598510742187, 0.0652262420654297, 0.06542582702636719, 0.06529430389404296, 0.06525555419921875, 0.06548617553710938, 0.06556237030029297, 0.06580521392822265, 0.06560972595214844, 0.06624050903320312, 0.06744220733642578, 0.06557148742675781, 0.06496630096435548, 0.0646654052734375, 0.06454496002197266, 0.06466012573242187, 0.06463203430175782, 0.06473369598388672, 0.06467929840087891, 0.06479964447021484, 0.06580633544921875, 0.06494617462158203, 0.06483753967285157, 0.06493193817138672, 0.06500064086914062, 0.06536585235595703, 0.06531747436523437, 0.06526374053955078, 0.06513279724121093, 0.06482943725585938, 0.06487245178222656, 0.06498099517822266, 0.06481919860839844, 0.06488473510742188, 0.0649318389892578, 0.06490716552734375, 0.06483891296386719, 0.06512521362304688, 0.06495027160644531, 0.0652735366821289, 0.06539910125732422, 0.06547014617919922, 0.06551570892333984, 0.06560781097412109, 0.06541311645507812, 0.06504857635498047, 0.06523280334472656, 0.06510128021240234, 0.06515776062011719, 0.0652081298828125, 0.06574713897705078, 0.06526361846923828, 0.0653755874633789, 0.06538009643554688, 0.06562438201904297, 0.06562060546875, 0.06575305938720703, 0.06556671905517578, 0.06570393371582031, 0.06556192016601563, 0.0653790054321289, 0.06529369354248046, 0.06561219024658203, 0.06528227233886719, 0.06577356719970703, 0.0653864974975586, 0.06535753631591797, 0.06555471801757813, 0.06574694061279297, 0.06564371490478516, 0.06572319793701172, 0.06572637176513672, 0.0657652130126953, 0.06747750091552734, 0.06561996459960938, 0.06490876770019531, 0.06489888000488281, 0.06483017730712891, 0.06473932647705079, 0.06481510162353515, 0.06484786987304687, 0.06470188903808594, 0.06469058990478516, 0.06496012878417969, 0.06480732727050781, 0.06488451385498047, 0.06496806335449219, 0.06563645172119141, 0.06619840240478515, 0.06566502380371093, 0.06528585815429687, 0.0651328353881836, 0.06496988677978516, 0.06477664184570313, 0.06488105773925781, 0.06492070770263672, 0.0649716796875, 0.06507068634033203, 0.06515545654296875, 0.06492313385009765, 0.06508780670166016, 0.06519417572021484, 0.06551065826416015, 0.06601321411132813, 0.06557360076904296, 0.06541926574707031, 0.06537014770507812, 0.06519350433349609, 0.06511251068115234, 0.06536809539794922, 0.065244384765625, 0.06512102508544922, 0.06525718688964843, 0.06529164886474609, 0.06518415832519531, 0.06531737518310547, 0.06520012664794922, 0.06549504089355469, 0.06563024139404297, 0.06569945526123047, 0.06567155456542968, 0.06583293151855468, 0.0653680648803711, 0.06572646331787109, 0.065617919921875, 0.0655257568359375, 0.06546227264404297, 0.06581247711181641, 0.06568946838378906, 0.06548492431640625, 0.06545986938476563, 0.06546435546875, 0.06545030212402343, 0.06598451232910156, 0.06579750061035156, 0.06576396942138672, 0.0672542724609375, 0.0656096954345703, 0.06496192169189453, 0.06472767639160157, 0.06465126037597656, 0.06480451202392579, 0.06479087829589844, 0.06474092864990234, 0.06479837036132813, 0.06467174530029297, 0.06484166717529297, 0.06471670532226563, 0.06477426910400391, 0.06474396514892578, 0.06559734344482422, 0.065474365234375, 0.06551404571533204, 0.0652452163696289, 0.0653967056274414, 0.06493132781982422, 0.0651514892578125, 0.06501286315917969, 0.06515532684326172, 0.0650244140625, 0.06516553497314453, 0.06494822692871094, 0.06515449523925781, 0.0650505599975586, 0.06535395050048828, 0.06574956512451172, 0.0657113265991211, 0.06560157012939453, 0.06572707366943359, 0.06553097534179687, 0.06549801635742188, 0.0652943344116211, 0.06530035400390626, 0.06513062286376953, 0.06535686492919922, 0.06528070068359375, 0.06540438079833985, 0.06518863677978516, 0.06537792205810547, 0.06551181030273437, 0.06573868560791016, 0.06567123413085937, 0.06559334564208984, 0.06573670196533203, 0.06581238555908203, 0.06545801544189453, 0.06527922821044922, 0.06514176177978516, 0.06545315551757812, 0.0652747802734375, 0.06555033874511719, 0.06536969757080079, 0.0655294418334961, 0.06544255828857422, 0.06558060455322266, 0.06575081634521485, 0.0658746566772461, 0.06610908508300781, 0.0657899169921875, 0.06775190734863282, 0.06590262603759765, 0.06522672271728516, 0.06472499084472656, 0.064753662109375, 0.06484130859375, 0.06490902709960937, 0.06479328155517577, 0.06489907073974609, 0.06527177429199219, 0.06489295959472656, 0.06478972625732422, 0.06481158447265625, 0.06518169403076172, 0.06533519744873047, 0.0654830093383789, 0.06574457550048828, 0.06567769622802734, 0.06541417694091797, 0.06509164428710937, 0.06494636535644531, 0.0650159683227539, 0.06520480346679687, 0.06508544158935547, 0.06519580841064453, 0.06513072204589844, 0.0650505599975586, 0.06538041687011718, 0.06518716430664062, 0.06530319976806641, 0.06554217529296875, 0.0657828140258789, 0.06559142303466797, 0.06582701110839843, 0.0653359375, 0.06535987091064453, 0.06640435028076172, 0.06528147125244141, 0.06522528076171875, 0.06535561370849609, 0.06511756896972656, 0.06566172790527344, 0.06533529663085938, 0.06544300842285156, 0.06554300689697265, 0.06544380950927735, 0.06611148834228515, 0.06583881378173828, 0.06558134460449219, 0.06561795043945312, 0.06554569244384766, 0.06561023712158204, 0.06540624237060547, 0.06537904357910156, 0.06547049713134766, 0.06545760345458984, 0.06544233703613281, 0.06537830352783203, 0.06542950439453125, 0.06567526245117188, 0.0656527328491211, 0.06594319915771485, 0.06604428863525391, 0.0673634262084961, 0.06581206512451172, 0.06515158081054688, 0.06481100463867187, 0.06483708953857421, 0.06468617248535156, 0.06494214630126953, 0.06487197113037109, 0.06490402984619141, 0.0654233627319336, 0.06484105682373047, 0.06487110137939453, 0.06503347015380859, 0.06497917175292969, 0.0651817626953125, 0.06543389129638671, 0.0657020492553711, 0.06557449340820312, 0.06529065704345703, 0.06503628540039062, 0.064997314453125, 0.06498297882080079, 0.0650466537475586, 0.06523289489746094, 0.06522182464599609, 0.06523372650146485, 0.06532278442382812, 0.0650071029663086, 0.06498377227783203, 0.0655175323486328, 0.06573638153076172, 0.06569760131835937, 0.06574748992919922, 0.06573465728759766, 0.06554214477539062, 0.06538444519042969, 0.06534963226318359, 0.0651325454711914, 0.06543292999267578, 0.06554051208496094, 0.06532470703125, 0.0654546890258789, 0.06535987091064453, 0.06573465728759766, 0.06547993469238281, 0.06552243041992188, 0.06599593353271484, 0.06598278045654297, 0.06605007934570313, 0.06588262176513672, 0.06598860931396484, 0.06574899291992188, 0.06547660827636718, 0.06551532745361328, 0.06557328033447266, 0.0655398712158203, 0.06539469146728516, 0.06532466888427735, 0.06553826904296875, 0.06557097625732422, 0.06604393768310547, 0.0657735366821289, 0.06596598052978515, 0.06756524658203125, 0.06577455902099609, 0.0651182098388672, 0.06502371215820313, 0.0649136962890625, 0.06488790130615234, 0.06487133026123047, 0.065074462890625, 0.06495919799804688, 0.06495846557617188, 0.06493798065185546, 0.06492774200439454, 0.06509158325195312, 0.06503977966308594, 0.06561251068115234, 0.06659059143066406, 0.06583296203613281, 0.065512451171875, 0.06530764770507813, 0.06511366271972656, 0.06510636901855468, 0.0654028778076172, 0.06491913604736328, 0.06517504119873047, 0.06513062286376953, 0.06566095733642578, 0.06507997131347656, 0.06512387084960937, 0.06542189025878906, 0.06552783966064453, 0.06614422607421876, 0.06560959625244141, 0.06575936126708984, 0.0655946273803711, 0.06543846130371093, 0.06510387420654297, 0.06534143829345704, 0.0652943344116211, 0.06520003509521484, 0.06519391632080078, 0.0654109115600586, 0.06519609832763672, 0.06540927886962891, 0.06536713409423828, 0.06594239807128906, 0.06594489288330078, 0.06595855712890625, 0.06581584167480468, 0.06581123352050781, 0.06551142120361328, 0.06539059448242188, 0.0654172134399414, 0.06541516876220703, 0.06560562896728515, 0.06551145935058594, 0.0654620132446289, 0.06562019348144531, 0.06601113891601562, 0.06582886505126953, 0.06568345642089844, 0.06599680328369141, 0.06605619049072266, 0.06594969940185547]",tokens/s,15.318566284355471,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 890, in __init__ self.model = OPTModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 822, in __init__ self.decoder = OPTDecoder(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in __init__ self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 605, in self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 373, in __init__ self.self_attn = OPT_ATTENTION_CLASSES[config._attn_implementation](config=config, is_decoder=True) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 115, in __init__ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 8.12 MiB is free. Process 122407 has 14.73 GiB memory in use. Of the allocated memory 14.61 GiB is allocated by PyTorch, and 3.97 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,783.03232,14129.496064,0.0,13734.248448,13728.777216,s,1,7.25836767578125,7.25836767578125,0.0,7.25836767578125,7.25836767578125,7.25836767578125,7.25836767578125,[7.25836767578125],,kWh,6.925197970815589e-06,7.436715488168721e-07,3.4991694660008177e-06,1.1168038985633278e-05,,MB,1233.65376,14144.176128,0.0,13736.3456,13487.53408,s,10,1.6703685150146486,0.16703685150146486,0.004848025152046232,0.166406494140625,0.1731939682006836,0.17395778579711915,0.17456883987426758,"[0.1601844482421875, 0.16687123107910157, 0.16592703247070312, 0.16594175720214843, 0.1653955841064453, 0.17062611389160157, 0.17302423095703126, 0.16906687927246095, 0.1747216033935547, 0.15860963439941406]",tokens/s,1532.5959373567034,kWh,4.842775066940069e-06,5.340705179180566e-07,3.2104898179343525e-06,8.587335402792478e-06,tokens/kWh,29811342.86623444,MB,1266.315264,14144.176128,0.0,13736.3456,13661.262848,s,10,38.00502197265625,3.800502197265625,0.0021377293039880367,3.8004615478515626,3.802883837890625,3.8029917236328123,3.8030780322265625,"[3.797611572265625, 3.799089599609375, 3.79715478515625, 3.800767578125, 3.7989755859375, 3.802486083984375, 3.80285986328125, 3.800155517578125, 3.803099609375, 3.80282177734375]",tokens/s,16.5767566310913,kWh,0.00011113897474181071,1.225885846887993e-05,7.404023864926565e-05,0.00019743807185995625,tokens/kWh,319087.3948803866,,s,630,38.00184012985231,0.06032038115849571,0.00030563377178528095,0.06028327941894531,0.060649496841430665,0.06078943614959717,0.06154451679229736,"[0.061326976776123046, 0.06069696044921875, 0.05997571182250976, 0.05996540832519531, 0.05980716705322266, 0.05988336181640625, 0.05981798553466797, 0.059936576843261716, 0.05995203018188477, 0.06001049423217773, 0.06030092620849609, 0.060076446533203126, 0.06005942535400391, 0.06000864028930664, 0.05992784118652344, 0.060072158813476564, 0.06029129409790039, 0.060499969482421874, 0.060373279571533205, 0.06006143951416015, 0.060006656646728516, 0.05996748733520508, 0.059934688568115235, 0.060106273651123046, 0.060013057708740235, 0.060053150177001954, 0.059961151123046875, 0.05996723175048828, 0.060147552490234374, 0.06008329772949219, 0.060262462615966794, 0.060464927673339844, 0.060391422271728515, 0.06104643249511719, 0.060432415008544925, 0.06025564956665039, 0.06032681655883789, 0.06093619155883789, 0.060047359466552735, 0.06011423873901367, 0.060121791839599606, 0.060200065612792966, 0.06007628631591797, 0.06010275268554687, 0.06027727890014648, 0.06037664031982422, 0.060262847900390625, 0.06050406265258789, 0.06056735992431641, 0.06038256072998047, 0.060424190521240234, 0.060897537231445316, 0.060754081726074216, 0.06042464065551758, 0.060372577667236325, 0.0603939208984375, 0.060385246276855466, 0.06107353591918945, 0.060340255737304685, 0.060596065521240236, 0.06022553634643555, 0.060540351867675785, 0.0604218864440918, 0.061515777587890626, 0.060631038665771485, 0.06007807922363281, 0.06035865783691406, 0.0599818229675293, 0.05992451095581055, 0.05990979385375977, 0.05995100784301758, 0.06000051116943359, 0.05997395324707031, 0.059983711242675784, 0.060208480834960935, 0.06007875061035156, 0.06015180969238281, 0.06005347061157226, 0.060295230865478514, 0.06056547164916992, 0.06062694549560547, 0.06047110366821289, 0.06025558471679687, 0.060257118225097654, 0.06012527847290039, 0.05998729705810547, 0.059963424682617186, 0.06005574417114258, 0.06000060653686524, 0.05994249725341797, 0.06014812850952148, 0.06028076934814453, 0.06040582275390625, 0.06037116622924805, 0.06022121429443359, 0.06073747253417969, 0.060631168365478515, 0.060424129486083986, 0.060487873077392576, 0.06032729721069336, 0.06042259216308594, 0.06015375900268555, 0.06018182373046875, 0.06021200180053711, 0.060558719635009764, 0.06020156860351562, 0.06027676773071289, 0.06017228698730469, 0.06028054428100586, 0.06040518569946289, 0.0605030403137207, 0.060393310546875, 0.06059132766723633, 0.06043084716796875, 0.060631072998046875, 0.060323776245117186, 0.06040198516845703, 0.06034966278076172, 0.06037190246582031, 0.06047711944580078, 0.06032400131225586, 0.06036479949951172, 0.060298942565917966, 0.06029708862304688, 0.060413921356201175, 0.06036332702636719, 0.0618741455078125, 0.06078464126586914, 0.06020297622680664, 0.05995219039916992, 0.05990291213989258, 0.059876384735107424, 0.05986812973022461, 0.059939903259277345, 0.05986358261108399, 0.059967456817626955, 0.0599617919921875, 0.06001663970947266, 0.059908096313476565, 0.0599736328125, 0.06014976119995117, 0.06037641525268555, 0.06065430450439453, 0.06062278366088867, 0.060490848541259766, 0.06039440155029297, 0.06016022491455078, 0.060071712493896486, 0.05994316864013672, 0.06003244781494141, 0.0599513931274414, 0.060032863616943356, 0.059991233825683596, 0.060148735046386716, 0.060080127716064455, 0.05994035339355469, 0.05990655899047852, 0.05999411010742187, 0.06056675338745117, 0.060693023681640625, 0.06043423843383789, 0.06067868804931641, 0.060419361114501954, 0.060299903869628906, 0.06020505523681641, 0.06013558578491211, 0.06008816146850586, 0.060227489471435545, 0.06002495956420899, 0.060098529815673825, 0.060493824005126956, 0.06043033599853516, 0.06028083038330078, 0.06022553634643555, 0.06056537628173828, 0.06067007827758789, 0.06062080001831055, 0.060568737030029296, 0.060599136352539065, 0.06054502487182617, 0.060374942779541016, 0.06028294372558594, 0.060323871612548825, 0.06033772659301758, 0.06032223892211914, 0.060232929229736325, 0.060427040100097654, 0.06044569778442383, 0.06020764923095703, 0.06155625534057617, 0.061092353820800784, 0.06032179260253906, 0.06014710235595703, 0.059920543670654296, 0.05999660873413086, 0.05989785766601562, 0.060015743255615234, 0.05998665618896484, 0.060055038452148435, 0.05995289611816406, 0.060048286437988284, 0.05997286224365234, 0.05991913604736328, 0.06003859329223633, 0.0602542724609375, 0.06045708847045898, 0.060729694366455075, 0.060424190521240234, 0.060993438720703126, 0.06012527847290039, 0.06010879898071289, 0.06005350494384765, 0.05999788665771484, 0.0600162239074707, 0.06010902404785156, 0.06046160125732422, 0.06007804870605469, 0.060295169830322265, 0.06006784057617188, 0.06009833526611328, 0.060174560546875, 0.0604417610168457, 0.060513118743896484, 0.060485633850097656, 0.06049782562255859, 0.06043247985839844, 0.060227615356445316, 0.060327552795410154, 0.06021696090698242, 0.060152542114257815, 0.06027814483642578, 0.06017254257202148, 0.060307838439941405, 0.06029305648803711, 0.06034233474731445, 0.060268543243408204, 0.06033926391601562, 0.060427200317382815, 0.0610447998046875, 0.06079654312133789, 0.06068563079833984, 0.060521472930908204, 0.06053273773193359, 0.060329216003417965, 0.060311649322509764, 0.060578464508056644, 0.06047244644165039, 0.06027523040771485, 0.06033964920043945, 0.060555614471435544, 0.06043910217285156, 0.060456031799316405, 0.06150627136230469, 0.06099763107299805, 0.060053665161132815, 0.06001571273803711, 0.059773696899414065, 0.05990195083618164, 0.05993881607055664, 0.06005759811401367, 0.06002687835693359, 0.0600203857421875, 0.05996121597290039, 0.06011747360229492, 0.05999526214599609, 0.06005583953857422, 0.05994124984741211, 0.060276065826416016, 0.060633983612060544, 0.060813312530517576, 0.06053241729736328, 0.06038060760498047, 0.06030185699462891, 0.06018476867675781, 0.060106239318847655, 0.060117504119873044, 0.06018473434448242, 0.06010060882568359, 0.06004073715209961, 0.06021356964111328, 0.06007814407348633, 0.06029321670532226, 0.059998046875, 0.060209312438964845, 0.06049286270141602, 0.06042031860351563, 0.06063955307006836, 0.06046556854248047, 0.060352512359619144, 0.060422080993652344, 0.06022355270385742, 0.060180225372314454, 0.06010889434814453, 0.060264606475830075, 0.06019891357421875, 0.06016409683227539, 0.06035625457763672, 0.06031600189208984, 0.060230911254882814, 0.0602426872253418, 0.06028902435302735, 0.060620288848876956, 0.06070867156982422, 0.06053897476196289, 0.06053481674194336, 0.06048416137695312, 0.06048166275024414, 0.06031961441040039, 0.060391422271728515, 0.06028902435302735, 0.06026444625854492, 0.06050559997558594, 0.06041446304321289, 0.060421695709228514, 0.06045251083374024, 0.06179651260375976, 0.06098108673095703, 0.060186752319335936, 0.0600761604309082, 0.05995916748046875, 0.05996892929077149, 0.05996384048461914, 0.06009190368652344, 0.05988828659057617, 0.06007731246948242, 0.06020377731323242, 0.0600002555847168, 0.060109088897705075, 0.060383041381835936, 0.060304286956787106, 0.06044569778442383, 0.06067609786987305, 0.06065347290039062, 0.06046432113647461, 0.060107681274414064, 0.05999980926513672, 0.06012895965576172, 0.059973983764648436, 0.06010416030883789, 0.06013174438476562, 0.060076576232910156, 0.06004326248168945, 0.060112895965576174, 0.060101856231689454, 0.06013555145263672, 0.06015046310424805, 0.06026031875610351, 0.06028902435302735, 0.06049587249755859, 0.06037299346923828, 0.06079257583618164, 0.060610752105712894, 0.06025632095336914, 0.06020710372924805, 0.06030950546264648, 0.06028214263916016, 0.060283615112304685, 0.06027171325683594, 0.06032681655883789, 0.06025625610351563, 0.06029919815063477, 0.06027833557128906, 0.0602874870300293, 0.060443809509277344, 0.060670814514160155, 0.06046105575561524, 0.06076620864868164, 0.06061676788330078, 0.06084396743774414, 0.060647422790527344, 0.06069465637207031, 0.06043648147583008, 0.06031756973266601, 0.060286975860595705, 0.06047334289550781, 0.060405086517333985, 0.06112435150146484, 0.06074857711791992, 0.0616860466003418, 0.06076870346069336, 0.06042313766479492, 0.06029747009277344, 0.06007270431518555, 0.06005750274658203, 0.05993203353881836, 0.060072288513183594, 0.0600682258605957, 0.060303359985351565, 0.06018060684204102, 0.060237697601318356, 0.06009036636352539, 0.060194206237792966, 0.060190654754638674, 0.060502689361572264, 0.06069638442993164, 0.06068428802490235, 0.06088857650756836, 0.060452960968017576, 0.06030809783935547, 0.0602562255859375, 0.060203006744384766, 0.06045455932617187, 0.06017020797729492, 0.060302974700927735, 0.06015663909912109, 0.06016412734985352, 0.06018396759033203, 0.06010319900512695, 0.06012115097045898, 0.06032179260253906, 0.06041961669921875, 0.060631423950195315, 0.060490848541259766, 0.060619518280029296, 0.0605228157043457, 0.060516094207763674, 0.06028044891357422, 0.06021791839599609, 0.06017622375488281, 0.060264606475830075, 0.060139488220214844, 0.06015798568725586, 0.06014511871337891, 0.06025455856323242, 0.06033833694458008, 0.06055081558227539, 0.06061094284057617, 0.060639232635498044, 0.06047129440307617, 0.060636863708496094, 0.060427776336669924, 0.06058844757080078, 0.06041846466064453, 0.06029312133789062, 0.06035811233520508, 0.060381729125976565, 0.060284927368164064, 0.06031689453125, 0.060211360931396486, 0.0603570556640625, 0.06030329513549805, 0.061901023864746094, 0.06087286376953125, 0.060235774993896485, 0.060104705810546874, 0.05997532653808594, 0.0598900146484375, 0.05985798263549805, 0.05990700912475586, 0.05997568130493164, 0.05996966552734375, 0.06007596969604492, 0.05998140716552734, 0.05983881759643555, 0.05992668914794922, 0.06003884887695313, 0.060225662231445314, 0.06036896133422852, 0.06071292877197266, 0.06051839828491211, 0.06043843078613281, 0.06033939361572266, 0.060148639678955076, 0.06007398223876953, 0.06003507232666016, 0.06001996612548828, 0.060152576446533206, 0.060037025451660155, 0.060137214660644533, 0.060094497680664063, 0.06005702209472656, 0.06020761489868164, 0.06024435043334961, 0.060385280609130856, 0.06054899215698242, 0.06148896026611328, 0.06064972686767578, 0.06059014511108399, 0.06035359954833985, 0.060272575378417965, 0.06018361663818359, 0.060100543975830076, 0.060155742645263674, 0.06021075057983399, 0.060170623779296876, 0.060131553649902345, 0.060262401580810546, 0.060364864349365235, 0.060899040222167966, 0.06054115295410156, 0.060474655151367185, 0.06082857513427734, 0.06068204879760742, 0.06057347106933594, 0.0604420166015625, 0.060558143615722655, 0.060483585357666014, 0.06034451293945312, 0.060295135498046874, 0.06027251052856445, 0.06041759872436524, 0.060281246185302735, 0.06026342391967773, 0.06026953506469727, 0.061730911254882816, 0.06078559875488281, 0.06014575958251953, 0.060164192199707034, 0.06052534484863281, 0.06007398223876953, 0.05998096084594726, 0.06006256103515625, 0.059998207092285157, 0.06002483367919922, 0.05997568130493164, 0.060065406799316406, 0.05996582412719727, 0.0599920654296875, 0.06007523345947265, 0.06019971084594727, 0.06062195205688477, 0.06090243148803711, 0.060652801513671875, 0.06039206314086914, 0.06018435287475586, 0.060527870178222656, 0.060549598693847656, 0.06008009719848633, 0.06015830230712891, 0.0601723518371582, 0.0601396484375, 0.05996335983276367, 0.060086177825927733, 0.06059535980224609, 0.06118700790405274, 0.06032137680053711, 0.06042665481567383, 0.06059212875366211, 0.06062694549560547, 0.06052793502807617, 0.06049862289428711, 0.06041996765136719, 0.06046326446533203, 0.060247295379638674, 0.06031824111938477, 0.06018694305419922, 0.06018873596191406, 0.06020281600952149, 0.06018048095703125, 0.06031507110595703, 0.06025484848022461, 0.060327232360839846, 0.060488319396972655, 0.0606453742980957, 0.06057350540161133, 0.06069676971435547, 0.060649471282958986, 0.06050611114501953, 0.06034431838989258, 0.060388481140136716, 0.060252254486083984, 0.060384033203125, 0.06021104049682617, 0.060536991119384764, 0.06037680053710937, 0.06032592010498047, 0.06034159851074219, 0.06159977722167969, 0.060993793487548825, 0.060229633331298826, 0.06056963348388672, 0.06005539321899414, 0.06010617446899414, 0.06025900650024414, 0.06004518508911133, 0.05993689727783203, 0.06004076766967773, 0.060033344268798826, 0.06003315353393555, 0.05996291351318359, 0.060087936401367184, 0.06008627319335937, 0.06023072052001953, 0.060630977630615236, 0.06065955352783203, 0.06061670303344727, 0.06045491027832031, 0.06027017593383789, 0.06003750228881836, 0.06003299331665039, 0.06012944030761719, 0.06013123321533203, 0.06016963195800781, 0.06015615844726562, 0.060133216857910156, 0.06022809600830078, 0.06009846496582031, 0.06006179046630859, 0.06028287887573242, 0.06047334289550781, 0.06074367904663086, 0.06057984161376953, 0.06040563201904297, 0.06051036834716797, 0.06040105438232422, 0.06025888061523438, 0.06030873489379883, 0.06034009552001953, 0.06023667144775391, 0.06029094314575195, 0.06034649658203125, 0.06029087829589844, 0.060168384552001956, 0.060210975646972656, 0.06057187271118164, 0.06056755065917969, 0.06049782562255859, 0.06068000030517578, 0.06066204833984375, 0.06074367904663086, 0.060626785278320314, 0.06035676956176758, 0.06060031890869141, 0.06055267333984375, 0.060509822845458985, 0.060420543670654296, 0.06047808074951172, 0.06060435104370117, 0.06032374572753906, 0.06038735961914062]",tokens/s,16.578144580559517,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,815.693824,6223.233024,0.0,5827.985408,5712.718848,s,1,7.30068115234375,7.30068115234375,0.0,7.30068115234375,7.30068115234375,7.30068115234375,7.30068115234375,[7.30068115234375],,kWh,1.03632283999976e-05,1.1358689035069413e-06,3.512780588001141e-06,1.5011877891505682e-05,,MB,1169.432576,6453.919744,0.0,6046.089216,5989.425664,s,10,0.8358417587280274,0.08358417587280273,0.0030288228730164053,0.0849144630432129,0.08570270614624023,0.08598114433288574,0.08620389488220215,"[0.07983344268798828, 0.08402767944335937, 0.08529759979248047, 0.08336016082763673, 0.08564083099365234, 0.07612076568603515, 0.08546422576904297, 0.08453132629394532, 0.08530614471435546, 0.08625958251953125]",tokens/s,3062.7806917612893,kWh,2.6076465513019306e-06,2.87574112138717e-07,1.7332479143750208e-06,4.628468577815668e-06,tokens/kWh,55309871.0072296,MB,1202.556928,6516.834304,0.0,6109.003776,6090.851328,s,10,20.951066650390622,2.0951066650390624,0.006738284949658318,2.0973076171875,2.1025949951171876,2.1030796020507814,2.1034672875976566,"[2.0802802734375, 2.09609912109375, 2.098637939453125, 2.091754150390625, 2.087480712890625, 2.098539794921875, 2.1024873046875, 2.09851611328125, 2.103564208984375, 2.09370703125]",tokens/s,30.07006805490039,kWh,6.0810682840364244e-05,6.707186377326684e-06,4.030136904662445e-05,0.00010781923826431536,tokens/kWh,584311.3067220671,,s,630,20.94752470016479,0.033250039206610786,0.0006555988821365542,0.03314591979980469,0.03360196647644043,0.0339087797164917,0.036691193504333496,"[0.03542473602294922, 0.034076736450195315, 0.03308556747436524, 0.03282115173339844, 0.03268815994262695, 0.03273315048217774, 0.03255094528198242, 0.032616416931152345, 0.03264678573608398, 0.03254009628295899, 0.032613311767578125, 0.032511070251464845, 0.03255305480957031, 0.03256403350830078, 0.03256899261474609, 0.03253692626953125, 0.032679233551025394, 0.032723648071289066, 0.03267583847045898, 0.032675201416015626, 0.03317382431030273, 0.032868576049804685, 0.03279449462890625, 0.03276319885253906, 0.03288140869140625, 0.032833087921142576, 0.0327599983215332, 0.03270019149780273, 0.03288719940185547, 0.032895198822021486, 0.032950271606445314, 0.033200096130371094, 0.032971870422363284, 0.03293894577026367, 0.03312966537475586, 0.03307193756103516, 0.032894977569580076, 0.03300966262817383, 0.03295804977416992, 0.03290768051147461, 0.03304227066040039, 0.03290867233276367, 0.03294464111328125, 0.033003807067871094, 0.033157119750976564, 0.03312153625488281, 0.03321446228027344, 0.03318860626220703, 0.03344332885742188, 0.03486310577392578, 0.033057376861572264, 0.033228702545166015, 0.033108097076416015, 0.03300518417358399, 0.03314259338378906, 0.033083839416503905, 0.033157119750976564, 0.03321241760253906, 0.03317145538330078, 0.03309568023681641, 0.033255550384521486, 0.033352672576904295, 0.033366207122802735, 0.0367059211730957, 0.034375679016113284, 0.033544063568115234, 0.03307551956176758, 0.032939582824707034, 0.03287919998168945, 0.03272662353515625, 0.03269472122192383, 0.03282944107055664, 0.03292979049682617, 0.0329167366027832, 0.03286415863037109, 0.03293679809570312, 0.03287859344482422, 0.032888801574707034, 0.033001216888427734, 0.03294806289672852, 0.03297529602050781, 0.03297280120849609, 0.03290726470947265, 0.033277950286865234, 0.03293289566040039, 0.03303094482421875, 0.0329606704711914, 0.032939136505126955, 0.03303071975708008, 0.03315542221069336, 0.03305628967285156, 0.03309936141967774, 0.03318009567260742, 0.03338899230957031, 0.033570816040039066, 0.03340697479248047, 0.03336806488037109, 0.03321571350097656, 0.033151775360107424, 0.03339174270629883, 0.033186687469482425, 0.03322262573242187, 0.033219936370849606, 0.03317216110229492, 0.03313808059692383, 0.03327376174926758, 0.033208030700683594, 0.033129440307617185, 0.033189407348632814, 0.03331097412109375, 0.03338652801513672, 0.03335187149047852, 0.03323494338989258, 0.03330825424194336, 0.03322915267944336, 0.03347257614135742, 0.03327356719970703, 0.03320979309082031, 0.03334979248046875, 0.03357766342163086, 0.033288192749023435, 0.033529857635498046, 0.033333217620849606, 0.03405769729614258, 0.03425667190551758, 0.033648799896240235, 0.03823616027832031, 0.03472793579101562, 0.033503231048583985, 0.03302220916748047, 0.03283766555786133, 0.03282710266113281, 0.03275980758666992, 0.03289606475830078, 0.0328221435546875, 0.0327347183227539, 0.03278905487060547, 0.03275900650024414, 0.03285686492919922, 0.03294003295898437, 0.03289478302001953, 0.032831680297851565, 0.032868350982666016, 0.0328392333984375, 0.033067264556884766, 0.03305683135986328, 0.03296063995361328, 0.03330799865722656, 0.03297859191894531, 0.033037311553955076, 0.033323009490966796, 0.033040382385253905, 0.03313663864135742, 0.03294617462158203, 0.033097984313964844, 0.0332224006652832, 0.03357263946533203, 0.03332937622070312, 0.03339878463745117, 0.0333496322631836, 0.033261566162109374, 0.03316716766357422, 0.0333191032409668, 0.033538047790527346, 0.03320774459838867, 0.03320479965209961, 0.033159168243408206, 0.033310527801513674, 0.033285888671875, 0.03339923095703125, 0.03326284790039063, 0.033078014373779295, 0.03311174392700195, 0.03323436737060547, 0.03330918502807617, 0.033278335571289064, 0.03324230575561524, 0.03339347076416015, 0.033453342437744144, 0.033551071166992186, 0.0334205436706543, 0.033342208862304684, 0.03478428649902344, 0.03326051330566406, 0.03362105560302735, 0.03353900909423828, 0.033562625885009766, 0.0336629753112793, 0.03336771011352539, 0.03665513610839844, 0.03467667388916015, 0.03360156631469727, 0.03312844848632813, 0.03298918533325195, 0.03280812835693359, 0.03278726577758789, 0.03272284698486328, 0.03279459381103516, 0.03274969482421875, 0.03301990509033203, 0.03295641708374023, 0.0330742073059082, 0.034243457794189455, 0.03277628707885742, 0.03272457504272461, 0.03304415893554687, 0.03286627197265625, 0.033143550872802734, 0.03294793701171875, 0.03303798294067383, 0.03291196823120117, 0.032995361328125, 0.03285715103149414, 0.032959423065185546, 0.032918815612792966, 0.03290800094604492, 0.03299737548828125, 0.03321241760253906, 0.03362329483032227, 0.033641216278076175, 0.03342156982421875, 0.03347840118408203, 0.033409278869628904, 0.03323468780517578, 0.03325523376464844, 0.03329267120361328, 0.033189697265625, 0.033122303009033204, 0.033027198791503905, 0.03295935821533203, 0.033036384582519535, 0.033071006774902344, 0.03318937683105469, 0.03320060729980469, 0.03310518264770508, 0.03314896011352539, 0.03314352035522461, 0.033175552368164066, 0.03302918243408203, 0.0331396484375, 0.03311577606201172, 0.033154624938964844, 0.03325215911865234, 0.033173057556152345, 0.033062496185302735, 0.033046592712402345, 0.03309344100952148, 0.03323545455932617, 0.0332295036315918, 0.033371936798095705, 0.033140735626220705, 0.03316121673583984, 0.03710134506225586, 0.03480403137207031, 0.03370102310180664, 0.03291836929321289, 0.0326446418762207, 0.03279062271118164, 0.03388412857055664, 0.032764129638671875, 0.03265907287597656, 0.03261702346801758, 0.03284377670288086, 0.03255507278442383, 0.03268739318847656, 0.03289564895629883, 0.03277545547485351, 0.032613086700439456, 0.03271475219726563, 0.03277164840698242, 0.032747615814208986, 0.03268233489990234, 0.03279209518432617, 0.03283155059814453, 0.03283599853515625, 0.033006816864013674, 0.03300150299072266, 0.0330860481262207, 0.03278351974487305, 0.03293491363525391, 0.03292979049682617, 0.03301580810546875, 0.033037887573242185, 0.03298144149780274, 0.03317327880859375, 0.03300921630859375, 0.03314067077636719, 0.03314556884765625, 0.033187744140625, 0.03305187225341797, 0.03302864074707031, 0.03302844619750977, 0.03309568023681641, 0.03297795104980469, 0.03307414245605469, 0.03323904037475586, 0.03306092834472656, 0.03302739334106446, 0.03308009719848633, 0.03308697509765625, 0.033050975799560546, 0.03311001586914063, 0.03311215972900391, 0.033114017486572264, 0.03322880172729492, 0.033230846405029296, 0.03314627075195312, 0.03330879974365234, 0.033408958435058596, 0.03325993728637695, 0.03331676864624023, 0.03373897552490234, 0.03364044952392578, 0.033314815521240236, 0.03336959838867187, 0.034716575622558594, 0.034632736206054685, 0.03375510406494141, 0.03307465744018555, 0.03297683334350586, 0.03298992156982422, 0.03289199829101563, 0.032946720123291015, 0.033046783447265624, 0.03294822311401367, 0.032835582733154296, 0.03292598342895508, 0.033029823303222655, 0.03295849609375, 0.03294800186157226, 0.03292559814453125, 0.03290758514404297, 0.032884735107421875, 0.03296051025390625, 0.03303014373779297, 0.03313459014892578, 0.032904670715332034, 0.03377411270141602, 0.03342051315307617, 0.03333814239501953, 0.033078624725341794, 0.033034591674804686, 0.033022335052490234, 0.033183521270751956, 0.03317907333374023, 0.03341567993164062, 0.03330860900878906, 0.033556766510009765, 0.03337372970581055, 0.03336172866821289, 0.033563297271728514, 0.03322880172729492, 0.03341516876220703, 0.033688961029052736, 0.033202816009521484, 0.0332492790222168, 0.03318726348876953, 0.03329391860961914, 0.03335638427734375, 0.03330086517333984, 0.03315507125854492, 0.03328956985473633, 0.03341331100463867, 0.03330915069580078, 0.03350527954101563, 0.03330047988891602, 0.03320431900024414, 0.033398143768310545, 0.033331199645996096, 0.03346691131591797, 0.033564350128173825, 0.033331520080566404, 0.03339263916015625, 0.03355401611328125, 0.03388457489013672, 0.03392054367065429, 0.033460609436035155, 0.03369993591308594, 0.039167934417724606, 0.03525568008422852, 0.03392374420166016, 0.033279998779296875, 0.03319193649291992, 0.03288848114013672, 0.0328175048828125, 0.032798431396484376, 0.03278467178344727, 0.03294822311401367, 0.03291654586791992, 0.0327894401550293, 0.03286592102050781, 0.0328353271484375, 0.03284352111816406, 0.03315776062011719, 0.03307545471191406, 0.03299020767211914, 0.03311215972900391, 0.0330720329284668, 0.033050273895263674, 0.03319843292236328, 0.03302809524536133, 0.03306278228759765, 0.03306304168701172, 0.033062240600585935, 0.03301043319702148, 0.03301161575317383, 0.03318374252319336, 0.03361177444458008, 0.03389440155029297, 0.03335168075561523, 0.033667198181152345, 0.033529727935791016, 0.033808383941650394, 0.0335175666809082, 0.03325276947021484, 0.03324364852905273, 0.03324528121948242, 0.03323494338989258, 0.033255424499511715, 0.03309497451782226, 0.03316585540771484, 0.033163425445556644, 0.033295455932617186, 0.03316419219970703, 0.033331199645996096, 0.03337612915039063, 0.033511550903320315, 0.033209823608398435, 0.03324924850463867, 0.03343999862670898, 0.033265983581542966, 0.033331199645996096, 0.03338652801513672, 0.03321171188354492, 0.03327862548828125, 0.03341107177734375, 0.03335168075561523, 0.03374694442749023, 0.03379404830932617, 0.033421184539794924, 0.033875137329101565, 0.03704867172241211, 0.034586334228515626, 0.033444095611572265, 0.03322675323486328, 0.033041824340820314, 0.03285420989990234, 0.03288515090942383, 0.03285414505004883, 0.03293171310424805, 0.03288195037841797, 0.03285475158691406, 0.032877632141113285, 0.03303519821166992, 0.0328724479675293, 0.032849918365478514, 0.03292694473266602, 0.032922401428222656, 0.032882816314697264, 0.03301532745361328, 0.03315289688110352, 0.03321084976196289, 0.03296236801147461, 0.032996574401855466, 0.03295945739746094, 0.03315209579467773, 0.03308022308349609, 0.03316707229614258, 0.03312847900390625, 0.03314092636108398, 0.033276096343994144, 0.03480115127563477, 0.03352819061279297, 0.03344793701171875, 0.033377601623535154, 0.033384864807128906, 0.033181472778320314, 0.03318425750732422, 0.03316227340698242, 0.033377246856689455, 0.03323849487304688, 0.03321500778198242, 0.033213760375976564, 0.03336588668823242, 0.033379135131835935, 0.033271808624267575, 0.033253185272216795, 0.03328838348388672, 0.03314688110351562, 0.033165313720703124, 0.03328947067260742, 0.03345280075073242, 0.03316326522827148, 0.03331603240966797, 0.03344057464599609, 0.033271808624267575, 0.033320159912109376, 0.03358390426635742, 0.03352979278564453, 0.033491008758544924, 0.03336601638793945, 0.03364422225952148, 0.033605567932128905, 0.033462238311767575, 0.03948457717895508, 0.03513177490234375, 0.033874401092529295, 0.03327590560913086, 0.03342480087280274, 0.03303484725952149, 0.03295974349975586, 0.03298175811767578, 0.03299123382568359, 0.03282534408569336, 0.03284707260131836, 0.03286044692993164, 0.03282505416870117, 0.03278287887573242, 0.03297491073608398, 0.032993408203125, 0.03297443389892578, 0.032860641479492185, 0.03301580810546875, 0.03303424072265625, 0.032891136169433594, 0.03304544067382813, 0.0329552001953125, 0.033124256134033206, 0.03317769622802735, 0.03296432113647461, 0.032986942291259765, 0.033032318115234376, 0.033337600708007814, 0.0334431037902832, 0.03361171340942383, 0.03341196823120117, 0.03336601638793945, 0.03360752105712891, 0.033552032470703125, 0.033231361389160156, 0.03323875045776367, 0.03401052856445313, 0.03316169738769531, 0.03324143981933594, 0.033353855133056644, 0.03314828872680664, 0.03314950561523437, 0.03331891250610351, 0.03382684707641601, 0.0337632942199707, 0.033215648651123045, 0.033452896118164065, 0.03328432083129883, 0.033158302307128906, 0.03310211181640625, 0.033446239471435546, 0.0333496322631836, 0.033494430541992186, 0.03349155044555664, 0.03321855926513672, 0.03338572692871094, 0.03343030548095703, 0.033545246124267576, 0.03351238250732422, 0.033923072814941405, 0.033393665313720705, 0.03364742279052734, 0.03776847839355469, 0.03490886306762695, 0.03363388824462891, 0.033143199920654294, 0.03300742340087891, 0.03288899230957031, 0.032900768280029295, 0.03290560150146484, 0.03305043029785156, 0.03300166320800781, 0.03295641708374023, 0.032876190185546876, 0.03294831848144531, 0.03287260818481445, 0.032890270233154294, 0.032791072845458985, 0.03287030410766602, 0.03281878280639648, 0.03290793609619141, 0.03291449737548828, 0.03292006301879883, 0.032860607147216794, 0.03296649551391601, 0.03278160095214844, 0.03301055908203125, 0.0329890251159668, 0.03290332794189453, 0.032916961669921876, 0.03305936050415039, 0.03329391860961914, 0.0334381103515625, 0.03321446228027344, 0.03385935974121094, 0.033315040588378905, 0.03323904037475586, 0.03316454315185547, 0.03316368103027344, 0.03313423919677734, 0.03307180786132812, 0.03311001586914063, 0.03295155334472656, 0.032989566802978515, 0.03300508880615234, 0.03304889678955078, 0.03311465454101563, 0.03309308624267578, 0.03343395233154297, 0.033029953002929685, 0.03305654525756836, 0.032952510833740234, 0.03293788909912109, 0.03295187377929688, 0.03290617752075195, 0.032942081451416014, 0.03337625503540039, 0.03297280120849609, 0.03303974533081055, 0.03307379150390625, 0.03317510223388672, 0.0332845458984375, 0.035880767822265625, 0.03451091384887695, 0.03320230484008789]",tokens/s,30.07515250692335,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 217, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 258.12 MiB is free. Process 99193 has 14.49 GiB memory in use. Of the allocated memory 14.32 GiB is allocated by PyTorch, and 53.40 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,836.231168,1903.099904,0.0,1507.852288,1469.840384,s,1,7.52754248046875,7.52754248046875,0.0,7.52754248046875,7.52754248046875,7.52754248046875,7.52754248046875,[7.52754248046875],,kWh,9.503668124996995e-06,1.0401331762255093e-06,3.1658358660008323e-06,1.3709637167223338e-05,,MB,1226.58816,1945.042944,0.0,1537.212416,1426.272256,s,10,0.27097811317443843,0.02709781131744384,0.0003786107303017915,0.027143296241760255,0.027483865928649903,0.02757210931777954,0.02764270402908325,"[0.02708073616027832, 0.027005279541015625, 0.026945632934570314, 0.026169376373291017, 0.026936735153198242, 0.02766035270690918, 0.02728428840637207, 0.027205856323242187, 0.02722559928894043, 0.027464256286621094]",tokens/s,9447.257455630874,kWh,7.997867326598076e-07,8.820181491284647e-08,5.278565866685053e-07,1.4158451342411593e-06,tokens/kWh,180810735.44615212,MB,1255.46496,1955.528704,0.0,1547.698176,1426.274816,s,10,14.865883300781249,1.4865883300781249,0.022758679453859385,1.4982611694335937,1.5034682861328124,1.5080211303710938,1.5116634057617186,"[1.4967606201171875, 1.4830277099609375, 1.4520919189453125, 1.438096435546875, 1.50245654296875, 1.512573974609375, 1.500075927734375, 1.5007305908203126, 1.49976171875, 1.480307861328125]",tokens/s,42.37891467686226,kWh,4.2963057214423454e-05,4.738280142252147e-06,2.0673327040931977e-05,6.837466439760757e-05,tokens/kWh,921393.9191517899,,s,630,14.863477323532083,0.023592821148463658,0.0005836044082770866,0.023636879920959475,0.02402796497344971,0.024213948917388917,0.025956943264007576,"[0.02380396842956543, 0.02381167984008789, 0.023557727813720702, 0.023343296051025392, 0.02356902313232422, 0.02336511993408203, 0.0234901123046875, 0.02411516761779785, 0.023535648345947267, 0.023407552719116213, 0.02365964889526367, 0.023612287521362303, 0.023468032836914062, 0.02350284767150879, 0.02510652732849121, 0.02385296058654785, 0.024130975723266602, 0.02401340866088867, 0.02364825630187988, 0.02354694366455078, 0.02357548713684082, 0.0235231990814209, 0.02374176025390625, 0.0236429443359375, 0.023686975479125977, 0.023616863250732423, 0.023540576934814452, 0.023545856475830077, 0.027241952896118166, 0.02977574348449707, 0.02368783950805664, 0.023632959365844728, 0.023755584716796875, 0.023781280517578125, 0.02357788848876953, 0.023829439163208007, 0.024065120697021485, 0.023741344451904296, 0.02341587257385254, 0.02346659278869629, 0.02344585609436035, 0.023464128494262694, 0.02360704040527344, 0.023590335845947264, 0.023494688034057618, 0.023583616256713867, 0.023550687789916994, 0.023415487289428712, 0.023342815399169922, 0.023204448699951172, 0.023337055206298828, 0.02344108772277832, 0.023666559219360353, 0.023576927185058594, 0.023317600250244142, 0.023651519775390626, 0.02339596748352051, 0.023322368621826173, 0.023351648330688476, 0.023317760467529296, 0.023206655502319335, 0.023297088623046875, 0.023542720794677733, 0.023474336624145508, 0.02344918441772461, 0.023247039794921875, 0.023474239349365236, 0.023444799423217772, 0.023517887115478517, 0.023377727508544922, 0.023298240661621093, 0.023475807189941408, 0.02336502456665039, 0.023376895904541017, 0.023472127914428712, 0.02368716812133789, 0.0234105281829834, 0.023914655685424804, 0.023959775924682618, 0.02378489685058594, 0.023439712524414062, 0.023349407196044922, 0.02360918426513672, 0.02393087959289551, 0.02349459266662598, 0.023458911895751954, 0.0233973445892334, 0.02371513557434082, 0.023389888763427735, 0.02345881652832031, 0.02343462371826172, 0.023675519943237303, 0.02333251190185547, 0.02329840087890625, 0.023619583129882812, 0.023445407867431642, 0.023549280166625976, 0.023488704681396484, 0.023410303115844727, 0.023566591262817384, 0.023802528381347655, 0.02349270439147949, 0.023351104736328124, 0.02369139289855957, 0.023855104446411132, 0.02337126350402832, 0.023773311614990234, 0.023439712524414062, 0.023996448516845702, 0.02345779228210449, 0.023513088226318358, 0.023468032836914062, 0.023365631103515624, 0.023500799179077148, 0.023600959777832033, 0.023433216094970705, 0.023655872344970703, 0.023603967666625977, 0.023349248886108398, 0.023858463287353516, 0.023343807220458986, 0.02329360008239746, 0.02428351974487305, 0.023580768585205077, 0.023627487182617188, 0.023293567657470704, 0.023424383163452148, 0.023358079910278322, 0.02338809585571289, 0.023304256439208984, 0.023494239807128905, 0.02319561576843262, 0.022937536239624023, 0.02311961555480957, 0.02314931106567383, 0.023158784866333007, 0.023568384170532225, 0.023158784866333007, 0.02304355239868164, 0.023231008529663085, 0.023225919723510742, 0.022958528518676757, 0.022872064590454103, 0.022906879425048828, 0.02306252861022949, 0.02305638313293457, 0.022957632064819336, 0.022868415832519532, 0.023344736099243164, 0.022835552215576174, 0.022761663436889647, 0.022859647750854493, 0.022740352630615236, 0.022781631469726563, 0.022829151153564452, 0.023085760116577148, 0.02274857521057129, 0.022839487075805662, 0.02299347114562988, 0.023170848846435547, 0.024883424758911133, 0.02627174377441406, 0.023320608139038086, 0.0229703369140625, 0.022971839904785157, 0.022968896865844725, 0.022923263549804687, 0.02289459228515625, 0.02289254379272461, 0.022853631973266602, 0.022734848022460938, 0.02291868782043457, 0.023126495361328124, 0.023019519805908203, 0.0229552001953125, 0.022846271514892578, 0.022711872100830078, 0.02277737617492676, 0.02286207962036133, 0.022672031402587892, 0.02272051239013672, 0.02255286407470703, 0.022695295333862303, 0.02258710479736328, 0.022605791091918945, 0.022626720428466796, 0.022757631301879883, 0.02264678382873535, 0.022691839218139647, 0.023012928009033203, 0.023002559661865235, 0.022960159301757814, 0.022600671768188477, 0.02266873550415039, 0.02268115234375, 0.02274844741821289, 0.022660415649414064, 0.02259190368652344, 0.022719648361206053, 0.022703968048095702, 0.022700544357299804, 0.022667776107788085, 0.022681440353393555, 0.0227923526763916, 0.02313145637512207, 0.022983360290527343, 0.02294112014770508, 0.022695999145507812, 0.022753791809082033, 0.022601728439331056, 0.022462495803833006, 0.022708192825317382, 0.02264860725402832, 0.0225795841217041, 0.022681440353393555, 0.023358783721923827, 0.022681343078613282, 0.022647743225097657, 0.022564863204956053, 0.022607872009277344, 0.022898687362670898, 0.0227259521484375, 0.022770368576049804, 0.022597631454467772, 0.02272870445251465, 0.02268694305419922, 0.02268035125732422, 0.022648223876953123, 0.022700639724731447, 0.02265088081359863, 0.022740896224975587, 0.022775583267211914, 0.022657567977905274, 0.022820640563964843, 0.022841344833374022, 0.022795648574829103, 0.022675775527954103, 0.022747264862060548, 0.022661312103271485, 0.022627967834472656, 0.02261030387878418, 0.022895904541015626, 0.023030496597290038, 0.022775423049926757, 0.023173503875732422, 0.023169023513793945, 0.023228416442871092, 0.02339142417907715, 0.023538496017456053, 0.023602336883544923, 0.023401504516601564, 0.023366655349731445, 0.02361759948730469, 0.023513248443603516, 0.023361824035644532, 0.02356777572631836, 0.023419071197509765, 0.023277856826782226, 0.023377471923828125, 0.023607423782348633, 0.02346028709411621, 0.023392255783081056, 0.024458751678466797, 0.024061920166015625, 0.023828128814697265, 0.023688064575195313, 0.02405177688598633, 0.02386636734008789, 0.023912384033203126, 0.023802303314208986, 0.02371785545349121, 0.023806560516357423, 0.024253856658935546, 0.024481727600097657, 0.02376969528198242, 0.02400467109680176, 0.024172544479370117, 0.023883775711059572, 0.023725824356079103, 0.02386115264892578, 0.02386390495300293, 0.0239552001953125, 0.023776416778564454, 0.023845727920532227, 0.02385411262512207, 0.0240644474029541, 0.024154655456542967, 0.023975328445434572, 0.023751264572143556, 0.024221696853637696, 0.023965696334838867, 0.023829919815063477, 0.02401750373840332, 0.023805536270141602, 0.023658912658691408, 0.02378156852722168, 0.023747776031494142, 0.023741056442260742, 0.023883775711059572, 0.023734272003173826, 0.024414207458496092, 0.023793664932250977, 0.023832576751708984, 0.023859199523925782, 0.024335615158081053, 0.023847679138183593, 0.024025087356567384, 0.023828479766845705, 0.023926015853881835, 0.02368569564819336, 0.02379385566711426, 0.02381817626953125, 0.023748672485351563, 0.023848960876464844, 0.023837823867797852, 0.02399292755126953, 0.023832576751708984, 0.02473936080932617, 0.023992799758911134, 0.023961599349975587, 0.025796607971191408, 0.026394880294799805, 0.023875328063964845, 0.023956703186035155, 0.023896831512451172, 0.024010784149169923, 0.023879680633544922, 0.02397929573059082, 0.02368342399597168, 0.023861631393432618, 0.024786943435668944, 0.02412748718261719, 0.024246271133422852, 0.023905696868896483, 0.023730783462524413, 0.023792736053466795, 0.023800479888916017, 0.024037023544311524, 0.023751264572143556, 0.023769088745117187, 0.023773183822631837, 0.02498703956604004, 0.0238656005859375, 0.023748319625854494, 0.02376460838317871, 0.02387164878845215, 0.02442326354980469, 0.023905664443969726, 0.02375459289550781, 0.024118047714233398, 0.023975967407226562, 0.023770816802978517, 0.023647680282592773, 0.023802719116210937, 0.023908447265625, 0.023885631561279298, 0.02372003173828125, 0.02388364791870117, 0.02392025566101074, 0.02443247985839844, 0.02390902328491211, 0.023973888397216796, 0.02406399917602539, 0.02401417541503906, 0.02381439971923828, 0.023856639862060547, 0.02388675117492676, 0.023989376068115235, 0.023817087173461916, 0.02392985534667969, 0.02369024085998535, 0.023897632598876953, 0.0237607364654541, 0.023695999145507813, 0.023750656127929686, 0.02372403144836426, 0.023658496856689453, 0.02391209602355957, 0.024124895095825195, 0.02368476867675781, 0.023908832550048827, 0.023756256103515627, 0.023681856155395507, 0.02371552085876465, 0.023728288650512696, 0.02385772705078125, 0.023678655624389647, 0.023793119430541992, 0.023724607467651367, 0.023769088745117187, 0.023967744827270508, 0.023666688919067383, 0.0237076473236084, 0.023582719802856447, 0.02364959907531738, 0.02359980773925781, 0.023559520721435547, 0.02369193649291992, 0.023595008850097656, 0.02371583938598633, 0.02418832015991211, 0.023736223220825196, 0.023714656829833983, 0.023805183410644533, 0.02364681625366211, 0.023859199523925782, 0.023990335464477538, 0.02360099220275879, 0.024791135787963867, 0.02373347282409668, 0.023851423263549804, 0.023779712677001952, 0.02390630340576172, 0.024115135192871093, 0.02375004768371582, 0.023571199417114257, 0.023725984573364257, 0.02361903953552246, 0.023532352447509765, 0.024018911361694335, 0.023826175689697266, 0.023613439559936524, 0.023641151428222658, 0.023501632690429687, 0.023709823608398437, 0.02369945526123047, 0.023567487716674804, 0.023815040588378907, 0.02367283248901367, 0.02364735984802246, 0.02370256042480469, 0.023819456100463866, 0.025094816207885742, 0.024528287887573243, 0.02444758415222168, 0.023905311584472656, 0.02373756790161133, 0.023670495986938475, 0.023705631256103515, 0.023642112731933593, 0.023791616439819335, 0.024204479217529298, 0.02398912048339844, 0.023961631774902344, 0.024047584533691407, 0.023826431274414063, 0.023842815399169923, 0.02392268753051758, 0.023850944519042967, 0.023760927200317382, 0.02358428764343262, 0.02390399932861328, 0.023876352310180662, 0.024778751373291014, 0.023859199523925782, 0.0235885124206543, 0.02363632011413574, 0.023678495407104493, 0.023556447982788085, 0.023592447280883787, 0.02378550338745117, 0.02403571128845215, 0.023742176055908202, 0.023572799682617187, 0.023595199584960938, 0.023586816787719726, 0.023532575607299804, 0.023542688369750975, 0.023748319625854494, 0.023719648361206054, 0.023753343582153322, 0.023615488052368162, 0.023762943267822266, 0.023664287567138672, 0.024021343231201173, 0.02405990409851074, 0.024401792526245115, 0.02395123291015625, 0.0240948486328125, 0.02412371253967285, 0.023885631561279298, 0.02373222351074219, 0.023801759719848634, 0.023656543731689454, 0.024112415313720704, 0.02360393524169922, 0.023788768768310545, 0.02351388740539551, 0.023805952072143553, 0.023842815399169923, 0.023940128326416017, 0.023688095092773438, 0.023637407302856444, 0.023588544845581056, 0.023643104553222657, 0.024147968292236328, 0.023852415084838867, 0.023682720184326173, 0.0236408634185791, 0.02378976058959961, 0.02362303924560547, 0.0238209285736084, 0.023957504272460937, 0.02395955276489258, 0.0236810245513916, 0.023545856475830077, 0.023494272232055663, 0.023736320495605468, 0.02362214469909668, 0.023653472900390625, 0.023636768341064453, 0.023767040252685546, 0.02367692756652832, 0.023699296951293945, 0.02346771240234375, 0.023486080169677733, 0.024060768127441408, 0.023793664932250977, 0.02363916778564453, 0.023571008682250975, 0.024027456283569337, 0.023732383728027343, 0.023652191162109374, 0.02360758399963379, 0.02352262306213379, 0.024024959564208984, 0.023632415771484373, 0.023662591934204103, 0.023576576232910155, 0.023858335494995116, 0.024064863204956054, 0.023863296508789062, 0.023748287200927733, 0.023608671188354493, 0.023623712539672853, 0.02384787178039551, 0.024151391983032226, 0.023748672485351563, 0.026085407257080077, 0.02425503921508789, 0.023908607482910155, 0.023947008132934572, 0.023666688919067383, 0.024032543182373047, 0.024097471237182616, 0.0240230712890625, 0.02376911926269531, 0.023805919647216796, 0.02370560073852539, 0.02384486389160156, 0.024588287353515623, 0.02372812843322754, 0.023744512557983398, 0.023737600326538086, 0.02363612747192383, 0.02351900863647461, 0.02364044761657715, 0.024152511596679686, 0.02392803192138672, 0.023712543487548827, 0.023752479553222655, 0.023643423080444335, 0.023544960021972657, 0.023754560470581054, 0.023711103439331055, 0.023511680603027343, 0.023584735870361327, 0.023821855545043947, 0.023706079483032227, 0.02367068862915039, 0.02369955253601074, 0.023834623336791993, 0.023639072418212892, 0.023464927673339842, 0.023467775344848632, 0.023576831817626952, 0.023395519256591796, 0.026346176147460938, 0.023564224243164063, 0.023417024612426757, 0.023599103927612306, 0.023636991500854493, 0.02353219223022461, 0.023234912872314453, 0.0232421760559082, 0.02321788787841797, 0.023192096710205078, 0.023291263580322265, 0.023120832443237305, 0.023240703582763672, 0.02328985595703125, 0.02335651206970215, 0.02305423927307129, 0.02306255912780762, 0.02321219253540039, 0.023313215255737305, 0.02342911911010742, 0.023404544830322265, 0.023259136199951173, 0.0233240966796875, 0.023107263565063478, 0.023147392272949218, 0.023271135330200195, 0.023517471313476562, 0.02355200004577637, 0.023398143768310547, 0.02325119972229004, 0.023245920181274415, 0.02339455986022949, 0.02381599998474121, 0.024038240432739257, 0.02359065628051758, 0.023439584732055666, 0.02322435188293457, 0.02311369514465332, 0.024137216567993162, 0.026022432327270507, 0.02377903938293457, 0.023736671447753908, 0.02422761535644531, 0.023486015319824218, 0.023419296264648438, 0.023162912368774415, 0.023154783248901366, 0.02314022445678711, 0.023054176330566407, 0.02299465560913086, 0.023007328033447266, 0.02305622482299805, 0.023001792907714844]",tokens/s,42.38577462641084,, float16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,835.735552,4675.534848,0.0,4280.287232,4115.121152,s,1,7.37269970703125,7.37269970703125,0.0,7.37269970703125,7.37269970703125,7.37269970703125,7.37269970703125,[7.37269970703125],,kWh,9.522534087530706e-06,1.0429521619540363e-06,3.299169305998051e-06,1.3864655555482794e-05,,MB,1202.020352,4983.816192,0.0,4575.985664,4408.408064,s,10,0.42754406356811525,0.04275440635681152,0.0014334045633080338,0.042253551483154295,0.04336371269226074,0.04515391941070556,0.046586084785461425,"[0.04694412612915039, 0.04253737640380859, 0.042242782592773434, 0.042584064483642575, 0.04222710418701172, 0.04203776168823242, 0.04195721435546875, 0.041783424377441404, 0.042264320373535155, 0.04296588897705078]",tokens/s,5987.686926664923,kWh,1.5306460620200298e-06,1.6880301024038254e-07,1.0141325739580902e-06,2.713581646218502e-06,tokens/kWh,94340260.72395776,MB,1230.35648,4983.816192,0.0,4575.985664,4408.410624,s,10,15.602204467773436,1.5602204467773437,0.006893250126550453,1.5605767211914063,1.56579580078125,1.5694571044921877,1.5723861474609375,"[1.573118408203125, 1.564982177734375, 1.558853759765625, 1.5473900146484374, 1.5649759521484374, 1.5629482421875, 1.551452880859375, 1.5591427001953124, 1.5620107421875, 1.55732958984375]",tokens/s,40.37890935869181,kWh,4.494949023089878e-05,4.957548495471422e-06,2.977266983324302e-05,7.967970855961321e-05,tokens/kWh,790665.542568669,,s,630,15.599725788116476,0.024761469504946756,0.000482530303829509,0.024702032089233397,0.0250308967590332,0.02532572202682495,0.02608155612945557,"[0.025272319793701172, 0.02474393653869629, 0.024856576919555663, 0.024817663192749022, 0.024887615203857422, 0.024907455444335938, 0.02490572738647461, 0.024807424545288087, 0.024922111511230468, 0.024801279067993166, 0.025231359481811523, 0.029007648468017577, 0.02487318420410156, 0.025145408630371093, 0.02533328056335449, 0.02497372817993164, 0.02569625663757324, 0.024817663192749022, 0.02489139175415039, 0.02480735969543457, 0.024780096054077147, 0.024849151611328123, 0.024706304550170897, 0.024804096221923828, 0.025481056213378907, 0.02496227264404297, 0.02486777687072754, 0.024742944717407227, 0.02535523223876953, 0.02493017578125, 0.02490108871459961, 0.025690559387207032, 0.024985824584960938, 0.025132192611694335, 0.024863584518432617, 0.024937568664550783, 0.024531871795654296, 0.024639488220214844, 0.02459561538696289, 0.02467024040222168, 0.024514591217041016, 0.024591136932373046, 0.02474332809448242, 0.02485513687133789, 0.024702688217163087, 0.0246080322265625, 0.024656671524047852, 0.024721632003784178, 0.02487295913696289, 0.025556991577148438, 0.024922111511230468, 0.024682048797607423, 0.025390687942504882, 0.025489599227905273, 0.025444576263427734, 0.024637887954711914, 0.02473756790161133, 0.024766687393188477, 0.024268800735473633, 0.024357152938842774, 0.024272607803344726, 0.024923391342163086, 0.0250263671875, 0.02491769599914551, 0.02536288070678711, 0.024864639282226562, 0.024590560913085938, 0.024579776763916015, 0.024620864868164064, 0.024539424896240235, 0.02451456069946289, 0.02614476776123047, 0.025933792114257812, 0.02469385528564453, 0.024879968643188477, 0.024748128890991213, 0.024713216781616212, 0.02456928062438965, 0.02465439987182617, 0.024530208587646485, 0.025078176498413086, 0.02460268783569336, 0.02439344024658203, 0.024437280654907228, 0.02471219253540039, 0.03300022506713867, 0.024514463424682616, 0.024929983139038086, 0.024777215957641603, 0.024754304885864258, 0.0247193603515625, 0.02462067222595215, 0.024899967193603517, 0.02451241683959961, 0.024567903518676756, 0.024858015060424805, 0.02486537551879883, 0.024532127380371093, 0.02492630386352539, 0.024453887939453123, 0.024649311065673828, 0.024895519256591798, 0.024696575164794923, 0.024507007598876952, 0.024532800674438478, 0.02455571174621582, 0.024593696594238282, 0.024584928512573243, 0.024635391235351564, 0.02460371208190918, 0.024564672470092773, 0.024436128616333007, 0.024719808578491213, 0.02444044876098633, 0.02446611213684082, 0.025082752227783202, 0.024757055282592772, 0.024538591384887697, 0.024580799102783202, 0.024399551391601562, 0.024586559295654297, 0.02441766357421875, 0.02461065673828125, 0.02457859230041504, 0.02485273551940918, 0.0244421443939209, 0.025602975845336915, 0.02497529602050781, 0.02480953598022461, 0.025163103103637695, 0.024743776321411132, 0.02509292793273926, 0.024543231964111328, 0.024841407775878906, 0.024580928802490236, 0.024549375534057616, 0.024526847839355468, 0.024708736419677736, 0.024904064178466797, 0.024614912033081054, 0.024544832229614257, 0.024533439636230468, 0.02451456069946289, 0.024677568435668946, 0.02478323173522949, 0.024795583724975586, 0.02460633659362793, 0.02478323173522949, 0.024467456817626954, 0.024507616043090822, 0.024566560745239257, 0.024886335372924805, 0.024641536712646486, 0.02457491111755371, 0.024448127746582032, 0.024580768585205078, 0.02518448066711426, 0.024700511932373048, 0.02453094482421875, 0.02488265609741211, 0.024746944427490234, 0.0247193603515625, 0.024554975509643556, 0.024615455627441406, 0.024614240646362303, 0.02446790313720703, 0.024783071517944337, 0.024573951721191405, 0.0248603515625, 0.024653823852539062, 0.024557535171508788, 0.02500556755065918, 0.024653696060180665, 0.025676223754882814, 0.026434080123901367, 0.024757471084594727, 0.024647968292236328, 0.024586271286010743, 0.024666175842285157, 0.024594751358032227, 0.024585344314575194, 0.024669151306152343, 0.024431903839111327, 0.024516511917114257, 0.02465670394897461, 0.02469638442993164, 0.024792991638183593, 0.02461955261230469, 0.024585504531860352, 0.024832000732421877, 0.02459769630432129, 0.024451904296875, 0.024227840423583984, 0.024405727386474608, 0.024289247512817382, 0.024198783874511718, 0.024142559051513673, 0.024088544845581053, 0.02425200080871582, 0.024268287658691406, 0.024404895782470702, 0.024434688568115235, 0.024333471298217772, 0.024345439910888673, 0.024423551559448243, 0.02434752082824707, 0.02480892753601074, 0.026811935424804687, 0.025015327453613283, 0.024469472885131835, 0.024649503707885743, 0.02492367935180664, 0.024615615844726563, 0.024620351791381837, 0.02466476821899414, 0.02467430305480957, 0.024493215560913086, 0.024657760620117188, 0.024515584945678712, 0.02426470375061035, 0.024551424026489257, 0.02428646469116211, 0.024304351806640624, 0.024170080184936524, 0.02418451118469238, 0.024103679656982423, 0.02416758346557617, 0.024298336029052733, 0.0242093448638916, 0.024143936157226563, 0.02408608055114746, 0.024123775482177735, 0.024483680725097656, 0.024641279220581055, 0.02471164894104004, 0.02470035171508789, 0.02472198486328125, 0.024827903747558593, 0.02473574447631836, 0.02485865592956543, 0.02478220748901367, 0.02465020751953125, 0.024610944747924805, 0.024681535720825196, 0.024895999908447267, 0.02466655921936035, 0.024723392486572265, 0.0249815673828125, 0.024846336364746095, 0.02497439956665039, 0.02482387161254883, 0.024947071075439455, 0.02610588836669922, 0.025106399536132813, 0.02497443199157715, 0.024756479263305663, 0.02475484848022461, 0.024829952239990235, 0.024745119094848632, 0.024761184692382813, 0.024720928192138673, 0.024820192337036133, 0.024700319290161133, 0.024731327056884765, 0.02461788749694824, 0.02500819206237793, 0.024852415084838868, 0.024624160766601563, 0.024710111618041992, 0.024849567413330078, 0.024724319458007814, 0.024635391235351564, 0.024796735763549804, 0.02469728088378906, 0.024691743850708006, 0.025012704849243166, 0.02474153518676758, 0.024616832733154296, 0.0247359676361084, 0.024616832733154296, 0.02456787109375, 0.02633401679992676, 0.02523868751525879, 0.024807552337646484, 0.02491663932800293, 0.024694847106933593, 0.024645631790161132, 0.024642879486083985, 0.02481385612487793, 0.024657695770263673, 0.024715904235839845, 0.02449171257019043, 0.024631616592407226, 0.025821184158325194, 0.02486662483215332, 0.024670400619506837, 0.024935455322265626, 0.02493539237976074, 0.024750080108642578, 0.02473574447631836, 0.025233407974243165, 0.024542783737182616, 0.024662464141845704, 0.02469593620300293, 0.02470387268066406, 0.02476406478881836, 0.024768352508544922, 0.024764928817749023, 0.024729120254516603, 0.02485910415649414, 0.025046432495117187, 0.02491763114929199, 0.024765024185180663, 0.02472313690185547, 0.024742591857910157, 0.025319456100463867, 0.024702943801879883, 0.02461676788330078, 0.02463968086242676, 0.024616960525512696, 0.025050239562988283, 0.024968063354492188, 0.024662208557128907, 0.024801088333129884, 0.024993791580200195, 0.02466716766357422, 0.024990688323974608, 0.024672256469726563, 0.025190208435058595, 0.0247891845703125, 0.02486403274536133, 0.02470710372924805, 0.02472755241394043, 0.024746688842773437, 0.02475142478942871, 0.024791391372680664, 0.02470044708251953, 0.02466076850891113, 0.024814783096313478, 0.024734176635742188, 0.02509164810180664, 0.02500227165222168, 0.024835968017578126, 0.024631839752197265, 0.02492560005187988, 0.024689376831054686, 0.024764415740966796, 0.024584192276000977, 0.0247459831237793, 0.02465171241760254, 0.025001440048217773, 0.02465827178955078, 0.02463327980041504, 0.024686208724975588, 0.024512256622314453, 0.024421024322509765, 0.02459676742553711, 0.024604671478271483, 0.024608768463134766, 0.025795936584472656, 0.025664159774780274, 0.02465177536010742, 0.024661855697631838, 0.02466217613220215, 0.024917024612426758, 0.024894432067871095, 0.024559520721435548, 0.02472764778137207, 0.025212928771972655, 0.025330848693847656, 0.024607391357421876, 0.024455263137817384, 0.0245883846282959, 0.024647680282592774, 0.024620864868164064, 0.024698400497436525, 0.025385087966918945, 0.024795679092407225, 0.02514508819580078, 0.024684480667114258, 0.024807519912719726, 0.024715520858764647, 0.024623680114746093, 0.024798688888549806, 0.024625696182250977, 0.024610815048217775, 0.02453708839416504, 0.024573951721191405, 0.024721408843994142, 0.024525920867919923, 0.024488544464111327, 0.02493881607055664, 0.024805376052856445, 0.024649728775024415, 0.02454528045654297, 0.024569664001464844, 0.02446713638305664, 0.024689151763916017, 0.02468454360961914, 0.02464508819580078, 0.024719903945922852, 0.024638784408569335, 0.024507072448730467, 0.024792255401611327, 0.024557600021362303, 0.024648479461669922, 0.024803327560424804, 0.02511257553100586, 0.025217023849487305, 0.024840192794799806, 0.024591808319091798, 0.024615455627441406, 0.024731679916381834, 0.024760351181030274, 0.024707040786743163, 0.02472755241394043, 0.02481052780151367, 0.024572032928466797, 0.024531808853149414, 0.02470297622680664, 0.024647071838378908, 0.0246112003326416, 0.024611040115356444, 0.024827264785766603, 0.025027200698852538, 0.024589471817016602, 0.024389984130859375, 0.024281600952148437, 0.024061279296875, 0.024044191360473633, 0.024197120666503907, 0.024216800689697265, 0.02432694435119629, 0.0245166072845459, 0.024381439208984376, 0.0246824951171875, 0.02453651237487793, 0.02468307113647461, 0.024319999694824217, 0.02450432014465332, 0.024344575881958007, 0.025718591690063478, 0.02471993637084961, 0.024743904113769533, 0.024411264419555663, 0.026021984100341795, 0.024978271484375, 0.024502208709716797, 0.024256128311157227, 0.024314239501953126, 0.024503551483154296, 0.02456038475036621, 0.024473600387573242, 0.024403295516967773, 0.024300128936767577, 0.025299007415771485, 0.024163328170776367, 0.02412838363647461, 0.024195199966430665, 0.0242475528717041, 0.025168512344360353, 0.02425974464416504, 0.024277984619140627, 0.02426192092895508, 0.02426748847961426, 0.025450496673583983, 0.024823808670043947, 0.02454092788696289, 0.024540544509887696, 0.024410144805908203, 0.02461510467529297, 0.024488607406616212, 0.024993791580200195, 0.024683679580688477, 0.02484659194946289, 0.024809280395507814, 0.024992639541625977, 0.024711008071899413, 0.02493801689147949, 0.02501481628417969, 0.02482585525512695, 0.024838144302368165, 0.02469856071472168, 0.02495929527282715, 0.02496620750427246, 0.024903615951538085, 0.02498252868652344, 0.02503036880493164, 0.024916255950927734, 0.02500934410095215, 0.024713216781616212, 0.024761152267456055, 0.024806976318359375, 0.025087711334228515, 0.025053920745849608, 0.024661439895629883, 0.024684223175048828, 0.025404287338256837, 0.024809343338012695, 0.024625280380249023, 0.02474393653869629, 0.024688640594482423, 0.024786815643310547, 0.024897504806518554, 0.02546499252319336, 0.02475449562072754, 0.024713216781616212, 0.024727264404296876, 0.02485481643676758, 0.024899168014526366, 0.024710752487182616, 0.024687423706054687, 0.024557567596435546, 0.024681503295898438, 0.024599519729614258, 0.024713247299194337, 0.024698175430297852, 0.024619680404663086, 0.024653247833251953, 0.024637567520141603, 0.02470137596130371, 0.024969215393066405, 0.024596479415893553, 0.024845888137817383, 0.025100128173828125, 0.025717344284057617, 0.025024511337280272, 0.02481705665588379, 0.024760576248168947, 0.02465622329711914, 0.024853792190551758, 0.024879007339477538, 0.024832832336425782, 0.024901023864746095, 0.024694911956787108, 0.02466454315185547, 0.02482784080505371, 0.02481772804260254, 0.024863807678222657, 0.024662912368774412, 0.024751583099365235, 0.025021024703979492, 0.02489257621765137, 0.024705568313598634, 0.024571584701538085, 0.024617599487304687, 0.024625152587890626, 0.024746208190917968, 0.0246474552154541, 0.024661632537841798, 0.024977792739868165, 0.02488444709777832, 0.024776832580566406, 0.024875680923461915, 0.0247459831237793, 0.02455865669250488, 0.02447455978393555, 0.02456166458129883, 0.0248668155670166, 0.024881120681762695, 0.02462713623046875, 0.0247193603515625, 0.02467030334472656, 0.02446950340270996, 0.024961023330688475, 0.025067520141601563, 0.02523494338989258, 0.025391807556152345, 0.02497443199157715, 0.02506012725830078, 0.024961151123046876, 0.024759584426879883, 0.024742591857910157, 0.024658079147338866, 0.024706560134887694, 0.024713600158691406, 0.024727359771728515, 0.024755903244018555, 0.024672544479370118, 0.024641759872436525, 0.024688575744628908, 0.024610559463500978, 0.0245980167388916, 0.024494911193847658, 0.02443878364562988, 0.024774816513061522, 0.025035648345947265, 0.024773120880126953, 0.02466864013671875, 0.024577951431274413, 0.02454252815246582, 0.024893375396728517, 0.024795904159545898, 0.024680543899536132, 0.024534400939941407, 0.024490304946899414, 0.024656192779541015, 0.024726560592651367, 0.02487196731567383, 0.02478220748901367, 0.024955455780029296, 0.024590560913085938, 0.024755775451660158, 0.0251680965423584, 0.02479046440124512, 0.024686304092407227, 0.024695648193359374, 0.024508256912231446, 0.024541215896606447, 0.024561792373657226, 0.024700927734375, 0.024832000732421877, 0.024702720642089844, 0.024535295486450195, 0.024532991409301756, 0.02471731185913086, 0.024936447143554686, 0.024793088912963866, 0.024571903228759767, 0.024648895263671877, 0.02465990447998047, 0.02468908882141113, 0.02468262481689453, 0.02474403190612793, 0.024569503784179686, 0.02456755256652832, 0.02465875244140625, 0.024586368560791015, 0.024676223754882813, 0.02461871910095215]",tokens/s,40.38532526513516,, float16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,815.337472,569.311232,0.0,174.063616,172.57984,s,1,7.0809599609375,7.0809599609375,0.0,7.0809599609375,7.0809599609375,7.0809599609375,7.0809599609375,[7.0809599609375],,kWh,4.605726533350207e-06,4.989117345350963e-07,1.0019452460069411e-06,6.106583513892244e-06,,MB,1164.67712,642.711552,0.0,234.881024,215.589888,s,25,0.18156364774703979,0.0072625459098815915,0.0001934262272951333,0.007157440185546875,0.007528467178344727,0.007562796592712402,0.0076320192527771,"[0.007651296138763428, 0.007126143932342529, 0.007109407901763916, 0.007078271865844726, 0.0070833277702331545, 0.007101984024047852, 0.0070431680679321285, 0.007100096225738525, 0.007518655776977539, 0.007526048183441162, 0.007385503768920898, 0.007530079841613769, 0.007375487804412842, 0.007451680183410645, 0.00757097578048706, 0.007209311962127685, 0.0073846721649169925, 0.0074481601715087895, 0.007241727828979493, 0.007157440185546875, 0.0070797119140625, 0.007059904098510742, 0.007146719932556152, 0.007109344005584717, 0.007074528217315674]",tokens/s,35249.34687871375,kWh,2.154723453840459e-07,2.3762854741778743e-08,1.1348072429837874e-07,3.5271592442420335e-07,tokens/kWh,725796546.946133,MB,1198.40768,644.808704,0.0,236.978176,215.592448,s,25,9.855248168945309,0.3942099267578125,0.0258072195663266,0.3893913879394531,0.4026221801757813,0.4114611938476562,0.4888181787109373,"[0.38299411010742185, 0.5126096801757812, 0.38021795654296875, 0.38084127807617185, 0.38131674194335935, 0.3791335144042969, 0.38811654663085937, 0.401467041015625, 0.40339227294921876, 0.41347842407226565, 0.40133578491210936, 0.3942486572265625, 0.3913739013671875, 0.3932178955078125, 0.39696780395507814, 0.3935213012695313, 0.3916291198730469, 0.3952633972167969, 0.3893913879394531, 0.38041622924804686, 0.37945755004882814, 0.3835711669921875, 0.37981634521484375, 0.379656494140625, 0.38181356811523437]",tokens/s,159.81332717353104,kWh,1.1285612854936907e-05,1.2445976165048161e-06,4.527772988701155e-06,1.7057983460142875e-05,tokens/kWh,3693285.325736406,,s,1575,9.8430794839859,0.006249574275546604,0.0032463893249899843,0.006076767921447754,0.006460102462768555,0.006543299198150635,0.007097601194381713,"[0.006322175979614258, 0.00658841609954834, 0.007006207942962647, 0.006119423866271972, 0.006081759929656982, 0.006062304019927979, 0.00606060791015625, 0.006148255825042724, 0.0060761280059814455, 0.006119359970092773, 0.006111231803894043, 0.006586527824401856, 0.0061411519050598145, 0.006069056034088135, 0.006111231803894043, 0.006054111957550049, 0.006077439785003662, 0.006072959899902344, 0.006053088188171386, 0.0060215678215026856, 0.00608512020111084, 0.00611030387878418, 0.006019455909729004, 0.006023903846740722, 0.006032256126403809, 0.006007167816162109, 0.006017600059509277, 0.0060661759376525876, 0.006036767959594727, 0.00603004789352417, 0.0060207037925720215, 0.006043807983398437, 0.006027520179748535, 0.006008800029754639, 0.005991648197174073, 0.006021599769592285, 0.005986464023590088, 0.006003039836883545, 0.005990240097045898, 0.005997600078582764, 0.00598956823348999, 0.00597327995300293, 0.0059920639991760255, 0.005986176013946533, 0.006007904052734375, 0.006014880180358887, 0.006014527797698975, 0.006025248050689698, 0.0059697279930114745, 0.006002912044525147, 0.005995903968811035, 0.006015999794006348, 0.006016064167022705, 0.006040512084960937, 0.005994495868682862, 0.006023231983184814, 0.006006720066070556, 0.006010079860687256, 0.006001440048217774, 0.005992447853088379, 0.00601087999343872, 0.006035520076751709, 0.0060210561752319335, 0.005936031818389893, 0.006013984203338623, 0.006022016048431397, 0.006033408164978027, 0.006006847858428955, 0.006000768184661865, 0.006018879890441894, 0.006021503925323486, 0.006026815891265869, 0.006024735927581787, 0.006010848045349121, 0.006025055885314942, 0.006031392097473144, 0.006015679836273193, 0.13460809326171874, 0.006400352001190186, 0.006250815868377686, 0.006111487865447998, 0.006227359771728515, 0.006592991828918457, 0.006094175815582276, 0.0060934720039367675, 0.0060293121337890625, 0.006074368000030517, 0.006043039798736573, 0.0060680961608886716, 0.006044447898864746, 0.006106912136077881, 0.006094687938690185, 0.006062623977661133, 0.006073567867279053, 0.006206111907958984, 0.006085536003112793, 0.006056896209716797, 0.006002751827239991, 0.0066468482017517086, 0.0060835199356079105, 0.006047743797302246, 0.006070591926574707, 0.006024479866027832, 0.006057983875274659, 0.006029439926147461, 0.006025504112243652, 0.0060308480262756346, 0.0060380158424377444, 0.006164480209350586, 0.006458847999572754, 0.006049439907073974, 0.006046656131744385, 0.006047647953033447, 0.006104479789733887, 0.006039999961853028, 0.006076416015625, 0.006025119781494141, 0.006102399826049805, 0.006040736198425293, 0.00606169605255127, 0.006070400238037109, 0.006063712120056152, 0.0060700798034667965, 0.006072319984436035, 0.006050687789916992, 0.006040480136871338, 0.0064778242111206055, 0.0060044159889221195, 0.006025536060333252, 0.006008992195129395, 0.006017216205596924, 0.005998047828674316, 0.006008224010467529, 0.006004608154296875, 0.006003967761993408, 0.006053055763244629, 0.006037983894348144, 0.005990399837493897, 0.006000639915466309, 0.005988351821899414, 0.0059978880882263184, 0.006010623931884765, 0.006190271854400635, 0.006034463882446289, 0.0060013761520385745, 0.006008831977844238, 0.0060026879310607914, 0.006000448226928711, 0.005994847774505615, 0.006032735824584961, 0.006033088207244873, 0.006031487941741943, 0.006056863784790039, 0.006039199829101563, 0.0060499200820922855, 0.006039391994476318, 0.006051360130310058, 0.006115647792816162, 0.00608460807800293, 0.006047423839569092, 0.006105728149414062, 0.006060031890869141, 0.006072319984436035, 0.006000639915466309, 0.006039552211761475, 0.005994495868682862, 0.0060273919105529785, 0.005991775989532471, 0.0060217599868774415, 0.005942495822906494, 0.006015679836273193, 0.0059714560508728025, 0.006035967826843262, 0.005968224048614502, 0.006024864196777344, 0.005974016189575195, 0.006024191856384278, 0.005983232021331787, 0.006025023937225342, 0.005984799861907959, 0.006027967929840088, 0.005964928150177002, 0.0060191359519958494, 0.005975840091705323, 0.006018335819244385, 0.0059788479804992675, 0.0060356159210205075, 0.006006303787231445, 0.006035488128662109, 0.005922016143798828, 0.0060284161567687984, 0.005995808124542236, 0.006059967994689942, 0.006006591796875, 0.006032351970672607, 0.005997920036315918, 0.006032832145690918, 0.00597654390335083, 0.006039968013763428, 0.006023168087005615, 0.006066304206848144, 0.005996575832366943, 0.006047584056854248, 0.00601087999343872, 0.006059072017669678, 0.006016128063201905, 0.006059840202331543, 0.0059978880882263184, 0.006027679920196533, 0.005976480007171631, 0.006112192153930664, 0.005982463836669922, 0.006077119827270508, 0.0060028800964355465, 0.006074463844299317, 0.006029024124145508, 0.0060457921028137206, 0.0060024957656860355, 0.006057568073272705, 0.0059725441932678225, 0.006039487838745117, 0.006002079963684082, 0.006025536060333252, 0.006041855812072754, 0.0060330238342285155, 0.006031775951385498, 0.006018496036529541, 0.006019775867462158, 0.00602950382232666, 0.006023039817810058, 0.006023231983184814, 0.00602239990234375, 0.006009344100952148, 0.006025216102600098, 0.006011903762817383, 0.006032383918762207, 0.0060247998237609865, 0.006019680023193359, 0.006044703960418701, 0.006041920185089112, 0.006080128192901611, 0.006142144203186035, 0.006082911968231201, 0.006215519905090332, 0.006085375785827637, 0.006138912200927734, 0.0060720000267028805, 0.006120128154754639, 0.0060381760597229, 0.006090400218963623, 0.006025152206420898, 0.006047840118408203, 0.005937344074249268, 0.006043488025665283, 0.006442624092102051, 0.006046207904815673, 0.005977439880371094, 0.0063515520095825196, 0.006012928009033203, 0.006061344146728515, 0.00602185583114624, 0.006025407791137695, 0.006037407875061035, 0.006045599937438965, 0.006060287952423095, 0.006029056072235107, 0.006027455806732178, 0.005993855953216553, 0.006053343772888183, 0.005995584011077881, 0.00602239990234375, 0.005988831996917725, 0.0060356478691101076, 0.006141952037811279, 0.006049791812896729, 0.0060395197868347164, 0.006074399948120117, 0.00600867223739624, 0.006012671947479248, 0.00600435209274292, 0.006038303852081299, 0.005993696212768554, 0.0060191359519958494, 0.006013984203338623, 0.00601087999343872, 0.006078144073486328, 0.006019392013549805, 0.005990079879760742, 0.006015168190002441, 0.006061888217926025, 0.006080512046813965, 0.006014976024627685, 0.006063648223876953, 0.006015456199645996, 0.006060031890869141, 0.006034815788269043, 0.00604966402053833, 0.006008992195129395, 0.006079071998596191, 0.006018335819244385, 0.006060768127441407, 0.00603545618057251, 0.006051839828491211, 0.0060067839622497555, 0.00603545618057251, 0.006014431953430176, 0.006359583854675293, 0.006002431869506836, 0.006048255920410156, 0.005998335838317871, 0.006025216102600098, 0.006014976024627685, 0.006016672134399414, 0.005994175910949707, 0.006001247882843018, 0.005904575824737549, 0.0060293121337890625, 0.006008863925933838, 0.006044832229614258, 0.006040095806121826, 0.006037439823150635, 0.005996863842010498, 0.006060192108154297, 0.005989823818206787, 0.006066944122314453, 0.005993919849395752, 0.0060433921813964845, 0.005974656105041504, 0.0060293121337890625, 0.0059999680519104, 0.006023839950561523, 0.005990399837493897, 0.0060293121337890625, 0.0060000958442687985, 0.006054431915283203, 0.005988351821899414, 0.006021024227142334, 0.005972064018249511, 0.0060284481048583985, 0.005981023788452148, 0.006015007972717285, 0.0059550080299377445, 0.006013023853302002, 0.005982399940490723, 0.006025472164154053, 0.005988416194915772, 0.0060349440574645995, 0.005988800048828125, 0.006039552211761475, 0.005995872020721435, 0.006025184154510498, 0.005984127998352051, 0.006009376049041748, 0.005976352214813232, 0.006002592086791992, 0.006006879806518555, 0.006030367851257324, 0.005970143795013428, 0.006011680126190185, 0.0059818878173828124, 0.006203135967254639, 0.006019872188568115, 0.006004479885101319, 0.0060067839622497555, 0.005994495868682862, 0.0059944639205932616, 0.0059818878173828124, 0.0060070080757141115, 0.005986591815948486, 0.006050911903381348, 0.006017183780670166, 0.006035935878753662, 0.0060087041854858395, 0.006002943992614746, 0.0059901118278503414, 0.006006080150604248, 0.0060037441253662106, 0.006030623912811279, 0.005932576179504394, 0.005972576141357422, 0.006006720066070556, 0.0059903359413146975, 0.006014976024627685, 0.005973152160644531, 0.0060096001625061036, 0.00662883186340332, 0.0065953278541564945, 0.006104063987731933, 0.005990911960601806, 0.006007487773895264, 0.00599616003036499, 0.006006624221801758, 0.006029056072235107, 0.006010848045349121, 0.0059686717987060545, 0.0060020160675048825, 0.006012671947479248, 0.006039840221405029, 0.005984127998352051, 0.006046080112457276, 0.005994592189788818, 0.006205440044403076, 0.006103040218353272, 0.006238560199737549, 0.006147712230682373, 0.0060989117622375485, 0.006002336025238037, 0.006039904117584228, 0.006029727935791015, 0.0060423359870910645, 0.006619840145111084, 0.006107391834259034, 0.008075519561767578, 0.008646080017089844, 0.00631331205368042, 0.006026400089263916, 0.0064299840927124026, 0.00609500789642334, 0.006093183994293213, 0.006107103824615478, 0.006045663833618164, 0.006072639942169189, 0.0061847038269042965, 0.006046783924102783, 0.006035935878753662, 0.006050240039825439, 0.006008863925933838, 0.0060356159210205075, 0.006020959854125977, 0.006031360149383545, 0.006008831977844238, 0.006029600143432617, 0.005993343830108642, 0.006011040210723877, 0.0059987521171569825, 0.006154784202575684, 0.006100992202758789, 0.006059967994689942, 0.006008895874023437, 0.006053855895996094, 0.005974368095397949, 0.005967904090881348, 0.005986271858215332, 0.006020448207855225, 0.006032032012939453, 0.006039552211761475, 0.006078464031219482, 0.006050848007202149, 0.0059913921356201175, 0.006037248134613037, 0.006078559875488282, 0.006023071765899658, 0.005988736152648926, 0.006027135848999023, 0.006000639915466309, 0.006131711959838867, 0.0061430401802062985, 0.0061511039733886715, 0.0060999999046325686, 0.006128608226776123, 0.006176767826080322, 0.0062111678123474125, 0.006267136096954346, 0.006277279853820801, 0.0062873601913452145, 0.0062353601455688475, 0.006318367958068847, 0.006363647937774658, 0.006342656135559082, 0.006432703971862793, 0.006369408130645752, 0.00640121603012085, 0.006419199943542481, 0.006496255874633789, 0.006500351905822754, 0.006360576152801513, 0.006324160099029541, 0.006280992031097412, 0.006351808071136475, 0.006434271812438965, 0.007294496059417724, 0.006849376201629639, 0.006461120128631591, 0.006289728164672851, 0.006336480140686035, 0.006237504005432129, 0.006426464080810547, 0.006410816192626953, 0.006308032035827637, 0.006418560028076172, 0.00640556812286377, 0.006435743808746338, 0.006366879940032959, 0.006272128105163574, 0.0072549118995666505, 0.006603040218353271, 0.008226495742797851, 0.0064553279876708985, 0.006469567775726318, 0.007096735954284668, 0.006987391948699951, 0.006436863899230957, 0.006545472145080567, 0.006453216075897217, 0.006474976062774658, 0.006400800228118896, 0.006377471923828125, 0.006461440086364746, 0.00642252779006958, 0.007579616069793701, 0.007379295825958252, 0.006391488075256348, 0.006297152042388916, 0.006455904006958008, 0.006498144149780273, 0.006442719936370849, 0.006467264175415039, 0.0064637441635131835, 0.0065623679161071775, 0.006588191986083985, 0.00653107213973999, 0.006551551818847656, 0.0064163517951965334, 0.006336703777313233, 0.006471519947052002, 0.006496223926544189, 0.006520864009857178, 0.006589568138122558, 0.006447999954223633, 0.006536799907684326, 0.006601471900939942, 0.006477344036102295, 0.006523231983184815, 0.006542367935180664, 0.0064167361259460445, 0.006314720153808594, 0.006270143985748291, 0.006226431846618652, 0.006168575763702393, 0.006268256187438965, 0.0062707839012146, 0.00616048002243042, 0.006199456214904785, 0.006255199909210205, 0.0062568001747131344, 0.0061699519157409665, 0.006173183917999267, 0.006117216110229492, 0.006146399974822998, 0.006111040115356446, 0.006223584175109863, 0.006322336196899414, 0.006295775890350342, 0.006180223941802979, 0.006134304046630859, 0.0061584959030151366, 0.006131135940551758, 0.0061485118865966795, 0.006176032066345215, 0.006343423843383789, 0.006506624221801757, 0.006375264167785644, 0.006520832061767578, 0.00638976001739502, 0.0063975038528442385, 0.006340320110321045, 0.0063656320571899416, 0.006494080066680908, 0.006326272010803223, 0.006305471897125244, 0.006267199993133545, 0.007161664009094238, 0.006427840232849121, 0.006776095867156983, 0.006501503944396973, 0.0063719358444213866, 0.006277120113372803, 0.006276288032531738, 0.006294400215148926, 0.006477759838104248, 0.006414463996887207, 0.006272064208984375, 0.006374176025390625, 0.007100063800811768, 0.007599775791168213, 0.00793673610687256, 0.01093222427368164, 0.009020895957946777, 0.006556191921234131, 0.006602335929870606, 0.006707615852355957, 0.006596960067749023, 0.006588064193725586, 0.006441088199615479, 0.006330463886260986, 0.006405983924865723, 0.00644704008102417, 0.006452415943145752, 0.0064039998054504395, 0.006321023941040039, 0.00630790376663208, 0.006237823963165284, 0.006210048198699952, 0.0062503361701965335, 0.006232063770294189, 0.006152095794677734, 0.006262176036834717, 0.0061385598182678225, 0.00611737585067749, 0.006264832019805908, 0.0064488000869750975, 0.006392159938812256, 0.006303743839263916, 0.006300064086914062, 0.006239840030670166, 0.006170623779296875, 0.006254208087921142, 0.0062102718353271484, 0.006489759922027588, 0.006326272010803223, 0.00642790412902832, 0.006408959865570068, 0.006462656021118164, 0.006482751846313477, 0.006286911964416504, 0.006293504238128662, 0.00637500810623169, 0.006529695987701416, 0.006488255977630615, 0.006388927936553955, 0.006350944042205811, 0.006406367778778076, 0.006240992069244384, 0.006216671943664551, 0.0061931519508361815, 0.006274687767028809, 0.006259071826934815, 0.006401023864746094, 0.006532447814941406, 0.006480576038360596, 0.0065913920402526855, 0.006496384143829346, 0.006456736087799072, 0.0063554878234863285, 0.006415775775909424, 0.006471776008605957, 0.006382080078125, 0.006378975868225098, 0.006418015956878662, 0.006501311779022217, 0.00659449577331543, 0.006463232040405273, 0.0063851518630981445, 0.006421311855316162, 0.006507967948913574, 0.006504320144653321, 0.0065504322052001955, 0.006468992233276367, 0.006517151832580567, 0.006496384143829346, 0.006555808067321777, 0.0064572482109069825, 0.006335455894470215, 0.006280288219451904, 0.00623529577255249, 0.006418528079986573, 0.0064824318885803225, 0.006710527896881103, 0.0065157442092895505, 0.006525728225708008, 0.00649721622467041, 0.006434879779815674, 0.006305727958679199, 0.006327648162841797, 0.0065194878578186035, 0.006331552028656006, 0.00624505615234375, 0.0061147198677062985, 0.006123648166656494, 0.006083072185516358, 0.00605017614364624, 0.006072288036346436, 0.006197311878204346, 0.006218688011169433, 0.0062657279968261715, 0.006328192234039307, 0.006159808158874512, 0.006150784015655518, 0.006104544162750244, 0.00616534423828125, 0.006151936054229736, 0.006253983974456787, 0.006404575824737549, 0.0065577921867370605, 0.00641923189163208, 0.0064143681526184085, 0.00633190393447876, 0.006176064014434815, 0.00610371208190918, 0.006107327938079834, 0.006082496166229248, 0.006076767921447754, 0.0060495038032531735, 0.006057983875274659, 0.006039552211761475, 0.006154240131378174, 0.006176608085632324, 0.0064208641052246095, 0.0064691839218139644, 0.00645904016494751, 0.006558015823364258, 0.006529280185699463, 0.006420063972473145, 0.006259391784667969, 0.0061129918098449705, 0.00609881591796875, 0.006109312057495118, 0.006121664047241211, 0.0060700798034667965, 0.006078464031219482, 0.006076416015625, 0.006154047966003418, 0.006082272052764893, 0.006113088130950928, 0.0060975680351257324, 0.006436960220336914, 0.006082687854766846, 0.006231135845184326, 0.006275040149688721, 0.00662172794342041, 0.00616809606552124, 0.0061200962066650395, 0.006137792110443115, 0.006067359924316406, 0.006123904228210449, 0.006271520137786865, 0.006175839900970459, 0.0062137598991394045, 0.006326784133911132, 0.006500127792358398, 0.006298111915588379, 0.0062211198806762695, 0.0061057920455932614, 0.006073760032653809, 0.006043327808380127, 0.006093728065490723, 0.006182911872863769, 0.006434815883636475, 0.00660646390914917, 0.006616864204406738, 0.006517343997955323, 0.006453120231628418, 0.006424704074859619, 0.0064767999649047855, 0.006257184028625488, 0.006203872203826904, 0.006132351875305176, 0.0061354880332946775, 0.006139711856842041, 0.006107647895812988, 0.006177792072296143, 0.006200352191925049, 0.006168928146362305, 0.00610265588760376, 0.006260735988616943, 0.006349055767059326, 0.006247392177581787, 0.006154208183288574, 0.006170656204223633, 0.006183135986328125, 0.0061198720932006834, 0.006094816207885742, 0.0061294717788696286, 0.006054240226745606, 0.005984255790710449, 0.006059296131134033, 0.006068960189819336, 0.0062828478813171384, 0.006393311977386474, 0.006202303886413575, 0.006137951850891114, 0.006093791961669922, 0.006112192153930664, 0.006067840099334717, 0.006068672180175781, 0.006039487838745117, 0.006049791812896729, 0.006109183788299561, 0.006158336162567139, 0.006112448215484619, 0.006148928165435791, 0.006060031890869141, 0.00615334415435791, 0.006036352157592773, 0.006076416015625, 0.0060067839622497555, 0.006168575763702393, 0.006336351871490478, 0.006443424224853516, 0.006674176216125489, 0.006612448215484619, 0.006526815891265869, 0.006574336051940918, 0.006379615783691406, 0.006813632011413574, 0.006381984233856201, 0.006333759784698486, 0.006334720134735107, 0.006195648193359375, 0.006176576137542724, 0.0061298561096191405, 0.006167935848236084, 0.0061682558059692385, 0.006112448215484619, 0.006381311893463135, 0.006100800037384033, 0.006135072231292725, 0.006058752059936523, 0.006279327869415283, 0.006194431781768799, 0.006255008220672607, 0.006265408039093018, 0.006239744186401367, 0.006199935913085938, 0.0062278399467468265, 0.006672383785247803, 0.006293087959289551, 0.006207935810089112, 0.006103199958801269, 0.006076223850250244, 0.006059904098510743, 0.006072447776794433, 0.006088223934173584, 0.006074848175048828, 0.006135072231292725, 0.0062696638107299805, 0.006098048210144043, 0.006072703838348389, 0.006300159931182861, 0.006272223949432373, 0.006267871856689453, 0.006112095832824707, 0.006123583793640136, 0.006109792232513428, 0.006084256172180176, 0.006135744094848633, 0.006310624122619629, 0.006227968215942382, 0.00610211181640625, 0.0061244478225708, 0.0060677118301391605, 0.0062490878105163575, 0.006113152027130127, 0.006108352184295654, 0.006087488174438477, 0.006205344200134277, 0.0061641278266906735, 0.006077951908111572, 0.006089024066925049, 0.006186912059783936, 0.006509119987487793, 0.006520959854125976, 0.006706367969512939, 0.006514848232269287, 0.0065133762359619145, 0.0065001602172851565, 0.006525023937225342, 0.006398015975952148, 0.006459296226501465, 0.006460639953613281, 0.006357888221740723, 0.0061296639442443845, 0.007016448020935059, 0.006104415893554688, 0.006049600124359131, 0.0061528959274292, 0.006176928043365479, 0.006127744197845459, 0.006080383777618408, 0.006154240131378174, 0.006057119846343994, 0.006086880207061767, 0.006482687950134278, 0.006608575820922852, 0.006342336177825928, 0.006291423797607422, 0.006192512035369873, 0.0061380801200866695, 0.00609878396987915, 0.006097824096679688, 0.006465536117553711, 0.006184447765350342, 0.006642176151275635, 0.006643712043762207, 0.00702784013748169, 0.006234655857086182, 0.006237728118896484, 0.006212416172027588, 0.006115039825439453, 0.0061073598861694335, 0.006238272190093994, 0.006359039783477783, 0.006252863883972168, 0.0062399358749389644, 0.006213632106781006, 0.006135807991027832, 0.006031360149383545, 0.006083775997161865, 0.006013855934143066, 0.006070432186126709, 0.006104832172393799, 0.0061272640228271485, 0.006277599811553955, 0.006473760128021241, 0.006649280071258545, 0.006566304206848145, 0.0065474557876586915, 0.006662144184112549, 0.0064880638122558594, 0.006492159843444824, 0.006387360095977783, 0.006408544063568116, 0.006401663780212403, 0.00625497579574585, 0.006241312026977539, 0.006215936183929444, 0.006148223876953125, 0.006130271911621093, 0.00615334415435791, 0.006221824169158936, 0.0061829757690429685, 0.006468607902526856, 0.006379327774047852, 0.006371103763580323, 0.006285344123840332, 0.006443359851837158, 0.00645308780670166, 0.006191103935241699, 0.006174176216125488, 0.0062280001640319825, 0.006210048198699952, 0.006131455898284912, 0.0060941438674926756, 0.006087520122528076, 0.006091040134429931, 0.006388895988464356, 0.006177216053009033, 0.0061485118865966795, 0.006147488117218018, 0.0061077442169189455, 0.006045951843261719, 0.006102208137512207, 0.006050047874450684, 0.006144320011138916, 0.006065279960632324, 0.006391776084899902, 0.006463520050048828, 0.006179168224334717, 0.0061038718223571774, 0.006057695865631103, 0.007448575973510742, 0.006615039825439453, 0.006524928092956543, 0.006469791889190674, 0.006346047878265381, 0.006359583854675293, 0.006360415935516357, 0.006226208209991455, 0.006223231792449951, 0.006218751907348633, 0.006231647968292236, 0.006201759815216064, 0.006200448036193847, 0.0062984957695007325, 0.006501408100128174, 0.006487008094787598, 0.006365280151367187, 0.00637440013885498, 0.006375967979431152, 0.0062317438125610355, 0.006161215782165527, 0.006304992198944092, 0.006300672054290772, 0.006076064109802246, 0.006080351829528809, 0.006205088138580323, 0.006193664073944092, 0.006127520084381104, 0.0060416641235351565, 0.006061728000640869, 0.006063680171966553, 0.0060629119873046875, 0.006087935924530029, 0.006111775875091553, 0.006072735786437989, 0.006075424194335937, 0.0060731201171875, 0.006123104095458984, 0.006285727977752686, 0.006279200077056885, 0.006221759796142578, 0.00616860818862915, 0.00613321590423584, 0.00610368013381958, 0.0061439042091369625, 0.00611030387878418, 0.006330848217010498, 0.006373824119567871, 0.006097343921661377, 0.006153791904449463, 0.006136032104492187, 0.006080927848815918, 0.00617033576965332, 0.006146336078643799, 0.006146048069000244, 0.006212800025939941, 0.00638047981262207, 0.00659065580368042, 0.006678207874298096, 0.0064973440170288084, 0.006542272090911865, 0.006432767868041992, 0.006524831771850586, 0.006401631832122803, 0.006229663848876953, 0.006212448120117188, 0.0061972479820251464, 0.006210944175720215, 0.006104991912841797, 0.006191711902618408, 0.006058303833007812, 0.006109119892120362, 0.0060778560638427735, 0.006087135791778564, 0.0060661759376525876, 0.006053120136260986, 0.006087264060974121, 0.0061413440704345705, 0.0062841281890869145, 0.006690271854400635, 0.006207968235015869, 0.0060867519378662105, 0.006112224102020264, 0.006665120124816895, 0.006275231838226318, 0.006131552219390869, 0.006283008098602295, 0.0064486398696899415, 0.006271743774414062, 0.006205664157867431, 0.006102431774139405, 0.006053664207458496, 0.006090784072875976, 0.006127647876739502, 0.006102911949157715, 0.006084512233734131, 0.006092576026916504, 0.006070240020751953, 0.006095104217529297, 0.006076863765716553, 0.006162752151489257, 0.006151999950408936, 0.006135200023651123, 0.00617139196395874, 0.006156320095062256, 0.006209760189056396, 0.006161824226379394, 0.006101376056671143, 0.006082560062408447, 0.006031167984008789, 0.006154431819915772, 0.006596511840820313, 0.006645631790161133, 0.00661897611618042, 0.006531455993652344, 0.006479872226715088, 0.006502399921417237, 0.006409952163696289, 0.006206751823425293, 0.006187615871429443, 0.006135647773742676, 0.006125376224517822, 0.006087488174438477, 0.0060787200927734375, 0.006067903995513916, 0.006123839855194092, 0.006231584072113037, 0.006135968208312989, 0.0061972479820251464, 0.006081984043121338, 0.006275455951690673, 0.006317376136779785, 0.006249216079711914, 0.006205567836761475, 0.006313151836395263, 0.006208320140838623, 0.006252543926239014, 0.006211008071899414, 0.006193727970123291, 0.006162687778472901, 0.006251584053039551, 0.006346687793731689, 0.006273983955383301, 0.006160607814788818, 0.006113887786865235, 0.0061262078285217285, 0.006095488071441651, 0.006094207763671875, 0.006105247974395752, 0.006105311870574951, 0.006050848007202149, 0.006054848194122314, 0.006176832199096679, 0.006213215827941895, 0.006156447887420654, 0.006074111938476562, 0.006124000072479248, 0.0060928001403808595, 0.006365375995635986, 0.006374944210052491, 0.006408864021301269, 0.006452320098876953, 0.006420608043670654, 0.006445343971252441, 0.006368735790252686, 0.006482592105865478, 0.006516287803649903, 0.006552031993865967, 0.006465184211730957, 0.006398176193237305, 0.006324319839477539, 0.006303391933441162, 0.006209887981414795, 0.006223872184753418, 0.006067903995513916, 0.006144224166870117, 0.006108767986297607, 0.006095456123352051, 0.006031328201293945, 0.006125311851501464, 0.00611568021774292, 0.00609503984451294, 0.0060680961608886716, 0.006067999839782715, 0.006047455787658691, 0.0060472960472106934, 0.0062490878105163575, 0.0063816637992858884, 0.006437215805053711, 0.006772384166717529, 0.006270815849304199, 0.006250847816467285, 0.006183743953704834, 0.006149472236633301, 0.006065408229827881, 0.006071872234344482, 0.006055871963500977, 0.006099584102630615, 0.006093088150024414, 0.006077919960021973, 0.006112927913665771, 0.00625651216506958, 0.006165472030639649, 0.006129695892333985, 0.006229472160339355, 0.006430463790893555, 0.006228352069854736, 0.006097311973571777, 0.00613753604888916, 0.006028895854949951, 0.006044095993041993, 0.006213151931762696, 0.006350719928741455, 0.006577023983001709, 0.006512639999389648, 0.006475776195526123, 0.006382847785949707, 0.0064048638343811035, 0.0063777599334716795, 0.0062665920257568355, 0.006198272228240966, 0.006156544208526612, 0.0061010241508483885, 0.006074719905853272, 0.0060993280410766605, 0.00603545618057251, 0.00606822395324707, 0.006012864112854004, 0.006061888217926025, 0.006170783996582031, 0.00615231990814209, 0.006137311935424805, 0.006031871795654297, 0.005994495868682862, 0.006024352073669434, 0.005987167835235596, 0.006041600227355957, 0.005903744220733643, 0.0061348161697387694, 0.006002816200256347, 0.006050848007202149, 0.006035232067108155, 0.006019680023193359, 0.0060022082328796385, 0.006032095909118652, 0.006002943992614746, 0.00606547212600708, 0.006032127857208252, 0.006024960041046142, 0.005975615978240967, 0.0060850558280944825, 0.005996543884277344, 0.006037248134613037, 0.0060265278816223145, 0.006044640064239502, 0.0060992960929870605, 0.006086592197418213, 0.0060804481506347655, 0.0060486397743225095, 0.00604694414138794, 0.006032224178314209, 0.006052095890045166, 0.006120031833648682, 0.006045695781707764, 0.006078464031219482, 0.006091104030609131, 0.006117343902587891, 0.0060778560638427735, 0.006018496036529541, 0.006077280044555664, 0.006033696174621582, 0.006072256088256836, 0.006001728057861328, 0.006049568176269531, 0.005992640018463135, 0.006036384105682373, 0.005982048034667968, 0.006033440113067627, 0.005969791889190674, 0.006023136138916016, 0.005961855888366699, 0.006044703960418701, 0.005959904193878174, 0.006022240161895752, 0.00596451187133789, 0.006032639980316162, 0.006049471855163574, 0.006015103816986084, 0.005971903800964355, 0.006170464038848877, 0.005976160049438476, 0.006021120071411133, 0.0059658241271972655, 0.0060059518814086915, 0.006050496101379394, 0.006008959770202636, 0.005986303806304932, 0.006027200222015381, 0.005959551811218261, 0.006033696174621582, 0.005905888080596924, 0.006017568111419677, 0.005994495868682862, 0.006045536041259765, 0.006000800132751465, 0.006096288204193116, 0.006001183986663819, 0.0060338878631591795, 0.005995840072631836, 0.0060234560966491695, 0.005973440170288086, 0.006050303936004638, 0.005967936038970947, 0.005995935916900634, 0.00598195219039917, 0.006017951965332031, 0.005972064018249511, 0.006114655971527099, 0.0060236802101135255, 0.006030655860900879, 0.005995200157165527, 0.006014463901519776, 0.0059704318046569825, 0.006041600227355957, 0.005998015880584717, 0.006042175769805909, 0.005992288112640381, 0.0061133761405944825, 0.005988480091094971, 0.006043583869934082, 0.0059985918998718265, 0.006031199932098389, 0.006002399921417236, 0.006049248218536377, 0.005995488166809082, 0.006051199913024902, 0.005988480091094971, 0.0060375680923461916, 0.005986688137054444, 0.0060249919891357424, 0.005988639831542969, 0.006033311843872071, 0.005996032238006592, 0.006048351764678955, 0.005982207775115967, 0.006012928009033203, 0.0060061440467834475, 0.006029952049255371, 0.006018784046173096, 0.0060289278030395506, 0.005990816116333008, 0.0060011520385742185, 0.005996640205383301, 0.0061231679916381836, 0.006024223804473877, 0.0060152320861816405, 0.005994527816772461, 0.006003647804260254, 0.006039360046386719, 0.006018815994262695, 0.006011072158813476, 0.0060026879310607914, 0.006031007766723633, 0.005943295955657959, 0.005970240116119385, 0.006029088020324707, 0.0060239357948303224, 0.006035391807556152, 0.006115520000457763, 0.0071840319633483885, 0.006700928211212158, 0.0065998082160949705, 0.0060999679565429685, 0.006330368041992188, 0.006032639980316162, 0.006044415950775146, 0.0060293121337890625, 0.006172671794891358, 0.00601087999343872, 0.00601907205581665, 0.006028575897216797, 0.006023903846740722, 0.0060067839622497555, 0.006038943767547608, 0.005997151851654053, 0.006131711959838867, 0.006080512046813965, 0.006074560165405273, 0.00600816011428833, 0.006243135929107666, 0.006094207763671875, 0.006076704025268555, 0.006145855903625488, 0.006097055912017822, 0.006002719879150391, 0.005992288112640381, 0.0059987521171569825, 0.006045567989349365, 0.006017151832580566, 0.006012800216674804, 0.006021183967590332, 0.006014592170715332, 0.006024672031402588, 0.006140895843505859, 0.006111231803894043, 0.006024608135223389, 0.0060442562103271485, 0.0059985918998718265, 0.0060293121337890625, 0.006002304077148438, 0.006037888050079346, 0.006023104190826416, 0.006027455806732178, 0.005992320060729981, 0.006012928009033203, 0.0059881601333618166, 0.006004928112030029, 0.006031072139739991, 0.006007071971893311, 0.006027647972106934, 0.006020768165588379, 0.006010655879974365, 0.006033599853515625, 0.006000671863555908, 0.006027232170104981, 0.0060028800964355465, 0.005905471801757813, 0.006014976024627685, 0.006006752014160156, 0.0060152320861816405, 0.006010848045349121, 0.005979231834411621, 0.006002655982971191, 0.0060068159103393555, 0.006006432056427002, 0.005971968173980713, 0.005990399837493897, 0.0059699201583862304, 0.005994336128234863, 0.0059967041015625, 0.005990399837493897, 0.005987328052520752, 0.00598905611038208, 0.006008384227752686, 0.00603007984161377, 0.005997920036315918, 0.006051743984222412, 0.006001408100128174, 0.0060160961151123045, 0.006025983810424805, 0.006017183780670166, 0.0062722558975219726, 0.006034175872802735, 0.006045951843261719, 0.0060433921813964845, 0.006062079906463623, 0.006017024040222168, 0.006012928009033203, 0.006036736011505127, 0.0060136961936950685, 0.006039552211761475, 0.0060026879310607914, 0.0060538239479064945, 0.0060226240158081056, 0.0060730881690979005, 0.005990464210510254, 0.00603113603591919, 0.005992447853088379, 0.006066239833831787, 0.005987967967987061, 0.00602675199508667, 0.00598745584487915, 0.006049471855163574, 0.00599622392654419, 0.006043968200683594, 0.005975103855133056, 0.006052800178527832, 0.006008255958557129, 0.006063007831573487, 0.006012576103210449, 0.006053760051727295, 0.006025152206420898, 0.006047935962677002, 0.00598137617111206, 0.006074495792388916, 0.006021984100341797, 0.0060412797927856445, 0.0059712638854980465, 0.006149055957794189, 0.005900191783905029, 0.006160223960876465, 0.006052095890045166, 0.0062399678230285645, 0.00597760009765625, 0.0060050878524780275, 0.005982656002044678, 0.006023519992828369, 0.005987679958343506, 0.006024576187133789, 0.005983168125152588, 0.006008959770202636, 0.0060026879310607914, 0.006006400108337403, 0.006016543865203857, 0.0060095682144165035, 0.0060022401809692386, 0.00601087999343872, 0.006011360168457032, 0.006052127838134766, 0.006020800113677978, 0.0060536317825317385, 0.005986559867858887, 0.006050111770629883, 0.006053120136260986, 0.006058688163757324, 0.0060208640098571775, 0.006021120071411133, 0.006045919895172119, 0.006027040004730225, 0.006078080177307129, 0.006035295963287354, 0.00604963207244873, 0.006009535789489746, 0.0059985918998718265, 0.006000639915466309, 0.006006015777587891, 0.00598419189453125, 0.005994688034057618, 0.005989183902740478, 0.006010687828063964, 0.005974016189575195, 0.0060026879310607914, 0.006020736217498779, 0.0059920639991760255, 0.006000448226928711, 0.006005631923675537, 0.006025023937225342, 0.006014431953430176, 0.0060280637741088865, 0.006014976024627685, 0.006000639915466309, 0.006008575916290284, 0.006023295879364014, 0.006002592086791992, 0.005980703830718994, 0.006016640186309814, 0.005986368179321289, 0.006043295860290527, 0.006008895874023437, 0.006035744190216064, 0.006047743797302246, 0.006021247863769531, 0.005968448162078858, 0.005998655796051026, 0.006021120071411133, 0.00604310417175293, 0.006029856204986572, 0.006037312030792236, 0.006013440132141113, 0.006028704166412354, 0.006029600143432617, 0.006012928009033203, 0.005988351821899414, 0.006281216144561768, 0.006037504196166992, 0.006060256004333496, 0.00616425609588623, 0.006041600227355957, 0.006042655944824219, 0.006013919830322265, 0.00601087999343872, 0.005994495868682862, 0.006010240077972412, 0.006013152122497559, 0.0060360321998596195, 0.006053728103637695, 0.00606547212600708, 0.006066880226135254, 0.006039872169494629, 0.006051743984222412, 0.006024064064025879, 0.006064159870147705, 0.005995039939880371, 0.0060698561668396, 0.005993216037750244, 0.006078464031219482, 0.006000448226928711, 0.00604588794708252, 0.0059983677864074705, 0.006064288139343262, 0.005977536201477051, 0.006081151962280274, 0.006021120071411133, 0.006055007934570313, 0.006003615856170655, 0.006047743797302246, 0.006013023853302002, 0.00602668809890747, 0.005974495887756347, 0.00602623987197876, 0.005962751865386963, 0.006041696071624756, 0.006028768062591553, 0.00608464002609253, 0.006036223888397217, 0.00601039981842041, 0.006041728019714356, 0.0060067839622497555, 0.006062079906463623, 0.006061279773712158, 0.006136608123779297, 0.006170623779296875, 0.006188672065734863, 0.006123807907104492, 0.006647903919219971]",tokens/s,160.0108992884219,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,937.885696,6533.61152,0.0,6138.363904,6060.931072,s,1,7.035689453125,7.035689453125,0.0,7.035689453125,7.035689453125,7.035689453125,7.035689453125,[7.035689453125],,kWh,5.086469033324193e-06,5.537158699413926e-07,3.1925025540113783e-06,8.832687457276963e-06,,MB,1390.432256,6558.777344,0.0,6150.946816,5419.87328,s,10,0.6056985969543457,0.06056985969543457,0.0015528432284002626,0.06032302474975586,0.062413082122802735,0.06241665267944336,0.062419509124755856,"[0.06235702514648438, 0.059317855834960936, 0.05869996643066406, 0.061936065673828124, 0.06242022323608398, 0.0595272331237793, 0.061089248657226564, 0.05955680084228516, 0.05838188934326172, 0.06241228866577148]",tokens/s,4226.524566628572,kWh,1.9661314734339733e-06,2.167680550845188e-07,1.299260920093977e-06,3.4821604486124688e-06,tokens/kWh,73517577.31382193,MB,1446.33856,6560.874496,0.0,6150.946816,5419.87584,s,10,16.310414306640624,1.6310414306640624,0.007857273558815292,1.630450927734375,1.6352144287109376,1.6433138793945312,1.6497934399414063,"[1.6296009521484376, 1.632656494140625, 1.6313009033203125, 1.626613525390625, 1.6276422119140626, 1.651413330078125, 1.62528271484375, 1.632633544921875, 1.63341455078125, 1.6198560791015626]",tokens/s,38.62562827380183,kWh,4.754033525364933e-05,5.242493640114444e-06,3.1553376473105234e-05,8.433620536686902e-05,tokens/kWh,747010.1331444203,,s,630,16.308376537323003,0.02588631196400476,0.0005603952857475632,0.025773807525634768,0.026104809570312502,0.026561150169372556,0.028418554210662847,"[0.026761247634887696, 0.025899007797241212, 0.025796031951904295, 0.025646015167236327, 0.02582271957397461, 0.025593599319458007, 0.02562124824523926, 0.025591808319091795, 0.025661439895629884, 0.025679391860961916, 0.02564963150024414, 0.025873632431030275, 0.025754112243652344, 0.025663679122924804, 0.025847423553466798, 0.025910816192626952, 0.026387392044067384, 0.025753568649291993, 0.025798688888549803, 0.025856000900268555, 0.025659391403198242, 0.025829376220703124, 0.02573107147216797, 0.025748863220214843, 0.02572051239013672, 0.025639423370361326, 0.025651552200317382, 0.02569862365722656, 0.025590944290161132, 0.025659679412841797, 0.025890687942504882, 0.026005983352661133, 0.02581235122680664, 0.025647743225097656, 0.02572697639465332, 0.0263306884765625, 0.02582147216796875, 0.028475551605224608, 0.027189247131347655, 0.025907199859619142, 0.025810943603515626, 0.025844959259033202, 0.025785120010375976, 0.025624576568603515, 0.02571878433227539, 0.02575974464416504, 0.025745407104492187, 0.025589216232299806, 0.02559791946411133, 0.025820928573608397, 0.025658016204833985, 0.02581110382080078, 0.02595430374145508, 0.02594108772277832, 0.025994144439697265, 0.025890815734863282, 0.025941055297851564, 0.025873056411743166, 0.025796895980834962, 0.02564659118652344, 0.025741823196411134, 0.025831424713134765, 0.025722272872924806, 0.02695577621459961, 0.026255392074584962, 0.025720800399780273, 0.02569830322265625, 0.025835519790649415, 0.025695295333862306, 0.025649152755737304, 0.02566649627685547, 0.025943359375, 0.025598655700683592, 0.025786367416381836, 0.025655296325683592, 0.02576326370239258, 0.026518144607543946, 0.02723219108581543, 0.025999359130859375, 0.02576323127746582, 0.025657791137695313, 0.025644384384155273, 0.025676576614379883, 0.02558569526672363, 0.025667583465576172, 0.025600000381469725, 0.02581443214416504, 0.025594463348388673, 0.025675775527954102, 0.025591072082519532, 0.025532831192016603, 0.025628992080688476, 0.02576710319519043, 0.025920320510864257, 0.02571059226989746, 0.025806432723999025, 0.02591375923156738, 0.025968639373779297, 0.02587238311767578, 0.02576959991455078, 0.02565977668762207, 0.02571878433227539, 0.025646112442016603, 0.02573411178588867, 0.025817087173461914, 0.026357343673706055, 0.027492767333984376, 0.025887840270996092, 0.025899328231811524, 0.025964832305908202, 0.02675129508972168, 0.025935871124267578, 0.026015743255615235, 0.026070463180541993, 0.02601136016845703, 0.025936351776123048, 0.025812480926513674, 0.025815616607666014, 0.025905471801757812, 0.025974687576293946, 0.026613567352294924, 0.025942304611206054, 0.025845504760742186, 0.025817344665527344, 0.0258143367767334, 0.025870527267456055, 0.026587488174438477, 0.026187744140625, 0.02590924835205078, 0.025836736679077148, 0.025981760025024413, 0.025927104949951173, 0.025804960250854492, 0.025837984085083008, 0.02573721694946289, 0.025978208541870117, 0.02577680015563965, 0.02582921600341797, 0.02565068817138672, 0.025825920104980468, 0.025739295959472656, 0.026052608489990234, 0.025800703048706054, 0.025808351516723633, 0.02593382453918457, 0.026368703842163086, 0.026242015838623046, 0.026067840576171876, 0.025847808837890625, 0.0259150390625, 0.02590716743469238, 0.02585433578491211, 0.02575699234008789, 0.025784448623657228, 0.025862688064575194, 0.02585798454284668, 0.025804895401000977, 0.025823232650756835, 0.025859872817993165, 0.02573334312438965, 0.025825216293334962, 0.02600761604309082, 0.025675743103027344, 0.0256778564453125, 0.025679424285888673, 0.025831872940063477, 0.025784320831298828, 0.025693727493286134, 0.025782751083374023, 0.025773855209350587, 0.025915615081787108, 0.025812671661376952, 0.025789888381958007, 0.02568828773498535, 0.025942527770996093, 0.0258721923828125, 0.02585798454284668, 0.025770175933837892, 0.025987295150756835, 0.02570444869995117, 0.02631475257873535, 0.02597068786621094, 0.025827327728271485, 0.025911167144775392, 0.026345312118530275, 0.026116384506225585, 0.025849855422973633, 0.025878047943115233, 0.025907680511474608, 0.028279008865356444, 0.026528959274291993, 0.025936511993408202, 0.025825376510620116, 0.025804672241210937, 0.025771392822265624, 0.02577289581298828, 0.02570425605773926, 0.026038463592529298, 0.025833471298217774, 0.02579622459411621, 0.025760128021240235, 0.02574131202697754, 0.02568806457519531, 0.025673248291015624, 0.02565577507019043, 0.02575119972229004, 0.025564895629882813, 0.02580284881591797, 0.02628278350830078, 0.025714431762695313, 0.02577561569213867, 0.025673824310302733, 0.025536991119384764, 0.02564908790588379, 0.02570649528503418, 0.025583423614501954, 0.025843904495239257, 0.025651199340820312, 0.025843711853027345, 0.02575564765930176, 0.025828351974487306, 0.025981952667236328, 0.026003328323364258, 0.0258602237701416, 0.025855903625488282, 0.02574550437927246, 0.026738687515258788, 0.025875968933105467, 0.025707008361816407, 0.025812959671020506, 0.025775680541992186, 0.025623008728027342, 0.025610240936279297, 0.0256342716217041, 0.025727039337158204, 0.0256844482421875, 0.02572697639465332, 0.025657344818115234, 0.02552422332763672, 0.02563849639892578, 0.02570044708251953, 0.025831743240356444, 0.025855007171630858, 0.025682111740112305, 0.02565795135498047, 0.025635007858276368, 0.025707679748535155, 0.025604768753051756, 0.02579475212097168, 0.025775936126708983, 0.025614528656005858, 0.02559939193725586, 0.029030303955078125, 0.02681660842895508, 0.025785823822021485, 0.025708480834960936, 0.025768543243408205, 0.026019840240478515, 0.025710527420043944, 0.025810079574584963, 0.02575820732116699, 0.02577859115600586, 0.025757183074951173, 0.0256680965423584, 0.02570854377746582, 0.025673728942871094, 0.02575564765930176, 0.02571459197998047, 0.02569948768615723, 0.025748319625854492, 0.025703712463378905, 0.02564998435974121, 0.02568806457519531, 0.025624160766601563, 0.025713056564331056, 0.02575152015686035, 0.0256975040435791, 0.025624736785888672, 0.02569203186035156, 0.02572163200378418, 0.02574505615234375, 0.02573347282409668, 0.025707647323608397, 0.025828224182128906, 0.025772031784057618, 0.025751136779785157, 0.025663904190063477, 0.025645055770874024, 0.025616384506225585, 0.025505151748657227, 0.025653600692749023, 0.025688352584838866, 0.025643232345581055, 0.02559542465209961, 0.025557247161865235, 0.025655263900756835, 0.02610383987426758, 0.025819135665893556, 0.02567945671081543, 0.02575811195373535, 0.025756959915161134, 0.02577686309814453, 0.025835391998291015, 0.025903232574462892, 0.02588467216491699, 0.025943935394287108, 0.025978975296020508, 0.02597875213623047, 0.025851039886474608, 0.026079296112060547, 0.02585696029663086, 0.02634752082824707, 0.025845760345458983, 0.02582524871826172, 0.025673759460449218, 0.027419904708862304, 0.026456640243530272, 0.029658912658691406, 0.033287742614746096, 0.025963359832763672, 0.025866239547729493, 0.025812992095947264, 0.025924896240234373, 0.025891199111938476, 0.02589116859436035, 0.025910816192626952, 0.025946592330932616, 0.02602774429321289, 0.025907615661621093, 0.025890687942504882, 0.026009599685668947, 0.025995264053344725, 0.02617344093322754, 0.02593289566040039, 0.026001632690429686, 0.02590348815917969, 0.02598659133911133, 0.02593984031677246, 0.02617568016052246, 0.025852800369262696, 0.026074880599975585, 0.026192031860351562, 0.02609516716003418, 0.025919071197509767, 0.026303264617919923, 0.025910879135131838, 0.02595452880859375, 0.026005216598510742, 0.025911775588989258, 0.02585958480834961, 0.025759807586669924, 0.02577401542663574, 0.025813503265380858, 0.025905311584472655, 0.025902175903320314, 0.02596112060546875, 0.02577414321899414, 0.026183712005615235, 0.027121631622314454, 0.02671414375305176, 0.026097343444824218, 0.026015359878540038, 0.026006208419799805, 0.026009599685668947, 0.026030080795288086, 0.025993215560913087, 0.02593494415283203, 0.025942111968994142, 0.026016576766967774, 0.025831424713134765, 0.026243072509765625, 0.0261529598236084, 0.026228511810302734, 0.026038496017456055, 0.025965984344482423, 0.025948768615722657, 0.025964544296264647, 0.025825279235839844, 0.027570335388183594, 0.02634364891052246, 0.0259420166015625, 0.025726848602294922, 0.025602176666259767, 0.02578816032409668, 0.02556732749938965, 0.0256964168548584, 0.025691200256347656, 0.02566649627685547, 0.0256777286529541, 0.025745216369628905, 0.025667871475219727, 0.0255467529296875, 0.025671167373657225, 0.026078720092773438, 0.025705408096313477, 0.025714431762695313, 0.025773759841918945, 0.025870975494384767, 0.02558278465270996, 0.025689983367919923, 0.025712799072265625, 0.025790464401245116, 0.026155391693115235, 0.02577449607849121, 0.025806848526000976, 0.025990976333618163, 0.025657535552978516, 0.026042367935180662, 0.02568953514099121, 0.028641855239868164, 0.025993215560913087, 0.025828960418701172, 0.02581340789794922, 0.02572287940979004, 0.025713823318481446, 0.02559052848815918, 0.02564476776123047, 0.025615936279296876, 0.025720928192138674, 0.025592159271240235, 0.02565772819519043, 0.025626047134399414, 0.02564358329772949, 0.025604095458984375, 0.025636863708496094, 0.025540607452392578, 0.025647296905517578, 0.02563206481933594, 0.025626688003540038, 0.025641504287719726, 0.02571049690246582, 0.025652767181396485, 0.025725120544433593, 0.025644384384155273, 0.025639711380004884, 0.02561039924621582, 0.025606143951416017, 0.025581087112426758, 0.025539039611816406, 0.025573568344116213, 0.0257139835357666, 0.02674892807006836, 0.02621254348754883, 0.025882623672485353, 0.025707712173461916, 0.025820095062255858, 0.025776351928710937, 0.02576144027709961, 0.02751487922668457, 0.02734489631652832, 0.02592767906188965, 0.025847808837890625, 0.025804128646850586, 0.025812639236450195, 0.025672704696655273, 0.025765888214111327, 0.02571468734741211, 0.025985023498535157, 0.026113536834716795, 0.025715295791625976, 0.02627984046936035, 0.025776128768920898, 0.026064895629882814, 0.02574742317199707, 0.02571062469482422, 0.02564659118652344, 0.025709056854248048, 0.025789823532104492, 0.025796768188476562, 0.025757280349731446, 0.02568822479248047, 0.025651071548461916, 0.025582048416137697, 0.025522144317626953, 0.02562499237060547, 0.025620479583740235, 0.025646240234375, 0.025753856658935547, 0.02728611183166504, 0.02575155258178711, 0.02574131202697754, 0.025806848526000976, 0.02587238311767578, 0.02569011116027832, 0.025899007797241212, 0.02579055976867676, 0.025703903198242187, 0.02667359924316406, 0.026089471817016603, 0.025851776123046875, 0.025792640686035158, 0.025734367370605468, 0.02591231918334961, 0.025867456436157225, 0.025853952407836913, 0.025743967056274415, 0.02589286422729492, 0.02594611167907715, 0.02574051284790039, 0.025909088134765626, 0.02602867126464844, 0.025892896652221678, 0.02575929641723633, 0.025710527420043944, 0.027250816345214843, 0.02632499122619629, 0.025780223846435548, 0.025792512893676758, 0.02576348876953125, 0.025796575546264647, 0.025596223831176757, 0.02568806457519531, 0.025662559509277344, 0.025921920776367187, 0.02574928092956543, 0.025690559387207032, 0.02563315200805664, 0.025726879119873047, 0.025792543411254882, 0.025647167205810548, 0.025610240936279297, 0.030455808639526367, 0.02824950408935547, 0.025702016830444336, 0.025641088485717774, 0.02613260841369629, 0.025750240325927733, 0.025599552154541017, 0.025686559677124025, 0.025869279861450194, 0.025710975646972656, 0.025628671646118165, 0.025606719970703126, 0.025959680557250977, 0.025577215194702147, 0.02556368064880371, 0.025501184463500977, 0.025527263641357423, 0.025686016082763673, 0.025556863784790038, 0.025515487670898437, 0.025490079879760742, 0.025602048873901367, 0.025575679779052736, 0.025595808029174806, 0.025859935760498047, 0.025927040100097658, 0.025573663711547852, 0.025592191696166992, 0.025646816253662108, 0.025767488479614256, 0.025639583587646484, 0.02591299247741699, 0.025700735092163085, 0.02594963264465332, 0.02954911994934082, 0.025819040298461913, 0.026179679870605467, 0.02572492790222168, 0.025798656463623046, 0.025642047882080077, 0.025665695190429688, 0.025563936233520507, 0.025814048767089842, 0.025676767349243165, 0.02587648010253906, 0.02572697639465332, 0.0266309757232666, 0.025948160171508788, 0.025800703048706054, 0.02576383972167969, 0.02564873504638672, 0.025694623947143554, 0.02571628761291504, 0.025571775436401368, 0.025638303756713866, 0.025614944458007813, 0.025531551361083985, 0.02556399917602539, 0.025526208877563475, 0.025694271087646485, 0.02562656021118164, 0.02567788887023926, 0.025781280517578126, 0.025852895736694335, 0.025759584426879884, 0.025792671203613282, 0.025593856811523437, 0.025997312545776367, 0.025657344818115234, 0.025600000381469725, 0.02551318359375, 0.027882112503051757, 0.026881471633911132, 0.02572591972351074, 0.025689376831054687, 0.0257741756439209, 0.025555328369140626, 0.025547903060913087, 0.025512832641601563, 0.025624576568603515, 0.025636512756347655, 0.02558297538757324, 0.025685216903686522, 0.025587039947509764, 0.02561004829406738, 0.025503679275512694, 0.0254716796875, 0.025524192810058594, 0.025499040603637696, 0.02545724868774414, 0.025796768188476562, 0.025653087615966796, 0.025585472106933595, 0.02559609603881836, 0.02554265594482422, 0.02547302436828613, 0.025458688735961913, 0.02546272087097168, 0.025501760482788086, 0.025663488388061522, 0.02609766387939453, 0.02554265594482422, 0.025667583465576172, 0.02557494354248047, 0.02563279914855957, 0.025575872421264648, 0.025826623916625976, 0.025549503326416017, 0.025497087478637694]",tokens/s,38.63045463527259,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 1001, in __init__ self.model = GemmaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 780, in __init__ [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 780, in [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 571, in __init__ self.mlp = GemmaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 167, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 144.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 34.12 MiB is free. Process 140036 has 14.71 GiB memory in use. Of the allocated memory 14.59 GiB is allocated by PyTorch, and 1.69 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,783.077376,741.277696,0.0,346.03008,335.0016,s,1,7.1831591796875,7.1831591796875,0.0,7.1831591796875,7.1831591796875,7.1831591796875,7.1831591796875,[7.1831591796875],,kWh,2.1506190416668383e-06,2.298053859902211e-07,9.297229660032436e-07,3.310147393660303e-06,,MB,1261.17888,766.44352,0.0,358.612992,302.626816,s,20,0.19743769645690915,0.00987188482284546,8.395238262485647e-05,0.009871455669403076,0.00996808614730835,0.009996689987182616,0.009999389114379881,"[0.009857151985168457, 0.009795424461364746, 0.010000063896179199, 0.009937472343444824, 0.009855808258056641, 0.00994262409210205, 0.009822815895080566, 0.009822815895080566, 0.009700672149658203, 0.009939167976379394, 0.009741279602050781, 0.009799103736877441, 0.009879103660583496, 0.009752287864685058, 0.009863807678222656, 0.009996512413024902, 0.009964927673339844, 0.009907072067260742, 0.009955648422241212, 0.009903936386108399]",tokens/s,25932.231239931636,kWh,2.8870181205077586e-07,3.1838646855313936e-08,1.8717621304450572e-07,5.077166719505956e-07,tokens/kWh,504218226.7059976,MB,1293.98784,781.123584,0.0,373.293056,302.629376,s,20,10.330168548583986,0.5165084274291993,0.003396619121302001,0.5161029663085938,0.5204233520507813,0.5224993988037109,0.5252641864013672,"[0.5118157653808594, 0.5133551635742187, 0.5160929565429687, 0.5223175048828125, 0.5186146850585938, 0.5161129760742188, 0.51690771484375, 0.5147996826171874, 0.5172576904296875, 0.5148217163085937, 0.5136166381835937, 0.5132215576171875, 0.5151278686523437, 0.5128375854492188, 0.5134371948242188, 0.5171526489257813, 0.520212890625, 0.5178597412109375, 0.5186511840820313, 0.5259553833007813]",tokens/s,121.97284043082871,kWh,1.5008283589199291e-05,1.6551660401387799e-06,6.507662476155672e-06,2.3171112105493734e-05,tokens/kWh,2718902.73169336,,s,1260,10.3203361325264,0.008190742962322537,0.00019018185760913555,0.008159103870391846,0.008300131320953369,0.008367008209228515,0.008885352382659912,"[0.00794646406173706, 0.008128959655761719, 0.008122048377990722, 0.008148927688598633, 0.008202591896057128, 0.008093952178955078, 0.008147135734558105, 0.008068991661071776, 0.008118240356445313, 0.008122336387634278, 0.008097663879394531, 0.00809382438659668, 0.008226816177368163, 0.008079423904418945, 0.00810912036895752, 0.008106880187988282, 0.008300064086914062, 0.008103936195373536, 0.008030688285827637, 0.008107071876525878, 0.008067904472351074, 0.008036895751953125, 0.008132191658020019, 0.008101887702941894, 0.008134464263916015, 0.008083616256713867, 0.008179519653320312, 0.008159071922302245, 0.00824937629699707, 0.0081146240234375, 0.00808233642578125, 0.00808233642578125, 0.008110143661499024, 0.008203519821166991, 0.008125344276428222, 0.008116095542907716, 0.008127967834472656, 0.008077055931091308, 0.008128479957580566, 0.008120160102844238, 0.008101056098937989, 0.008288031578063964, 0.008064127922058106, 0.008075360298156739, 0.008097599983215333, 0.008082304000854492, 0.008194144248962403, 0.008251423835754395, 0.008104191780090333, 0.008167136192321777, 0.008089504241943359, 0.008068191528320312, 0.008176639556884765, 0.008091648101806641, 0.008044544219970704, 0.008093695640563964, 0.008052736282348634, 0.008035391807556152, 0.008055744171142578, 0.008101663589477538, 0.008113632202148438, 0.00813372802734375, 0.008083456039428711, 0.007856160163879395, 0.008132351875305175, 0.008200448036193847, 0.008126463890075684, 0.00809926414489746, 0.008097920417785644, 0.008117919921875, 0.008098591804504394, 0.008100959777832031, 0.008205216407775879, 0.008159232139587403, 0.008223775863647462, 0.008190943717956542, 0.008208383560180664, 0.008170816421508789, 0.008160032272338868, 0.008234368324279786, 0.008118080139160157, 0.008096511840820313, 0.0081627836227417, 0.008112992286682129, 0.008107551574707031, 0.008142975807189942, 0.00810598373413086, 0.008150272369384766, 0.008154080390930176, 0.00808732795715332, 0.008069120407104492, 0.008093695640563964, 0.008193056106567382, 0.008137120246887206, 0.008137280464172364, 0.00807862377166748, 0.008106143951416015, 0.008151647567749023, 0.008253408432006835, 0.008187647819519042, 0.008149248123168945, 0.008333375930786133, 0.008132896423339843, 0.008117792129516601, 0.008134431838989258, 0.00815171241760254, 0.008257216453552246, 0.008139967918395996, 0.008119071960449219, 0.008341535568237305, 0.008085503578186035, 0.008093055725097656, 0.008141440391540527, 0.00806931209564209, 0.008165439605712891, 0.008195648193359375, 0.008087871551513671, 0.008101023674011231, 0.008125151634216309, 0.008219936370849609, 0.008080160140991211, 0.008191679954528809, 0.008135231971740722, 0.008076736450195313, 0.008130016326904297, 0.008083488464355469, 0.008167584419250489, 0.008138591766357423, 0.008068991661071776, 0.00812831974029541, 0.008054431915283202, 0.008204095840454102, 0.008196928024291993, 0.008165599822998047, 0.008144767761230468, 0.008120384216308594, 0.008132479667663573, 0.008114303588867187, 0.008142720222473145, 0.008284159660339355, 0.00811638355255127, 0.008111968040466308, 0.00821452808380127, 0.008116479873657226, 0.008105728149414062, 0.008194047927856446, 0.008309087753295898, 0.008160927772521972, 0.008124223709106445, 0.008103296279907227, 0.008118304252624511, 0.008176416397094726, 0.008345024108886719, 0.008151647567749023, 0.008200160026550293, 0.00814031982421875, 0.00812662410736084, 0.00821894359588623, 0.008286208152770995, 0.008145983695983888, 0.008172479629516602, 0.00819382381439209, 0.008130720138549805, 0.008105728149414062, 0.00817743968963623, 0.008273951530456543, 0.008274432182312011, 0.008359935760498047, 0.008197152137756347, 0.008203200340270996, 0.008158880233764649, 0.008138463973999024, 0.00834217643737793, 0.008089792251586915, 0.00819548797607422, 0.00828048038482666, 0.008153087615966797, 0.008204287528991699, 0.008253696441650391, 0.008181504249572754, 0.008136927604675293, 0.008255328178405762, 0.008270815849304199, 0.008385824203491212, 0.008215840339660645, 0.008234496116638184, 0.008274496078491211, 0.008082816123962402, 0.008112959861755371, 0.00994099235534668, 0.011926591873168945, 0.009403583526611328, 0.008259327888488769, 0.008363327980041503, 0.008405695915222168, 0.00828006362915039, 0.008289728164672851, 0.008211071968078614, 0.008210368156433105, 0.008147968292236327, 0.008147168159484863, 0.008205375671386718, 0.00812003231048584, 0.008249567985534669, 0.008154335975646973, 0.008271967887878418, 0.008149344444274903, 0.00809932804107666, 0.008172160148620605, 0.008118271827697754, 0.008161312103271484, 0.008087136268615723, 0.008131168365478515, 0.008189087867736816, 0.008104543685913086, 0.008103391647338868, 0.008155584335327148, 0.008167072296142578, 0.008073087692260741, 0.008155743598937988, 0.008259584426879883, 0.00815225601196289, 0.008102720260620117, 0.008176896095275879, 0.00819916820526123, 0.00819760036468506, 0.00812880039215088, 0.008099840164184571, 0.008220671653747558, 0.008216575622558593, 0.008283424377441406, 0.008190688133239745, 0.008181856155395508, 0.008159135818481445, 0.008159071922302245, 0.0082227201461792, 0.00823136043548584, 0.008206048011779786, 0.00819542407989502, 0.008114815711975098, 0.008071519851684571, 0.008111807823181152, 0.0081112003326416, 0.0082706880569458, 0.00808563232421875, 0.008212448120117188, 0.008142975807189942, 0.008183775901794433, 0.008103808403015137, 0.008086976051330566, 0.008139328002929687, 0.008131679534912109, 0.007939199924468994, 0.008128160476684571, 0.008181759834289551, 0.00814851188659668, 0.008191935539245606, 0.00830508804321289, 0.008115679740905761, 0.00851417636871338, 0.008316608428955078, 0.008819007873535156, 0.008431648254394531, 0.008493311882019043, 0.00859712028503418, 0.008259391784667969, 0.008220352172851563, 0.008301152229309081, 0.008224767684936523, 0.008210687637329102, 0.008133695602416993, 0.008108736038208008, 0.008181759834289551, 0.008134655952453614, 0.008118271827697754, 0.008278016090393067, 0.008245247840881348, 0.00828166389465332, 0.008251839637756348, 0.008217696189880372, 0.00816380786895752, 0.008165920257568359, 0.008265824317932128, 0.008136608123779298, 0.008218655586242676, 0.00812335968017578, 0.008367008209228515, 0.008194047927856446, 0.008187904357910156, 0.008156224250793457, 0.008078271865844727, 0.008212479591369629, 0.008130656242370606, 0.008103839874267578, 0.008141119956970215, 0.00807919979095459, 0.008143839836120605, 0.008198528289794922, 0.008102399826049805, 0.008435680389404296, 0.008178815841674805, 0.008106911659240722, 0.008163328170776368, 0.0081112003326416, 0.008127679824829101, 0.00813206386566162, 0.008216575622558593, 0.008134592056274413, 0.008157504081726075, 0.008260895729064941, 0.008165663719177246, 0.008144991874694824, 0.008139103889465331, 0.00808521556854248, 0.009013536453247071, 0.007968224048614502, 0.008237919807434081, 0.008161279678344726, 0.008169471740722656, 0.008152223587036133, 0.00813088035583496, 0.008181504249572754, 0.00818051242828369, 0.00813862419128418, 0.00814022445678711, 0.00814355182647705, 0.008240832328796386, 0.008249664306640625, 0.008275967597961426, 0.008155136108398438, 0.008225855827331542, 0.008223232269287109, 0.00823136043548584, 0.008154911994934082, 0.008185215950012207, 0.008144927978515624, 0.008145088195800782, 0.00813702392578125, 0.00815459156036377, 0.008090399742126464, 0.00809171199798584, 0.008154111862182617, 0.008127488136291505, 0.0081463041305542, 0.008129152297973632, 0.008264896392822265, 0.008249919891357422, 0.008173824310302735, 0.008258848190307618, 0.008180607795715332, 0.008201951980590821, 0.008261088371276856, 0.008298239707946777, 0.00843603229522705, 0.008454367637634278, 0.008401280403137206, 0.008222111701965332, 0.00816598415374756, 0.008132320404052734, 0.008126751899719238, 0.008109312057495117, 0.008196864128112793, 0.008224767684936523, 0.008130559921264649, 0.008241151809692383, 0.008263392448425293, 0.008181280136108398, 0.008172287940979003, 0.008196191787719726, 0.008167327880859375, 0.00809779167175293, 0.008092896461486816, 0.008110207557678223, 0.008129183769226073, 0.008114175796508789, 0.008134655952453614, 0.008075263977050781, 0.00831283187866211, 0.007988895893096924, 0.008105888366699218, 0.008097279548645019, 0.008049599647521973, 0.008073216438293456, 0.008116224288940429, 0.008101887702941894, 0.008095616340637208, 0.00813811206817627, 0.008143487930297852, 0.008046719551086426, 0.008083392143249511, 0.008069375991821288, 0.008095392227172852, 0.008089407920837403, 0.008146623611450195, 0.008157855987548828, 0.008094719886779785, 0.008080512046813966, 0.008099743843078613, 0.008179776191711426, 0.008093664169311524, 0.008035712242126465, 0.00812499237060547, 0.008061023712158203, 0.008083295822143555, 0.008079423904418945, 0.008116224288940429, 0.008153120040893554, 0.008138496398925782, 0.008089471817016601, 0.008097599983215333, 0.008108063697814942, 0.008158047676086426, 0.008073280334472657, 0.008043680191040039, 0.008117728233337403, 0.00817251205444336, 0.008089695930480957, 0.008094623565673828, 0.00809436798095703, 0.008118623733520508, 0.008115360260009766, 0.008419648170471191, 0.008129055976867677, 0.00813270378112793, 0.008137791633605958, 0.008094880104064941, 0.008691391944885253, 0.008753120422363281, 0.008431424140930175, 0.009867487907409668, 0.009356736183166504, 0.008361663818359375, 0.008215423583984374, 0.008211584091186523, 0.0082543363571167, 0.008183775901794433, 0.008128512382507324, 0.008138784408569336, 0.008279775619506836, 0.008146976470947266, 0.008183135986328124, 0.007829792022705078, 0.008107744216918945, 0.008090751647949219, 0.008106687545776366, 0.008095423698425292, 0.008276479721069336, 0.00811961555480957, 0.008164031982421875, 0.008165375709533691, 0.008138848304748534, 0.008126367568969726, 0.008325119972229005, 0.008171520233154296, 0.008884223937988281, 0.008349791526794433, 0.008189120292663575, 0.008147135734558105, 0.00812063980102539, 0.00811843204498291, 0.008095168113708496, 0.008124832153320313, 0.008079584121704102, 0.008079360008239746, 0.008087712287902832, 0.008115455627441407, 0.008180319786071777, 0.008062975883483887, 0.008099840164184571, 0.008216447830200195, 0.008113792419433594, 0.008143360137939454, 0.008240960121154784, 0.008300736427307128, 0.008318976402282715, 0.008310943603515626, 0.008257375717163087, 0.008304032325744629, 0.008254048347473144, 0.008138655662536621, 0.008187968254089356, 0.008166720390319824, 0.008183839797973633, 0.008092351913452148, 0.008157183647155761, 0.008157119750976563, 0.008242591857910157, 0.008127360343933106, 0.008118047714233398, 0.008155136108398438, 0.008091391563415528, 0.008081664085388183, 0.00809779167175293, 0.008165375709533691, 0.00809779167175293, 0.008269824028015137, 0.008118271827697754, 0.008146783828735352, 0.008089311599731445, 0.008081855773925782, 0.008158880233764649, 0.00807868766784668, 0.008109215736389161, 0.00806223964691162, 0.0077814397811889644, 0.008178624153137207, 0.008092927932739257, 0.008061696052551269, 0.008144288063049317, 0.008139360427856445, 0.008179871559143067, 0.00810915184020996, 0.008185952186584473, 0.008110176086425782, 0.008135199546813965, 0.00806710433959961, 0.008140128135681152, 0.008060928344726562, 0.008096575736999512, 0.008220864295959472, 0.008133760452270508, 0.00805737590789795, 0.008125823974609375, 0.008120479583740235, 0.008143327713012695, 0.008206368446350098, 0.008142815589904786, 0.008134655952453614, 0.008144895553588867, 0.008140512466430664, 0.00891113567352295, 0.008296575546264649, 0.008255104064941406, 0.008202495574951172, 0.008134143829345703, 0.008109663963317871, 0.008098624229431152, 0.00811843204498291, 0.008073151588439942, 0.008248671531677246, 0.00809055995941162, 0.00808944034576416, 0.008097663879394531, 0.008101792335510253, 0.008142144203186034, 0.008089792251586915, 0.00816598415374756, 0.00808140754699707, 0.008089599609375, 0.008092831611633301, 0.008135519981384277, 0.008097536087036132, 0.008360383987426757, 0.008140928268432617, 0.008077055931091308, 0.008075200080871581, 0.00860159969329834, 0.008695808410644532, 0.009971327781677246, 0.008360416412353515, 0.00823465633392334, 0.00819760036468506, 0.008165920257568359, 0.008159168243408203, 0.008188223838806153, 0.008511712074279785, 0.008251168251037598, 0.007903584003448486, 0.00817091178894043, 0.008149503707885742, 0.008101984024047852, 0.008177663803100586, 0.008558591842651368, 0.00810591983795166, 0.008093600273132323, 0.00813206386566162, 0.008172575950622558, 0.008129823684692382, 0.008208767890930176, 0.008093312263488769, 0.0081079683303833, 0.00810643196105957, 0.008196096420288086, 0.00810211181640625, 0.0081397123336792, 0.008103967666625977, 0.00809055995941162, 0.008207776069641114, 0.008085984230041504, 0.008171520233154296, 0.008130304336547852, 0.008392864227294922, 0.008165472030639649, 0.00813161563873291, 0.008219615936279297, 0.008109248161315918, 0.008117055892944336, 0.008152576446533203, 0.008276479721069336, 0.008154272079467773, 0.008137568473815918, 0.008144031524658204, 0.008181856155395508, 0.009714431762695312, 0.008151391983032226, 0.008105119705200196, 0.00816323184967041, 0.008134688377380371, 0.008126720428466797, 0.008114144325256348, 0.008113632202148438, 0.008126527786254882, 0.008063808441162109, 0.00808944034576416, 0.00809385585784912, 0.008137056350708008, 0.008074912071228027, 0.00808140754699707, 0.008306528091430664, 0.008112288475036622, 0.008039711952209472, 0.008065983772277832, 0.008078559875488282, 0.008137280464172364, 0.008136704444885253, 0.008171008110046387, 0.008081791877746582, 0.008093952178955078, 0.008126527786254882, 0.008095552444458008, 0.007819168090820313, 0.008144991874694824, 0.008095647811889648, 0.008095680236816406, 0.008118240356445313, 0.008115903854370117, 0.008167743682861328, 0.008155232429504394, 0.008132096290588378, 0.008104255676269531, 0.008074815750122071, 0.008100480079650878, 0.008034208297729491, 0.008095935821533203, 0.008148991584777832, 0.00824284839630127, 0.00823087978363037, 0.008157247543334962, 0.008086751937866211, 0.008085920333862304, 0.008176223754882812, 0.008206399917602539, 0.008072704315185546, 0.00811257553100586, 0.008187904357910156, 0.008112128257751466, 0.008097408294677734, 0.008169343948364258, 0.008153599739074707, 0.008119872093200683, 0.00866988754272461, 0.008177408218383789, 0.008092831611633301, 0.00817574405670166, 0.00817635154724121, 0.008070176124572753, 0.008180800437927247, 0.008139967918395996, 0.008136704444885253, 0.008077312469482421, 0.008100000381469727, 0.008235103607177734, 0.008133088111877441, 0.008117376327514648, 0.008119232177734375, 0.008078271865844727, 0.008059552192687988, 0.008095647811889648, 0.008174015998840331, 0.0080664644241333, 0.008104543685913086, 0.008089856147766113, 0.008091327667236328, 0.008095840454101562, 0.008140671730041503, 0.008121824264526368, 0.00811631965637207, 0.00824345588684082, 0.008196319580078125, 0.008109567642211914, 0.00815779209136963, 0.008689632415771484, 0.008278047561645508, 0.007864319801330566, 0.008334688186645508, 0.008092320442199707, 0.008175616264343261, 0.008251520156860351, 0.008131967544555665, 0.00809932804107666, 0.008111424446105957, 0.008125823974609375, 0.008073087692260741, 0.00817193603515625, 0.008095135688781738, 0.008044768333435058, 0.008124544143676757, 0.008101152420043946, 0.008111424446105957, 0.008113856315612794, 0.008196096420288086, 0.008118271827697754, 0.008065024375915527, 0.008091648101806641, 0.008068703651428222, 0.008045280456542969, 0.008064703941345215, 0.008257535934448243, 0.008151103973388672, 0.008119680404663087, 0.008129088401794434, 0.008155136108398438, 0.008350784301757813, 0.008260767936706543, 0.008183327674865723, 0.008189727783203125, 0.008216447830200195, 0.008151647567749023, 0.008118271827697754, 0.008142175674438477, 0.008139328002929687, 0.008114175796508789, 0.00807539176940918, 0.008086527824401855, 0.008082112312316895, 0.008071776390075683, 0.008072896003723145, 0.008330368041992187, 0.008063072204589844, 0.008073760032653808, 0.00813696002960205, 0.008111295700073242, 0.008059712409973144, 0.008073023796081543, 0.008159775733947754, 0.008211104393005372, 0.008248607635498046, 0.008153984069824219, 0.008135519981384277, 0.00812179183959961, 0.008184384346008301, 0.008164416313171387, 0.008092608451843262, 0.008204192161560058, 0.008234399795532227, 0.008202943801879883, 0.00801587200164795, 0.008171520233154296, 0.008196096420288086, 0.008142016410827636, 0.008143679618835449, 0.008171520233154296, 0.008101887702941894, 0.008161503791809082, 0.008195872306823731, 0.008269824028015137, 0.00816486358642578, 0.008118783950805664, 0.0081364803314209, 0.008335583686828614, 0.008240287780761718, 0.008189824104309082, 0.00818070411682129, 0.008179295539855956, 0.008155903816223144, 0.008093119621276856, 0.008173791885375977, 0.008126496315002441, 0.008084511756896973, 0.008356800079345703, 0.00832915210723877, 0.008209952354431152, 0.008180255889892579, 0.008140800476074218, 0.008132960319519043, 0.008132160186767578, 0.00814236831665039, 0.008171263694763184, 0.008152000427246094, 0.008177151679992676, 0.008098176002502441, 0.008128128051757812, 0.00811251163482666, 0.008298080444335937, 0.008149663925170898, 0.00815078353881836, 0.008200287818908691, 0.008074751853942871, 0.008103615760803222, 0.00808409595489502, 0.008210816383361817, 0.008193056106567382, 0.008126784324645996, 0.008174112319946289, 0.008118111610412598, 0.008133695602416993, 0.008133567810058594, 0.008134655952453614, 0.008207551956176758, 0.008137855529785156, 0.008199968338012696, 0.008140704154968263, 0.008138367652893067, 0.008110783576965331, 0.008328895568847656, 0.00821190357208252, 0.008241727828979492, 0.008230912208557128, 0.00818992042541504, 0.007829631805419922, 0.008067296028137208, 0.008066431999206543, 0.008141632080078126, 0.00807692813873291, 0.008071167945861817, 0.008101152420043946, 0.008238143920898437, 0.00830787181854248, 0.00813321590423584, 0.008236512184143067, 0.008151488304138184, 0.008116031646728515, 0.008188096046447754, 0.008152128219604492, 0.008178624153137207, 0.008339167594909668, 0.008206879615783692, 0.008153984069824219, 0.008149375915527344, 0.008094207763671875, 0.008245023727416992, 0.008144479751586914, 0.008220288276672363, 0.008123711585998535, 0.008155936241149903, 0.008086432456970214, 0.008142656326293945, 0.0081179838180542, 0.008098272323608399, 0.008255711555480957, 0.008130496025085449, 0.008068927764892578, 0.008071200370788574, 0.008116224288940429, 0.008065024375915527, 0.008136704444885253, 0.008318976402282715, 0.008113151550292968, 0.008069184303283692, 0.008149248123168945, 0.008098496437072753, 0.008066559791564941, 0.008097727775573731, 0.008102432250976562, 0.008226559638977051, 0.008298720359802246, 0.008134719848632812, 0.00815824031829834, 0.008106975555419922, 0.008160863876342773, 0.008103872299194336, 0.008104288101196289, 0.008104288101196289, 0.00809347152709961, 0.008084639549255371, 0.00808233642578125, 0.008130847930908203, 0.008107680320739746, 0.008025216102600099, 0.008071776390075683, 0.008098079681396484, 0.008042495727539062, 0.007831552028656007, 0.008070719718933106, 0.008094143867492676, 0.008211935997009277, 0.00818057632446289, 0.00834233570098877, 0.00893945598602295, 0.008761728286743164, 0.008237792015075683, 0.008124095916748047, 0.00812662410736084, 0.008118271827697754, 0.00814089584350586, 0.008191328048706054, 0.008096096038818359, 0.008095104217529297, 0.008121248245239257, 0.008148927688598633, 0.008210783958435058, 0.008196895599365234, 0.008104127883911133, 0.00814793586730957, 0.008126463890075684, 0.008070336341857911, 0.00806924819946289, 0.008069536209106446, 0.008119551658630372, 0.008048895835876466, 0.008095647811889648, 0.008132191658020019, 0.008103103637695312, 0.008122271537780761, 0.008091551780700684, 0.008134655952453614, 0.008101887702941894, 0.008116000175476075, 0.008109600067138671, 0.008105952262878418, 0.008092479705810547, 0.008081472396850586, 0.008130751609802245, 0.008121439933776856, 0.008114751815795898, 0.008154656410217285, 0.008110912322998046, 0.008064607620239257, 0.008062111854553222, 0.008125120162963868, 0.008073439598083496, 0.008110015869140626, 0.008078944206237794, 0.008057344436645507, 0.008224415779113769, 0.008323295593261719, 0.008085887908935547, 0.00816316795349121, 0.008129759788513184, 0.008141471862792968, 0.00805897617340088, 0.008101792335510253, 0.008147168159484863, 0.008070976257324218, 0.008038528442382812, 0.007814144134521485, 0.008150879859924316, 0.008106143951416015, 0.008223872184753418, 0.00811235237121582, 0.008067584037780762, 0.008062944412231446, 0.008090911865234375, 0.008121055603027344, 0.008212639808654785, 0.00817471981048584, 0.008117471694946289, 0.00821350383758545, 0.008098239898681641, 0.008134655952453614, 0.008513407707214355, 0.00836137580871582, 0.008190367698669434, 0.008239328384399414, 0.008211039543151855, 0.008226271629333495, 0.0081943359375, 0.008179712295532226, 0.00818115234375, 0.008172320365905763, 0.008269951820373536, 0.008277824401855469, 0.008191647529602051, 0.008188063621520997, 0.00821782398223877, 0.008252096176147462, 0.008229023933410644, 0.008215968132019042, 0.008182368278503417, 0.008204287528991699, 0.008224639892578125, 0.008218048095703125, 0.008273695945739746, 0.008232159614562988, 0.008152768135070801, 0.00818188762664795, 0.008124287605285645, 0.008160896301269531, 0.008182144165039063, 0.008172672271728515, 0.008256383895874023, 0.008379903793334961, 0.008236607551574708, 0.008259712219238281, 0.008162112236022949, 0.00818995189666748, 0.008219840049743653, 0.008190879821777344, 0.008161184310913085, 0.008269248008728027, 0.008157247543334962, 0.008205887794494628, 0.008204704284667968, 0.00821241569519043, 0.00825312042236328, 0.008242079734802246, 0.00849715232849121, 0.008265727996826172, 0.008022239685058594, 0.008184063911437988, 0.00820143985748291, 0.008212703704833985, 0.008193920135498047, 0.008258208274841309, 0.008221887588500976, 0.008189824104309082, 0.008217184066772461, 0.0082456636428833, 0.008306112289428711, 0.00847696018218994, 0.008458144187927246, 0.008284255981445313, 0.008237055778503418, 0.0082575044631958, 0.008197407722473144, 0.008367008209228515, 0.0081693115234375, 0.008239104270935058, 0.008250911712646485, 0.008374496459960938, 0.00825920009613037, 0.008245887756347657, 0.008225088119506835, 0.008226655960083007, 0.008228832244873047, 0.008236639976501465, 0.008191264152526856, 0.008250368118286134, 0.008310784339904785, 0.008220671653747558, 0.00826691246032715, 0.008258272171020507, 0.008241279602050781, 0.008233023643493651, 0.00820627212524414, 0.008228863716125488, 0.008214655876159669, 0.008201536178588867, 0.00827564811706543, 0.008247360229492188, 0.008276800155639648, 0.008240703582763673, 0.008177984237670898, 0.008342687606811523, 0.008573920249938964, 0.008197952270507812, 0.008200384140014649, 0.00823526382446289, 0.008213919639587402, 0.008219231605529785, 0.008193792343139649, 0.00826524829864502, 0.008282591819763183, 0.008317952156066894, 0.008270848274230956, 0.008328448295593262, 0.008241920471191407, 0.008157312393188476, 0.008182944297790528, 0.008228832244873047, 0.00821939182281494, 0.007919616222381591, 0.00820633602142334, 0.008203935623168946, 0.008251744270324707, 0.008179200172424317, 0.008185855865478516, 0.008247391700744629, 0.008196096420288086, 0.008301247596740722, 0.008267104148864746, 0.008262240409851074, 0.008275936126708985, 0.008189696311950684, 0.008216544151306153, 0.008246463775634766, 0.008319904327392578, 0.008259584426879883, 0.008261216163635255, 0.008167840003967286, 0.008177663803100586, 0.00819814395904541, 0.008187711715698242, 0.00817580795288086, 0.008267487525939941, 0.008225055694580078, 0.00828825569152832, 0.0082227201461792, 0.008155136108398438, 0.008250592231750488, 0.008165663719177246, 0.008169983863830567, 0.008232959747314453, 0.008187904357910156, 0.008159456253051757, 0.00820201587677002, 0.008142848014831543, 0.008263680458068847, 0.008415231704711914, 0.008171008110046387, 0.00820684814453125, 0.008194047927856446, 0.008134655952453614, 0.00821232032775879, 0.008180992126464844, 0.008208288192749023, 0.008303199768066406, 0.00820083236694336, 0.008179488182067872, 0.008230175971984863, 0.00818239974975586, 0.008183391571044921, 0.008180224418640136, 0.008238752365112305, 0.008149024009704589, 0.008377984046936035, 0.008235456466674805, 0.008244704246520997, 0.0082194242477417, 0.008187904357910156, 0.008177663803100586, 0.008146944046020508, 0.008165120124816894, 0.008192352294921875, 0.007951615810394287, 0.0082042236328125, 0.008186047554016113, 0.008194239616394042, 0.008190400123596191, 0.008538432121276855, 0.008302271842956543, 0.008273056030273437, 0.008238240242004395, 0.008261311531066894, 0.008261631965637208, 0.008240480422973633, 0.00824182415008545, 0.008146944046020508, 0.008191519737243653, 0.008206815719604492, 0.008216575622558593, 0.008167424201965333, 0.00817750358581543, 0.008162591934204102, 0.008178079605102539, 0.008192319869995118, 0.008169631958007812, 0.00818995189666748, 0.008230912208557128, 0.008240415573120117, 0.00832966423034668, 0.008288831710815429, 0.008226592063903809, 0.008183296203613282, 0.008222496032714844, 0.008225567817687988, 0.008191871643066406, 0.008248576164245605, 0.008237728118896484, 0.008182944297790528, 0.008295359611511231, 0.008237024307250977, 0.008167455673217774, 0.00849824047088623, 0.008292415618896484, 0.008179679870605468, 0.008225119590759278, 0.008239680290222168, 0.008158528327941894, 0.008139455795288086, 0.008267680168151855, 0.008185088157653808, 0.008196928024291993, 0.00834335994720459, 0.00823136043548584, 0.008173343658447265, 0.008167424201965333, 0.008159232139587403, 0.008205504417419433, 0.008210687637329102, 0.00819871997833252, 0.008225919723510743, 0.00823203182220459, 0.008271519660949706, 0.008267744064331055, 0.008284095764160157, 0.008213024139404296, 0.007942143917083741, 0.008192288398742675, 0.008230496406555175, 0.008286335945129394, 0.008400896072387695, 0.00845142364501953, 0.008417920112609863, 0.008377856254577636, 0.008413663864135742, 0.008394816398620605, 0.008316927909851075, 0.008356160163879394, 0.00832639980316162, 0.00829689598083496, 0.008635552406311035, 0.00888697624206543, 0.00822492790222168, 0.008241503715515137, 0.008276960372924805, 0.008337120056152343, 0.0083538236618042, 0.008307647705078126, 0.008228863716125488, 0.008382687568664551, 0.008320128440856934, 0.008270496368408204, 0.008234880447387695, 0.008388447761535644, 0.008423168182373047, 0.008247424125671386, 0.00825590419769287, 0.008261119842529297, 0.00907315158843994, 0.008292032241821288, 0.00822544002532959, 0.00832271957397461, 0.008311039924621582, 0.008208224296569824, 0.008355744361877441, 0.008235008239746093, 0.008254879951477051, 0.008202848434448242, 0.008315135955810547, 0.008265472412109376, 0.008322943687438964, 0.008255616188049316, 0.008236639976501465, 0.008382880210876464, 0.008327008247375488, 0.008298656463623048, 0.008335359573364258, 0.008224767684936523, 0.008308544158935546, 0.008208576202392579, 0.008265407562255859, 0.008260095596313476, 0.008293888092041016, 0.008313152313232422, 0.008429568290710449, 0.008482815742492676, 0.008990240097045899, 0.008329567909240722, 0.008439935684204102]",tokens/s,122.08904669576442,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,dbrx,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1234, in __init__ self.transformer = DbrxModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1007, in __init__ self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1007, in self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 787, in __init__ self.ffn = DbrxFFN(config=config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 764, in __init__ self.experts = DbrxExperts( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 703, in __init__ self.mlp = DbrxExpertGLU( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 681, in __init__ self.w1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.97 GiB. GPU 0 has a total capacity of 14.74 GiB of which 1.17 GiB is free. Process 110635 has 13.57 GiB memory in use. Of the allocated memory 13.45 GiB is allocated by PyTorch, and 1.36 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,781.959168,1133.44512,0.0,738.197504,715.772928,s,1,7.1385732421875,7.1385732421875,0.0,7.1385732421875,7.1385732421875,7.1385732421875,7.1385732421875,[7.1385732421875],,kWh,3.0771318083149403e-06,3.3236041878850374e-07,9.727785559923707e-07,4.382270783095815e-06,,MB,1231.417344,1175.38816,0.0,767.557632,723.637248,s,11,0.1881715850830078,0.017106507734818897,0.00021070095363948937,0.01708678436279297,0.017403936386108397,0.01743947219848633,0.017467900848388673,"[0.01709846305847168, 0.017403936386108397, 0.01708678436279297, 0.01703126335144043, 0.017475008010864258, 0.017203168869018556, 0.01681648063659668, 0.016903776168823242, 0.01689788818359375, 0.017326175689697267, 0.016928640365600586]",tokens/s,14965.064989795255,kWh,5.02287555421702e-07,5.539292336322952e-08,3.3192462966265027e-07,8.896051084475817e-07,tokens/kWh,287768131.6901794,MB,1264.017408,1215.234048,0.0,807.40352,735.775744,s,11,10.490889038085937,0.95371718528054,0.003998828024129619,0.9527057495117187,0.9571828002929688,0.9605534057617188,0.9632498901367188,"[0.954315185546875, 0.952645751953125, 0.9509779052734375, 0.9478515625, 0.9639240112304688, 0.9527057495117187, 0.954770751953125, 0.9539635009765625, 0.9502321166992187, 0.9523197021484375, 0.9571828002929688]",tokens/s,66.0573186394542,kWh,2.773411667791219e-05,3.058641454160931e-06,1.3192076088519415e-05,4.398483422059255e-05,tokens/kWh,1432311.8664956805,,s,693,10.485052336692819,0.015129945651793377,0.00030938632956023314,0.015063072204589844,0.015295583724975586,0.015474534225463866,0.016191924057006837,"[0.015158143997192383, 0.015160767555236817, 0.01509228801727295, 0.015135040283203125, 0.014992447853088378, 0.014920543670654297, 0.015034144401550292, 0.015200160026550292, 0.015022496223449706, 0.015022111892700194, 0.015036288261413575, 0.01500870418548584, 0.014977888107299804, 0.015134719848632813, 0.015341504096984863, 0.01516988754272461, 0.01514367961883545, 0.015064224243164063, 0.015179583549499512, 0.016235584259033202, 0.01530735969543457, 0.015391072273254395, 0.015140064239501953, 0.015057696342468261, 0.01496678352355957, 0.014981120109558106, 0.015073280334472656, 0.015036479949951172, 0.015378368377685548, 0.015126527786254883, 0.015291872024536133, 0.01531334400177002, 0.015284543991088867, 0.015159071922302246, 0.015224800109863282, 0.015071264266967773, 0.015159232139587402, 0.015118399620056152, 0.01498646354675293, 0.015084256172180175, 0.015111455917358399, 0.015245183944702149, 0.015029151916503907, 0.014937631607055664, 0.015008128166198731, 0.014991135597229003, 0.015051263809204102, 0.015073087692260742, 0.015049823760986328, 0.01505743980407715, 0.015050559997558595, 0.015046879768371582, 0.015024191856384277, 0.0150797119140625, 0.015725631713867188, 0.015634655952453613, 0.015102047920227051, 0.015006015777587891, 0.015083328247070312, 0.01526364803314209, 0.015073439598083497, 0.014975520133972168, 0.015009440422058106, 0.014962528228759766, 0.015093791961669921, 0.015105664253234863, 0.015136287689208985, 0.014959424018859864, 0.014966303825378419, 0.015112832069396972, 0.01507532787322998, 0.014938112258911132, 0.015006879806518554, 0.015076160430908203, 0.014997823715209961, 0.01490937614440918, 0.015044735908508302, 0.015056703567504883, 0.015103839874267578, 0.015089664459228515, 0.014984736442565918, 0.0151146240234375, 0.01510211181640625, 0.015132063865661622, 0.01497993564605713, 0.015122112274169921, 0.015433728218078613, 0.015218688011169433, 0.015245087623596191, 0.01515503978729248, 0.015607551574707031, 0.015252096176147461, 0.015094079971313477, 0.015288224220275879, 0.014999327659606933, 0.01501968002319336, 0.01507545566558838, 0.015075839996337891, 0.015001312255859375, 0.01502723217010498, 0.015166432380676269, 0.015186240196228027, 0.015152383804321289, 0.015102016448974609, 0.015140895843505859, 0.015071583747863769, 0.015187935829162598, 0.015126720428466797, 0.01509552001953125, 0.015155136108398437, 0.015072511672973634, 0.015124896049499511, 0.015076895713806153, 0.01502883243560791, 0.01503446388244629, 0.01502239990234375, 0.015048447608947755, 0.015021568298339843, 0.015082240104675293, 0.015122112274169921, 0.015811967849731445, 0.015090847969055176, 0.01508899211883545, 0.015129023551940918, 0.01518950366973877, 0.015226752281188964, 0.014960320472717285, 0.015089759826660156, 0.015531935691833497, 0.015046751976013184, 0.015132672309875488, 0.014978912353515625, 0.015029888153076171, 0.01502467155456543, 0.015062432289123535, 0.015083168029785156, 0.015211008071899413, 0.015057503700256348, 0.015066975593566895, 0.015089344024658204, 0.015026495933532715, 0.015007200241088868, 0.01496448040008545, 0.015014687538146972, 0.015034687995910645, 0.015158975601196289, 0.0150217924118042, 0.01512224006652832, 0.015038368225097656, 0.014950336456298828, 0.014967488288879395, 0.0150447998046875, 0.015021951675415039, 0.015038335800170898, 0.014992959976196289, 0.015290719985961914, 0.01522697639465332, 0.015116607666015625, 0.01514463996887207, 0.014979328155517578, 0.01504640007019043, 0.01498691177368164, 0.014930144309997558, 0.0151778564453125, 0.015038463592529297, 0.015075008392333984, 0.015065535545349121, 0.015020159721374512, 0.015164992332458497, 0.015216863632202149, 0.014995264053344727, 0.015009440422058106, 0.0149900484085083, 0.015177408218383788, 0.015132767677307129, 0.014956864356994629, 0.014988672256469727, 0.015058303833007812, 0.015107328414916993, 0.014926527976989746, 0.015174655914306641, 0.01507532787322998, 0.015087936401367187, 0.014959903717041015, 0.015038880348205566, 0.015396160125732422, 0.015750176429748537, 0.015191328048706055, 0.015200608253479004, 0.01505401611328125, 0.015035200119018554, 0.014995327949523926, 0.015188096046447754, 0.015133760452270507, 0.015010656356811524, 0.014949760437011718, 0.014971424102783203, 0.014989503860473633, 0.015011839866638184, 0.014919679641723632, 0.014944576263427734, 0.015118111610412597, 0.014960543632507324, 0.014980480194091797, 0.015100543975830077, 0.014975263595581054, 0.015017696380615234, 0.014954496383666992, 0.01500879955291748, 0.015092703819274902, 0.015019968032836914, 0.014981184005737305, 0.015007743835449219, 0.01500175952911377, 0.015008607864379882, 0.014920703887939453, 0.014931072235107421, 0.015004544258117676, 0.015037983894348144, 0.015071136474609375, 0.015029952049255372, 0.015057791709899902, 0.01517520046234131, 0.015235136032104492, 0.01502239990234375, 0.015151071548461913, 0.015108160018920899, 0.01506719970703125, 0.014941760063171387, 0.015056960105895996, 0.015033727645874023, 0.0150632963180542, 0.014949119567871094, 0.014994879722595215, 0.015018464088439942, 0.015048800468444824, 0.014954208374023437, 0.014987551689147949, 0.01499135971069336, 0.015134079933166504, 0.01496777629852295, 0.015124159812927246, 0.015187935829162598, 0.015341567993164062, 0.01505292797088623, 0.01504038429260254, 0.015024127960205079, 0.015031488418579101, 0.014987168312072753, 0.014924351692199706, 0.015072832107543946, 0.015156000137329102, 0.015111552238464356, 0.015336192131042481, 0.018846527099609375, 0.01590771198272705, 0.015322912216186523, 0.01526416015625, 0.015532992362976073, 0.015196319580078124, 0.015106783866882325, 0.015070655822753905, 0.014969568252563476, 0.015183775901794434, 0.015121439933776855, 0.015270751953125, 0.01498528003692627, 0.015074624061584472, 0.01505292797088623, 0.015036160469055176, 0.015031295776367188, 0.014999263763427735, 0.01508672046661377, 0.015059935569763183, 0.015126208305358886, 0.014973440170288087, 0.015047616004943847, 0.015268735885620117, 0.015235072135925292, 0.015028223991394044, 0.015026176452636719, 0.014979071617126465, 0.015036064147949219, 0.01498470401763916, 0.015106911659240723, 0.015032447814941407, 0.015034367561340332, 0.015125568389892579, 0.015033151626586914, 0.015166687965393066, 0.015235872268676757, 0.015298879623413086, 0.015065055847167969, 0.015210528373718262, 0.0152194242477417, 0.015260767936706544, 0.015280223846435547, 0.015265215873718261, 0.0151309757232666, 0.015201279640197754, 0.01510268783569336, 0.016183584213256837, 0.017989248275756837, 0.015349311828613281, 0.016188127517700195, 0.015286368370056152, 0.015290495872497558, 0.015273983955383302, 0.015079296112060547, 0.015240351676940917, 0.015108256340026856, 0.01512441635131836, 0.015109888076782227, 0.015053824424743652, 0.015056639671325684, 0.015355903625488282, 0.015106047630310059, 0.015050751686096191, 0.015042559623718262, 0.015039648056030273, 0.0149617280960083, 0.015052576065063477, 0.015336864471435547, 0.015056480407714843, 0.014959199905395508, 0.014969183921813964, 0.015028096199035645, 0.014983360290527343, 0.015001919746398926, 0.01495740795135498, 0.015024991989135742, 0.01502012825012207, 0.014964544296264648, 0.01609942436218262, 0.017424671173095704, 0.015140576362609863, 0.015079744338989258, 0.015117759704589845, 0.01500595188140869, 0.015021727561950684, 0.014897279739379883, 0.014952896118164062, 0.015015711784362793, 0.014997504234313964, 0.01502444839477539, 0.015017151832580566, 0.015024160385131836, 0.01498793601989746, 0.015074655532836915, 0.015004128456115722, 0.014982624053955078, 0.01498483180999756, 0.015077343940734863, 0.014970047950744629, 0.015113823890686036, 0.015030431747436523, 0.015230303764343261, 0.015073951721191406, 0.015059167861938477, 0.015106111526489259, 0.015062751770019532, 0.014985535621643066, 0.01507868766784668, 0.015122879981994629, 0.01504252815246582, 0.015091584205627442, 0.014992959976196289, 0.015177760124206543, 0.015064736366271973, 0.01505743980407715, 0.015019935607910156, 0.014987551689147949, 0.015114463806152344, 0.01512831974029541, 0.015167424201965332, 0.015070976257324219, 0.01564022445678711, 0.0149717435836792, 0.014871968269348144, 0.015302751541137695, 0.014946368217468262, 0.015386719703674317, 0.015258079528808593, 0.015245311737060547, 0.01581593608856201, 0.01515392017364502, 0.0156428804397583, 0.015529696464538573, 0.015111904144287109, 0.015018272399902343, 0.014999584197998047, 0.01589241600036621, 0.017346176147460937, 0.015237567901611328, 0.015093759536743164, 0.015070719718933106, 0.015086079597473144, 0.015087615966796876, 0.014990495681762696, 0.014895456314086914, 0.01496348762512207, 0.015092896461486817, 0.0150513277053833, 0.014929920196533204, 0.014997759819030761, 0.015157183647155762, 0.015621567726135254, 0.01497270393371582, 0.015337375640869141, 0.01507744026184082, 0.015164159774780273, 0.015091584205627442, 0.014905344009399414, 0.014995455741882324, 0.015071231842041016, 0.014993408203125, 0.014974559783935547, 0.01495248031616211, 0.015015616416931152, 0.015062911987304688, 0.014969951629638672, 0.015029984474182129, 0.015023776054382324, 0.015036767959594726, 0.015193568229675294, 0.015089823722839355, 0.015018367767333984, 0.01510755157470703, 0.014996352195739747, 0.014943903923034667, 0.01504252815246582, 0.015036447525024414, 0.015050592422485352, 0.014999711990356445, 0.015107392311096191, 0.015049440383911133, 0.01500598430633545, 0.014998527526855468, 0.01503711986541748, 0.015071231842041016, 0.015017951965332031, 0.014860159873962402, 0.014988544464111329, 0.015012351989746094, 0.014995840072631836, 0.015050784111022949, 0.014884927749633788, 0.01545206356048584, 0.015120160102844239, 0.01510217571258545, 0.014987039566040038, 0.015136159896850587, 0.015187935829162598, 0.01518671989440918, 0.015072511672973634, 0.014933055877685546, 0.014982912063598633, 0.01503446388244629, 0.01504041576385498, 0.014971263885498047, 0.015017087936401368, 0.018297119140625, 0.016107744216918945, 0.015261568069458008, 0.015062496185302735, 0.015348383903503418, 0.015134559631347657, 0.014968735694885254, 0.014964991569519043, 0.01491744041442871, 0.014974176406860351, 0.015064352035522461, 0.014953280448913574, 0.015034527778625488, 0.015057279586791992, 0.015142751693725585, 0.015040800094604493, 0.014948575973510743, 0.015054847717285156, 0.015031968116760254, 0.015012191772460938, 0.015034367561340332, 0.015007743835449219, 0.014980287551879882, 0.014967616081237794, 0.015019488334655762, 0.014973471641540528, 0.014945792198181153, 0.014966303825378419, 0.014969504356384278, 0.016465248107910155, 0.01526028823852539, 0.015140192031860351, 0.015043807983398437, 0.015116064071655274, 0.015012191772460938, 0.015058272361755371, 0.015126848220825195, 0.014986751556396484, 0.014960576057434082, 0.014989184379577638, 0.015018783569335937, 0.01502400016784668, 0.014950400352478027, 0.01490614414215088, 0.01502780818939209, 0.014961055755615234, 0.014944255828857422, 0.014925824165344239, 0.01512054443359375, 0.015136544227600097, 0.015052864074707031, 0.015073280334472656, 0.01524499225616455, 0.015365983963012695, 0.015182080268859864, 0.01537660789489746, 0.015980607986450197, 0.015167424201965332, 0.015011775970458984, 0.015079584121704102, 0.015127679824829102, 0.015067808151245117, 0.015021247863769531, 0.01500051212310791, 0.015017151832580566, 0.01496121597290039, 0.014946559906005859, 0.014946240425109864, 0.014993151664733887, 0.014938431739807129, 0.014942079544067384, 0.014958751678466798, 0.01495043182373047, 0.01584067153930664, 0.015036416053771973, 0.015024288177490235, 0.015097984313964844, 0.014974720001220703, 0.01496729564666748, 0.014927871704101562, 0.015056351661682128, 0.014959136009216308, 0.015060223579406739, 0.014977567672729493, 0.015091936111450195, 0.015051967620849609, 0.015002431869506836, 0.01490124797821045, 0.0151244478225708, 0.01507753562927246, 0.015044192314147949, 0.014940447807312011, 0.014970687866210938, 0.014979488372802734, 0.01499283218383789, 0.015190431594848633, 0.014960672378540039, 0.01506492805480957, 0.015106111526489259, 0.015054207801818847, 0.015010175704956054, 0.015075008392333984, 0.015091551780700683, 0.015540960311889649, 0.015063039779663086, 0.015032511711120605, 0.014864640235900879, 0.015216287612915038, 0.015099295616149902, 0.015143872261047363, 0.014981120109558106, 0.014970879554748535, 0.01502950382232666, 0.015453184127807617, 0.015087488174438477, 0.014909631729125976, 0.015046336174011231, 0.015370240211486816, 0.015325311660766602, 0.01508243179321289, 0.015219679832458496, 0.015545503616333008, 0.015127615928649902, 0.015063072204589844, 0.015267552375793457, 0.01499123191833496, 0.015025664329528808, 0.01515715217590332, 0.015071231842041016, 0.014971615791320801, 0.015034175872802735, 0.015526080131530761, 0.01506067180633545, 0.014993791580200195, 0.015001631736755372, 0.015046719551086427, 0.0150218563079834, 0.014996576309204101, 0.014922719955444336, 0.01501625633239746, 0.015104703903198242, 0.015238143920898438, 0.01552995204925537, 0.015030207633972168, 0.01503651237487793, 0.015067135810852051, 0.014987263679504394, 0.015202303886413575, 0.015114591598510743, 0.015004480361938476, 0.014936896324157714, 0.0148439359664917, 0.014987199783325196, 0.015220543861389161, 0.015188575744628906, 0.015169183731079101, 0.015122528076171876, 0.015046784400939942, 0.015072832107543946, 0.014919903755187989, 0.014984319686889649, 0.015230015754699707, 0.01514249610900879, 0.015036640167236328, 0.014948543548583984, 0.015249216079711914, 0.015224831581115723, 0.015085536003112793, 0.015410367965698241, 0.014960639953613282, 0.01502780818939209, 0.014942624092102052, 0.014995552062988282, 0.015161312103271485, 0.014961600303649902, 0.015021120071411133, 0.015071167945861816, 0.015091520309448242, 0.015522239685058593, 0.015174752235412597, 0.015205023765563964, 0.01501363182067871, 0.01512399959564209, 0.015503135681152344, 0.015286239624023437, 0.01520259189605713, 0.015810367584228515, 0.015500127792358398, 0.015138848304748535, 0.015119872093200683, 0.014989279747009277, 0.01505452823638916, 0.015160096168518067, 0.015396927833557129, 0.015189632415771485, 0.015327615737915039, 0.01502940845489502, 0.015215456008911133, 0.01518182373046875, 0.015362048149108886, 0.015303775787353516, 0.015137791633605957, 0.015156479835510253, 0.015063455581665039, 0.014944031715393066, 0.014954943656921387, 0.015364095687866211, 0.015216511726379394, 0.015173855781555176, 0.015066559791564942, 0.01515283203125, 0.015141695976257323, 0.01529651165008545, 0.015349760055541992, 0.015170720100402832, 0.015184736251831055, 0.015280256271362305, 0.015310720443725586, 0.015138112068176269, 0.015362751960754395, 0.01528831958770752, 0.015168800354003906, 0.01513327980041504, 0.015122400283813477, 0.015044095993041993, 0.015026847839355468, 0.015164735794067383, 0.015180480003356934, 0.015066816329956054, 0.01514521598815918, 0.015288384437561035, 0.01545747184753418]",tokens/s,66.09409068706525,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 634, in __init__ self.attention = GPT_NEOX_ATTENTION_CLASSES[config._attn_implementation](config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 102, in __init__ self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 150.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 132.12 MiB is free. Process 40507 has 14.61 GiB memory in use. Of the allocated memory 14.47 GiB is allocated by PyTorch, and 21.89 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt2,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,837.287936,14689.435648,0.0,14294.188032,14284.158464,s,1,7.4896943359375,7.4896943359375,0.0,7.4896943359375,7.4896943359375,7.4896943359375,7.4896943359375,[7.4896943359375],,kWh,1.4267168679187611e-05,1.560477292521457e-06,7.197227980010323e-06,2.3024873951719392e-05,,MB,1159.585792,14995.61984,0.0,14587.789312,14512.892416,s,10,2.1156253356933594,0.21156253356933594,0.0047781127013005464,0.21339472198486328,0.21463478698730468,0.2157583038330078,0.2166571173095703,"[0.198820068359375, 0.21002482604980469, 0.20845228576660157, 0.21333978271484375, 0.21344966125488282, 0.21438511657714843, 0.2128421173095703, 0.21688182067871092, 0.2136397705078125, 0.21378988647460936]",tokens/s,1210.0441211444486,kWh,6.3592148394028245e-06,7.012992785076774e-07,4.21556496665201e-06,1.1276079084562512e-05,tokens/kWh,22702926.973124564,MB,1182.142464,15100.47744,0.0,14692.646912,14646.153216,s,10,43.51311914062501,4.351311914062501,0.006574783603022592,4.351512939453125,4.359264599609375,4.360290502929688,4.361111225585938,"[4.33798828125, 4.3467451171875, 4.3467138671875, 4.35394970703125, 4.35903662109375, 4.35664697265625, 4.36131640625, 4.350025390625, 4.3476962890625, 4.35300048828125]",tokens/s,14.47839209053196,kWh,0.00012701867365351295,1.4010532308286438e-05,8.433970032194869e-05,0.00022536890628374807,tokens/kWh,279541.6680980853,,s,630,43.509153587341366,0.0690621485513354,0.0005463833746282887,0.06900400161743164,0.06953564147949219,0.06970079917907715,0.07210129539489747,"[0.07258521270751953, 0.06911984252929687, 0.0683496322631836, 0.06819667053222657, 0.0684606704711914, 0.0682718734741211, 0.06827760314941406, 0.0684728012084961, 0.06824038696289063, 0.06830226898193359, 0.06852806091308594, 0.06832998657226562, 0.06824969482421875, 0.06847283172607421, 0.06864662170410156, 0.06875552368164063, 0.06874960327148437, 0.06874476623535156, 0.06857766723632812, 0.06848863983154296, 0.06853004455566407, 0.06851612854003906, 0.06860022735595703, 0.06840697479248047, 0.06888070678710938, 0.06847923278808593, 0.06859478759765625, 0.06850012969970704, 0.06882118225097657, 0.06887612915039062, 0.06887369537353516, 0.06878873443603516, 0.06865853118896484, 0.0689179229736328, 0.06872064208984376, 0.06883676910400391, 0.06883388519287109, 0.06876096343994141, 0.06901209259033203, 0.06890393829345703, 0.06879676818847656, 0.06892726135253906, 0.06908956909179688, 0.06896256256103515, 0.06917769622802734, 0.06915641784667968, 0.06898531341552734, 0.06902777862548828, 0.06900534057617187, 0.06899001312255859, 0.0690060806274414, 0.06899321746826172, 0.06906620788574219, 0.06912464141845703, 0.0690802230834961, 0.06911430358886719, 0.06930409240722656, 0.06935616302490234, 0.069212158203125, 0.06920588684082031, 0.06909964752197266, 0.06915299224853516, 0.0694188461303711, 0.07203292846679688, 0.06919577789306641, 0.06860800170898437, 0.06844585418701171, 0.06844214630126953, 0.06841999816894531, 0.06843897247314454, 0.06843244934082031, 0.06820735931396485, 0.06861775970458985, 0.06832550048828125, 0.06852352142333984, 0.06844822692871094, 0.06868860626220703, 0.06915782165527344, 0.06906355285644532, 0.06898073577880859, 0.06910140991210938, 0.06886147308349609, 0.06884153747558594, 0.0686370849609375, 0.06852828979492187, 0.06879424285888672, 0.06846227264404296, 0.06878572845458984, 0.06905846405029296, 0.06874018859863282, 0.06907459259033204, 0.06926486206054687, 0.06904096221923828, 0.06891065979003906, 0.06924256134033203, 0.06876982116699219, 0.0689662094116211, 0.06892361450195313, 0.06891500854492187, 0.06879235076904297, 0.06863481903076171, 0.06878585815429687, 0.06879875183105469, 0.06882982635498047, 0.06886547088623046, 0.06926102447509766, 0.06913715362548828, 0.06922988891601563, 0.06908329772949219, 0.06908089447021484, 0.06925804901123046, 0.06916710662841796, 0.06939238739013671, 0.06890086364746094, 0.06916915130615234, 0.06901302337646484, 0.06894854736328125, 0.06946192169189454, 0.0690708465576172, 0.06947020721435547, 0.06950911712646485, 0.0691937255859375, 0.06998226928710938, 0.06947833251953126, 0.0695902099609375, 0.06928272247314453, 0.07193395233154297, 0.06917743682861328, 0.06852294158935547, 0.06883599853515625, 0.06840780639648437, 0.06867254638671876, 0.06846121978759766, 0.06855897521972656, 0.068523681640625, 0.06881260681152344, 0.06859961700439453, 0.06848313903808594, 0.06858812713623047, 0.06872998046875, 0.06949903869628907, 0.06934796905517578, 0.06880659484863282, 0.06860822296142578, 0.06840729522705079, 0.06855270385742188, 0.0685277099609375, 0.068470947265625, 0.06841545867919922, 0.06864530944824218, 0.06864185333251953, 0.06855500793457031, 0.06872930908203125, 0.06871363067626954, 0.068901123046875, 0.06947235107421874, 0.06902559661865235, 0.06902352142333984, 0.06885270690917969, 0.06883737945556641, 0.06871670532226562, 0.06896419525146484, 0.06873257446289062, 0.06912556457519531, 0.07008528137207032, 0.06873078155517579, 0.06881734466552734, 0.06898854064941407, 0.06909503936767578, 0.06944847869873047, 0.06961724853515625, 0.06898876953125, 0.06894992065429688, 0.06912873840332032, 0.06905606079101563, 0.069421630859375, 0.069119873046875, 0.06924057769775391, 0.06933324432373048, 0.06898489379882812, 0.0689697265625, 0.06883510589599609, 0.0690206069946289, 0.06953705596923829, 0.06995833587646484, 0.06930850982666016, 0.06919158172607422, 0.06910157012939454, 0.06945315551757812, 0.07210189056396485, 0.06947225952148438, 0.06875958251953125, 0.06831919860839844, 0.06831839752197266, 0.06841222381591797, 0.06851939392089844, 0.06883372497558594, 0.06869551849365234, 0.068880126953125, 0.06829740905761719, 0.06849350738525391, 0.0689392318725586, 0.06862681579589844, 0.06912220764160157, 0.06913433837890624, 0.06914252471923828, 0.06882099151611328, 0.06854783630371093, 0.06867775726318359, 0.06864768218994141, 0.06876338958740234, 0.06894127655029297, 0.06849932861328124, 0.06849520111083984, 0.06862726593017578, 0.06875337219238281, 0.06927110290527344, 0.06924931335449219, 0.06924697875976563, 0.06953794860839843, 0.06936914825439452, 0.06947235107421874, 0.06915312194824219, 0.06874940490722656, 0.06896044921875, 0.06890444946289062, 0.0693623046875, 0.07014940643310547, 0.06887702178955078, 0.06887833404541016, 0.06893977355957032, 0.06923375701904297, 0.06997062683105469, 0.06942313385009766, 0.06927788543701172, 0.06965657806396484, 0.06939260864257812, 0.06901023864746093, 0.06932784271240235, 0.06913027191162109, 0.06928598022460937, 0.06939225769042968, 0.06895961761474609, 0.06912882995605468, 0.06899712371826172, 0.06923673248291015, 0.06984060668945312, 0.0696568603515625, 0.06935552215576171, 0.06938777923583984, 0.06957011413574218, 0.06936396789550782, 0.07218790435791016, 0.06934937286376953, 0.06856841278076171, 0.06848310089111329, 0.0684303970336914, 0.06856636810302734, 0.06867449951171875, 0.06885968017578124, 0.06856716918945313, 0.06872013092041016, 0.06890534210205078, 0.06892134094238281, 0.0688046417236328, 0.06892518615722656, 0.06926716613769532, 0.06948095703125, 0.06938361358642578, 0.06893753814697266, 0.06864498901367187, 0.06864959716796876, 0.06873017883300782, 0.06867574310302735, 0.06936547088623046, 0.06878899383544922, 0.0687022705078125, 0.06856729888916016, 0.06907469177246094, 0.06948047637939453, 0.06935343933105469, 0.06959017944335938, 0.06951760101318359, 0.06901529693603516, 0.06941104125976562, 0.0688213119506836, 0.068847900390625, 0.06878617858886718, 0.069010498046875, 0.06945465850830078, 0.06910979461669922, 0.06894831848144531, 0.06884281921386719, 0.06949078369140625, 0.06950252532958984, 0.06938873291015625, 0.0694029769897461, 0.0692384033203125, 0.06931251525878906, 0.06961190032958985, 0.06958080291748046, 0.06939238739013671, 0.06950508880615235, 0.06946364593505859, 0.06921619415283203, 0.06900777435302734, 0.06914646148681641, 0.06961138916015625, 0.06953548431396485, 0.07015888214111328, 0.06960332489013672, 0.06912614440917969, 0.06954105377197266, 0.06985779571533203, 0.06950739288330078, 0.07209983825683594, 0.06916896057128906, 0.06849513244628906, 0.06857068634033203, 0.0685184326171875, 0.06871059417724609, 0.06898665618896484, 0.06856694030761719, 0.06848966217041015, 0.06862643432617188, 0.06918962860107422, 0.06866102600097657, 0.068609375, 0.0689438705444336, 0.06970681762695312, 0.06940643310546875, 0.06928336334228516, 0.06889859008789062, 0.06880131530761718, 0.06851583862304687, 0.0686913604736328, 0.0691226577758789, 0.06872268676757813, 0.06880255889892578, 0.06857500457763673, 0.06872406768798828, 0.06894297790527344, 0.06898252868652344, 0.06934102630615234, 0.06986972808837891, 0.06929612731933593, 0.06933708953857422, 0.06877318572998047, 0.06916780853271484, 0.06877184295654297, 0.06877597045898437, 0.06901942443847656, 0.06880480194091797, 0.06905840301513672, 0.06901190185546875, 0.06912790679931641, 0.06932892608642578, 0.06959718322753906, 0.06979373168945313, 0.06948067474365234, 0.06926233673095702, 0.06967174530029296, 0.06935942077636718, 0.06891334533691407, 0.06893977355957032, 0.06942720031738281, 0.06931199645996093, 0.06901811218261719, 0.06908236694335937, 0.06926988983154297, 0.06952566528320313, 0.06967874908447266, 0.06972473907470703, 0.0694205093383789, 0.06924931335449219, 0.06936716461181641, 0.06951213073730468, 0.07014988708496094, 0.07210371398925781, 0.06939670562744141, 0.06869606781005859, 0.06883328247070312, 0.06846380615234375, 0.06862726593017578, 0.06890716552734374, 0.0687511978149414, 0.06866051483154297, 0.06872959899902344, 0.0688333740234375, 0.06909939575195312, 0.06861561584472656, 0.06872940826416016, 0.06956646728515625, 0.06904994964599609, 0.06926284790039063, 0.06876060485839844, 0.06875945281982422, 0.06877696228027344, 0.06909836578369141, 0.06889686584472657, 0.06882713317871093, 0.06906674957275391, 0.06891725158691406, 0.06896422576904297, 0.06926051330566406, 0.0696278076171875, 0.0691435546875, 0.06939852905273437, 0.06967203521728516, 0.06924150085449218, 0.0690660171508789, 0.06904729461669921, 0.06904624176025391, 0.06887382507324219, 0.06931670379638671, 0.06922016143798829, 0.06904637145996094, 0.06950691223144531, 0.06945645141601563, 0.0693759994506836, 0.06954598236083985, 0.06931046295166016, 0.06948834991455079, 0.0696404800415039, 0.06928998565673829, 0.06938832092285156, 0.06949600219726562, 0.06947702026367188, 0.06942428588867187, 0.06933193969726563, 0.06949478149414062, 0.0694307861328125, 0.06919379425048829, 0.06925299072265625, 0.06945439910888672, 0.06962995147705078, 0.0695767059326172, 0.06966668701171876, 0.0696562271118164, 0.06934575653076172, 0.0691443862915039, 0.07213875579833984, 0.06927769470214844, 0.06873827362060547, 0.06869478607177734, 0.06858675384521484, 0.068552734375, 0.0691136932373047, 0.06899203491210938, 0.06880863952636719, 0.06870748901367188, 0.06850745391845703, 0.06854550170898438, 0.06864806365966797, 0.0687809295654297, 0.06926937866210937, 0.0690458526611328, 0.06880441284179688, 0.0688486099243164, 0.0687891845703125, 0.06859449768066406, 0.06857933044433594, 0.0688222427368164, 0.06890364837646484, 0.06865312194824219, 0.06865715026855469, 0.06855455780029297, 0.06863276672363282, 0.0689656982421875, 0.06932921600341797, 0.0691756820678711, 0.06864691162109375, 0.06900505828857421, 0.06882329559326172, 0.06893567657470703, 0.06884259033203124, 0.06910620880126953, 0.06886243438720703, 0.06883932495117187, 0.06887606048583984, 0.06911385345458984, 0.06906082916259766, 0.06924854278564453, 0.06930867004394531, 0.06958512115478516, 0.06919577789306641, 0.06897869110107421, 0.06917113494873046, 0.06912598419189453, 0.06891487884521484, 0.06890147399902344, 0.06912185668945313, 0.06906594848632812, 0.06913046264648437, 0.06896742248535156, 0.06918131256103516, 0.0694879379272461, 0.0697798080444336, 0.0697838363647461, 0.06913148498535156, 0.0690749740600586, 0.0689988784790039, 0.06952384185791016, 0.07013209533691406, 0.07213459014892579, 0.0691500473022461, 0.06855958557128906, 0.06860800170898437, 0.06835318756103516, 0.06856585693359375, 0.06845439910888672, 0.06848102569580078, 0.06839705657958985, 0.06851299285888672, 0.06839785766601562, 0.06854783630371093, 0.06849120330810547, 0.06880662536621093, 0.06949542236328125, 0.06931407928466797, 0.06893949127197266, 0.0685902099609375, 0.06840278625488282, 0.06834867095947265, 0.06881011199951172, 0.06868409729003906, 0.06859715270996093, 0.06859993743896485, 0.06864771270751953, 0.06851789093017578, 0.06871449279785156, 0.06875299072265625, 0.06898902130126953, 0.06978797149658203, 0.06911318206787109, 0.06900726318359375, 0.06903679656982421, 0.06877932739257812, 0.06884528350830078, 0.06915376281738281, 0.06966995239257813, 0.06906771087646485, 0.06887811279296875, 0.06893180847167969, 0.06900294494628906, 0.06915309143066406, 0.06917446136474609, 0.06947840118408204, 0.06940534210205078, 0.06937385559082031, 0.06910182189941406, 0.06899097442626953, 0.06900940704345702, 0.06920716857910156, 0.06940354919433593, 0.06946412658691406, 0.06892329406738282, 0.06885158538818359, 0.06882726287841796, 0.06902547454833985, 0.06933126068115235, 0.06947433471679687, 0.06938950347900391, 0.06922217559814453, 0.06967005157470703, 0.0694557113647461, 0.06923849487304687, 0.07238857269287109, 0.06957615661621094, 0.06867407989501953, 0.06846876525878906, 0.06876156616210938, 0.06865446472167969, 0.06875523376464844, 0.06870425415039062, 0.06840013122558594, 0.06836128234863281, 0.06920829010009766, 0.06871711730957031, 0.06846463775634766, 0.06882508850097656, 0.0694939193725586, 0.06966480255126953, 0.06904710388183594, 0.0686612777709961, 0.0684849624633789, 0.06853644561767579, 0.06894127655029297, 0.06853817749023437, 0.06861692810058594, 0.0684933090209961, 0.06860514831542969, 0.06875398254394531, 0.06891248321533203, 0.06882601928710938, 0.06928173065185547, 0.06976675415039063, 0.06939894104003906, 0.06906473541259765, 0.06881056213378907, 0.06919574737548828, 0.06888169860839843, 0.06892845153808594, 0.06891519927978515, 0.06879567718505859, 0.06899942779541016, 0.06894544219970702, 0.06923769378662109, 0.069165283203125, 0.06920521545410156, 0.0697636489868164, 0.06970780944824219, 0.06938985443115234, 0.06917369842529297, 0.06975897979736329, 0.06891292572021485, 0.06925539398193359, 0.06910157012939454, 0.06902579498291016, 0.06904627227783203, 0.06911590576171875, 0.06919497680664062, 0.06912489318847656, 0.06933299255371093, 0.06981017303466797, 0.06969344329833985, 0.06923878479003906, 0.06908889770507813, 0.06931289672851562, 0.06946931457519531]",tokens/s,14.479711694122551,, float16-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,815.181824,1326.383104,0.0,931.135488,917.648384,s,1,7.267576171875,7.267576171875,0.0,7.267576171875,7.267576171875,7.267576171875,7.267576171875,[7.267576171875],,kWh,9.731543208325394e-06,1.0588403921696833e-06,4.187781127998336e-06,1.4978164728493414e-05,,MB,1164.394496,1458.50368,0.0,1050.673152,1018.330112,s,10,0.2378742084503174,0.023787420845031736,0.00025684186075807625,0.023689487457275393,0.02418208408355713,0.024227458477020264,0.02426375799179077,"[0.024172000885009766, 0.023683807373046876, 0.02393600082397461, 0.023694143295288086, 0.023820640563964844, 0.023541439056396486, 0.023403263092041014, 0.0242728328704834, 0.023684831619262697, 0.02366524887084961]",tokens/s,10761.99061965427,kWh,6.842642028688759e-07,7.546128079848815e-08,4.5220111637936463e-07,1.2119266000467288e-06,tokens/kWh,211233914.65302378,MB,1198.395392,1475.280896,0.0,1067.450368,1032.767488,s,10,13.457886840820311,1.3457886840820312,0.017177029152594957,1.3504623413085937,1.359035498046875,1.360448779296875,1.361579404296875,"[1.35027099609375, 1.34962744140625, 1.358721435546875, 1.3506536865234375, 1.3226339111328125, 1.3043353271484375, 1.3483697509765624, 1.361862060546875, 1.3536444091796875, 1.357767822265625]",tokens/s,46.812698564910725,kWh,3.787052177546552e-05,4.176658680802899e-06,1.7827452396220437e-05,5.987463285248884e-05,tokens/kWh,1052198.5187819193,,s,630,13.451185438156136,0.021351087997073217,0.00045205151538563394,0.02138086414337158,0.021686100006103517,0.02196893768310547,0.022835756683349608,"[0.02106595230102539, 0.021346879959106446, 0.02127872085571289, 0.02129100799560547, 0.021303295135498047, 0.021448991775512696, 0.021298912048339842, 0.021391008377075197, 0.02154489517211914, 0.021416351318359374, 0.02126185607910156, 0.021357023239135742, 0.02118572807312012, 0.021412128448486327, 0.021381664276123046, 0.021553279876708985, 0.021544704437255858, 0.021479551315307616, 0.021571104049682616, 0.021453279495239258, 0.021335487365722657, 0.02129158401489258, 0.021364288330078127, 0.0213623046875, 0.021316415786743165, 0.021583871841430666, 0.021978784561157226, 0.024228288650512696, 0.021284576416015624, 0.0214420166015625, 0.021383007049560546, 0.021314111709594727, 0.021451072692871095, 0.021391199111938475, 0.021065536499023436, 0.021246015548706056, 0.02138947105407715, 0.021878751754760742, 0.022534303665161133, 0.02166988754272461, 0.02131385612487793, 0.021712575912475586, 0.021139455795288087, 0.021212736129760743, 0.021174623489379884, 0.021401472091674804, 0.021395679473876952, 0.021402751922607422, 0.021304191589355467, 0.021182464599609374, 0.02115488052368164, 0.021255104064941407, 0.02123980712890625, 0.02138051223754883, 0.021162080764770507, 0.021642847061157225, 0.021600288391113283, 0.021261184692382813, 0.020927999496459963, 0.021076480865478517, 0.021190656661987304, 0.021192607879638673, 0.021180511474609375, 0.021114208221435546, 0.02127052879333496, 0.021258079528808593, 0.021300031661987306, 0.021374975204467773, 0.02131113624572754, 0.021439903259277342, 0.02142201614379883, 0.02123673629760742, 0.0211661434173584, 0.021147136688232423, 0.021078208923339843, 0.021301504135131835, 0.021383167266845703, 0.02197248077392578, 0.021680992126464845, 0.021490495681762697, 0.021133344650268556, 0.02122960090637207, 0.02188934326171875, 0.021295040130615235, 0.022047264099121094, 0.021900320053100587, 0.021379903793334962, 0.021665824890136718, 0.02129462432861328, 0.02153926467895508, 0.021493120193481444, 0.021322719573974608, 0.021364255905151366, 0.021317920684814452, 0.021214496612548827, 0.021318368911743164, 0.021243904113769533, 0.021315584182739256, 0.02121660804748535, 0.021426847457885742, 0.021370880126953123, 0.02154297637939453, 0.021323423385620117, 0.02129897689819336, 0.021254623413085937, 0.021262208938598634, 0.021155168533325195, 0.02148137664794922, 0.021607648849487304, 0.02148137664794922, 0.021534143447875978, 0.021324127197265626, 0.022230976104736327, 0.021281919479370116, 0.021187519073486327, 0.021656736373901368, 0.02139411163330078, 0.021382495880126952, 0.021541919708251953, 0.02118771171569824, 0.021481472015380858, 0.02149443244934082, 0.021429759979248047, 0.02148953628540039, 0.021413759231567384, 0.02155388832092285, 0.021386079788208008, 0.021405023574829103, 0.02153251266479492, 0.021594816207885743, 0.022244735717773436, 0.02132044792175293, 0.021739168167114256, 0.021184864044189452, 0.021433759689331054, 0.02137763214111328, 0.02141606330871582, 0.021448575973510742, 0.021360992431640625, 0.021468832015991212, 0.021401599884033205, 0.02156870460510254, 0.02152876853942871, 0.02126630401611328, 0.021346368789672852, 0.02144291114807129, 0.021506399154663087, 0.02145894432067871, 0.021460384368896485, 0.021430879592895507, 0.022981760025024413, 0.022840192794799805, 0.021941471099853515, 0.021535295486450196, 0.021229440689086915, 0.02148918342590332, 0.021540800094604493, 0.02157043266296387, 0.021462400436401366, 0.021494047164916992, 0.021485919952392577, 0.02143846321105957, 0.02142617607116699, 0.02138710403442383, 0.0214880313873291, 0.02145635223388672, 0.02131177520751953, 0.021591903686523438, 0.021612287521362305, 0.021540256500244142, 0.021728256225585937, 0.022007104873657226, 0.021329631805419923, 0.021362752914428712, 0.021719968795776368, 0.021622047424316407, 0.0223874568939209, 0.02134422492980957, 0.021354496002197267, 0.021574687957763673, 0.021354496002197267, 0.02143491172790527, 0.021227392196655273, 0.02135856056213379, 0.022089567184448242, 0.02211408042907715, 0.021369823455810545, 0.021227519989013673, 0.021321216583251954, 0.020748287200927733, 0.021513599395751953, 0.021365503311157226, 0.02151849555969238, 0.021288671493530274, 0.021310848236083986, 0.02124982452392578, 0.02133625602722168, 0.021600927352905273, 0.021356544494628905, 0.02130534362792969, 0.02168627166748047, 0.021559295654296876, 0.02152239990234375, 0.021201183319091797, 0.021141248703002928, 0.021384672164916994, 0.02137280082702637, 0.02154697608947754, 0.02151807975769043, 0.021324735641479492, 0.0215285758972168, 0.02145715141296387, 0.02119059181213379, 0.021663040161132813, 0.02120863914489746, 0.021301984786987305, 0.021282560348510744, 0.0214552001953125, 0.021605855941772462, 0.021410655975341798, 0.021880640029907226, 0.02121436882019043, 0.022067583084106446, 0.021426624298095703, 0.021388511657714843, 0.021468255996704103, 0.021379968643188477, 0.021386016845703126, 0.02149718475341797, 0.02154159927368164, 0.021467552185058594, 0.021270111083984376, 0.021350400924682617, 0.021441919326782227, 0.021404287338256837, 0.021623968124389648, 0.021328832626342772, 0.021454751968383787, 0.021506048202514647, 0.021476736068725587, 0.02133465576171875, 0.021522335052490234, 0.021220735549926758, 0.021457696914672853, 0.02118547248840332, 0.021478431701660156, 0.02141302490234375, 0.021302080154418944, 0.021368671417236328, 0.022006111145019533, 0.021515903472900392, 0.021624319076538084, 0.020828351974487305, 0.021493343353271483, 0.021075679779052735, 0.021252031326293944, 0.021082944869995117, 0.021491680145263672, 0.021733152389526368, 0.021462944030761717, 0.02137273597717285, 0.0213275203704834, 0.021441152572631836, 0.021456895828247072, 0.02124310493469238, 0.021551616668701173, 0.021335424423217772, 0.021697471618652344, 0.023775199890136718, 0.02130454444885254, 0.021468992233276366, 0.02093507194519043, 0.020655712127685546, 0.020620256423950194, 0.021012479782104493, 0.021261600494384764, 0.02134931182861328, 0.020764448165893554, 0.02077471923828125, 0.020713727951049806, 0.020520383834838868, 0.020586751937866212, 0.020471807479858398, 0.020424959182739257, 0.020696224212646483, 0.02059766387939453, 0.020545055389404297, 0.02031407928466797, 0.020310464859008788, 0.02068889617919922, 0.020719615936279297, 0.020942848205566408, 0.020472991943359376, 0.020658016204833984, 0.020974592208862306, 0.020745471954345705, 0.020716287612915038, 0.020602880477905275, 0.02065017509460449, 0.020565824508666994, 0.02090188789367676, 0.020809024810791017, 0.02078611183166504, 0.02086444854736328, 0.020752288818359374, 0.02066473579406738, 0.020699136734008788, 0.02066761589050293, 0.020910879135131837, 0.020783103942871094, 0.021818368911743165, 0.020677631378173827, 0.02065999984741211, 0.021082624435424805, 0.021257951736450197, 0.02172492790222168, 0.020821247100830078, 0.020880384445190428, 0.020645631790161132, 0.020590848922729492, 0.020590591430664062, 0.020568031311035156, 0.02059267234802246, 0.020527423858642577, 0.020491968154907225, 0.020426496505737305, 0.020510944366455078, 0.02045737648010254, 0.020605056762695313, 0.020516864776611327, 0.020414464950561522, 0.020477535247802735, 0.020420703887939453, 0.02044960021972656, 0.02029974365234375, 0.020534719467163086, 0.02074435234069824, 0.020668352127075195, 0.02059110450744629, 0.02031820869445801, 0.02043903923034668, 0.020508447647094728, 0.020527135848999022, 0.020744384765625, 0.020473791122436524, 0.020556928634643555, 0.0208035831451416, 0.02079840087890625, 0.020965599060058595, 0.021144832611083984, 0.02111747169494629, 0.021149696350097655, 0.020932928085327148, 0.020670143127441407, 0.02060310363769531, 0.02060652732849121, 0.020713695526123045, 0.020610624313354493, 0.02048988723754883, 0.02049056053161621, 0.020848960876464845, 0.020555936813354492, 0.020686784744262696, 0.021489728927612306, 0.020854207992553712, 0.02084876823425293, 0.020559968948364257, 0.020574560165405275, 0.02048409652709961, 0.020622528076171875, 0.02087436866760254, 0.02090166473388672, 0.02086697578430176, 0.020725759506225586, 0.02073798370361328, 0.020895807266235352, 0.02106502342224121, 0.020947647094726563, 0.02070944023132324, 0.02120649528503418, 0.021178335189819337, 0.020889408111572267, 0.021060447692871093, 0.02107792091369629, 0.020899456024169923, 0.021325824737548828, 0.020973760604858397, 0.02100764846801758, 0.02105027198791504, 0.020940799713134766, 0.021175615310668944, 0.02108220863342285, 0.021234272003173828, 0.02112870407104492, 0.021393632888793944, 0.021290943145751952, 0.021424480438232422, 0.021429311752319335, 0.021461952209472657, 0.02155897521972656, 0.02169068717956543, 0.022055103302001954, 0.02168608093261719, 0.021540864944458008, 0.02150099182128906, 0.021605152130126953, 0.021299455642700197, 0.021950111389160157, 0.021512447357177736, 0.021747711181640626, 0.021994943618774413, 0.0215695686340332, 0.021791263580322264, 0.021604352951049805, 0.021482688903808594, 0.021674816131591796, 0.02161164855957031, 0.021610847473144533, 0.021563135147094726, 0.021501728057861328, 0.02143699264526367, 0.0212393913269043, 0.02121353530883789, 0.021434879302978514, 0.021405696868896484, 0.021284063339233397, 0.0213590087890625, 0.021309823989868165, 0.02123980712890625, 0.021471456527709962, 0.02123139190673828, 0.02129871940612793, 0.021580255508422852, 0.02162086486816406, 0.021403871536254882, 0.021153343200683593, 0.021407007217407226, 0.021504831314086915, 0.021606399536132814, 0.021475263595581055, 0.021507551193237304, 0.021364992141723632, 0.0214835205078125, 0.02177801513671875, 0.021333951950073243, 0.02133964729309082, 0.021389280319213867, 0.021443071365356444, 0.021328384399414063, 0.021381120681762695, 0.021364255905151366, 0.02137750434875488, 0.021313119888305664, 0.021379615783691405, 0.021594207763671876, 0.022573856353759764, 0.02155392074584961, 0.021964607238769532, 0.02141788864135742, 0.021598751068115235, 0.024227840423583984, 0.02147532844543457, 0.02142963218688965, 0.021602943420410158, 0.0213668155670166, 0.021561311721801757, 0.02130963134765625, 0.02147884750366211, 0.021606624603271483, 0.02142223930358887, 0.021512351989746093, 0.021364736557006835, 0.021245792388916017, 0.021326143264770506, 0.021402336120605468, 0.02168726348876953, 0.021461151123046876, 0.021763391494750976, 0.02152707290649414, 0.021442720413208008, 0.021391199111938475, 0.02149504089355469, 0.02154572868347168, 0.021428224563598632, 0.021444671630859374, 0.02137833595275879, 0.021508447647094725, 0.02149600028991699, 0.02219343948364258, 0.022824895858764647, 0.02147011184692383, 0.021545024871826173, 0.021876672744750976, 0.021566976547241212, 0.021443071365356444, 0.021389280319213867, 0.021638240814208985, 0.021348831176757812, 0.02166819190979004, 0.021849920272827148, 0.02139686393737793, 0.0225098876953125, 0.021695104598999024, 0.02182150459289551, 0.02127257537841797, 0.021372575759887696, 0.02145961570739746, 0.021460607528686525, 0.021435680389404296, 0.021480031967163086, 0.02154105567932129, 0.021358591079711914, 0.02142790412902832, 0.02150982475280762, 0.021633663177490235, 0.021597408294677736, 0.02147212791442871, 0.02136662483215332, 0.021671743392944337, 0.021250303268432618, 0.02146918487548828, 0.021140512466430665, 0.02132476806640625, 0.02144256019592285, 0.021383167266845703, 0.021319583892822267, 0.021460639953613282, 0.021373376846313477, 0.02156342315673828, 0.021513824462890626, 0.021205568313598634, 0.021806848526000976, 0.02136684799194336, 0.02162073516845703, 0.021503583908081055, 0.021327999114990233, 0.021514623641967774, 0.0216407356262207, 0.021850496292114257, 0.02136579132080078, 0.021385759353637696, 0.021430559158325195, 0.021307552337646484, 0.021348352432250976, 0.02207257652282715, 0.02133865547180176, 0.0216856632232666, 0.022333631515502928, 0.02155174446105957, 0.021573631286621094, 0.021394527435302735, 0.0214715518951416, 0.02161520004272461, 0.021547008514404296, 0.02161267280578613, 0.021473215103149413, 0.02154694366455078, 0.021431743621826174, 0.02127097511291504, 0.021207168579101564, 0.02140355110168457, 0.021423711776733398, 0.021343936920166017, 0.02140665626525879, 0.021526432037353514, 0.021302848815917968, 0.021459199905395507, 0.021001216888427734, 0.021385215759277345, 0.02149171257019043, 0.021695520401000975, 0.02148387145996094, 0.022984895706176758, 0.021383392333984376, 0.021241472244262694, 0.02143270492553711, 0.021274368286132814, 0.021237279891967772, 0.021242111206054688, 0.02128950309753418, 0.02125446319580078, 0.021380607604980468, 0.021410144805908204, 0.021505088806152345, 0.02137343978881836, 0.021258176803588866, 0.021352960586547853, 0.02156105613708496, 0.02148944091796875, 0.021532447814941406, 0.021850847244262697, 0.021372671127319335, 0.021332223892211913, 0.022409503936767577, 0.021591487884521483, 0.02123196792602539, 0.021325183868408204, 0.02129158401489258, 0.02146713638305664, 0.02127257537841797, 0.02138252830505371, 0.02126464080810547, 0.021284543991088867, 0.021994176864624022, 0.02148316764831543, 0.021433919906616212, 0.02138995170593262, 0.02146905517578125, 0.02152272033691406, 0.021456703186035157, 0.02143244743347168, 0.02259974479675293, 0.022409183502197266, 0.022222496032714843, 0.021505760192871093, 0.02146784019470215, 0.021335744857788087, 0.021192991256713867, 0.021305376052856446, 0.021759040832519533, 0.021418912887573242, 0.021444608688354492, 0.0214936637878418, 0.021321119308471678, 0.02130400085449219, 0.021073919296264648, 0.021362464904785158, 0.021215679168701172, 0.02462211227416992, 0.021505023956298826]",tokens/s,46.836020728174546,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,838.36928,9637.39648,0.0,9242.148864,8603.568128,s,1,7.5771103515625,7.5771103515625,0.0,7.5771103515625,7.5771103515625,7.5771103515625,7.5771103515625,[7.5771103515625],,kWh,1.2212581470809407e-05,1.3398002122987354e-06,5.9325047460090374e-06,1.948488642911718e-05,,MB,1216.487424,9889.05472,0.0,9481.224192,8972.090368,s,10,1.0719497299194336,0.10719497299194336,0.008302012551692599,0.11059019088745117,0.11199024887084962,0.11226201972961426,0.11247943641662599,"[0.10413276672363281, 0.11084531402587891, 0.10690787506103516, 0.11083315277099609, 0.11034722900390626, 0.11118134307861328, 0.10990019226074219, 0.11253379058837891, 0.08333821105957032, 0.1119298553466797]",tokens/s,2388.171691775515,kWh,3.3949029875972787e-06,3.7433836348732785e-07,2.2527537401861285e-06,6.021995091270735e-06,tokens/kWh,42510828.408194534,MB,1244.884992,9893.249024,0.0,9485.418496,8972.092928,s,10,24.113931396484375,2.4113931396484376,0.0033347543767851566,2.411421142578125,2.4156163574218747,2.4166848876953124,2.4175397119140625,"[2.406288818359375, 2.40878857421875, 2.411273681640625, 2.406954345703125, 2.41148291015625, 2.412856201171875, 2.411359375, 2.41537890625, 2.411795166015625, 2.41775341796875]",tokens/s,26.12597629318333,kWh,7.044531578990048e-05,7.770005280472887e-06,4.676936881081512e-05,0.0001249846898811885,tokens/kWh,504061.7379607721,,s,630,24.110681304931674,0.038270922706240704,0.0008782322904293862,0.03810611152648926,0.03860705413818359,0.03883380527496338,0.04386638484954834,"[0.04344163131713867, 0.03990086364746094, 0.03855628967285156, 0.038123390197753904, 0.03779580688476562, 0.03776681518554687, 0.03764499282836914, 0.03774457550048828, 0.03763347244262695, 0.037787296295166015, 0.03779804611206055, 0.03770825576782227, 0.03776956939697266, 0.037895584106445314, 0.037704288482666014, 0.03771360015869141, 0.03773443222045898, 0.03780624008178711, 0.03800179290771484, 0.03775743865966797, 0.03782447814941406, 0.037833248138427734, 0.037770721435546876, 0.03780230331420899, 0.038133983612060544, 0.0386899528503418, 0.03869168090820312, 0.03866624069213867, 0.038406143188476564, 0.03820697784423828, 0.037917182922363284, 0.03773952102661133, 0.03792588806152344, 0.03813369750976563, 0.03826646423339844, 0.03801545715332031, 0.03798992156982422, 0.038090431213378906, 0.03812432098388672, 0.03811459350585938, 0.038187744140625, 0.03824025726318359, 0.03788185501098633, 0.03928473663330078, 0.03786124801635742, 0.03809084701538086, 0.03799168014526367, 0.03794585418701172, 0.038320415496826174, 0.03808870315551758, 0.038282783508300784, 0.03838000106811523, 0.03863347244262695, 0.03860889434814453, 0.03859782409667969, 0.038529857635498044, 0.03821158218383789, 0.0379059829711914, 0.038162494659423826, 0.037953632354736325, 0.03805417633056641, 0.03805593490600586, 0.0380682258605957, 0.04390889739990234, 0.03971324920654297, 0.03872927856445312, 0.038076862335205075, 0.03775897598266602, 0.0377704963684082, 0.03778432083129883, 0.03791257476806641, 0.03793222427368164, 0.03827180862426758, 0.037850910186767575, 0.037694782257080076, 0.03772476959228516, 0.03781049728393555, 0.037781505584716796, 0.03811520004272461, 0.0379736328125, 0.03799091339111328, 0.037910526275634765, 0.037758430480957034, 0.037751327514648436, 0.03791820907592774, 0.03786393737792969, 0.03770556640625, 0.038459583282470705, 0.03836310577392578, 0.03826399993896484, 0.03842031860351563, 0.03825350570678711, 0.0383158073425293, 0.03794150543212891, 0.03809075164794922, 0.038069568634033206, 0.038202049255371094, 0.03831552124023437, 0.03814374542236328, 0.038228416442871095, 0.038031681060791016, 0.03806617736816406, 0.03789619064331055, 0.03790848159790039, 0.03806208038330078, 0.038324222564697266, 0.038340351104736325, 0.03784524917602539, 0.03795558547973633, 0.037969921112060545, 0.03797532653808594, 0.03799296188354492, 0.03820307159423828, 0.038447360992431644, 0.03876499176025391, 0.038854496002197265, 0.03846553421020508, 0.03823535919189453, 0.03832854461669922, 0.03810934448242188, 0.03809260940551758, 0.03854153442382813, 0.03883852767944336, 0.03807382583618164, 0.038261409759521484, 0.038088542938232425, 0.0468045768737793, 0.04062665557861328, 0.038690174102783206, 0.03782463836669922, 0.037985950469970706, 0.03812438583374023, 0.038061790466308594, 0.03796201705932617, 0.03796783828735351, 0.03765660858154297, 0.037697406768798826, 0.03789174270629883, 0.037742176055908204, 0.03782950210571289, 0.037904384613037106, 0.03765033721923828, 0.03793315124511719, 0.03793100738525391, 0.037720062255859374, 0.037787647247314454, 0.03810713577270508, 0.03825254440307617, 0.03788943862915039, 0.03799919891357422, 0.038076416015625, 0.03837055969238281, 0.038429439544677736, 0.03866995239257812, 0.038166175842285155, 0.03805667114257812, 0.03789158248901367, 0.03823462295532227, 0.03814153671264649, 0.03791689682006836, 0.03796604919433594, 0.03810464096069336, 0.03812598419189453, 0.03794112014770508, 0.03810508728027344, 0.03849843215942383, 0.03797401428222656, 0.03777536010742188, 0.03794729614257813, 0.03800870513916016, 0.037988319396972656, 0.0380951042175293, 0.03796713638305664, 0.03801971054077148, 0.038186496734619144, 0.03796847915649414, 0.03827302551269531, 0.03829555130004883, 0.03845939254760742, 0.03837747192382813, 0.038526912689208985, 0.038417793273925784, 0.038357505798339846, 0.03851887893676758, 0.03874211120605469, 0.038250495910644534, 0.03805593490600586, 0.03789139175415039, 0.03811196899414063, 0.04447507095336914, 0.03966265487670898, 0.03868764877319336, 0.03808585739135742, 0.03790099334716797, 0.03779593658447265, 0.03775827026367187, 0.03802758407592773, 0.03782060623168945, 0.03771104049682617, 0.0377017936706543, 0.03806499099731445, 0.037682464599609375, 0.03784777450561523, 0.03781756973266601, 0.037767967224121096, 0.03786051177978516, 0.03818083190917969, 0.038122367858886716, 0.03812102508544922, 0.03800928115844727, 0.03802659225463867, 0.03798492813110352, 0.037875614166259765, 0.0378488655090332, 0.03817824172973633, 0.038214271545410156, 0.038246654510498045, 0.03845465469360351, 0.038402687072753905, 0.0379266242980957, 0.03790415954589844, 0.037935169219970706, 0.03810070419311523, 0.038034015655517575, 0.03796758270263672, 0.038230430603027346, 0.03840108871459961, 0.03806902313232422, 0.03790383911132812, 0.037986526489257814, 0.038088382720947264, 0.038091552734375, 0.03803327941894531, 0.03807859039306641, 0.03808870315551758, 0.03839091110229492, 0.03808345413208008, 0.03794124984741211, 0.03821353530883789, 0.03833206558227539, 0.03822022247314453, 0.038338558197021484, 0.03851651382446289, 0.03842816162109375, 0.03852975845336914, 0.03815628814697265, 0.037916576385498044, 0.03790652847290039, 0.038122943878173825, 0.03804339218139648, 0.03822041702270508, 0.038162624359130856, 0.04376230239868164, 0.03968368148803711, 0.0383656005859375, 0.0380549430847168, 0.03799043273925781, 0.03784758377075195, 0.03777753448486328, 0.03763024139404297, 0.03788780975341797, 0.03775279998779297, 0.03777763366699219, 0.03775897598266602, 0.0377262077331543, 0.037768447875976566, 0.03790719985961914, 0.03786038589477539, 0.037999584197998044, 0.03805388641357422, 0.0380682258605957, 0.03818086242675781, 0.03788595199584961, 0.037986305236816405, 0.0380948486328125, 0.038131614685058594, 0.038338558197021484, 0.03903881454467773, 0.03902899169921875, 0.038316032409667966, 0.03828902435302734, 0.038271358489990234, 0.038126655578613285, 0.038028224945068356, 0.03790777587890625, 0.038085311889648435, 0.03830108642578125, 0.03842108917236328, 0.03794739151000977, 0.038034622192382815, 0.03790111923217773, 0.037986305236816405, 0.038122718811035156, 0.03820131301879883, 0.0381407356262207, 0.03804569625854492, 0.03784662246704101, 0.03815670394897461, 0.03812761688232422, 0.038166080474853516, 0.037981697082519535, 0.038167488098144534, 0.038225887298583984, 0.03861507034301758, 0.0389769287109375, 0.0387625617980957, 0.038843936920166015, 0.03836419296264648, 0.038381534576416014, 0.03835903930664063, 0.03828531265258789, 0.0382479362487793, 0.03836886215209961, 0.03831286239624023, 0.03849132919311524, 0.044175838470458986, 0.03992620849609375, 0.03837958526611328, 0.03801417541503906, 0.03811203384399414, 0.037894142150878905, 0.03779302215576172, 0.03779865646362305, 0.0380579833984375, 0.03824156951904297, 0.037870304107666015, 0.03819472122192383, 0.03803388977050781, 0.0380682258605957, 0.038004737854003906, 0.03803340911865234, 0.0381781120300293, 0.038218433380126954, 0.038316032409667966, 0.03788595199584961, 0.03809049606323242, 0.038039806365966794, 0.038040576934814455, 0.037993183135986326, 0.03829792022705078, 0.0387454719543457, 0.03862710571289062, 0.03836191940307617, 0.038257823944091794, 0.038394718170166015, 0.038065376281738283, 0.03788438415527344, 0.038226238250732424, 0.037822463989257815, 0.03806367874145508, 0.03813011169433594, 0.038125568389892575, 0.038284481048583986, 0.03798099136352539, 0.038029312133789066, 0.0380211181640625, 0.038125568389892575, 0.0380313606262207, 0.03829759979248047, 0.03801456069946289, 0.03792057418823242, 0.038037216186523434, 0.038198143005371096, 0.038117374420166016, 0.03817062377929688, 0.03831193542480469, 0.038376670837402344, 0.03879935836791992, 0.03885862350463867, 0.038613918304443356, 0.038430721282958984, 0.038221759796142576, 0.03830585479736328, 0.038268638610839845, 0.03809462356567383, 0.03805644989013672, 0.038109184265136715, 0.038449153900146485, 0.04441084671020508, 0.03985408020019531, 0.03848134231567383, 0.037970497131347654, 0.0378342399597168, 0.03787417602539062, 0.038096736907958985, 0.03808201599121094, 0.037695648193359375, 0.037810592651367186, 0.03783283233642578, 0.037770431518554685, 0.037826942443847655, 0.038334911346435546, 0.03800064086914062, 0.0383851203918457, 0.03796796798706055, 0.03775737762451172, 0.03802316665649414, 0.03806412887573242, 0.03793471908569336, 0.037889793395996095, 0.03784761428833008, 0.038039615631103516, 0.038141952514648435, 0.03843670272827148, 0.038469791412353516, 0.038502079010009765, 0.038326591491699216, 0.03824844741821289, 0.038182910919189454, 0.03808051300048828, 0.03824844741821289, 0.037961727142333986, 0.037918495178222655, 0.037991649627685545, 0.03834982299804687, 0.03807436752319336, 0.037904384613037106, 0.03811494445800781, 0.038349056243896486, 0.03792294311523438, 0.038299648284912106, 0.03787571334838867, 0.03802092742919922, 0.03821382522583008, 0.03803881454467774, 0.03793353652954102, 0.03806028747558594, 0.03834470367431641, 0.03837542343139649, 0.038335521697998046, 0.038585311889648435, 0.03833980941772461, 0.03839670562744141, 0.03845523071289063, 0.038413665771484376, 0.038447841644287106, 0.03828521728515625, 0.03837961578369141, 0.038563838958740236, 0.03826179122924805, 0.038388702392578126, 0.04575455856323242, 0.04010540771484375, 0.038629470825195314, 0.03806070327758789, 0.03787776184082031, 0.03807231903076172, 0.037748737335205076, 0.03782867050170898, 0.037957569122314454, 0.03783270263671875, 0.03788579177856445, 0.03774889755249024, 0.038072128295898434, 0.03791686248779297, 0.037793342590332034, 0.038154689788818356, 0.03767091369628906, 0.037867454528808596, 0.03785715103149414, 0.037873855590820314, 0.03808051300048828, 0.03801456069946289, 0.037891902923583985, 0.03821628952026367, 0.03853420639038086, 0.03838457489013672, 0.038438911437988284, 0.03874819183349609, 0.03888518524169922, 0.03860086441040039, 0.0381399040222168, 0.03827462387084961, 0.03827347183227539, 0.038352127075195315, 0.03808742523193359, 0.03794944000244141, 0.0380412483215332, 0.038037857055664065, 0.038166175842285155, 0.03801327896118164, 0.037969921112060545, 0.038133792877197266, 0.03827094268798828, 0.038250495910644534, 0.03799808120727539, 0.03804620742797851, 0.03798204803466797, 0.03801513671875, 0.038161792755126954, 0.03824294281005859, 0.03826483154296875, 0.038567615509033204, 0.038926559448242186, 0.03870115280151367, 0.03860684967041016, 0.038461505889892576, 0.038598590850830075, 0.03818038558959961, 0.038214111328125, 0.038422401428222654, 0.03829062271118164, 0.03818096160888672, 0.03869782257080078, 0.04184486389160156, 0.042041439056396485, 0.04006908798217773, 0.03896319961547851, 0.03871654510498047, 0.037931903839111325, 0.037713920593261716, 0.037705726623535156, 0.03765657424926758, 0.03774457550048828, 0.03789574432373047, 0.037943809509277344, 0.03804569625854492, 0.03800806427001953, 0.03826969528198242, 0.038258689880371094, 0.03802067184448242, 0.037939647674560546, 0.038055614471435545, 0.0380173454284668, 0.037976062774658204, 0.03828883361816406, 0.0379172477722168, 0.03796105575561524, 0.03795011138916016, 0.03790959930419922, 0.03780905532836914, 0.03790643310546875, 0.038160385131835936, 0.038238239288330075, 0.03848944091796875, 0.038179454803466795, 0.038174720764160154, 0.03806208038330078, 0.03812351989746094, 0.03814604949951172, 0.038258689880371094, 0.038063232421875, 0.03809769439697266, 0.03869091033935547, 0.0384266242980957, 0.038147167205810545, 0.03794348907470703, 0.03813040161132813, 0.03817244720458984, 0.03833391952514648, 0.03825945663452148, 0.03827916717529297, 0.038174720764160154, 0.03794944000244141, 0.038063934326171875, 0.038295616149902345, 0.03825436782836914, 0.03814384078979492, 0.03833087921142578, 0.038319934844970704, 0.03822022247314453, 0.03812531280517578, 0.03801641464233398, 0.03783939361572266, 0.03833055877685547, 0.03829302215576172, 0.038231521606445315, 0.04493308639526367, 0.04011142349243164, 0.03869152069091797, 0.03813750457763672, 0.037970272064208985, 0.037720062255859374, 0.037774848937988284, 0.03792127990722656, 0.037891201019287106, 0.03780492782592773, 0.0379249267578125, 0.03816236877441406, 0.03813785552978516, 0.03807846450805664, 0.03804569625854492, 0.03799407958984375, 0.038080928802490234, 0.03804764938354492, 0.03792240142822265, 0.0382325439453125, 0.03834268951416016, 0.03805184173583984, 0.038093982696533205, 0.0380219841003418, 0.038365184783935545, 0.038481311798095705, 0.03863203048706055, 0.03865974426269531, 0.038702880859375, 0.03843337631225586, 0.038408161163330075, 0.038408191680908206, 0.03833446502685547, 0.03824025726318359, 0.03779135894775391, 0.0380863037109375, 0.03792300796508789, 0.03814217758178711, 0.038082111358642576, 0.03812838363647461, 0.038612991333007815, 0.038400001525878906, 0.03818905639648437, 0.038122943878173825, 0.03832889556884766, 0.03786751937866211, 0.037932289123535155, 0.037923583984375, 0.03830169677734375, 0.03853023910522461, 0.03845203018188476, 0.03862268829345703, 0.038468128204345704, 0.038828033447265625, 0.03868467330932617, 0.038542591094970706, 0.038437633514404296, 0.03843635177612305, 0.03851728057861328, 0.038481887817382814, 0.038356990814208985, 0.038288959503173826, 0.03814854431152344]",tokens/s,26.129498044136092,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm2,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 1138, in __init__ self.model = InternLM2Model(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 918, in __init__ [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 918, in [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 709, in __init__ self.feed_forward = InternLM2MLP(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 205, in __init__ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 192.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 136.12 MiB is free. Process 152331 has 14.61 GiB memory in use. Of the allocated memory 14.49 GiB is allocated by PyTorch, and 3.07 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,deci,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: DeciLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 689, in __init__ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 357, in __init__ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 18.12 MiB is free. Process 167009 has 14.72 GiB memory in use. Of the allocated memory 14.60 GiB is allocated by PyTorch, and 3.02 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,phi,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: RecurrentGemmaForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gptj,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: GPTJForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 134.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 52.12 MiB is free. Process 97304 has 14.69 GiB memory in use. Of the allocated memory 14.47 GiB is allocated by PyTorch, and 108.93 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 614, in __init__ self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 274, in __init__ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 30.12 MiB is free. Process 85293 has 14.71 GiB memory in use. Of the allocated memory 14.37 GiB is allocated by PyTorch, and 229.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,,MB,869.330944,13880.918016,0.0,13478.395904,13476.849152,s,1,7.34776416015625,7.34776416015625,0.0,7.34776416015625,7.34776416015625,7.34776416015625,7.34776416015625,[7.34776416015625],,kWh,8.509368816661815e-06,9.31521312924467e-07,5.033059581993626e-06,1.4473949711579908e-05,,MB,1294.278656,14115.79904,0.0,13700.694016,13671.637504,s,10,2.0948021392822262,0.20948021392822264,0.0034513227977716453,0.20956494140624998,0.2127468246459961,0.21322307510375976,0.2136040754699707,"[0.20057171630859374, 0.21089900207519532, 0.20983500671386718, 0.20913638305664062, 0.21369932556152343, 0.20810928344726562, 0.2126409912109375, 0.20929487609863281, 0.20851571655273438, 0.21209983825683593]",tokens/s,1222.0724582977423,kWh,6.0883177444446955e-06,6.710956018419764e-07,4.044065735250065e-06,1.0803479081536737e-05,tokens/kWh,23696070.31845017,MB,1337.491456,14117.896192,0.0,13702.791168,13671.640064,s,10,37.208315673828125,3.7208315673828123,0.002876997698239784,3.7203675537109375,3.72428798828125,3.725852001953125,3.7271032128906247,"[3.7197529296875, 3.717982666015625, 3.71877392578125, 3.717134033203125, 3.720982177734375, 3.7195205078125, 3.721120849609375, 3.7239404296875, 3.721692138671875, 3.727416015625]",tokens/s,16.931698965431384,kWh,0.00010881553686888856,1.200291783780401e-05,7.22826897705504e-05,0.00019310114447724293,tokens/kWh,326253.8923347737,,s,630,37.20560744094847,0.05905651974753728,0.0005787943865051249,0.05891747093200683,0.05936752510070801,0.059584354782104484,0.06286623451232912,"[0.06257270431518555, 0.05956198501586914, 0.05895539093017578, 0.058775936126708984, 0.05881651306152344, 0.05881651306152344, 0.05898649597167969, 0.05904383850097656, 0.058836383819580076, 0.05888470458984375, 0.059157920837402345, 0.05929785537719726, 0.059095550537109375, 0.0588328971862793, 0.058824737548828124, 0.05901311874389648, 0.05934223937988281, 0.05935958480834961, 0.05925094223022461, 0.05928550338745117, 0.05925273513793945, 0.05893529510498047, 0.058787841796875, 0.0589285774230957, 0.05894319915771484, 0.05878460693359375, 0.05888336181640625, 0.059144161224365235, 0.059253505706787106, 0.059015167236328124, 0.05897216033935547, 0.05907865524291992, 0.059334495544433596, 0.05919702529907227, 0.05895840072631836, 0.058966014862060545, 0.059109375, 0.0588836784362793, 0.05884560012817383, 0.05888313674926758, 0.05866995239257813, 0.058972225189208985, 0.05876326370239258, 0.05890252685546875, 0.05897830581665039, 0.05887558364868164, 0.05881657409667969, 0.058784000396728514, 0.05895775985717774, 0.05903571319580078, 0.05905408096313477, 0.05906227111816406, 0.05904761505126953, 0.058986335754394534, 0.05887638473510742, 0.058855392456054687, 0.058981822967529296, 0.05875142288208008, 0.05886140823364258, 0.05883321762084961, 0.05885542297363281, 0.05884108734130859, 0.05887945556640625, 0.06294451141357423, 0.05955456161499023, 0.058793983459472655, 0.058636287689208984, 0.05857689666748047, 0.05874425506591797, 0.058712638854980466, 0.05866495895385742, 0.058758495330810546, 0.058823326110839846, 0.058883617401123044, 0.05884118270874023, 0.058636672973632814, 0.058574207305908205, 0.058702465057373046, 0.0592151985168457, 0.05964252853393555, 0.059674175262451175, 0.05934928131103516, 0.05909110260009766, 0.05902336120605469, 0.058810367584228515, 0.058748126983642575, 0.05881683349609375, 0.058767040252685546, 0.05874972915649414, 0.05881158447265625, 0.058925792694091796, 0.05890057754516602, 0.058855358123779296, 0.05880633544921875, 0.05899468612670898, 0.059213214874267575, 0.05921238327026367, 0.05939779281616211, 0.05930972671508789, 0.059159233093261716, 0.05883628845214844, 0.058663616180419924, 0.0586497917175293, 0.059050079345703124, 0.05879628753662109, 0.05897999954223633, 0.058826881408691405, 0.058819263458251954, 0.05890867233276367, 0.058887680053710936, 0.05895542526245117, 0.0589730224609375, 0.05893856048583984, 0.05912863922119141, 0.059322017669677735, 0.05915052795410156, 0.05910460662841797, 0.05907129669189453, 0.059031326293945315, 0.05889865493774414, 0.05883055877685547, 0.058757408142089844, 0.0588730239868164, 0.058974720001220705, 0.05891670227050781, 0.05902588653564453, 0.06340611267089843, 0.060213214874267576, 0.059254783630371094, 0.05876521682739258, 0.058744926452636716, 0.058828800201416016, 0.058918270111083984, 0.0587639045715332, 0.05876671981811524, 0.059185791015625, 0.05873408126831055, 0.05871206283569336, 0.058638206481933595, 0.058918785095214844, 0.05876403045654297, 0.059006591796875, 0.05943471908569336, 0.05936576080322266, 0.05924652862548828, 0.059050334930419925, 0.05887129592895508, 0.05877542495727539, 0.058703872680664064, 0.0587342414855957, 0.05876617431640625, 0.058810497283935545, 0.05914134216308594, 0.05886851119995117, 0.059017215728759766, 0.058931198120117184, 0.058722305297851565, 0.05875616073608399, 0.059060863494873043, 0.05922409439086914, 0.05909494400024414, 0.05910771179199219, 0.05907980728149414, 0.059022209167480466, 0.058912769317626956, 0.05878374481201172, 0.058746849060058594, 0.058818592071533206, 0.05871615982055664, 0.058662784576416015, 0.05881254577636719, 0.058900478363037106, 0.058859519958496094, 0.05885337448120117, 0.05915382385253906, 0.05915235137939453, 0.059197601318359376, 0.059308448791503904, 0.05920732879638672, 0.059300193786621096, 0.05898649597167969, 0.05886716842651367, 0.05876985549926758, 0.058683551788330075, 0.058934783935546874, 0.058905086517333984, 0.05878963088989258, 0.05885977554321289, 0.058929153442382816, 0.06256396865844727, 0.059498462677001956, 0.058784160614013675, 0.05875913619995117, 0.0587894401550293, 0.058834720611572265, 0.058816192626953125, 0.059009727478027345, 0.05897248077392578, 0.058912769317626956, 0.058722305297851565, 0.05861536026000977, 0.05868588638305664, 0.05856211090087891, 0.058821056365966795, 0.059115520477294924, 0.059465087890625, 0.059398815155029296, 0.05921744155883789, 0.059052127838134766, 0.058912769317626956, 0.058781665802001955, 0.05864857482910156, 0.058635711669921875, 0.05879289627075195, 0.05906147384643555, 0.05885007858276367, 0.058787841796875, 0.05872751998901367, 0.05880105590820312, 0.058810367584228515, 0.059138046264648435, 0.05925273513793945, 0.059172863006591796, 0.059180831909179686, 0.05910275268554688, 0.05896239852905273, 0.05883315277099609, 0.05886921691894531, 0.058726913452148435, 0.058755073547363285, 0.05883084869384766, 0.0590561294555664, 0.05877731323242188, 0.05873062515258789, 0.058832191467285154, 0.058761344909667966, 0.0588172492980957, 0.059009025573730466, 0.05913324737548828, 0.05923910522460937, 0.05932582473754883, 0.059376255035400394, 0.05918515014648437, 0.05923958587646484, 0.059035934448242185, 0.05900505447387695, 0.05888454437255859, 0.05888169479370117, 0.05883852767944336, 0.05887036895751953, 0.058791614532470705, 0.05880377578735352, 0.06267459106445313, 0.059603870391845705, 0.05887737655639649, 0.058757183074951175, 0.05883750534057617, 0.05883699035644531, 0.058998783111572264, 0.05881756973266602, 0.05874095916748047, 0.05867187118530273, 0.05917468643188477, 0.05883014297485351, 0.05894851303100586, 0.058875904083251954, 0.058894336700439455, 0.05919334411621094, 0.059717025756835934, 0.05960889434814453, 0.059407135009765626, 0.05901830291748047, 0.0588392333984375, 0.05871488189697266, 0.05883903884887695, 0.05883004760742187, 0.058780448913574215, 0.05882265472412109, 0.058844928741455076, 0.058792190551757814, 0.0587407341003418, 0.059065406799316406, 0.0591451530456543, 0.05900284957885742, 0.05929487991333008, 0.059310623168945316, 0.05923465728759766, 0.05932556915283203, 0.05907900619506836, 0.05897679901123047, 0.05900848007202148, 0.058906654357910156, 0.05884979248046875, 0.05893040084838867, 0.058888992309570315, 0.0588144645690918, 0.05881856155395508, 0.058787841796875, 0.058875904083251954, 0.05898163223266602, 0.059120384216308594, 0.05918105697631836, 0.059299713134765626, 0.05929587173461914, 0.059230209350585934, 0.05921791839599609, 0.05897203063964844, 0.05910335922241211, 0.05901929473876953, 0.059084766387939455, 0.05888204956054687, 0.05874892807006836, 0.05876736068725586, 0.05879808044433594, 0.058966014862060545, 0.06317385482788086, 0.05975849533081055, 0.058896575927734375, 0.05864313507080078, 0.05857276916503906, 0.05867932891845703, 0.058877601623535156, 0.05887420654296875, 0.05884928131103516, 0.05890457534790039, 0.05883059310913086, 0.05880435180664063, 0.05880947113037109, 0.05900185775756836, 0.05881552124023438, 0.05915110397338867, 0.05960265731811523, 0.05967638397216797, 0.05926172637939453, 0.05906022262573242, 0.058891422271728514, 0.05877231979370117, 0.05875302505493164, 0.05868931198120117, 0.05888227081298828, 0.0587407341003418, 0.05885542297363281, 0.05864396667480469, 0.05863065719604492, 0.05886771011352539, 0.05893699264526367, 0.05909302520751953, 0.05922982406616211, 0.05943888092041016, 0.059323295593261716, 0.05927091217041015, 0.059213214874267575, 0.05909958267211914, 0.05894720077514649, 0.05879478454589844, 0.05869744110107422, 0.05884511947631836, 0.05884963226318359, 0.058817855834960936, 0.05873859024047851, 0.05874319839477539, 0.05882486343383789, 0.05900515365600586, 0.059068416595458986, 0.059350879669189456, 0.05941263961791992, 0.05944319915771484, 0.059361278533935545, 0.05913103866577148, 0.058964160919189455, 0.05881206512451172, 0.05872115325927734, 0.058775264739990236, 0.05889043045043945, 0.05884073638916015, 0.0588232307434082, 0.058797569274902345, 0.05902592086791992, 0.0631673927307129, 0.05986304092407226, 0.05893939208984375, 0.05866851043701172, 0.05879430389404297, 0.05879420852661133, 0.0587960319519043, 0.058810367584228515, 0.05884640121459961, 0.059009471893310544, 0.05890496063232422, 0.05865814590454101, 0.058670974731445315, 0.058608417510986326, 0.05875094223022461, 0.059179039001464845, 0.059672031402587894, 0.059523040771484376, 0.059434593200683596, 0.05908505630493164, 0.05895423889160156, 0.0588331184387207, 0.058777599334716796, 0.058850528717041016, 0.05874358367919922, 0.05862604904174805, 0.05863423919677734, 0.05875302505493164, 0.05879548645019531, 0.058730239868164065, 0.058884574890136716, 0.059297889709472654, 0.05930624008178711, 0.05942233657836914, 0.05931996917724609, 0.05928134536743164, 0.059462112426757814, 0.05909123229980469, 0.058858814239501955, 0.05876988983154297, 0.05876335906982422, 0.058731903076171876, 0.058847999572753905, 0.05881840133666992, 0.05891823959350586, 0.05885974502563476, 0.05907632064819336, 0.059008991241455075, 0.05921795272827148, 0.05947071838378906, 0.05928144073486328, 0.059246593475341794, 0.05922576141357422, 0.05920800018310547, 0.05902131271362305, 0.058910686492919924, 0.05884723281860352, 0.058890270233154296, 0.058865249633789064, 0.05901353454589844, 0.05895375823974609, 0.05902947235107422, 0.05908019256591797, 0.06355161666870117, 0.06004499053955078, 0.059121952056884766, 0.058881504058837894, 0.05874703979492187, 0.058826881408691405, 0.05880172729492188, 0.05918585586547852, 0.059070270538330076, 0.05894553756713867, 0.05878559875488281, 0.058675582885742185, 0.05866486358642578, 0.05885254287719727, 0.05882563018798828, 0.05965337753295898, 0.059646751403808596, 0.059647937774658204, 0.059367454528808594, 0.05922195053100586, 0.059007007598876955, 0.05894118499755859, 0.05893353652954102, 0.05879808044433594, 0.05880012893676758, 0.05874687957763672, 0.058732479095458985, 0.058642017364501954, 0.05868182373046875, 0.05876873779296875, 0.05885200119018555, 0.05912371063232422, 0.05941452789306641, 0.05945548629760742, 0.059334686279296875, 0.0592193603515625, 0.05906192016601562, 0.0589136962890625, 0.058899646759033204, 0.058942272186279294, 0.058931232452392575, 0.058942657470703125, 0.05900163269042969, 0.05885337448120117, 0.058789024353027346, 0.05880902481079102, 0.05886991882324219, 0.05909708786010742, 0.05927724838256836, 0.05953337478637695, 0.05927526473999024, 0.05918294525146484, 0.059168926239013674, 0.059121662139892575, 0.059121662139892575, 0.05900288009643555, 0.059057823181152345, 0.059047840118408204, 0.059019710540771486, 0.05897539138793945, 0.05902422332763672, 0.058929153442382816, 0.05888409423828125, 0.06335712051391601, 0.060080127716064455, 0.059198974609375, 0.05881657409667969, 0.058724769592285155, 0.05877884674072266, 0.05886854553222656, 0.058998783111572264, 0.05886566543579102, 0.05870796966552734, 0.058793983459472655, 0.05885279846191406, 0.05881232070922852, 0.05871478271484375, 0.0588042221069336, 0.059364768981933595, 0.05965449523925781, 0.05967225646972656, 0.05943558502197266, 0.059101184844970706, 0.058930622100830075, 0.0587534065246582, 0.058622142791748044, 0.058722305297851565, 0.05870182418823242, 0.05868956756591797, 0.05891622543334961, 0.05893939208984375, 0.05887036895751953, 0.05875817489624023, 0.05878054428100586, 0.059213951110839845, 0.059471839904785155, 0.059467201232910154, 0.05933929443359375, 0.05924252700805664, 0.05912985610961914, 0.05909708786010742, 0.058910720825195315, 0.0587611198425293, 0.05881660842895508, 0.05878374481201172, 0.058910240173339845, 0.05884332656860351, 0.05897248077392578, 0.05891846466064453, 0.05894569778442383, 0.058818817138671875, 0.05901055908203125, 0.05921152114868164, 0.05936816024780273, 0.05944118499755859, 0.059307998657226565, 0.059179039001464845, 0.05901311874389648, 0.05894675064086914, 0.059034431457519534, 0.05880831909179687, 0.05883004760742187, 0.05887670516967773, 0.0588199348449707, 0.05876598358154297, 0.05888569641113281, 0.0636616325378418, 0.0604574089050293, 0.05939199829101562, 0.05885036849975586, 0.058769664764404296, 0.05879059219360352, 0.05876921463012695, 0.058867103576660154, 0.05881731033325195, 0.05882003021240234, 0.058796607971191406, 0.058893985748291015, 0.05876566314697266, 0.0586506233215332, 0.059137950897216796, 0.05935523223876953, 0.05987123107910156, 0.05983027267456055, 0.05972716903686524, 0.059372222900390625, 0.05913750457763672, 0.05876995086669922, 0.05866700744628906, 0.058873313903808594, 0.05879452896118164, 0.05875711822509765, 0.05882060623168945, 0.05876326370239258, 0.05891439819335938, 0.058749343872070314, 0.0588963851928711, 0.059099136352539064, 0.05914831924438477, 0.05925417709350586, 0.059275711059570316, 0.05955929565429687, 0.05939273452758789, 0.059311294555664064, 0.05916553497314453, 0.05889843368530273, 0.058845184326171876, 0.05889023971557617, 0.05905203247070313, 0.05911142349243164, 0.05904540634155273, 0.05896406555175781, 0.0591486701965332, 0.058992641448974606, 0.05927267074584961, 0.059241024017333985, 0.05931824111938477, 0.05945705413818359, 0.059388385772705075, 0.05922566223144531, 0.05920608139038086, 0.059159774780273434, 0.05905487823486328, 0.058864734649658204, 0.05901119995117188, 0.059036449432373045, 0.058992641448974606, 0.05910732650756836, 0.0589062385559082]",tokens/s,16.93293144050706,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mixtral,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2_moe,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 1203, in __init__ self.model = Qwen2MoeModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 977, in __init__ [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 977, in [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 750, in __init__ self.self_attn = QWEN2MOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 349, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 12.12 MiB is free. Process 94320 has 14.73 GiB memory in use. Of the allocated memory 12.32 GiB is allocated by PyTorch, and 2.30 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,815.886336,3354.329088,0.0,2959.081472,2942.567424,s,1,7.60200439453125,7.60200439453125,0.0,7.60200439453125,7.60200439453125,7.60200439453125,7.60200439453125,[7.60200439453125],,kWh,1.0000995695833125e-05,1.0958325234668118e-06,3.3088915359982818e-06,1.4405719755298219e-05,,MB,1145.524224,3549.364224,0.0,3141.533696,3105.830912,s,10,0.314550048828125,0.03145500488281249,0.0017512524114522284,0.03136390399932861,0.03279800224304199,0.03422858524322509,0.03537305164337158,"[0.0356591682434082, 0.029427936553955078, 0.02969139289855957, 0.03184819221496582, 0.03121228790283203, 0.030395008087158202, 0.03151552009582519, 0.029893503189086915, 0.03248009490966797, 0.03242694473266602]",tokens/s,8138.609450347993,kWh,1.1479109921405104e-06,1.265949505202019e-07,7.620790410353302e-07,2.0365849836960425e-06,tokens/kWh,125700622.3896462,MB,1173.696512,3591.307264,0.0,3183.476736,3163.048448,s,10,10.851031616210937,1.0851031616210938,0.013687952523551393,1.0892457885742188,1.09405625,1.0982018310546875,1.1015182958984375,"[1.093135009765625, 1.102347412109375, 1.08806591796875, 1.092810791015625, 1.0870216064453124, 1.0904256591796875, 1.0930145263671875, 1.0854609375, 1.062905029296875, 1.0558447265625]",tokens/s,58.05899588927648,kWh,3.152952058369203e-05,3.477122149222979e-06,2.0829549343364018e-05,5.5836192076279034e-05,tokens/kWh,1128300.4384313016,,s,630,10.847838054656979,0.017218790562947592,0.0003928363628905611,0.017219743728637694,0.017526509666442872,0.01780540027618408,0.018400972499847415,"[0.017661983489990235, 0.01719891166687012, 0.01731616020202637, 0.01738137626647949, 0.017250240325927733, 0.017360960006713867, 0.017319936752319336, 0.017358240127563478, 0.017492351531982423, 0.017370880126953123, 0.017455583572387696, 0.017567743301391603, 0.017489919662475584, 0.01736832046508789, 0.01737343978881836, 0.017690879821777344, 0.017473663330078125, 0.01723520088195801, 0.01719718360900879, 0.01747635269165039, 0.017453216552734376, 0.01725859260559082, 0.017282976150512695, 0.017385183334350587, 0.01759062385559082, 0.017321760177612305, 0.017364992141723632, 0.01719424057006836, 0.01720806312561035, 0.0172677116394043, 0.017212127685546873, 0.017219871520996095, 0.017319936752319336, 0.017358848571777344, 0.017258655548095702, 0.01787273597717285, 0.017613983154296874, 0.017234432220458985, 0.017322175979614256, 0.017295520782470705, 0.017349983215332033, 0.017566368103027342, 0.017430015563964844, 0.017453567504882812, 0.017433759689331054, 0.017216224670410157, 0.017082239151000978, 0.017186975479125975, 0.017207391738891603, 0.017272544860839845, 0.01729155158996582, 0.017154048919677735, 0.01719500732421875, 0.017299455642700197, 0.017252351760864256, 0.017375232696533204, 0.017129472732543945, 0.017366527557373047, 0.01728060722351074, 0.01722051239013672, 0.017522687911987304, 0.017276927947998046, 0.01717628860473633, 0.017629728317260743, 0.017875135421752928, 0.01758236885070801, 0.017876863479614258, 0.01724345588684082, 0.017353471755981446, 0.01727084732055664, 0.01731283187866211, 0.01735148811340332, 0.01778086471557617, 0.017348703384399415, 0.017341567993164064, 0.017395999908447264, 0.01737779235839844, 0.01728441619873047, 0.017212095260620116, 0.017114784240722655, 0.017530784606933594, 0.017159776687622072, 0.017465919494628907, 0.01730739212036133, 0.02096796798706055, 0.019359743118286133, 0.017477632522583008, 0.017555456161499023, 0.01739094352722168, 0.017261215209960937, 0.017180671691894533, 0.017123327255249024, 0.01722163200378418, 0.0171378231048584, 0.01725628852844238, 0.01745305633544922, 0.017444576263427734, 0.01729475212097168, 0.01787379264831543, 0.018478912353515627, 0.01818841552734375, 0.0173702392578125, 0.0174268798828125, 0.017379423141479493, 0.017515968322753907, 0.017425119400024416, 0.01721164894104004, 0.01716223907470703, 0.017526496887207033, 0.017228063583374024, 0.017324031829833983, 0.017319839477539064, 0.017334112167358397, 0.017202688217163087, 0.0174517765045166, 0.017245376586914062, 0.01732691192626953, 0.017172479629516603, 0.01727462387084961, 0.017139328002929687, 0.01726527976989746, 0.017432191848754882, 0.017496448516845703, 0.017551359176635743, 0.017454816818237306, 0.01722960090637207, 0.017766975402832032, 0.017862432479858397, 0.017281408309936522, 0.01722064018249512, 0.01701798439025879, 0.01729315185546875, 0.017489471435546876, 0.01741868782043457, 0.017154239654541017, 0.017452640533447264, 0.017173824310302736, 0.01719772720336914, 0.017328384399414063, 0.01714995193481445, 0.017190271377563477, 0.01720547294616699, 0.016984447479248047, 0.016940832138061523, 0.017105152130126953, 0.017470975875854493, 0.01750271987915039, 0.01749318313598633, 0.017271680831909178, 0.017242368698120118, 0.017342144012451172, 0.01710393524169922, 0.01717955207824707, 0.017209375381469726, 0.01728102493286133, 0.017137664794921875, 0.017102848052978514, 0.017150976181030272, 0.017130399703979494, 0.017101951599121094, 0.01725129508972168, 0.017502208709716797, 0.017708864212036133, 0.01727097511291504, 0.017155744552612304, 0.017328479766845702, 0.0172359676361084, 0.017059488296508787, 0.017073919296264648, 0.017554143905639648, 0.01753251266479492, 0.01736323165893555, 0.017238016128540038, 0.017247871398925783, 0.01713190460205078, 0.01699430465698242, 0.01710895919799805, 0.01736297607421875, 0.017175615310668944, 0.017187776565551757, 0.017133472442626953, 0.01727827262878418, 0.017144128799438475, 0.01714838409423828, 0.017421600341796874, 0.017785600662231445, 0.017217504501342774, 0.017053440093994142, 0.017107200622558594, 0.018931711196899414, 0.018153472900390624, 0.01752662467956543, 0.017121440887451173, 0.017047456741333008, 0.01725040054321289, 0.017096704483032226, 0.017202207565307617, 0.017156320571899412, 0.017269407272338867, 0.01724015998840332, 0.017336320877075196, 0.017082176208496093, 0.017096895217895508, 0.017501760482788085, 0.01723436737060547, 0.017094655990600584, 0.01704876708984375, 0.01726972770690918, 0.017571680068969725, 0.017348608016967772, 0.01734003257751465, 0.017388927459716798, 0.017300064086914063, 0.01712995147705078, 0.017116479873657227, 0.01730374336242676, 0.017296863555908204, 0.017148895263671873, 0.017372352600097656, 0.01728623962402344, 0.017074111938476563, 0.017344127655029296, 0.01773923110961914, 0.017048255920410156, 0.0171560001373291, 0.017358272552490235, 0.017134111404418947, 0.01718070411682129, 0.017088640213012696, 0.017117151260375975, 0.017231775283813477, 0.01747727966308594, 0.017424800872802734, 0.017330207824707032, 0.017170400619506837, 0.017260671615600586, 0.017125280380249023, 0.017258432388305663, 0.01725791931152344, 0.017232511520385744, 0.017264095306396485, 0.017343008041381835, 0.017187839508056642, 0.018181119918823242, 0.018701728820800782, 0.017225696563720704, 0.017332735061645507, 0.017364479064941405, 0.017451648712158204, 0.017514495849609374, 0.017366783142089844, 0.01730531120300293, 0.017662336349487304, 0.018061023712158203, 0.017432863235473633, 0.017247711181640625, 0.017117183685302736, 0.017056640625, 0.017123584747314454, 0.017176319122314453, 0.017278976440429687, 0.01718681526184082, 0.017097856521606444, 0.01706662368774414, 0.016936511993408204, 0.017006399154663086, 0.017507200241088868, 0.017426591873168945, 0.017383167266845703, 0.017143903732299806, 0.017100799560546876, 0.017174367904663087, 0.017277088165283203, 0.017190656661987304, 0.017315391540527345, 0.0171711368560791, 0.017133535385131834, 0.017200544357299806, 0.017369728088378906, 0.017498111724853514, 0.017119232177734374, 0.017113088607788086, 0.017390880584716797, 0.017175264358520508, 0.01717219161987305, 0.017317792892456055, 0.017367424011230467, 0.017301504135131835, 0.01727280044555664, 0.01714384078979492, 0.01712646484375, 0.01710553550720215, 0.017258880615234375, 0.017008575439453125, 0.016977920532226562, 0.01708361625671387, 0.01729977607727051, 0.017821599960327148, 0.017297983169555664, 0.017096704483032226, 0.017254463195800783, 0.01722707176208496, 0.017248640060424803, 0.017228031158447267, 0.01708185577392578, 0.017121440887451173, 0.017926496505737306, 0.017059295654296876, 0.017089056015014648, 0.01719059181213379, 0.017162559509277343, 0.017362943649291994, 0.017364992141723632, 0.017295360565185547, 0.017305599212646485, 0.018191455841064453, 0.018140064239501954, 0.01768409538269043, 0.01727097511291504, 0.01714512062072754, 0.017243040084838866, 0.01716633605957031, 0.017149856567382812, 0.017160287857055666, 0.01732371139526367, 0.017130975723266603, 0.017015199661254882, 0.01718726348876953, 0.01720319938659668, 0.017111040115356444, 0.017133567810058595, 0.017524736404418945, 0.017352256774902344, 0.017406015396118163, 0.017166303634643554, 0.017964704513549805, 0.017412864685058593, 0.01722368049621582, 0.01709791946411133, 0.01722662353515625, 0.017141248703002928, 0.01723641586303711, 0.017249471664428712, 0.017202016830444335, 0.017266559600830077, 0.01718681526184082, 0.017160287857055666, 0.017183839797973634, 0.017410528182983397, 0.017405439376831054, 0.01714044761657715, 0.01713907241821289, 0.01834623908996582, 0.01699286460876465, 0.017209184646606444, 0.017416479110717774, 0.017381248474121095, 0.017326080322265625, 0.017309471130371092, 0.017051456451416015, 0.017182655334472656, 0.017231775283813477, 0.017340351104736328, 0.017461343765258788, 0.017385951995849608, 0.01729324722290039, 0.017143936157226564, 0.01715932846069336, 0.017159008026123048, 0.017242111206054688, 0.01745305633544922, 0.01741168022155762, 0.017154464721679686, 0.0172542724609375, 0.01712335968017578, 0.017243648529052736, 0.01700105667114258, 0.01743052864074707, 0.017946239471435546, 0.017891712188720703, 0.017180639266967772, 0.01728451156616211, 0.01720911979675293, 0.01728783988952637, 0.017229888916015627, 0.017203296661376953, 0.017262624740600585, 0.017187999725341796, 0.01705865669250488, 0.017024480819702148, 0.01705958366394043, 0.017154783248901368, 0.017739839553833008, 0.01721897506713867, 0.017174240112304687, 0.017174623489379884, 0.01701148796081543, 0.017469728469848633, 0.0200185604095459, 0.01784662437438965, 0.017336191177368163, 0.017391136169433594, 0.01734511947631836, 0.01730988883972168, 0.017354560852050782, 0.017393503189086914, 0.01720307159423828, 0.01730748748779297, 0.017565343856811525, 0.017498912811279296, 0.01739673614501953, 0.01726908874511719, 0.01729996871948242, 0.017209503173828126, 0.017332096099853516, 0.01737923240661621, 0.0169597110748291, 0.01720319938659668, 0.01770832061767578, 0.017418176651000976, 0.017353504180908204, 0.01731180763244629, 0.017055456161499023, 0.017067359924316405, 0.017228063583374024, 0.017287776947021483, 0.01733171272277832, 0.01729996871948242, 0.017358848571777344, 0.01721343994140625, 0.017193183898925782, 0.017395263671875, 0.017120639801025392, 0.017386335372924805, 0.017445920944213867, 0.017144800186157227, 0.017258495330810548, 0.017071136474609373, 0.01683964729309082, 0.017309696197509765, 0.01745510482788086, 0.018185184478759765, 0.0184233283996582, 0.01777302360534668, 0.017219743728637694, 0.017204511642456056, 0.017238592147827147, 0.017094655990600584, 0.01767628860473633, 0.01748601531982422, 0.017368896484375, 0.01727622413635254, 0.01739411163330078, 0.017676544189453126, 0.017295360565185547, 0.01723187255859375, 0.01724937629699707, 0.01705855941772461, 0.017082527160644533, 0.017532415390014648, 0.017400032043457032, 0.01744236755371094, 0.01716044807434082, 0.017158655166625975, 0.01741561508178711, 0.017285663604736327, 0.017379520416259765, 0.017024831771850588, 0.017147903442382813, 0.017303552627563477, 0.01722764778137207, 0.017163967132568358, 0.01718726348876953, 0.01713577651977539, 0.01734025573730469, 0.01750774383544922, 0.01733078384399414, 0.017219743728637694, 0.017029056549072264, 0.016885759353637696, 0.017177663803100585, 0.017268640518188477, 0.01710176086425781, 0.017119039535522462, 0.016994495391845704, 0.016885759353637696, 0.01693801689147949, 0.017103839874267578, 0.017154239654541017, 0.017260351181030274, 0.017120479583740234, 0.017021631240844725, 0.01708233642578125, 0.017037439346313476, 0.017151647567749024, 0.01716873550415039, 0.016891616821289063, 0.01667100715637207, 0.01700864028930664, 0.0168690242767334, 0.016955583572387696, 0.017043264389038085, 0.01701513671875, 0.016912384033203123, 0.01792585563659668, 0.018128448486328125, 0.017611488342285157, 0.01794223976135254, 0.01809030342102051, 0.01693641662597656, 0.016947711944580078, 0.016934911727905275, 0.01699772834777832, 0.016929407119750977, 0.017037343978881837, 0.01732329559326172, 0.017328351974487306, 0.01679587173461914, 0.016648479461669922, 0.01660313606262207, 0.01666265678405762, 0.01718796730041504, 0.016797439575195312, 0.01693712043762207, 0.016814943313598632, 0.016777215957641603, 0.01679769515991211, 0.016719871520996094, 0.016760223388671874, 0.01694166374206543, 0.01702911949157715, 0.01683046340942383, 0.01683046340942383, 0.016639999389648438, 0.01661337661743164, 0.01681814384460449, 0.01673423957824707, 0.016665727615356445, 0.01668716812133789, 0.016542528152465822, 0.016574464797973632, 0.016948896408081053, 0.016596479415893553, 0.016604000091552735, 0.016916479110717773, 0.016674400329589844, 0.016762592315673827, 0.016663232803344728, 0.01665023994445801, 0.016658143997192384, 0.0166976318359375, 0.016695295333862305, 0.016655935287475585, 0.016662975311279297, 0.01663088035583496, 0.0165897274017334, 0.016669952392578125, 0.016587520599365236, 0.01659699249267578, 0.016586336135864257, 0.016576927185058595, 0.016801376342773438, 0.016729536056518553, 0.016626655578613283, 0.01665433692932129, 0.01701478385925293, 0.016859136581420898, 0.018188127517700194, 0.018187456130981446, 0.01733510398864746, 0.016828607559204102, 0.016777023315429688, 0.017040767669677735, 0.016684831619262694, 0.01666543960571289, 0.016656383514404297, 0.0166297607421875, 0.016695295333862305, 0.0167476806640625, 0.01662191963195801, 0.016588832855224608, 0.01655855941772461, 0.016640256881713868, 0.01670844841003418, 0.016733087539672852, 0.016604223251342774, 0.016570720672607422, 0.016560575485229493, 0.01667647933959961, 0.016673311233520508, 0.01660723114013672, 0.016594944000244142, 0.01660326385498047, 0.016563583374023437, 0.01654630470275879, 0.016635904312133788, 0.016569984436035155, 0.01657913589477539, 0.016621023178100585, 0.017758560180664063, 0.016602880477905275, 0.016687360763549805, 0.01674019241333008, 0.016631967544555665, 0.016688671112060547, 0.016681503295898438, 0.016655391693115234, 0.016697439193725586, 0.01677395248413086, 0.01661756706237793, 0.01664227294921875, 0.016621248245239258, 0.01653116798400879, 0.016619583129882813, 0.01665046310424805, 0.01672969627380371, 0.016945568084716797, 0.016893184661865235, 0.016708351135253905, 0.016776735305786133, 0.016593536376953124, 0.016559968948364256, 0.01660927963256836, 0.016723648071289062, 0.017016223907470703, 0.016839584350585936, 0.016662527084350585, 0.016648191452026367, 0.016746496200561522, 0.01684867286682129]",tokens/s,58.07608823304111,, float16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,815.255552,3354.329088,0.0,2959.081472,2942.567424,s,1,7.56006298828125,7.56006298828125,0.0,7.56006298828125,7.56006298828125,7.56006298828125,7.56006298828125,[7.56006298828125],,kWh,1.030244897499036e-05,1.129170060222218e-06,4.934170613993261e-06,1.636578964920584e-05,,MB,1145.683968,3549.364224,0.0,3141.533696,3105.830912,s,10,0.3191483516693115,0.03191483516693115,0.001310640518279943,0.03153615951538086,0.0330703311920166,0.03414887790679931,0.03501171527862549,"[0.03522742462158203, 0.03179126358032226, 0.03283065414428711, 0.032280128479003904, 0.030215551376342773, 0.032129951477050785, 0.03128105545043945, 0.03119024085998535, 0.030974496841430665, 0.031227584838867187]",tokens/s,8021.348023920134,kWh,1.1245226313461203e-06,1.239511474870338e-07,7.47360640623088e-07,1.995834419456242e-06,tokens/kWh,128267153.57967736,MB,1174.114304,3591.307264,0.0,3183.476736,3163.048448,s,10,10.659780151367189,1.0659780151367189,0.013331280476035226,1.0704387817382812,1.0778973876953126,1.08138466796875,1.0841744921875,"[1.0745426025390625, 1.0615531005859375, 1.0421826171875, 1.0848719482421876, 1.068078125, 1.0727994384765625, 1.0771224365234375, 1.0770347900390624, 1.049612060546875, 1.0519830322265624]",tokens/s,59.1006560223663,kWh,3.100471784532199e-05,3.419352761774082e-06,2.0457878545777293e-05,5.488194915287337e-05,tokens/kWh,1147918.4134753277,,s,630,10.656761390686036,0.016915494270930215,0.00042222898674190197,0.016895071983337402,0.01727531833648682,0.01764526271820068,0.01838836977005005,"[0.017031999588012697, 0.01689187240600586, 0.016939008712768554, 0.01679155158996582, 0.016696416854858398, 0.01682115173339844, 0.01739129638671875, 0.017162559509277343, 0.017147296905517577, 0.016937503814697264, 0.017070144653320313, 0.017983488082885742, 0.02095235252380371, 0.01775689506530762, 0.016965631484985352, 0.016955392837524414, 0.017227264404296876, 0.01702348709106445, 0.0169881591796875, 0.016957439422607423, 0.016889184951782227, 0.016878240585327147, 0.016842752456665038, 0.0166046085357666, 0.01683888053894043, 0.017377376556396484, 0.017266944885253908, 0.017156095504760743, 0.01695052719116211, 0.017171199798583985, 0.01697532844543457, 0.016945695877075194, 0.0176843204498291, 0.01694326400756836, 0.016904096603393554, 0.01711503982543945, 0.017010816574096678, 0.016957504272460937, 0.016916479110717773, 0.016955007553100587, 0.016845184326171873, 0.017035263061523438, 0.016721920013427736, 0.016787296295166017, 0.016965791702270507, 0.017297407150268555, 0.017165472030639648, 0.01708937644958496, 0.016875360488891603, 0.016824480056762695, 0.016746271133422853, 0.01687126350402832, 0.016902528762817382, 0.016987808227539064, 0.016943456649780274, 0.017315839767456053, 0.01680384063720703, 0.016701440811157226, 0.016682783126831056, 0.016670495986938476, 0.01677510452270508, 0.01669990348815918, 0.01651273536682129, 0.017988576889038085, 0.017946624755859376, 0.01725644874572754, 0.0167956485748291, 0.01685215950012207, 0.016728384017944336, 0.016623775482177736, 0.01680214309692383, 0.016930112838745116, 0.016910655975341797, 0.016795616149902343, 0.01679747200012207, 0.01675436782836914, 0.016701887130737305, 0.016646656036376953, 0.016478208541870116, 0.016604991912841798, 0.017174720764160156, 0.01886207962036133, 0.017231679916381835, 0.01680512046813965, 0.01665119934082031, 0.017086463928222655, 0.017059839248657227, 0.016961536407470702, 0.01713283157348633, 0.017989952087402342, 0.016932512283325197, 0.01689574432373047, 0.01678985595703125, 0.016951904296875, 0.0170098876953125, 0.016871648788452147, 0.017111648559570314, 0.016954816818237305, 0.01687126350402832, 0.016638368606567384, 0.016671072006225585, 0.01657423973083496, 0.01688598442077637, 0.016920576095581053, 0.01678950309753418, 0.016699392318725585, 0.016596511840820314, 0.016435007095336913, 0.01685068893432617, 0.017111967086791992, 0.01699865531921387, 0.016762624740600585, 0.016764928817749023, 0.016381952285766603, 0.016467967987060548, 0.016343040466308592, 0.01689116859436035, 0.01639049530029297, 0.016391551971435547, 0.016299007415771484, 0.016354719161987306, 0.01639894485473633, 0.01655388832092285, 0.016384096145629884, 0.016355327606201172, 0.01636147117614746, 0.0179303035736084, 0.018018367767333985, 0.017269216537475585, 0.016719871520996094, 0.01657379150390625, 0.016730783462524414, 0.0165086727142334, 0.01643129539489746, 0.016281663894653322, 0.016407808303833007, 0.016366304397583006, 0.016463584899902343, 0.0162860164642334, 0.01698585510253906, 0.01793811225891113, 0.017041984558105468, 0.016537471771240233, 0.01660531234741211, 0.01647955131530762, 0.016534208297729492, 0.01647760009765625, 0.016763359069824218, 0.016468095779418945, 0.016357248306274413, 0.016410751342773436, 0.016403743743896484, 0.016253120422363283, 0.016382495880126954, 0.016541696548461913, 0.0164270076751709, 0.01643267250061035, 0.016306528091430662, 0.016342239379882814, 0.016322687149047853, 0.016378463745117186, 0.01645136070251465, 0.016404895782470702, 0.016448511123657226, 0.016583423614501953, 0.0164453125, 0.01642464065551758, 0.01643769645690918, 0.01637196731567383, 0.01638809585571289, 0.0165086727142334, 0.01634124755859375, 0.01638185691833496, 0.016351295471191407, 0.0163656005859375, 0.016363519668579102, 0.01641267204284668, 0.01651257514953613, 0.01653376007080078, 0.016476255416870117, 0.016428672790527343, 0.01634761619567871, 0.016324607849121094, 0.016361215591430663, 0.016326911926269533, 0.01633273506164551, 0.016360992431640624, 0.016343584060668947, 0.016496639251708984, 0.018335296630859376, 0.018438688278198244, 0.01752467155456543, 0.01724617576599121, 0.01708255958557129, 0.01722480010986328, 0.01723075294494629, 0.01743052864074707, 0.01719705581665039, 0.017061567306518553, 0.017178304672241212, 0.01711497688293457, 0.01721833610534668, 0.01713148880004883, 0.017141792297363283, 0.017137887954711915, 0.01722956848144531, 0.01712950325012207, 0.017130783081054687, 0.017191455841064452, 0.017178815841674806, 0.017141759872436522, 0.01715171241760254, 0.017316064834594726, 0.017086528778076173, 0.017024223327636718, 0.017257247924804688, 0.01726851272583008, 0.017135839462280273, 0.01721548843383789, 0.017154016494750977, 0.017057823181152343, 0.01739366340637207, 0.01702707290649414, 0.016873472213745116, 0.01707811164855957, 0.01718492889404297, 0.017286304473876954, 0.017215583801269533, 0.017222400665283202, 0.01722310447692871, 0.017140031814575196, 0.017149824142456055, 0.01716876792907715, 0.017093664169311525, 0.017052640914916994, 0.01729097557067871, 0.0172956485748291, 0.017164287567138673, 0.017303552627563477, 0.0172106876373291, 0.017265344619750978, 0.017307647705078123, 0.01737049674987793, 0.017054336547851563, 0.01708624076843262, 0.01720921516418457, 0.017102624893188475, 0.01696211242675781, 0.017127424240112304, 0.016998367309570314, 0.017274911880493165, 0.017039360046386717, 0.017170751571655273, 0.01673200035095215, 0.016605279922485353, 0.01669126319885254, 0.0170250244140625, 0.016852479934692383, 0.01690880012512207, 0.016876544952392578, 0.016458751678466797, 0.016684896469116212, 0.01751030349731445, 0.01722598457336426, 0.017125375747680666, 0.016920160293579102, 0.016773536682128908, 0.01683830451965332, 0.016691551208496094, 0.016715328216552736, 0.01683705520629883, 0.017154048919677735, 0.017069984436035156, 0.016922719955444337, 0.01678335952758789, 0.01700864028930664, 0.016981407165527342, 0.016906848907470705, 0.01681612777709961, 0.017027040481567383, 0.01686300849914551, 0.016851200103759765, 0.01681612777709961, 0.016738304138183592, 0.016705535888671876, 0.01738956832885742, 0.017147903442382813, 0.017077823638916016, 0.01698975944519043, 0.01712169647216797, 0.01698396873474121, 0.01690825653076172, 0.0169531192779541, 0.016826591491699218, 0.016830528259277344, 0.017127744674682616, 0.016948991775512696, 0.016841184616088866, 0.01680588722229004, 0.01679974365234375, 0.016893951416015626, 0.01682636833190918, 0.017073152542114257, 0.016902656555175782, 0.017076736450195314, 0.017651296615600585, 0.016974016189575194, 0.016832576751708985, 0.016795711517333986, 0.016959583282470703, 0.017210752487182616, 0.01776473617553711, 0.01699660873413086, 0.016945152282714843, 0.0168407039642334, 0.018430559158325196, 0.0183110408782959, 0.017455232620239257, 0.016942848205566408, 0.017125631332397463, 0.017031328201293945, 0.017835872650146484, 0.016857088088989256, 0.01737932777404785, 0.01706598472595215, 0.016832000732421876, 0.01668070411682129, 0.01708665657043457, 0.017023712158203124, 0.017157983779907227, 0.016951295852661134, 0.01669059181213379, 0.016921087265014647, 0.01686332893371582, 0.016715776443481444, 0.016725536346435546, 0.016894432067871095, 0.016875328063964842, 0.017042816162109373, 0.01701968002319336, 0.01682579231262207, 0.017637887954711915, 0.016781408309936522, 0.016815872192382814, 0.016896352767944336, 0.017034719467163086, 0.016662847518920897, 0.016908416748046873, 0.017126432418823244, 0.01703183937072754, 0.017060096740722657, 0.016948511123657226, 0.016827167510986327, 0.016855039596557618, 0.0166495361328125, 0.01683737564086914, 0.0169769287109375, 0.016907167434692384, 0.016699392318725585, 0.016893951416015626, 0.016860736846923827, 0.016871871948242186, 0.01701273536682129, 0.016928768157958983, 0.016997888565063478, 0.016957759857177734, 0.01680179214477539, 0.017274816513061522, 0.017395967483520507, 0.017278976440429687, 0.0169881591796875, 0.017075584411621093, 0.016921215057373047, 0.016873472213745116, 0.016914432525634765, 0.01700022315979004, 0.017090272903442384, 0.016957792282104492, 0.017672191619873046, 0.018103296279907227, 0.017461759567260742, 0.017084928512573243, 0.016990207672119142, 0.016701440811157226, 0.016728000640869142, 0.01665439987182617, 0.01721507263183594, 0.017082784652709963, 0.01701251220703125, 0.016918752670288088, 0.016899999618530274, 0.016806175231933593, 0.016821855545043944, 0.016856672286987305, 0.016799840927124023, 0.016779808044433592, 0.017005760192871092, 0.01690707206726074, 0.01688150405883789, 0.01705999946594238, 0.016885759353637696, 0.016846847534179688, 0.01705504035949707, 0.01702364730834961, 0.017399839401245117, 0.01705369567871094, 0.017121280670166016, 0.017110591888427736, 0.017119680404663086, 0.01689571189880371, 0.01692086410522461, 0.019200000762939453, 0.01750822448730469, 0.017000127792358398, 0.01704185676574707, 0.01693657684326172, 0.01710323143005371, 0.016979232788085937, 0.01716092872619629, 0.017143808364868163, 0.016947200775146484, 0.016907327651977538, 0.016870336532592775, 0.016869375228881836, 0.01680780792236328, 0.017438848495483397, 0.017147903442382813, 0.017138816833496093, 0.017052543640136718, 0.016905567169189454, 0.01685161590576172, 0.016787296295166017, 0.01693302345275879, 0.016936063766479492, 0.017022911071777343, 0.01776313591003418, 0.017092607498168946, 0.017194303512573242, 0.017003328323364257, 0.017170143127441407, 0.01795305633544922, 0.017828832626342772, 0.01779097557067871, 0.017250303268432618, 0.017133567810058595, 0.017377279281616212, 0.01794047927856445, 0.017143327713012694, 0.016941535949707032, 0.017069503784179686, 0.016873023986816407, 0.01691267204284668, 0.016980703353881837, 0.017176576614379883, 0.016855039596557618, 0.016910335540771485, 0.01702911949157715, 0.016957439422607423, 0.016883295059204103, 0.016850719451904295, 0.016949888229370116, 0.01703856086730957, 0.016846879959106446, 0.017071968078613282, 0.017210271835327147, 0.017307647705078123, 0.017122880935668945, 0.017102848052978514, 0.01718726348876953, 0.01687318420410156, 0.016906496047973632, 0.016981504440307618, 0.017201663970947266, 0.01708598327636719, 0.01691257667541504, 0.017131839752197266, 0.017104000091552735, 0.0170578556060791, 0.016902080535888674, 0.016995199203491212, 0.017303552627563477, 0.01696767997741699, 0.016979936599731446, 0.01708812713623047, 0.017222047805786133, 0.017166080474853514, 0.017182592391967774, 0.01702911949157715, 0.0169781436920166, 0.016879167556762695, 0.016869951248168945, 0.016805728912353515, 0.017049472808837892, 0.0174902400970459, 0.017811264038085937, 0.01711123275756836, 0.017096607208251954, 0.016934112548828126, 0.01709129524230957, 0.01696169662475586, 0.017067743301391602, 0.01700182342529297, 0.0169051513671875, 0.016866687774658204, 0.019163232803344726, 0.017799072265625, 0.017244319915771484, 0.01669728088378906, 0.016480255126953124, 0.016453632354736326, 0.016504703521728517, 0.016608896255493163, 0.01659942436218262, 0.016492671966552734, 0.01639219284057617, 0.01640652847290039, 0.016430368423461916, 0.01635606384277344, 0.01654374313354492, 0.01642239952087402, 0.016810207366943358, 0.016607168197631837, 0.01649660873413086, 0.01666249656677246, 0.01671824073791504, 0.016508352279663085, 0.016453407287597657, 0.016501535415649415, 0.016571744918823243, 0.016437631607055664, 0.01643721580505371, 0.016569664001464843, 0.016703968048095704, 0.016475744247436523, 0.016669631958007813, 0.01789952087402344, 0.017153247833251953, 0.01656015968322754, 0.016595712661743166, 0.01685443115234375, 0.01656278419494629, 0.016500736236572267, 0.01645676803588867, 0.01632352066040039, 0.016465919494628906, 0.016359199523925783, 0.016533727645874022, 0.01643929672241211, 0.01642073631286621, 0.01641484832763672, 0.016627712249755858, 0.01636966323852539, 0.016529407501220703, 0.016582656860351562, 0.016480255126953124, 0.016440959930419923, 0.016474496841430663, 0.016459775924682618, 0.017380447387695314, 0.01656515121459961, 0.016506879806518555, 0.01656399917602539, 0.01673561668395996, 0.016615776062011717, 0.016707071304321287, 0.016671743392944336, 0.01683612823486328, 0.01841004753112793, 0.01769808006286621, 0.01730838394165039, 0.0168222713470459, 0.016555200576782225, 0.016509759902954103, 0.016529375076293946, 0.01652720069885254, 0.01664224052429199, 0.01664156723022461, 0.016677343368530273, 0.0165928955078125, 0.016664575576782227, 0.016664575576782227, 0.016669824600219728, 0.01663680076599121, 0.016576351165771483, 0.01648361587524414, 0.016503488540649414, 0.01645136070251465, 0.016394655227661134, 0.01641164779663086, 0.01640732765197754, 0.016422719955444337, 0.016480672836303712, 0.016465919494628906, 0.01643110466003418, 0.016521215438842773, 0.01659859275817871, 0.016984031677246093, 0.016822399139404295, 0.01678505516052246, 0.01688137626647949, 0.01657881546020508, 0.016454368591308593, 0.016434431076049805, 0.016530176162719727, 0.0167587833404541, 0.016738304138183592, 0.01683456039428711, 0.01681612777709961, 0.01696870422363281, 0.01664102363586426, 0.016781312942504883, 0.016711679458618164, 0.016639999389648438, 0.016711679458618164, 0.016736255645751954, 0.016739936828613283, 0.01667487907409668, 0.01659529685974121, 0.016616800308227538, 0.016704160690307616, 0.016687103271484375, 0.016756479263305663, 0.01671603202819824, 0.01658576011657715, 0.016720863342285158, 0.016689151763916017, 0.016685056686401366, 0.016694911956787108, 0.0166808967590332, 0.01665273666381836]",tokens/s,59.11739757546015,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 286, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 280.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 42.12 MiB is free. Process 22662 has 14.70 GiB memory in use. Of the allocated memory 14.58 GiB is allocated by PyTorch, and 1.64 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 609, in __init__ self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 200.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 164.12 MiB is free. Process 46488 has 14.58 GiB memory in use. Of the allocated memory 14.46 GiB is allocated by PyTorch, and 4.94 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 134.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 52.12 MiB is free. Process 82289 has 14.69 GiB memory in use. Of the allocated memory 14.47 GiB is allocated by PyTorch, and 108.93 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 248, in __init__ self.model = DeciCoderModel(config) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 215, in __init__ self.layers = nn.ModuleList([DeciCoderDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 215, in self.layers = nn.ModuleList([DeciCoderDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 181, in __init__ self.self_attn = DeciCoderAttention(config=config) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 54, in __init__ self._init_rope() File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1729, in __getattr__ raise AttributeError(f""'{type(self).__name__}' object has no attribute '{name}'"") AttributeError: 'DeciCoderAttention' object has no attribute '_init_rope' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 217, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 258.12 MiB is free. Process 88353 has 14.49 GiB memory in use. Of the allocated memory 14.32 GiB is allocated by PyTorch, and 53.40 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 906, in __init__ self.model = InternLMModel(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in __init__ self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 545, in __init__ self.self_attn = INTERNLM_ATTENTION_CLASSES[config.attn_implementation](config=config) KeyError: 'sdpa' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 219, in __init__ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 768.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 286.12 MiB is free. Process 91295 has 14.46 GiB memory in use. Of the allocated memory 14.30 GiB is allocated by PyTorch, and 41.77 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt2,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 286, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 344.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 66.12 MiB is free. Process 172589 has 14.67 GiB memory in use. Of the allocated memory 14.56 GiB is allocated by PyTorch, and 1.71 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 689, in __init__ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 358, in __init__ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 2.12 MiB is free. Process 169805 has 14.74 GiB memory in use. Of the allocated memory 14.53 GiB is allocated by PyTorch, and 90.39 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1032, in __init__ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.16 GiB. GPU 0 has a total capacity of 14.74 GiB of which 774.12 MiB is free. Process 67728 has 13.98 GiB memory in use. Of the allocated memory 13.72 GiB is allocated by PyTorch, and 148.73 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-9b,google/recurrentgemma-9b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: RecurrentGemmaForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 608, in __init__ self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 288.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 182.12 MiB is free. Process 38702 has 14.56 GiB memory in use. Of the allocated memory 14.43 GiB is allocated by PyTorch, and 13.08 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mixtral,mistralai/Mixtral-8x22B-v0.1,mistralai/Mixtral-8x22B-v0.1,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,811.880448,12523.077632,0.0,12127.830016,12122.08896,s,1,7.14912158203125,7.14912158203125,0.0,7.14912158203125,7.14912158203125,7.14912158203125,7.14912158203125,[7.14912158203125],,kWh,1.16733577624989e-05,1.2804078687359217e-06,6.025560375999724e-06,1.8979326007234543e-05,,MB,1144.537088,12697.141248,0.0,12289.31072,12248.586752,s,10,1.830730926513672,0.1830730926513672,0.004234504773003929,0.1828845748901367,0.18805665130615234,0.18874602279663086,0.18929751998901367,"[0.17489613342285157, 0.1831339569091797, 0.18228807067871095, 0.1866171875, 0.1813321533203125, 0.18943539428710937, 0.18263519287109375, 0.18790345764160157, 0.1776706848144531, 0.18481869506835938]",tokens/s,1398.3485846689125,kWh,5.5184299355345865e-06,6.085838316859708e-07,3.665511318150949e-06,9.792525085371505e-06,tokens/kWh,26142388.99243912,MB,1185.230848,12705.529856,0.0,12297.699328,12248.589312,s,10,33.465481201171876,3.3465481201171867,0.0032630793536641643,3.3474332275390624,3.3502978515625,3.3506911621093747,3.3510058105468747,"[3.341596923828125, 3.343175048828125, 3.341919189453125, 3.34682958984375, 3.345089111328125, 3.34810986328125, 3.348036865234375, 3.35021044921875, 3.3494296875, 3.35108447265625]",tokens/s,18.8253680325965,kWh,9.774854880654882e-05,1.0781801465979355e-05,6.493179355964916e-05,0.00017346214383217733,tokens/kWh,363191.6371387165,,s,630,33.46292974090575,0.053115761493501217,0.00048685466314468635,0.053035871505737305,0.053312567901611325,0.05350089111328125,0.05635084976196289,"[0.056864990234375, 0.05423715209960937, 0.05326361465454101, 0.05293033599853516, 0.05284262466430664, 0.05283107376098633, 0.05295718383789062, 0.05289363098144531, 0.05282003021240234, 0.05274323272705078, 0.05282502365112305, 0.052751937866210935, 0.05267910385131836, 0.05283225631713867, 0.052779006958007815, 0.05272371292114258, 0.05263679885864258, 0.05282438278198242, 0.0535107192993164, 0.05336886215209961, 0.05309369659423828, 0.05307254409790039, 0.0529705924987793, 0.05297449493408203, 0.05297532653808594, 0.05300252914428711, 0.05307392120361328, 0.05286297607421875, 0.05279334259033203, 0.05274166488647461, 0.05284457778930664, 0.052873119354248044, 0.05281644821166992, 0.052743839263916015, 0.05269945526123047, 0.05284403228759765, 0.05301708984375, 0.05314963150024414, 0.0530203857421875, 0.05301283264160156, 0.052944896697998046, 0.052891681671142575, 0.053026782989501954, 0.05299609756469727, 0.052916160583496095, 0.05293231964111328, 0.05296572875976562, 0.05313238525390625, 0.05309123229980469, 0.053052703857421876, 0.05297020721435547, 0.052985855102539066, 0.05288959884643555, 0.05286902236938477, 0.05313455963134766, 0.053162879943847656, 0.05311283111572265, 0.05309772872924805, 0.05302899169921875, 0.05316636657714844, 0.05294457626342773, 0.05305001449584961, 0.05308415985107422, 0.056467041015625, 0.054403072357177736, 0.0535280647277832, 0.05318713760375977, 0.05289388656616211, 0.05288505554199219, 0.05284713745117187, 0.052832321166992186, 0.05285014343261719, 0.05286540985107422, 0.05286707305908203, 0.05284220886230469, 0.0527400016784668, 0.05282870483398437, 0.052762622833251956, 0.052715137481689454, 0.052660606384277345, 0.05270281600952149, 0.0529453125, 0.05316201782226562, 0.05312905502319336, 0.05314524841308594, 0.05304774475097656, 0.0531388168334961, 0.05305001449584961, 0.053055423736572266, 0.05290195083618164, 0.05292851257324219, 0.05284211349487305, 0.05306729507446289, 0.05284540939331055, 0.05289507293701172, 0.05293942260742188, 0.05271862411499023, 0.05274012756347656, 0.05263622283935547, 0.05269334411621094, 0.05305347061157226, 0.053233665466308595, 0.05320899200439453, 0.05298799896240235, 0.05314889526367188, 0.053203102111816405, 0.05304383850097656, 0.052822017669677736, 0.05291212844848633, 0.052975582122802733, 0.053225440979003905, 0.05330281448364258, 0.0531495361328125, 0.05318931198120117, 0.052929920196533205, 0.052974208831787106, 0.05295308685302735, 0.05294675064086914, 0.053211326599121096, 0.0535470085144043, 0.05303868865966797, 0.05334675216674805, 0.05318473434448242, 0.05291795349121094, 0.052813888549804684, 0.052851776123046874, 0.055715904235839844, 0.05353148651123047, 0.05297308731079101, 0.05286345672607422, 0.052832286834716795, 0.052912094116210937, 0.0530247688293457, 0.05293033599853516, 0.05299836730957031, 0.05322668838500977, 0.053012287139892575, 0.052853759765625, 0.0528524169921875, 0.052832576751708986, 0.052752384185791014, 0.05267865753173828, 0.05270249557495117, 0.05302345657348633, 0.05322956848144531, 0.05341603088378906, 0.053122974395751955, 0.05295820617675781, 0.052867488861083986, 0.05286137771606445, 0.05292252731323242, 0.053059585571289064, 0.052918270111083986, 0.053036064147949216, 0.05284534454345703, 0.05294918441772461, 0.053020160675048826, 0.05310310363769531, 0.05292031860351563, 0.05293056106567383, 0.05274012756347656, 0.052714656829833985, 0.05262828826904297, 0.053100543975830077, 0.05335836791992187, 0.05317244720458984, 0.05294899368286133, 0.052993759155273434, 0.05287964630126953, 0.05287321472167969, 0.052891647338867184, 0.05290115356445312, 0.05309513473510742, 0.053143520355224606, 0.05323574447631836, 0.053161087036132815, 0.05330745697021484, 0.05301536178588867, 0.05293625640869141, 0.05288924789428711, 0.053297119140625, 0.05317715072631836, 0.05311078262329102, 0.05330739212036133, 0.05312220764160156, 0.05306777572631836, 0.0529252815246582, 0.052866943359375, 0.05293587112426758, 0.056655902862548825, 0.05414064025878906, 0.05344076919555664, 0.052944896697998046, 0.05295513534545898, 0.05284659194946289, 0.05285820770263672, 0.05287923049926758, 0.053007102966308596, 0.05298179244995117, 0.052980960845947264, 0.05284124755859375, 0.05298518371582031, 0.052865089416503905, 0.052811809539794925, 0.05284272003173828, 0.05272143936157227, 0.05312160110473633, 0.05324380874633789, 0.05327881622314453, 0.05345280075073242, 0.05321318435668945, 0.05305475234985352, 0.053080223083496095, 0.053084735870361326, 0.05314713668823242, 0.05302937698364258, 0.052989761352539064, 0.05285014343261719, 0.05298454284667969, 0.05296131134033203, 0.053069793701171875, 0.05297484970092774, 0.052996864318847654, 0.05294879913330078, 0.05306745529174805, 0.05318502426147461, 0.05300428771972656, 0.05295487976074219, 0.05323769760131836, 0.05321964645385742, 0.05329919815063477, 0.053231616973876954, 0.05295446395874023, 0.052955806732177736, 0.052803585052490234, 0.052951038360595705, 0.05320294570922852, 0.053082111358642575, 0.05303039932250977, 0.053142017364501956, 0.052942718505859375, 0.052975265502929685, 0.05321980667114258, 0.05318860626220703, 0.05314329528808594, 0.05297097778320312, 0.05296412658691406, 0.05295878219604492, 0.053193153381347655, 0.053180065155029294, 0.05315209579467774, 0.05312307357788086, 0.056371200561523435, 0.0541736946105957, 0.053305343627929686, 0.052893695831298826, 0.05288259124755859, 0.052873119354248044, 0.05304991912841797, 0.05293494415283203, 0.053004383087158206, 0.053008384704589843, 0.053135551452636716, 0.05288473510742187, 0.052789825439453125, 0.05284572982788086, 0.0528306884765625, 0.052687232971191406, 0.05269475173950195, 0.0530366096496582, 0.05316886520385742, 0.05358182525634766, 0.053571456909179686, 0.05307609558105469, 0.05293868637084961, 0.052813919067382815, 0.05291823959350586, 0.05297971343994141, 0.05294870376586914, 0.05304361724853516, 0.053026687622070315, 0.053016574859619144, 0.05291382217407226, 0.05283260726928711, 0.05283379364013672, 0.052942943572998044, 0.0528633918762207, 0.05272576141357422, 0.053030815124511715, 0.05316182327270508, 0.053106945037841795, 0.053305343627929686, 0.05326623916625976, 0.05307411193847656, 0.052852607727050784, 0.05303091049194336, 0.05287097549438476, 0.0529279670715332, 0.05338556671142578, 0.05338982391357422, 0.05334988784790039, 0.05313897705078125, 0.052910465240478516, 0.05277308654785156, 0.05284668731689453, 0.05298614501953125, 0.053300926208496094, 0.05319712066650391, 0.05299776077270508, 0.05318899154663086, 0.05328236770629883, 0.053182910919189454, 0.05289779281616211, 0.05291417694091797, 0.05286502456665039, 0.05668511962890625, 0.05410153579711914, 0.05316806411743164, 0.053093921661376955, 0.05300060653686523, 0.05288175964355469, 0.05303116989135742, 0.05304115295410156, 0.053026782989501954, 0.053120094299316405, 0.05307865524291992, 0.05292678451538086, 0.052665950775146485, 0.05266435241699219, 0.05273977661132812, 0.052798145294189455, 0.05281302261352539, 0.05330115127563476, 0.053334911346435546, 0.05331148910522461, 0.05330944061279297, 0.05312307357788086, 0.05293260955810547, 0.052910079956054686, 0.05291334533691406, 0.05299020767211914, 0.05304787063598633, 0.05302067184448242, 0.05297356796264648, 0.05306140899658203, 0.053037120819091794, 0.052908191680908205, 0.05283996963500977, 0.05287369537353516, 0.05329103851318359, 0.053086177825927734, 0.052995326995849606, 0.05334092712402344, 0.0532880973815918, 0.05337990570068359, 0.052999488830566405, 0.05312176132202148, 0.053174304962158206, 0.05305750274658203, 0.05294899368286133, 0.05293414306640625, 0.05320755386352539, 0.05317196655273437, 0.05307606506347656, 0.05309455871582031, 0.053136608123779294, 0.05298278427124024, 0.05337644958496094, 0.053131168365478515, 0.05307027053833008, 0.05336678314208984, 0.05322137451171875, 0.05305865478515625, 0.05299609756469727, 0.05323196792602539, 0.053406272888183594, 0.053016609191894534, 0.0529653434753418, 0.05629951858520508, 0.05410380935668945, 0.05306803131103516, 0.05288550567626953, 0.05289539337158203, 0.052807838439941406, 0.052887649536132814, 0.052948577880859375, 0.053067905426025394, 0.0530456314086914, 0.05298755264282227, 0.05303932952880859, 0.05304537582397461, 0.05297151947021484, 0.0528353271484375, 0.0527534065246582, 0.052726879119873046, 0.05296419143676758, 0.053340160369873046, 0.05351007843017578, 0.05327990341186523, 0.053128158569335934, 0.0532644157409668, 0.053323486328125, 0.053114433288574216, 0.05308803176879883, 0.053025760650634766, 0.05293868637084961, 0.052983070373535154, 0.05329987335205078, 0.052865089416503905, 0.05293027114868164, 0.05305168151855469, 0.0530794563293457, 0.05292092895507813, 0.05306547164916992, 0.053096702575683594, 0.053065727233886716, 0.05304076766967773, 0.05316032028198242, 0.05304528045654297, 0.053357601165771484, 0.05313017654418945, 0.05288140869140625, 0.052883678436279294, 0.05304467010498047, 0.053182815551757814, 0.05312239837646485, 0.05307459259033203, 0.05325619125366211, 0.053147647857666014, 0.05316534423828125, 0.05300457763671875, 0.052964832305908205, 0.05299708938598633, 0.0532715835571289, 0.05310870361328125, 0.05336576080322265, 0.053192577362060546, 0.05320512008666992, 0.05330905532836914, 0.053117313385009766, 0.053028865814208986, 0.056301025390625, 0.053897727966308595, 0.053232929229736325, 0.052969566345214845, 0.052908382415771484, 0.052920639038085936, 0.05289267349243164, 0.05292035293579102, 0.05302479934692383, 0.05304617691040039, 0.0529958381652832, 0.05307398223876953, 0.05302076721191406, 0.05292246246337891, 0.05287936019897461, 0.05308415985107422, 0.0528056640625, 0.05342819213867187, 0.05339136123657227, 0.05354694366455078, 0.05331155014038086, 0.05326230239868164, 0.053053184509277346, 0.053269985198974606, 0.05316444778442383, 0.05303443145751953, 0.05299708938598633, 0.053098400115966796, 0.05294646453857422, 0.05297932815551758, 0.05306816101074219, 0.053008159637451174, 0.05287401580810547, 0.05287526321411133, 0.05312102508544922, 0.0531082878112793, 0.05306780624389648, 0.053090721130371096, 0.053106334686279295, 0.05354025650024414, 0.05325423812866211, 0.05323980712890625, 0.05317510223388672, 0.05299929428100586, 0.05294172668457031, 0.05297356796264648, 0.05306163024902344, 0.05306367874145508, 0.053267616271972656, 0.0533287353515625, 0.053245281219482424, 0.05309036636352539, 0.05287587356567383, 0.05310579299926758, 0.05298995208740234, 0.0532383041381836, 0.05329955291748047, 0.05344460678100586, 0.05337059020996094, 0.05336297607421875, 0.053139041900634766, 0.05319071960449219, 0.05306531143188477, 0.05669683074951172, 0.054657024383544923, 0.05362649536132812, 0.05325372695922852, 0.052972320556640626, 0.05289363098144531, 0.05284159851074219, 0.052951999664306644, 0.05321830368041992, 0.053064449310302735, 0.052977279663085936, 0.052783744812011715, 0.052891326904296876, 0.05301279830932617, 0.053036449432373046, 0.052902496337890625, 0.05290595245361328, 0.05300537490844726, 0.053197792053222656, 0.053321727752685545, 0.053294654846191405, 0.05330579376220703, 0.05320054244995117, 0.05300259017944336, 0.05296332931518555, 0.05297257614135742, 0.052902240753173825, 0.05290252685546875, 0.05300390243530274, 0.053026206970214845, 0.053023712158203125, 0.05299817657470703, 0.052985824584960935, 0.05289295959472656, 0.05297020721435547, 0.0530513916015625, 0.053130592346191406, 0.05303567886352539, 0.053016574859619144, 0.053065727233886716, 0.05317622375488281, 0.05336687850952149, 0.05322956848144531, 0.05308006286621094, 0.053034526824951175, 0.05285279846191406, 0.05295759963989258, 0.053130817413330075, 0.053262367248535156, 0.053604766845703124, 0.05313689422607422, 0.05301094436645508, 0.053144607543945316, 0.05307468795776367, 0.05312124633789062, 0.053298686981201174, 0.053175807952880856, 0.05325904083251953, 0.05315804672241211, 0.05306540679931641, 0.05309686279296875, 0.05291999816894531, 0.05304899215698242, 0.05680332946777344, 0.05424284744262695, 0.05320751953125, 0.05307526397705078, 0.0529488639831543, 0.05304198455810547, 0.053000190734863284, 0.05297971343994141, 0.053133312225341796, 0.05317987060546875, 0.05297788619995117, 0.05281209564208984, 0.052838401794433595, 0.053040321350097654, 0.05312172698974609, 0.052932769775390624, 0.052889568328857425, 0.05323980712890625, 0.05367193603515625, 0.05363302230834961, 0.053123104095458985, 0.05322963333129883, 0.053041057586669924, 0.052870559692382815, 0.0529923210144043, 0.0530926399230957, 0.05303894424438477, 0.053097919464111326, 0.05287395095825195, 0.05286707305908203, 0.05289779281616211, 0.05301769638061524, 0.053095329284667966, 0.05312102508544922, 0.05290393447875977, 0.052981311798095704, 0.053106590270996096, 0.05324857711791992, 0.05337651062011719, 0.053281246185302736, 0.05300223922729492, 0.05304729461669922, 0.05309215927124023, 0.05313532638549805, 0.05302908706665039, 0.05312921524047851, 0.05320867156982422, 0.0531583023071289, 0.053110305786132815, 0.05327283096313477, 0.053357822418212894, 0.053049343109130856, 0.05308063888549805, 0.05295759963989258, 0.053171199798583986, 0.05327974319458008, 0.05348966217041016, 0.053471233367919924, 0.05323980712890625, 0.05322684860229492, 0.05314345550537109, 0.053108959197998046, 0.05303350448608399]",tokens/s,18.826803417331245,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 959, in __init__ self.model = MistralModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 711, in __init__ [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 711, in [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 508, in __init__ self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 199, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 24.12 MiB is free. Process 108816 has 14.71 GiB memory in use. Of the allocated memory 14.46 GiB is allocated by PyTorch, and 141.44 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,814.727168,806.289408,0.0,411.041792,391.374848,s,1,7.34471484375,7.34471484375,0.0,7.34471484375,7.34471484375,7.34471484375,7.34471484375,[7.34471484375],,kWh,4.979785358329991e-06,5.420543576206471e-07,1.008334140004119e-06,6.530173855954757e-06,,MB,1157.623808,881.78688,0.0,473.956352,454.832128,s,18,0.17947494411468504,0.009970830228593614,0.00041730724994131976,0.009976736068725586,0.010160755348205566,0.010392897748947142,0.011255180959701535,"[0.010007264137268067, 0.009718848228454589, 0.01008521556854248, 0.010202688217163086, 0.009753952026367188, 0.009642751693725585, 0.009979840278625488, 0.009712639808654786, 0.009546496391296387, 0.009600768089294434, 0.009583616256713867, 0.010026559829711915, 0.009973631858825684, 0.010042240142822265, 0.009878175735473633, 0.010106719970703126, 0.011470751762390137, 0.010142784118652343]",tokens/s,25674.89307619159,kWh,2.869601984267479e-07,3.164608360747545e-08,1.79733564523107e-07,4.983398465573304e-07,tokens/kWh,513705660.4414013,MB,1186.168832,909.049856,0.0,501.219328,454.834688,s,18,10.204578491210937,0.5669210272894964,0.010994312838018253,0.5672750854492188,0.5786530029296875,0.5795169067382813,0.5801510864257813,"[0.5803096313476562, 0.5649026489257812, 0.5646107788085938, 0.5665227661132812, 0.5680274047851562, 0.57097021484375, 0.5630609741210938, 0.5465955810546875, 0.5445765380859375, 0.546088134765625, 0.5648844604492187, 0.5793770141601563, 0.5783427124023437, 0.5777233276367187, 0.5779256591796875, 0.5652088012695312, 0.57047607421875, 0.5749757690429688]",tokens/s,111.12658900871787,kWh,1.611264126638789e-05,1.7769285780013281e-06,7.406182998032452e-06,2.529575284242167e-05,tokens/kWh,2490536.6680507436,,s,1134,10.194637586593622,0.008989980235091384,0.0002737373905640035,0.009007359981536865,0.00931346254348755,0.009394726514816284,0.009587025899887087,"[0.009422847747802734, 0.009308064460754394, 0.009404512405395507, 0.009428159713745117, 0.009292608261108398, 0.00938361644744873, 0.009435456275939941, 0.009379743576049804, 0.009396320343017578, 0.009295647621154784, 0.009268896102905273, 0.009192000389099121, 0.009263104438781738, 0.009144319534301757, 0.009259008407592773, 0.009332736015319825, 0.009464159965515136, 0.009314208030700684, 0.009199359893798827, 0.009211903572082519, 0.009334783554077148, 0.009252863883972168, 0.009203488349914551, 0.009160672187805176, 0.00925705623626709, 0.009261216163635254, 0.009248671531677246, 0.009336928367614745, 0.009347295761108399, 0.009195296287536622, 0.009383935928344727, 0.009297599792480469, 0.00915443229675293, 0.009131775856018067, 0.00902233600616455, 0.009092960357666015, 0.00908022403717041, 0.009120320320129395, 0.009250240325927734, 0.009259584426879883, 0.009268608093261719, 0.009378432273864746, 0.009406463623046875, 0.009397695541381836, 0.009359840393066407, 0.009346367835998536, 0.00921455955505371, 0.009047391891479493, 0.008957056045532227, 0.008928383827209473, 0.008945247650146485, 0.009150527954101562, 0.008868800163269044, 0.008819968223571777, 0.008755776405334472, 0.008980287551879882, 0.009119808197021484, 0.00893779182434082, 0.009252863883972168, 0.009072575569152832, 0.009037887573242188, 0.00888764762878418, 0.008878751754760742, 0.00851417636871338, 0.008738816261291504, 0.008873984336853028, 0.008887583732604981, 0.008769439697265626, 0.008719200134277344, 0.008769503593444824, 0.00890675163269043, 0.008815711975097656, 0.008790528297424317, 0.008802720069885254, 0.008859199523925781, 0.008688063621520995, 0.00896992015838623, 0.009326911926269532, 0.009486335754394531, 0.009266655921936035, 0.00935968017578125, 0.00910051155090332, 0.00890777587890625, 0.00890006446838379, 0.008946208000183106, 0.008869888305664063, 0.008855839729309083, 0.008856448173522949, 0.008761823654174805, 0.008763039588928222, 0.00882051181793213, 0.008808480262756348, 0.008811424255371094, 0.008935423851013183, 0.009224287986755371, 0.009137503623962403, 0.009251392364501954, 0.009261152267456055, 0.009158464431762695, 0.0088472318649292, 0.008841440200805665, 0.008857407569885255, 0.008853280067443847, 0.00895631980895996, 0.00889241600036621, 0.008771871566772461, 0.008901663780212402, 0.00903222370147705, 0.009186944007873536, 0.008790559768676758, 0.008695808410644532, 0.008619647979736328, 0.008677696228027344, 0.008582655906677245, 0.009029472351074219, 0.009464832305908203, 0.009360383987426758, 0.009278335571289063, 0.009143808364868163, 0.00928598403930664, 0.008988672256469727, 0.009065567970275879, 0.009099712371826172, 0.00906611156463623, 0.009079551696777344, 0.009041248321533203, 0.009126879692077637, 0.009217568397521973, 0.009429696083068848, 0.009115424156188965, 0.009019583702087402, 0.00899401569366455, 0.008919648170471191, 0.008761343955993652, 0.008764863967895508, 0.008771295547485352, 0.008888319969177246, 0.008825695991516114, 0.008867839813232421, 0.008828831672668456, 0.008788064002990722, 0.008734047889709473, 0.008690336227416991, 0.008882176399230958, 0.008814592361450196, 0.008681471824645997, 0.008668928146362305, 0.008591775894165038, 0.008654687881469727, 0.008755200386047364, 0.009107711791992188, 0.009412351608276368, 0.009325823783874511, 0.009179648399353027, 0.009319680213928223, 0.009153023719787597, 0.009011712074279785, 0.008804351806640624, 0.008818752288818359, 0.008839167594909669, 0.008951744079589844, 0.008853471755981446, 0.00882652759552002, 0.008806912422180176, 0.008750975608825684, 0.008720383644104004, 0.00908083152770996, 0.008998175621032715, 0.008946399688720703, 0.008967840194702148, 0.009050463676452637, 0.0090862398147583, 0.0090447998046875, 0.008990912437438965, 0.009237567901611328, 0.009147040367126465, 0.00903708839416504, 0.008970303535461426, 0.009054688453674317, 0.009038335800170898, 0.009017024040222168, 0.009053631782531739, 0.00890937614440918, 0.008950048446655274, 0.00892467212677002, 0.008765151977539062, 0.00876540756225586, 0.00897439956665039, 0.009310751914978028, 0.009320096015930176, 0.009319135665893555, 0.009262944221496582, 0.009048128128051757, 0.008931008338928223, 0.009074175834655761, 0.00903446388244629, 0.008959296226501465, 0.008919520378112793, 0.008843487739562988, 0.008808639526367188, 0.008832832336425782, 0.008928832054138183, 0.00927519989013672, 0.009138879776000976, 0.008984512329101562, 0.008951871871948243, 0.008849344253540038, 0.008914943695068359, 0.008779135704040528, 0.00875331211090088, 0.008791520118713378, 0.008985152244567871, 0.008927680015563965, 0.008838303565979004, 0.008712512016296386, 0.008669599533081055, 0.008783391952514649, 0.008824895858764649, 0.008748831748962403, 0.008648960113525391, 0.00857369613647461, 0.008547167778015136, 0.008759488105773925, 0.008836959838867188, 0.009403264045715332, 0.009566207885742188, 0.009387264251708985, 0.009312864303588866, 0.009058655738830567, 0.008939328193664551, 0.009005311965942384, 0.009016160011291505, 0.008985088348388673, 0.008960639953613281, 0.008843168258666993, 0.009076607704162598, 0.008971551895141601, 0.009207615852355957, 0.009349023818969727, 0.009083392143249512, 0.009055007934570312, 0.009034815788269044, 0.009033632278442384, 0.00913702392578125, 0.0091278076171875, 0.009023327827453614, 0.009005215644836426, 0.009001055717468261, 0.009027487754821777, 0.00901910400390625, 0.008923423767089845, 0.008877344131469726, 0.008674719810485839, 0.00886025619506836, 0.00876364803314209, 0.00872217559814453, 0.00871014404296875, 0.008661151885986328, 0.008626015663146972, 0.0086080961227417, 0.00921987247467041, 0.009463680267333985, 0.009400383949279785, 0.00933071994781494, 0.009267040252685547, 0.00900102424621582, 0.009107456207275391, 0.009108672142028809, 0.009007136344909667, 0.008989695549011231, 0.009013119697570801, 0.008863648414611817, 0.008843263626098634, 0.008810336112976075, 0.009181216239929199, 0.009477472305297852, 0.009083680152893066, 0.008939519882202148, 0.008826784133911133, 0.008931424140930176, 0.008957951545715333, 0.009009152412414552, 0.008838399887084961, 0.008782272338867187, 0.008895808219909668, 0.00899772834777832, 0.009034048080444336, 0.008853119850158691, 0.008792384147644043, 0.008717311859130859, 0.00887833595275879, 0.008987584114074708, 0.009283295631408691, 0.008988672256469727, 0.009211135864257812, 0.009054783821105958, 0.009128128051757813, 0.009234687805175782, 0.009381407737731934, 0.009455615997314454, 0.00926534366607666, 0.00926681613922119, 0.00925654411315918, 0.00926585578918457, 0.009109951972961427, 0.009011936187744141, 0.008954560279846192, 0.008942943572998047, 0.008971199989318848, 0.008996864318847657, 0.008897695541381836, 0.008835647583007812, 0.009015071868896484, 0.008942303657531738, 0.008836992263793945, 0.008502176284790039, 0.00880784034729004, 0.009112064361572265, 0.010286944389343262, 0.010262528419494628, 0.010143744468688964, 0.009098943710327148, 0.0089965763092041, 0.009091903686523437, 0.008937248229980469, 0.008914943695068359, 0.008955904006958008, 0.009111488342285156, 0.00916431999206543, 0.00895798397064209, 0.008710783958435058, 0.008710016250610351, 0.008727999687194824, 0.009170880317687988, 0.009484928131103515, 0.009469311714172363, 0.00938976001739502, 0.009464832305908203, 0.009243583679199219, 0.009184479713439941, 0.009045568466186524, 0.008847583770751953, 0.008765439987182617, 0.008784992218017578, 0.008778656005859375, 0.009676223754882812, 0.008823712348937989, 0.008779328346252441, 0.008757344245910645, 0.008964096069335938, 0.008978336334228516, 0.00904412841796875, 0.008837056159973145, 0.008766528129577636, 0.00904854393005371, 0.009265536308288575, 0.009134176254272462, 0.008972384452819825, 0.008789919853210449, 0.008705663681030273, 0.008704000473022461, 0.008914336204528809, 0.008825632095336914, 0.00870969581604004, 0.009134112358093261, 0.009363840103149414, 0.009013471603393554, 0.00879747200012207, 0.008737504005432129, 0.008683072090148927, 0.008843711853027344, 0.008763615608215331, 0.008873760223388672, 0.00910927963256836, 0.009344896316528321, 0.009257311820983887, 0.009274623870849609, 0.009327391624450683, 0.009162752151489258, 0.009096416473388672, 0.009007583618164063, 0.008894335746765137, 0.009071040153503417, 0.008959456443786621, 0.008854047775268555, 0.008851455688476563, 0.008901984214782714, 0.008896448135375977, 0.008819616317749024, 0.00894979190826416, 0.009021023750305175, 0.008957119941711425, 0.008804800033569336, 0.008788800239562989, 0.00903551959991455, 0.00921737575531006, 0.009126655578613281, 0.008935327529907227, 0.008725760459899902, 0.00873532772064209, 0.008755647659301757, 0.008812159538269042, 0.008861215591430664, 0.008902432441711426, 0.00890713596343994, 0.009146783828735352, 0.009086879730224609, 0.008912863731384278, 0.008903967857360839, 0.008766528129577636, 0.008671008110046386, 0.00861184024810791, 0.00863980770111084, 0.008569631576538086, 0.00886070442199707, 0.009313216209411621, 0.009289664268493652, 0.009326047897338867, 0.009230879783630372, 0.009174495697021485, 0.009066975593566895, 0.00911571216583252, 0.009011167526245117, 0.00894547176361084, 0.008866016387939452, 0.009027584075927735, 0.009191424369812011, 0.008917056083679199, 0.009504575729370118, 0.008814944267272948, 0.009017024040222168, 0.008899968147277832, 0.008815327644348144, 0.008678943634033202, 0.008673184394836426, 0.008649215698242188, 0.008609184265136719, 0.008622752189636231, 0.008914943695068359, 0.008976736068725587, 0.008713983535766601, 0.0084399995803833, 0.008846783638000488, 0.008683199882507325, 0.00888492774963379, 0.009137248039245606, 0.008833600044250487, 0.008669535636901855, 0.00867033576965332, 0.0086496000289917, 0.00858521556854248, 0.008775679588317872, 0.009214303970336913, 0.009157535552978515, 0.009073408126831054, 0.008957951545715333, 0.008790016174316406, 0.008712191581726075, 0.008640512466430664, 0.008560640335083008, 0.008566783905029298, 0.008581119537353516, 0.008531968116760253, 0.008566816329956055, 0.008597472190856933, 0.008597503662109375, 0.008617919921875, 0.008689855575561524, 0.00869331169128418, 0.008634143829345704, 0.008651295661926269, 0.008622079849243165, 0.0086179838180542, 0.008585344314575196, 0.008595552444458008, 0.008572128295898438, 0.008567359924316406, 0.008527968406677246, 0.008525983810424805, 0.008588095664978028, 0.008575743675231933, 0.008616127967834473, 0.00857692813873291, 0.00858675193786621, 0.008563296318054199, 0.0086179838180542, 0.008631839752197265, 0.008663519859313965, 0.00860979175567627, 0.008643967628479004, 0.00870032024383545, 0.008775103569030761, 0.008703104019165039, 0.008633088111877442, 0.00859763240814209, 0.008582176208496094, 0.00859216022491455, 0.008590304374694824, 0.008623711585998535, 0.008564767837524414, 0.008644672393798828, 0.00858348846435547, 0.00861184024810791, 0.0086364164352417, 0.008398847579956055, 0.00860159969329834, 0.008550111770629882, 0.008577312469482422, 0.008558367729187012, 0.008532256126403808, 0.009459648132324219, 0.00900924777984619, 0.008589119911193847, 0.00858448028564453, 0.00859382438659668, 0.008636832237243652, 0.008598784446716308, 0.008643424034118653, 0.008590880393981934, 0.008595135688781739, 0.008642784118652344, 0.008550880432128906, 0.008589311599731446, 0.008612095832824707, 0.00861353588104248, 0.008579520225524903, 0.008545184135437011, 0.008555264472961425, 0.00856287956237793, 0.00857596778869629, 0.0085696964263916, 0.008665056228637695, 0.008636608123779296, 0.00860979175567627, 0.008585056304931641, 0.008670495986938477, 0.00863920021057129, 0.00862822437286377, 0.008589311599731446, 0.008703680038452148, 0.008577343940734863, 0.00857907199859619, 0.008556096076965333, 0.008581503868103028, 0.008525888442993164, 0.008572064399719238, 0.008581983566284179, 0.00858521556854248, 0.008643808364868165, 0.008577759742736817, 0.00858937644958496, 0.008519359588623047, 0.00855686378479004, 0.00855395221710205, 0.00854032039642334, 0.008620736122131347, 0.00857260799407959, 0.008580767631530761, 0.00856611156463623, 0.008647808074951172, 0.008707967758178711, 0.00883670425415039, 0.00937548828125, 0.009038496017456054, 0.008652799606323243, 0.00865180778503418, 0.008678367614746094, 0.008376192092895508, 0.008861503601074218, 0.0086844482421875, 0.00865187168121338, 0.008612256050109863, 0.00864633560180664, 0.008617759704589844, 0.008598336219787598, 0.00860979175567627, 0.008586239814758301, 0.008668160438537598, 0.008673343658447265, 0.008638272285461426, 0.008638591766357421, 0.00876035213470459, 0.008713184356689453, 0.008666496276855468, 0.008595775604248047, 0.008659263610839844, 0.008584544181823731, 0.008516480445861816, 0.008599328041076661, 0.008568384170532227, 0.008576704025268554, 0.008551136016845703, 0.008550432205200196, 0.00856390380859375, 0.008579039573669433, 0.008586079597473144, 0.008553728103637696, 0.008575551986694336, 0.00854975986480713, 0.008563520431518555, 0.008598655700683593, 0.008561440467834473, 0.008597599983215331, 0.008559679985046387, 0.008812928199768066, 0.008642623901367188, 0.008591872215270996, 0.008665375709533692, 0.008644319534301758, 0.008584927558898926, 0.00858255958557129, 0.008607999801635742, 0.00854697608947754, 0.008582719802856445, 0.008526528358459472, 0.008595168113708496, 0.008566975593566895, 0.008633440017700195, 0.008639007568359376, 0.008658143997192383, 0.00862435245513916, 0.009238656044006349, 0.008744768142700195, 0.00947868824005127, 0.008918975830078125, 0.00959727954864502, 0.008677151679992676, 0.008705951690673829, 0.008650208473205566, 0.008610912322998047, 0.008331263542175293, 0.008650015830993653, 0.008618720054626465, 0.00861184024810791, 0.008541952133178711, 0.008634336471557617, 0.008565024375915527, 0.008632320404052735, 0.008566847801208496, 0.008578144073486327, 0.008632255554199218, 0.008622688293457031, 0.008595775604248047, 0.008675423622131348, 0.009055392265319824, 0.008632575988769531, 0.008565247535705567, 0.008553471565246582, 0.008535200119018555, 0.008619135856628417, 0.008602335929870605, 0.008598591804504395, 0.008813247680664063, 0.008614336013793945, 0.008636223793029784, 0.008753151893615722, 0.00876540756225586, 0.008884256362915038, 0.008919232368469239, 0.009077664375305175, 0.00897555160522461, 0.009048031806945802, 0.009080063819885255, 0.00912332820892334, 0.009152607917785644, 0.009193599700927734, 0.009163552284240723, 0.00924783992767334, 0.00936847972869873, 0.009426912307739259, 0.009250271797180175, 0.009281439781188965, 0.00919593620300293, 0.00928179168701172, 0.009256959915161133, 0.009115648269653321, 0.009066495895385742, 0.009183232307434081, 0.009204863548278808, 0.009538432121276856, 0.009218111991882324, 0.009287551879882812, 0.009266752243041992, 0.00923852825164795, 0.009458175659179687, 0.00924403190612793, 0.009149279594421387, 0.009277215957641602, 0.009307711601257325, 0.009150912284851074, 0.009005375862121582, 0.009182656288146972, 0.00945321559906006, 0.008957440376281739, 0.00918393611907959, 0.009283391952514649, 0.009277440071105958, 0.009441280364990234, 0.009510911941528321, 0.009209407806396484, 0.00912656021118164, 0.009257920265197754, 0.009130111694335937, 0.009119872093200684, 0.009112159729003906, 0.009276576042175293, 0.00936569595336914, 0.00922486400604248, 0.009441280364990234, 0.009332032203674316, 0.009093855857849121, 0.009148256301879883, 0.009136159896850586, 0.009307552337646484, 0.009525952339172363, 0.009195520401000976, 0.00930611228942871, 0.009289376258850098, 0.009145824432373047, 0.009357536315917969, 0.009282015800476074, 0.009104864120483398, 0.009025792121887206, 0.008968671798706055, 0.008922783851623536, 0.00899728012084961, 0.009027520179748534, 0.009347071647644043, 0.009263104438781738, 0.009173055648803712, 0.009201375961303711, 0.009210047721862792, 0.00917033576965332, 0.009439231872558594, 0.00917363166809082, 0.009197567939758301, 0.009117695808410644, 0.009013152122497559, 0.008933216094970704, 0.00906265640258789, 0.009258111953735352, 0.009268095970153808, 0.009051872253417968, 0.009119392395019531, 0.009267871856689452, 0.009391424179077148, 0.009222816467285157, 0.009138175964355469, 0.009032928466796875, 0.008899359703063965, 0.0089619197845459, 0.00901318359375, 0.009321760177612305, 0.009202143669128419, 0.009134528160095214, 0.009093119621276855, 0.009160479545593262, 0.009395808219909667, 0.00939414405822754, 0.00942956829071045, 0.009278656005859375, 0.009175968170166016, 0.009295167922973633, 0.009155263900756836, 0.009117088317871093, 0.009155167579650878, 0.009135807991027832, 0.008974080085754394, 0.009061216354370117, 0.009042719841003417, 0.009159616470336914, 0.009211903572082519, 0.009179231643676757, 0.009021344184875489, 0.00921126365661621, 0.009240192413330078, 0.009115839958190918, 0.009140704154968262, 0.009046367645263672, 0.009009152412414552, 0.009046015739440917, 0.00902284812927246, 0.009222911834716798, 0.00928054428100586, 0.009145024299621583, 0.008966303825378419, 0.008888544082641602, 0.009129055976867676, 0.009749183654785156, 0.009058303833007812, 0.009029055595397949, 0.008978464126586915, 0.009183775901794434, 0.009389408111572265, 0.009273664474487305, 0.009257311820983887, 0.009101375579833985, 0.009131967544555664, 0.009244640350341797, 0.009254688262939454, 0.00913987159729004, 0.009032447814941407, 0.009056096076965331, 0.009089280128479003, 0.009209440231323243, 0.009207839965820313, 0.009100416183471679, 0.009217023849487305, 0.009158656120300293, 0.009101311683654785, 0.009410847663879394, 0.00915129566192627, 0.009130016326904297, 0.009076704025268554, 0.009030495643615723, 0.00920800018310547, 0.009336704254150391, 0.009328831672668457, 0.009301823616027832, 0.009228351593017579, 0.009265151977539063, 0.00925228786468506, 0.009192000389099121, 0.00925875186920166, 0.009253120422363282, 0.009245856285095215, 0.009231040000915527, 0.009146528244018555, 0.009101311683654785, 0.009125568389892579, 0.009016863822937012, 0.009034527778625488, 0.008976351737976075, 0.009101344108581542, 0.009154175758361817, 0.009046208381652833, 0.008980223655700684, 0.00907526397705078, 0.009183103561401368, 0.00923852825164795, 0.009213983535766601, 0.009176128387451172, 0.009247648239135741, 0.009352224349975586, 0.00919215965270996, 0.009021023750305175, 0.00894428825378418, 0.008900863647460937, 0.008962112426757813, 0.009155584335327148, 0.009214655876159668, 0.009363615989685058, 0.009291616439819336, 0.00954918384552002, 0.009261695861816407, 0.009193632125854492, 0.009061504364013671, 0.009222816467285157, 0.009266528129577636, 0.009106143951416016, 0.009087072372436524, 0.009193375587463378, 0.009240575790405273, 0.009255135536193847, 0.009285280227661133, 0.009203840255737304, 0.009377792358398437, 0.009203712463378906, 0.009115455627441406, 0.009099136352539063, 0.009157024383544921, 0.009131551742553711, 0.009025919914245605, 0.009054207801818847, 0.009237919807434082, 0.009343839645385743, 0.009272704124450684, 0.009202048301696778, 0.009086976051330567, 0.008957951545715333, 0.00889583969116211, 0.008957951545715333, 0.00865328025817871, 0.009000960350036622, 0.00920576000213623, 0.009158143997192383, 0.009122271537780762, 0.008998944282531738, 0.009025535583496093, 0.009082015991210937, 0.009222208023071289, 0.008996831893920898, 0.009244768142700196, 0.009177824020385743, 0.009379839897155762, 0.009652223587036133, 0.009451519966125489, 0.009928704261779785, 0.009515263557434083, 0.009676223754882812, 0.00989568042755127, 0.009249183654785156, 0.009289024353027343, 0.00912179183959961, 0.009040736198425292, 0.008902655601501466, 0.008978464126586915, 0.008986207962036133, 0.009152671813964845, 0.00909670352935791, 0.009022175788879394, 0.008988096237182617, 0.009011775970458984, 0.009184288024902345, 0.009108448028564453, 0.009076800346374512, 0.009074624061584474, 0.008972064018249511, 0.00899839973449707, 0.008954591751098633, 0.009089216232299805, 0.00917689609527588, 0.00916703987121582, 0.009197183609008789, 0.009223936080932617, 0.009053855895996095, 0.0090283842086792, 0.008986528396606446, 0.008984031677246094, 0.009357760429382325, 0.00900268840789795, 0.009019519805908203, 0.008945343971252441, 0.009064352035522461, 0.009132896423339844, 0.00920195198059082, 0.009293760299682617, 0.009364831924438476, 0.009369983673095703, 0.009215999603271484, 0.009082176208496094, 0.00906719970703125, 0.009209856033325196, 0.009176480293273925, 0.009278047561645507, 0.009110048294067382, 0.009154335975646972, 0.008954079627990722, 0.008859647750854491, 0.0088722562789917, 0.009008831977844238, 0.009043264389038085, 0.008849920272827149, 0.008709792137145997, 0.00891977596282959, 0.009028639793395996, 0.00902019214630127, 0.009110527992248535, 0.009101344108581542, 0.008963040351867676, 0.008795807838439942, 0.008730976104736329, 0.008736767768859864, 0.008832032203674317, 0.008887264251708984, 0.008779104232788087, 0.00872105598449707, 0.009076064109802245, 0.00913475227355957, 0.008800224304199218, 0.008710176467895507, 0.008859647750854491, 0.008763392448425293, 0.008652480125427246, 0.008743231773376464, 0.008552063941955566, 0.008569215774536133, 0.008748448371887207, 0.009091839790344239, 0.009438464164733887, 0.009295583724975586, 0.009354111671447753, 0.009311264038085937, 0.009268192291259766, 0.009252896308898926, 0.009084511756896972, 0.008884639739990234, 0.008939488410949707, 0.008987775802612305, 0.008991583824157715, 0.00886406421661377, 0.008859359741210937, 0.008824288368225098, 0.008978976249694823, 0.009265151977539063, 0.00910147190093994, 0.009314144134521484, 0.008973983764648438, 0.00887782382965088, 0.008770367622375489, 0.008809696197509766, 0.008917280197143555, 0.00906668758392334, 0.009216095924377441, 0.009072256088256837, 0.008888704299926758, 0.008962047576904298, 0.00910540771484375, 0.010554143905639649, 0.009851903915405273, 0.009129983901977539, 0.009019455909729003, 0.00912384033203125, 0.00912172794342041, 0.0090600004196167, 0.009004639625549317, 0.008944160461425781, 0.008859999656677246, 0.008738592147827148, 0.008697152137756348, 0.008683520317077637, 0.00878889560699463, 0.009366815567016601, 0.00941868782043457, 0.009364128112792969, 0.009420255661010742, 0.00931884765625, 0.009324511528015137, 0.009162303924560546, 0.009157183647155762, 0.009164959907531738, 0.009101152420043945, 0.009074048042297363, 0.009115519523620606, 0.008908576011657714, 0.008886431694030762, 0.00897862434387207, 0.009382399559020996, 0.009109791755676269, 0.008984416007995606, 0.008739904403686523, 0.008769536018371582, 0.008963007926940918, 0.009279616355895996, 0.009310432434082031, 0.009150112152099609, 0.009015104293823243, 0.009081024169921875, 0.009048064231872559, 0.008955904006958008, 0.00885865592956543, 0.008927424430847168, 0.008905856132507325, 0.008831999778747558, 0.00881935977935791, 0.009033727645874023, 0.008990495681762696, 0.00884115219116211, 0.00880668830871582, 0.008892640113830567, 0.008928863525390626, 0.008893792152404784, 0.00889737606048584, 0.008950816154479981, 0.00897532844543457, 0.008843263626098634, 0.008828448295593263, 0.008809056282043457, 0.008826751708984375, 0.008843263626098634, 0.009054400444030762, 0.009355775833129883, 0.009312735557556153, 0.00940236759185791, 0.009293824195861817, 0.009313568115234375, 0.009159296035766602, 0.009201760292053223, 0.00903551959991455, 0.009084671974182128, 0.00912656021118164, 0.008980511665344238, 0.009082688331604003, 0.008867456436157226, 0.008968576431274414, 0.009215935707092286, 0.009174400329589844, 0.00917363166809082, 0.009135199546813964, 0.009079775810241698, 0.009207807540893554, 0.009236543655395509, 0.009082816123962402, 0.008957311630249024, 0.008953503608703613, 0.009012191772460938, 0.008970239639282226, 0.009089088439941407, 0.009048031806945802, 0.009180928230285644, 0.009164992332458497, 0.009037535667419433, 0.009168607711791992, 0.00924947166442871, 0.009013152122497559, 0.00902137565612793, 0.00910547161102295, 0.009072287559509278, 0.008960576057434081, 0.009297663688659669, 0.009059647560119628, 0.008889056205749512, 0.008798208236694336, 0.008900351524353027, 0.009261311531066895, 0.009397567749023438, 0.00934291172027588, 0.009399040222167969, 0.009309503555297851, 0.009204128265380859, 0.009281760215759277, 0.009306367874145507, 0.009166432380676269, 0.009150752067565918, 0.00903264045715332, 0.008954879760742187, 0.00898252773284912, 0.008956064224243164, 0.008824671745300293, 0.00917244815826416, 0.009213824272155762, 0.009077216148376465, 0.008984319686889649, 0.008974944114685059]",tokens/s,111.23494978293853,, float16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,816.320512,14274.199552,0.0,13878.951936,13865.632768,s,1,7.65110205078125,7.65110205078125,0.0,7.65110205078125,7.65110205078125,7.65110205078125,7.65110205078125,[7.65110205078125],,kWh,1.2706350270832445e-05,1.3818572771536117e-06,5.095281853995104e-06,1.9183489401981163e-05,,MB,1148.06784,14697.824256,0.0,14289.993728,14237.628416,s,10,1.8708953247070312,0.18708953247070312,0.005850038407180689,0.1897191162109375,0.1903833023071289,0.1907439353942871,0.19103244186401366,"[0.18225616455078125, 0.18965721130371094, 0.19030316162109376, 0.1911045684814453, 0.1879140167236328, 0.1710326385498047, 0.18994551086425782, 0.18882829284667968, 0.19007273864746094, 0.18978102111816406]",tokens/s,1368.328824276087,kWh,5.581673963128834e-06,6.1531401767901e-07,3.7278593764151706e-06,9.924847357223015e-06,tokens/kWh,25793847.581312235,MB,1165.975552,14865.596416,0.0,14457.765888,14415.235584,s,10,38.91846997070313,3.8918469970703127,0.00808245757850383,3.8932133789062497,3.9007560302734374,3.9016928344726565,3.9024422778320313,"[3.875691162109375, 3.883259033203125, 3.88573486328125, 3.88935595703125, 3.8903212890625, 3.89610546875, 3.9005478515625, 3.8968857421875, 3.89793896484375, 3.902629638671875]",tokens/s,16.187686732655436,kWh,0.0001137893467947874,1.2551477776801096e-05,7.54338983973839e-05,0.00020177472296897236,tokens/kWh,312229.3965914043,,s,630,38.91394614791871,0.06176816848875984,0.0006070965176817643,0.06171547126770019,0.062132289123535155,0.06224803886413574,0.0650584912109375,"[0.0646937255859375, 0.0624031982421875, 0.06150543975830078, 0.06130284881591797, 0.06101833724975586, 0.06089932632446289, 0.06093407821655274, 0.060762016296386716, 0.060932254791259764, 0.06090502548217774, 0.06112303924560547, 0.061316287994384766, 0.061047584533691406, 0.061317119598388675, 0.06105452728271484, 0.0614504623413086, 0.061891937255859376, 0.06169484710693359, 0.061427295684814455, 0.06129296112060547, 0.06113846588134766, 0.061043167114257814, 0.06099148941040039, 0.061329086303710936, 0.061448577880859376, 0.061362110137939456, 0.061216766357421876, 0.06121881484985352, 0.061271617889404294, 0.06127228927612305, 0.061626625061035153, 0.061781566619873045, 0.061843902587890624, 0.06176124954223633, 0.061617919921875, 0.06153993606567383, 0.061585662841796875, 0.06148982238769531, 0.061190174102783206, 0.06135804748535156, 0.06122659301757812, 0.06129296112060547, 0.06137855911254883, 0.06160793685913086, 0.06156425476074219, 0.06146524810791015, 0.06177177429199219, 0.06187011337280274, 0.06203577423095703, 0.06179759979248047, 0.06181369781494141, 0.06175324630737305, 0.061698143005371096, 0.06172652816772461, 0.061793472290039064, 0.06177862548828125, 0.0614956169128418, 0.06142483139038086, 0.06145516967773437, 0.06183116912841797, 0.061687808990478515, 0.06188851165771484, 0.06187007904052735, 0.06510774230957031, 0.06277423858642578, 0.061744895935058594, 0.061610240936279294, 0.06134991836547852, 0.061220832824707035, 0.061061023712158206, 0.06116470336914062, 0.061149921417236325, 0.0611596794128418, 0.06125337600708008, 0.06122723388671875, 0.06121267318725586, 0.061292545318603515, 0.061720577239990235, 0.061767711639404296, 0.06203744125366211, 0.061886398315429685, 0.061567264556884764, 0.06138857650756836, 0.06137459182739258, 0.06119260787963867, 0.06127206420898437, 0.061590816497802736, 0.06147760009765625, 0.061501502990722656, 0.06129452896118164, 0.06161407852172852, 0.06150348663330078, 0.061558719635009765, 0.06174319839477539, 0.06176559829711914, 0.06188982391357422, 0.061950687408447266, 0.06192947387695313, 0.061712383270263675, 0.06147404861450195, 0.06155945587158203, 0.06144979095458984, 0.06134592056274414, 0.06136259078979492, 0.06136627197265625, 0.06128643035888672, 0.061505569458007815, 0.06163654327392578, 0.06184550476074219, 0.06185292816162109, 0.06183603286743164, 0.06222784042358399, 0.06204687881469727, 0.061889793395996096, 0.06170492935180664, 0.061753345489501954, 0.06161203384399414, 0.061677566528320314, 0.061529407501220705, 0.0614714241027832, 0.06137638473510742, 0.06146879959106445, 0.0614257926940918, 0.06161743927001953, 0.06160240173339844, 0.06188851165771484, 0.06509616088867187, 0.06276697540283203, 0.06175139236450195, 0.06156288146972656, 0.0611759033203125, 0.06106240081787109, 0.06111708831787109, 0.06107340621948242, 0.061431678771972656, 0.06127833557128906, 0.06123110580444336, 0.06137651062011719, 0.06121638488769531, 0.06130080032348633, 0.06149766540527344, 0.06189056015014648, 0.06209331130981445, 0.062064640045166014, 0.06182092666625977, 0.06153955078125, 0.06138044738769531, 0.061295520782470705, 0.06125116729736328, 0.06123772811889648, 0.06133689498901367, 0.061663936614990235, 0.06138252639770508, 0.06142092895507813, 0.061534942626953124, 0.0615813102722168, 0.061859489440917965, 0.06203631973266602, 0.06212796783447266, 0.062120094299316406, 0.06199705505371094, 0.061730846405029294, 0.06166739273071289, 0.06151366424560547, 0.061378528594970706, 0.061402816772460934, 0.0615140495300293, 0.061306880950927733, 0.06150348663330078, 0.06187129592895508, 0.061487934112548825, 0.0616673583984375, 0.06174512100219726, 0.061906623840332034, 0.06183353424072266, 0.06207897567749023, 0.062037696838378904, 0.06203334426879883, 0.06194793701171875, 0.06167023849487305, 0.06170009613037109, 0.061437950134277344, 0.061423614501953126, 0.06133145523071289, 0.06156256103515625, 0.061663551330566405, 0.06152761459350586, 0.06175993728637695, 0.06204787063598633, 0.06505612945556641, 0.06332454299926758, 0.06217452621459961, 0.06167644882202149, 0.061261089324951175, 0.061147361755371096, 0.0611835823059082, 0.06109686279296875, 0.0611693115234375, 0.061326847076416016, 0.06121353530883789, 0.06126300811767578, 0.06133615875244141, 0.0612059211730957, 0.06143475341796875, 0.06171852874755859, 0.06199251174926758, 0.0618639030456543, 0.06191558456420899, 0.06158950424194336, 0.06133935928344727, 0.061484512329101564, 0.061367103576660156, 0.06151919937133789, 0.0614304313659668, 0.061609375, 0.06133411026000977, 0.06133145523071289, 0.061483009338378906, 0.06155059051513672, 0.06176496124267578, 0.06196284866333008, 0.062182945251464845, 0.06204678344726562, 0.06185776138305664, 0.061685760498046874, 0.061878273010253906, 0.06148198318481445, 0.061484031677246094, 0.061603839874267576, 0.061506847381591796, 0.06176227188110352, 0.06177791976928711, 0.06157894515991211, 0.061532478332519534, 0.06181820678710938, 0.0621308479309082, 0.061955329895019534, 0.06190361785888672, 0.061900798797607424, 0.06195337677001953, 0.06208784103393555, 0.06187417602539062, 0.061624126434326174, 0.06173510360717773, 0.0617347526550293, 0.06185385513305664, 0.06156902313232422, 0.06182297515869141, 0.06172585678100586, 0.06195644760131836, 0.061896766662597656, 0.061868606567382814, 0.0655218276977539, 0.06336307144165039, 0.06227478408813476, 0.06163286590576172, 0.0613092155456543, 0.06114284896850586, 0.06121088027954102, 0.0612391357421875, 0.06120265579223633, 0.06114300918579101, 0.061206558227539065, 0.06127926254272461, 0.06138159942626953, 0.0613438720703125, 0.06142310333251953, 0.061721057891845704, 0.061926559448242186, 0.06205724716186523, 0.06176969528198242, 0.06167728042602539, 0.06167372894287109, 0.061560863494873046, 0.06152550506591797, 0.0614155502319336, 0.061478816986083984, 0.06144825744628906, 0.061278656005859376, 0.06166291046142578, 0.06173519897460938, 0.06177328109741211, 0.06163711929321289, 0.061716510772705076, 0.06216025543212891, 0.06213286590576172, 0.061857505798339846, 0.06177536010742188, 0.06148988723754883, 0.061619297027587894, 0.06175638580322266, 0.061726753234863284, 0.06156259155273437, 0.061407489776611326, 0.06160521697998047, 0.061639358520507816, 0.06166934585571289, 0.06188652801513672, 0.06169724655151367, 0.061905311584472655, 0.062093631744384765, 0.062029407501220706, 0.06221865463256836, 0.0619683837890625, 0.061712383270263675, 0.061652992248535154, 0.061693950653076174, 0.061654209136962894, 0.06165151977539062, 0.06158975982666016, 0.0615813102722168, 0.06171443176269531, 0.06167552185058594, 0.06195814514160156, 0.062133758544921876, 0.06830694580078125, 0.0645693130493164, 0.06316835021972657, 0.06209145736694336, 0.061423583984375, 0.06153548812866211, 0.061290271759033205, 0.06118048095703125, 0.06107791900634765, 0.06109584045410156, 0.06122063827514648, 0.0612825927734375, 0.06115740966796875, 0.06109596633911133, 0.06120640182495117, 0.06130905532836914, 0.06159561538696289, 0.06180422210693359, 0.06207110214233398, 0.061886463165283206, 0.061992961883544924, 0.061652992248535154, 0.061521919250488284, 0.061392383575439455, 0.06133145523071289, 0.06146297454833984, 0.061289886474609374, 0.06158748626708985, 0.06156895828247071, 0.06157587051391602, 0.06155059051513672, 0.06150457763671875, 0.061844287872314455, 0.06183747100830078, 0.06189456176757813, 0.06199699020385742, 0.06207104110717773, 0.06223795318603516, 0.06207302474975586, 0.06178246307373047, 0.06176678466796875, 0.061535102844238285, 0.06157721710205078, 0.06175859069824219, 0.06150377655029297, 0.06151023864746094, 0.06165462493896484, 0.06170399856567383, 0.06185539245605469, 0.0618935661315918, 0.06198028945922852, 0.06188278579711914, 0.06190217590332031, 0.062021728515625, 0.06196688079833984, 0.06186393737792969, 0.061790271759033205, 0.06172256088256836, 0.06181798553466797, 0.06159193420410156, 0.06190950393676758, 0.06188556671142578, 0.061960639953613283, 0.06541251373291015, 0.0634823989868164, 0.062201343536376956, 0.06179894256591797, 0.061388671875, 0.061294689178466796, 0.061347007751464844, 0.061366401672363284, 0.06124771118164062, 0.06134835052490235, 0.06133103942871094, 0.06141584014892578, 0.061389984130859374, 0.06152019119262695, 0.06146310424804687, 0.06182601547241211, 0.062241790771484375, 0.062211872100830075, 0.06215497589111328, 0.062015487670898435, 0.06179779052734375, 0.061751903533935545, 0.061620223999023435, 0.06160793685913086, 0.06150688171386719, 0.061534912109375, 0.06154367828369141, 0.06159846496582031, 0.06186598587036133, 0.06181071853637695, 0.06178531265258789, 0.06195657730102539, 0.06191132736206055, 0.062061790466308595, 0.062350112915039065, 0.062367198944091796, 0.06218310546875, 0.062139232635498046, 0.061943809509277345, 0.061876224517822265, 0.061830623626708985, 0.06166329574584961, 0.06167599868774414, 0.061599552154541014, 0.06172668838500977, 0.06194095993041992, 0.061848575592041016, 0.06193766403198242, 0.061992961883544924, 0.062297470092773435, 0.06215948867797851, 0.062238719940185545, 0.06226943969726562, 0.06216195297241211, 0.06194659042358398, 0.06189491271972656, 0.06185968017578125, 0.06187760162353516, 0.06176851272583008, 0.061982719421386716, 0.0619315185546875, 0.06185929489135742, 0.06189315032958984, 0.06505945587158203, 0.06316239929199219, 0.062101566314697265, 0.06172662353515625, 0.06140111923217773, 0.06124550247192383, 0.06145180892944336, 0.06125196838378906, 0.06123724746704102, 0.0612782096862793, 0.06137187194824219, 0.06158185577392578, 0.061417312622070314, 0.06146047973632812, 0.06167932891845703, 0.06182489776611328, 0.06208774566650391, 0.06213017654418945, 0.06203340911865234, 0.06185420989990234, 0.061788257598876954, 0.061671329498291017, 0.06145014572143555, 0.061464672088623044, 0.06147020721435547, 0.06148966217041016, 0.061618175506591794, 0.06159564971923828, 0.061661182403564455, 0.06162428665161133, 0.061767711639404296, 0.062013214111328124, 0.06209312057495117, 0.06228329467773437, 0.062233470916748045, 0.062121440887451175, 0.06218163299560547, 0.06223046493530274, 0.06191142272949219, 0.06166425704956055, 0.06168425750732422, 0.061585887908935544, 0.061599712371826175, 0.06177507019042969, 0.061788959503173826, 0.06189814376831055, 0.0620645751953125, 0.06196207809448242, 0.06231532669067383, 0.06198067092895508, 0.06194697570800781, 0.06189503860473633, 0.06200579071044922, 0.06195395278930664, 0.06176729583740234, 0.061645278930664064, 0.061656929016113284, 0.06188460922241211, 0.061954017639160155, 0.061859264373779296, 0.06188908767700195, 0.06175539016723633, 0.06185692977905274, 0.06502175903320312, 0.06303590393066406, 0.06203097534179688, 0.06165532684326172, 0.061409950256347656, 0.06140927886962891, 0.06127519989013672, 0.061294689178466796, 0.06141219329833984, 0.06123724746704102, 0.06121596908569336, 0.06140393447875977, 0.061568832397460936, 0.061367809295654295, 0.06149571228027344, 0.061773727416992184, 0.06188275146484375, 0.061960193634033205, 0.0621033935546875, 0.06176729583740234, 0.061739585876464845, 0.061513023376464845, 0.06144483184814453, 0.061633758544921875, 0.06157385635375977, 0.06157929611206055, 0.06166278457641602, 0.06167907333374024, 0.06169708633422852, 0.06174835205078125, 0.06191347122192383, 0.06192985534667969, 0.062205951690673826, 0.06210153579711914, 0.06236550521850586, 0.06216447830200195, 0.06217504119873047, 0.06208393478393555, 0.06184489440917969, 0.0616671028137207, 0.06169068908691406, 0.06190460968017578, 0.06176943969726562, 0.06164332962036133, 0.06189404678344727, 0.06177580642700195, 0.06177654266357422, 0.061833248138427735, 0.061976577758789064, 0.062210079193115234, 0.06241068649291992, 0.06221823883056641, 0.06214246368408203, 0.062064414978027345, 0.06204191970825195, 0.062126270294189455, 0.06188054275512695, 0.06177526473999023, 0.06185219192504883, 0.06188243103027344, 0.061900798797607424, 0.061753345489501954, 0.06190697479248047, 0.06509228515625, 0.06318505477905273, 0.06206038284301758, 0.061625919342041015, 0.06138719940185547, 0.06134783935546875, 0.061357471466064455, 0.06155939102172851, 0.06150559997558594, 0.06150454330444336, 0.06197481536865234, 0.061659870147705076, 0.06163600158691406, 0.06144607925415039, 0.06168812942504883, 0.062085407257080075, 0.06222230529785156, 0.06223257446289063, 0.061956127166748046, 0.06175900650024414, 0.06163689422607422, 0.06142316818237305, 0.061534046173095706, 0.06144073486328125, 0.06175727844238281, 0.061724864959716796, 0.061876224517822265, 0.061642784118652344, 0.061873950958251954, 0.06172691345214844, 0.06201958465576172, 0.06207692718505859, 0.06225920104980469, 0.062132225036621094, 0.06217692947387695, 0.06212361526489258, 0.06193436813354492, 0.06182601547241211, 0.06174591827392578, 0.0618658561706543, 0.06192371368408203, 0.06180252838134766, 0.06187731170654297, 0.06172288131713867, 0.06205305480957031, 0.06197244644165039, 0.062004737854003907, 0.06209926223754883, 0.061902942657470705, 0.062024288177490235, 0.06212326431274414, 0.06221481704711914, 0.06225315093994141, 0.06196559906005859, 0.06208585739135742, 0.06211756896972656, 0.06221196746826172, 0.06199065780639648, 0.062065376281738284, 0.061760608673095706, 0.061784927368164065, 0.06200252914428711, 0.062021728515625]",tokens/s,16.1895685830797,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,816.222208,6223.233024,0.0,5827.985408,5712.718848,s,1,7.54969677734375,7.54969677734375,0.0,7.54969677734375,7.54969677734375,7.54969677734375,7.54969677734375,[7.54969677734375],,kWh,1.0976639595829358e-05,1.1910635902911466e-06,4.5283369559945275e-06,1.6696040142115032e-05,,MB,1147.817984,6432.948224,0.0,6025.117696,5988.31104,s,10,0.6711704254150391,0.0671170425415039,0.004576825575853077,0.06750219345092773,0.07148004150390626,0.07151811599731446,0.07154857559204102,"[0.06773433685302735, 0.06620070648193359, 0.05516780853271484, 0.06727005004882812, 0.06571596527099609, 0.06938191986083984, 0.06544518280029298, 0.0712266845703125, 0.0714715805053711, 0.07155619049072266]",tokens/s,3814.2324260145174,kWh,2.2953832184243813e-06,2.5303696379512485e-07,1.532210427156221e-06,4.080630609375728e-06,tokens/kWh,62735401.585188806,MB,1175.916544,6516.834304,0.0,6109.003776,6092.144128,s,10,18.60473205566406,1.860473205566406,0.004147410932867698,1.8609232177734376,1.8643675903320311,1.865044512939453,1.8655860510253905,"[1.8559962158203125, 1.863658935546875, 1.8511259765625, 1.8593104248046874, 1.8601689453125, 1.861677490234375, 1.86344873046875, 1.85940673828125, 1.865721435546875, 1.8642171630859374]",tokens/s,33.862352766762996,kWh,5.426698956574311e-05,5.985475470271603e-06,3.596873624024384e-05,9.622120127625856e-05,tokens/kWh,654741.3580830497,,s,630,18.601391460418704,0.029526018191140795,0.0008989477070408279,0.029379535675048828,0.029734858322143554,0.030054059314727783,0.0352632112121582,"[0.03342947387695312, 0.031324159622192385, 0.03038755226135254, 0.029514400482177735, 0.029248863220214843, 0.029041311264038087, 0.02899760055541992, 0.029062175750732423, 0.02906563186645508, 0.029282272338867186, 0.028957311630249023, 0.029175840377807617, 0.029105119705200196, 0.02931372833251953, 0.029274560928344726, 0.0292105598449707, 0.029188032150268554, 0.029234304428100585, 0.02914121627807617, 0.029112960815429686, 0.029093919754028322, 0.029050880432128907, 0.029243392944335936, 0.029179904937744142, 0.029288127899169923, 0.029497663497924806, 0.029398656845092772, 0.02911270332336426, 0.02915238380432129, 0.02922995185852051, 0.0291246395111084, 0.02938412857055664, 0.029391008377075194, 0.029539775848388673, 0.029840320587158204, 0.029789791107177735, 0.02963907241821289, 0.02993721580505371, 0.029727039337158204, 0.029534271240234375, 0.029496383666992188, 0.029449216842651366, 0.02949068832397461, 0.02931353569030762, 0.029267967224121092, 0.029200096130371094, 0.029198400497436522, 0.029318975448608398, 0.029385120391845702, 0.029429759979248047, 0.02951308822631836, 0.029909631729125977, 0.02967046356201172, 0.029356992721557618, 0.029327360153198243, 0.029372415542602538, 0.02938470458984375, 0.029359840393066407, 0.02925391960144043, 0.02931056022644043, 0.029348255157470703, 0.029543872833251952, 0.029553216934204103, 0.03524521636962891, 0.0326418571472168, 0.031092735290527345, 0.02991926383972168, 0.02933897590637207, 0.029161983489990235, 0.029162784576416016, 0.029028608322143556, 0.02911408042907715, 0.029074079513549806, 0.029151456832885742, 0.029073408126831055, 0.029164575576782228, 0.02917465591430664, 0.029703807830810548, 0.0294998722076416, 0.029147136688232423, 0.029124607086181642, 0.029057024002075195, 0.02919628715515137, 0.029057024002075195, 0.029212671279907225, 0.02957107162475586, 0.029056224822998047, 0.02916348838806152, 0.029260608673095705, 0.02931439971923828, 0.029235872268676757, 0.029613183975219726, 0.02944691276550293, 0.02945449638366699, 0.02934169578552246, 0.029396223068237304, 0.029545183181762694, 0.02973695945739746, 0.02987343978881836, 0.029816736221313478, 0.02966815948486328, 0.029618015289306642, 0.02950495910644531, 0.029393632888793944, 0.029480960845947264, 0.02972256088256836, 0.029560895919799806, 0.029417472839355467, 0.029470239639282227, 0.029464832305908205, 0.029470432281494142, 0.029470399856567384, 0.029512128829956054, 0.029513952255249023, 0.0293656005859375, 0.02944220733642578, 0.029643423080444337, 0.029460479736328125, 0.0294334716796875, 0.02951603126525879, 0.029472896575927734, 0.029441280364990233, 0.029479679107666017, 0.02950553512573242, 0.029521791458129883, 0.02954457664489746, 0.029317472457885744, 0.029381792068481447, 0.030681407928466797, 0.030263519287109374, 0.02976799964904785, 0.029634559631347656, 0.029527711868286132, 0.02935638427734375, 0.029136608123779297, 0.029085599899291992, 0.029081375122070312, 0.0290382080078125, 0.029184095382690428, 0.029281152725219726, 0.02921459197998047, 0.02918822479248047, 0.02917910385131836, 0.029106559753417968, 0.029079967498779297, 0.029179904937744142, 0.029091392517089844, 0.02927155113220215, 0.029238208770751953, 0.02927577590942383, 0.02919001579284668, 0.029377056121826173, 0.029325279235839843, 0.029085695266723634, 0.029179744720458985, 0.02925788879394531, 0.029229055404663085, 0.02927414321899414, 0.0293305606842041, 0.029239391326904295, 0.029244159698486327, 0.029163520812988283, 0.029462207794189454, 0.0294136962890625, 0.02953830337524414, 0.02960383987426758, 0.029594655990600585, 0.029569503784179687, 0.029573631286621094, 0.029584991455078126, 0.0294936637878418, 0.029447296142578124, 0.02934668731689453, 0.029394943237304686, 0.029437408447265626, 0.0294487361907959, 0.02938470458984375, 0.029366207122802735, 0.029370431900024415, 0.029440031051635743, 0.02941334342956543, 0.029413375854492187, 0.029425664901733397, 0.029419519424438476, 0.02953327941894531, 0.029418399810791016, 0.029375680923461912, 0.029415231704711914, 0.029479103088378908, 0.03527056121826172, 0.03192457580566406, 0.030197792053222657, 0.029588991165161133, 0.029264352798461915, 0.02904832077026367, 0.029044448852539064, 0.029034431457519532, 0.028867424011230467, 0.029003263473510742, 0.02907935905456543, 0.02911712074279785, 0.028964448928833007, 0.02914899253845215, 0.029272544860839845, 0.029204639434814453, 0.029183263778686522, 0.029274816513061522, 0.029351520538330077, 0.02922742462158203, 0.029216768264770508, 0.02923014450073242, 0.029178720474243164, 0.029353759765625, 0.02945465660095215, 0.029396352767944337, 0.029311616897583007, 0.029253631591796874, 0.02916147232055664, 0.02927359962463379, 0.029118976593017577, 0.029319168090820313, 0.029441375732421875, 0.029552608489990233, 0.029647552490234375, 0.02958291244506836, 0.02956284713745117, 0.029654848098754884, 0.029843839645385742, 0.029646976470947266, 0.029543615341186522, 0.0293734073638916, 0.02932080078125, 0.029305248260498046, 0.029290496826171877, 0.02935315132141113, 0.029374656677246095, 0.02943824005126953, 0.029522111892700195, 0.029569023132324217, 0.029425312042236328, 0.029485439300537108, 0.029403263092041016, 0.02940447998046875, 0.02938889694213867, 0.029641311645507814, 0.029411327362060546, 0.02949087905883789, 0.029570783615112305, 0.02961199951171875, 0.029612159729003905, 0.029568799972534178, 0.029606624603271483, 0.03591609573364258, 0.03236640167236328, 0.030769311904907226, 0.02995199966430664, 0.02938051223754883, 0.029157375335693358, 0.029098079681396483, 0.028940031051635742, 0.0290731201171875, 0.029006368637084962, 0.028976255416870118, 0.0290251522064209, 0.029132736206054687, 0.02908576011657715, 0.029171712875366212, 0.029082656860351563, 0.028955615997314454, 0.02919171142578125, 0.029227487564086913, 0.02926585578918457, 0.029283456802368164, 0.029407743453979493, 0.029299135208129882, 0.029253631591796874, 0.029278207778930664, 0.02914633560180664, 0.029260128021240235, 0.02923289680480957, 0.029407936096191405, 0.029280256271362305, 0.02928233528137207, 0.029296607971191407, 0.02936627197265625, 0.02965212821960449, 0.029792896270751955, 0.029787839889526366, 0.02965724754333496, 0.02966102409362793, 0.029483552932739257, 0.029424671173095704, 0.029493759155273438, 0.029571456909179686, 0.02938585662841797, 0.029504159927368163, 0.029401151657104493, 0.02933308792114258, 0.029402816772460937, 0.02942624092102051, 0.02941993522644043, 0.029509311676025392, 0.029245759963989256, 0.029237247467041014, 0.029208448410034178, 0.029283456802368164, 0.029377536773681642, 0.029421567916870117, 0.02953327941894531, 0.0294835205078125, 0.02958937644958496, 0.029532703399658203, 0.02947260856628418, 0.029454431533813476, 0.029536319732666017, 0.03626790237426758, 0.0325305290222168, 0.030698528289794923, 0.029940095901489258, 0.029350496292114257, 0.02916147232055664, 0.029086847305297852, 0.028969856262207033, 0.02893824005126953, 0.029144704818725584, 0.029096351623535157, 0.028970975875854493, 0.029014047622680665, 0.029353952407836913, 0.029257280349731445, 0.029337312698364256, 0.029275007247924804, 0.029128543853759764, 0.02918524742126465, 0.029270368576049803, 0.02921628761291504, 0.029244287490844727, 0.02931715202331543, 0.029336639404296875, 0.029342655181884766, 0.02929804801940918, 0.02913046455383301, 0.02920307159423828, 0.029147424697875977, 0.029255231857299804, 0.02921072006225586, 0.029419424057006836, 0.029489599227905273, 0.02970729637145996, 0.029717344284057617, 0.02992959976196289, 0.030055744171142578, 0.029827680587768555, 0.029708383560180664, 0.029620223999023438, 0.029474815368652343, 0.02939632034301758, 0.029360416412353516, 0.029501407623291016, 0.029456064224243163, 0.029294656753540038, 0.029303455352783205, 0.02939084815979004, 0.029369888305664064, 0.029388383865356447, 0.02941632080078125, 0.029422687530517577, 0.02929142379760742, 0.02934377670288086, 0.029288415908813478, 0.0293621768951416, 0.02936422348022461, 0.02941935920715332, 0.02948726463317871, 0.029561887741088866, 0.029548608779907226, 0.029438880920410155, 0.029323135375976563, 0.03735049438476563, 0.03290796661376953, 0.030916383743286133, 0.030052000045776368, 0.0295263671875, 0.029189727783203126, 0.02896281623840332, 0.028950687408447265, 0.02914371109008789, 0.028958751678466798, 0.028917728424072267, 0.02919366455078125, 0.029168191909790038, 0.02913689613342285, 0.02918191909790039, 0.02917731285095215, 0.02903481674194336, 0.029083295822143553, 0.029106752395629883, 0.029151264190673827, 0.029159423828125, 0.029337600708007814, 0.029318464279174804, 0.029303487777709962, 0.02928755187988281, 0.029305599212646485, 0.02933919906616211, 0.029268543243408204, 0.02921660804748535, 0.029163520812988283, 0.02913865661621094, 0.029292287826538085, 0.029337791442871092, 0.02962838363647461, 0.02978006362915039, 0.03020841598510742, 0.029736991882324218, 0.02979638481140137, 0.029757312774658203, 0.029572256088256837, 0.02951468849182129, 0.029575168609619142, 0.02953830337524414, 0.0295251522064209, 0.029354496002197264, 0.029317472457885744, 0.029308576583862305, 0.029513536453247072, 0.029458976745605468, 0.029343391418457033, 0.029290847778320313, 0.029261760711669922, 0.029345855712890626, 0.02938265609741211, 0.02938265609741211, 0.0294072322845459, 0.029389919281005858, 0.029390815734863282, 0.02955708885192871, 0.02969046401977539, 0.02939449691772461, 0.029495775222778322, 0.02957923126220703, 0.0359403190612793, 0.03200185775756836, 0.030426368713378907, 0.029723615646362306, 0.029251455307006836, 0.029151327133178712, 0.02896281623840332, 0.029183359146118165, 0.029143680572509767, 0.029128416061401367, 0.029135040283203125, 0.028992639541625977, 0.029248416900634764, 0.028907583236694335, 0.028923871994018555, 0.02891779136657715, 0.028893087387084963, 0.029120576858520507, 0.029068384170532226, 0.029189056396484375, 0.02923107147216797, 0.02928748893737793, 0.029332447052001952, 0.029449344635009766, 0.0291910400390625, 0.029149183273315428, 0.029100032806396486, 0.029296640396118165, 0.029243423461914064, 0.029194047927856445, 0.029200544357299806, 0.029214719772338867, 0.02943292808532715, 0.029526784896850587, 0.029651103973388673, 0.029808639526367187, 0.02976464080810547, 0.02970899200439453, 0.029622528076171876, 0.029577247619628905, 0.029593599319458007, 0.029470367431640623, 0.029428064346313478, 0.029476863861083984, 0.029499391555786132, 0.02949660873413086, 0.02954310417175293, 0.02947385597229004, 0.029334495544433594, 0.02931920051574707, 0.02930838394165039, 0.02950809669494629, 0.02942060852050781, 0.029352127075195314, 0.029471456527709963, 0.029452159881591798, 0.029546655654907227, 0.029479936599731447, 0.029541376113891602, 0.029502496719360352, 0.029496288299560545, 0.029511327743530272, 0.029564416885375977, 0.03757638549804688, 0.032578174591064456, 0.03095756721496582, 0.03017318344116211, 0.02932905578613281, 0.029178207397460937, 0.02903615951538086, 0.028895488739013674, 0.029014144897460938, 0.02916761589050293, 0.029231103897094726, 0.02906425666809082, 0.029050912857055664, 0.029205408096313477, 0.029294591903686523, 0.029249216079711916, 0.02933955192565918, 0.029401504516601562, 0.0291778564453125, 0.029360128402709962, 0.029165567398071288, 0.029691808700561522, 0.029230623245239257, 0.02938243293762207, 0.02933635139465332, 0.029299840927124024, 0.029264768600463866, 0.029171712875366212, 0.02926358413696289, 0.02927440071105957, 0.029378559112548826, 0.02920159912109375, 0.029227840423583985, 0.029445728302001952, 0.029682079315185548, 0.029677568435668947, 0.029825023651123047, 0.029837312698364257, 0.029705888748168947, 0.029671775817871095, 0.02946393585205078, 0.02940582466125488, 0.02929254341125488, 0.029437952041625977, 0.029387968063354492, 0.02951865577697754, 0.029435903549194335, 0.029442047119140623, 0.02953830337524414, 0.029609535217285158, 0.02962063980102539, 0.029638687133789064, 0.02950553512573242, 0.029529247283935547, 0.029520736694335938, 0.029482336044311525, 0.029598367691040038, 0.029424831390380858, 0.02948588752746582, 0.02942742347717285, 0.029514015197753905, 0.02954457664489746, 0.02955251121520996, 0.036372577667236325, 0.032198078155517576, 0.030544448852539062, 0.0298024959564209, 0.02949836730957031, 0.02915603256225586, 0.02915670394897461, 0.029078527450561522, 0.029083520889282226, 0.02898543930053711, 0.029075456619262696, 0.02927824020385742, 0.029338592529296874, 0.029367200851440428, 0.02917740821838379, 0.029170207977294922, 0.029081600189208984, 0.02924457550048828, 0.02925859260559082, 0.029347871780395506, 0.029357952117919923, 0.029431552886962892, 0.029384191513061524, 0.029286272048950197, 0.029172895431518554, 0.029178848266601564, 0.029148000717163086, 0.029144895553588866, 0.029161663055419923, 0.02921062469482422, 0.029237247467041014, 0.029373727798461913, 0.02959228706359863, 0.029837312698364257, 0.02981888008117676, 0.02981888008117676, 0.029734624862670898, 0.029739295959472656, 0.029870080947875976, 0.029513759613037108, 0.02962428855895996, 0.029466623306274413, 0.02944118309020996, 0.029561695098876954, 0.02954854393005371, 0.029605920791625977, 0.029431520462036134, 0.029397024154663085, 0.02937001609802246, 0.029376415252685546, 0.02957993507385254, 0.02944000053405762, 0.02949862480163574, 0.029641471862792968, 0.02962227249145508, 0.029576768875122072, 0.029505983352661132, 0.02949241638183594, 0.02946950340270996, 0.02959676742553711, 0.029451168060302735, 0.02951545524597168, 0.029436223983764647]",tokens/s,33.86843405454676,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 217, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 258.12 MiB is free. Process 100480 has 14.49 GiB memory in use. Of the allocated memory 14.32 GiB is allocated by PyTorch, and 53.40 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,836.358144,1903.099904,0.0,1507.852288,1469.840384,s,1,7.45740087890625,7.45740087890625,0.0,7.45740087890625,7.45740087890625,7.45740087890625,7.45740087890625,[7.45740087890625],,kWh,9.550118462531524e-06,1.0461776287751266e-06,3.1608358620066612e-06,1.3757131953313311e-05,,MB,1197.367296,1947.140096,0.0,1539.309568,1426.272256,s,10,0.24179651069641114,0.024179651069641112,0.00046095716185577874,0.024065407752990722,0.024881748008728027,0.024938137912750243,0.024983249835968016,"[0.024869216918945312, 0.024114591598510742, 0.024016223907470702, 0.023701440811157225, 0.02364329528808594, 0.02429817581176758, 0.024511583328247072, 0.023997503280639647, 0.023649951934814454, 0.02499452781677246]",tokens/s,10587.414982237777,kWh,7.189442209051912e-07,7.92598589746777e-08,4.742566738768366e-07,1.2724607537567055e-06,tokens/kWh,201184986.8408179,MB,1225.703424,1955.528704,0.0,1547.698176,1426.274816,s,10,13.2709794921875,1.32709794921875,0.012723619353887257,1.3269437866210936,1.3424001220703126,1.3441677124023437,1.3455817846679687,"[1.345935302734375, 1.34200732421875, 1.32387158203125, 1.3224248046875, 1.32552392578125, 1.3310013427734375, 1.316973876953125, 1.2987156982421875, 1.3283636474609375, 1.3361619873046875]",tokens/s,47.472004637704025,kWh,3.917520655284144e-05,4.3206234925896856e-06,1.9435648142923713e-05,6.293147818835484e-05,tokens/kWh,1001088.8320697009,,s,630,13.268557798385622,0.021061202854580345,0.0005340236860464876,0.021051663398742676,0.02142468090057373,0.021588804149627685,0.022359155750274674,"[0.022026239395141603, 0.021432319641113282, 0.021514240264892577, 0.021436416625976562, 0.021334016799926758, 0.021228927612304688, 0.021269119262695313, 0.021651456832885742, 0.021456544876098632, 0.02138083267211914, 0.02136284828186035, 0.021461471557617188, 0.021370304107666015, 0.021455167770385742, 0.02122368049621582, 0.02122137641906738, 0.021720447540283204, 0.02149849510192871, 0.0214835205078125, 0.021383167266845703, 0.021485567092895508, 0.021538528442382812, 0.021433664321899415, 0.02170364761352539, 0.02168832015991211, 0.021344095230102538, 0.02143657684326172, 0.021575199127197266, 0.021523136138916016, 0.02148464012145996, 0.021414432525634765, 0.02134809684753418, 0.021604768753051756, 0.021387264251708983, 0.02137455940246582, 0.02182796859741211, 0.021495840072631837, 0.021428224563598632, 0.02123980712890625, 0.02110054397583008, 0.02116307258605957, 0.021313983917236327, 0.02124236869812012, 0.021227519989013673, 0.021116512298583984, 0.021259967803955077, 0.021236448287963866, 0.021784576416015625, 0.02125929641723633, 0.02153536033630371, 0.021139808654785156, 0.021413888931274414, 0.021265663146972657, 0.021144096374511718, 0.0210229434967041, 0.02096291160583496, 0.020980127334594728, 0.020965375900268556, 0.020914176940917968, 0.021102239608764648, 0.021094751358032227, 0.021104639053344726, 0.021090303421020508, 0.021079999923706055, 0.02112339210510254, 0.020805376052856445, 0.02085433578491211, 0.021340608596801758, 0.021259263992309572, 0.02145587158203125, 0.021202720642089844, 0.023353567123413087, 0.02206697654724121, 0.021454944610595703, 0.021168256759643556, 0.021327871322631836, 0.0211079044342041, 0.02113817596435547, 0.021192768096923827, 0.020912128448486327, 0.020938688278198243, 0.02079484748840332, 0.02061190414428711, 0.021284223556518555, 0.021293472290039063, 0.021104639053344726, 0.02103059196472168, 0.021040800094604493, 0.020920991897583008, 0.02093680000305176, 0.020950464248657225, 0.021010303497314455, 0.021043807983398437, 0.021337984085083007, 0.02102694320678711, 0.02079280090332031, 0.021662080764770508, 0.025331232070922853, 0.026960512161254883, 0.02122956848144531, 0.02137855911254883, 0.021315488815307617, 0.021262943267822267, 0.0210512638092041, 0.020803712844848634, 0.021209087371826172, 0.021309440612792968, 0.02103232002258301, 0.020996736526489257, 0.020922367095947265, 0.02088755226135254, 0.02093699264526367, 0.02055548858642578, 0.020700319290161133, 0.021110784530639647, 0.02058121681213379, 0.02105548858642578, 0.021198848724365234, 0.021064735412597655, 0.020975967407226563, 0.02099622344970703, 0.022031871795654297, 0.02110700798034668, 0.021010847091674806, 0.02109644889831543, 0.021034528732299804, 0.02124835205078125, 0.020961280822753905, 0.020905376434326172, 0.021148256301879883, 0.02103891181945801, 0.02094099235534668, 0.021523584365844728, 0.021480415344238283, 0.021116256713867188, 0.020944799423217773, 0.02095580863952637, 0.020944896697998046, 0.02151628875732422, 0.02109443283081055, 0.021051359176635743, 0.021235712051391603, 0.021016576766967773, 0.02101068878173828, 0.02089049530029297, 0.02106662368774414, 0.021137344360351563, 0.020957279205322265, 0.021012447357177735, 0.021362176895141603, 0.021256704330444336, 0.02097727966308594, 0.020906368255615235, 0.020951040267944337, 0.020776256561279297, 0.020839103698730467, 0.020950559616088868, 0.02085321617126465, 0.021179840087890624, 0.021162559509277343, 0.02105465507507324, 0.02100716781616211, 0.020960704803466797, 0.02099827194213867, 0.02081167984008789, 0.020846303939819337, 0.020785087585449218, 0.02076144027709961, 0.021436288833618165, 0.02103321647644043, 0.020999807357788086, 0.021063968658447264, 0.02097385597229004, 0.020872800827026368, 0.020930688858032228, 0.02088960075378418, 0.021100191116333007, 0.02098601531982422, 0.021020063400268553, 0.020968223571777345, 0.020941951751708984, 0.021212095260620116, 0.021241792678833006, 0.020951040267944337, 0.02072985649108887, 0.020568063735961914, 0.020763904571533202, 0.020595455169677736, 0.02073798370361328, 0.02094179153442383, 0.02105548858642578, 0.02089593505859375, 0.02115155220031738, 0.020891008377075197, 0.0209619197845459, 0.021011775970458984, 0.02120979118347168, 0.020760576248168947, 0.020758367538452147, 0.021228992462158203, 0.021272512435913087, 0.021158687591552733, 0.021071231842041016, 0.02115238380432129, 0.02105548858642578, 0.021157888412475585, 0.021129215240478515, 0.021188608169555666, 0.02121014404296875, 0.021246015548706056, 0.021061824798583983, 0.021017311096191406, 0.021016576766967773, 0.02090943908691406, 0.021265024185180663, 0.020725759506225586, 0.02184828758239746, 0.021962528228759767, 0.02106883239746094, 0.021023296356201173, 0.02131395149230957, 0.021251583099365236, 0.020910591125488282, 0.020842144012451172, 0.020782943725585937, 0.020466272354125976, 0.020527008056640626, 0.020671743392944336, 0.020656896591186524, 0.020639360427856444, 0.020590976715087892, 0.02063564872741699, 0.02101862335205078, 0.02066227149963379, 0.020756479263305663, 0.020744192123413087, 0.02086499214172363, 0.0209715518951416, 0.021200895309448242, 0.021444223403930665, 0.020832704544067382, 0.021155296325683595, 0.021078496932983398, 0.021028480529785155, 0.020983776092529296, 0.020869535446166994, 0.021110784530639647, 0.0209815673828125, 0.020721855163574218, 0.02080486488342285, 0.020568704605102538, 0.020717727661132813, 0.020752992630004883, 0.020731103897094726, 0.020685600280761718, 0.020612415313720704, 0.02085139274597168, 0.020483776092529295, 0.020627775192260743, 0.020531200408935548, 0.021258207321166993, 0.021257280349731445, 0.020579296112060545, 0.020551679611206054, 0.020962848663330078, 0.02097609519958496, 0.020636991500854494, 0.02047648048400879, 0.02060710334777832, 0.020700384140014648, 0.02068355178833008, 0.020574207305908202, 0.020587648391723633, 0.020505472183227538, 0.02064588737487793, 0.020739776611328125, 0.02051513671875, 0.02065433692932129, 0.020795072555541992, 0.0211661434173584, 0.02088140869140625, 0.020647136688232422, 0.02085148811340332, 0.021153791427612305, 0.021284160614013673, 0.021045951843261718, 0.021292095184326173, 0.02120182418823242, 0.021118175506591796, 0.02118943977355957, 0.02108415985107422, 0.021137407302856445, 0.020985855102539062, 0.021118080139160156, 0.021222015380859376, 0.021134719848632813, 0.02297702407836914, 0.023402143478393554, 0.02119548797607422, 0.021141504287719725, 0.02172438430786133, 0.021424768447875976, 0.021090463638305666, 0.02127872085571289, 0.021196512222290038, 0.021288448333740235, 0.021366880416870116, 0.02143712043762207, 0.021191743850708007, 0.02135545539855957, 0.02110873603820801, 0.02112054443359375, 0.021226976394653322, 0.021029888153076173, 0.02122137641906738, 0.021130720138549806, 0.02106422424316406, 0.020915296554565428, 0.0209366397857666, 0.021226720809936525, 0.021135007858276367, 0.021095903396606445, 0.021015167236328125, 0.021186016082763673, 0.02110518455505371, 0.021086208343505858, 0.020981279373168946, 0.021204832077026368, 0.020979711532592774, 0.021181055068969726, 0.02099567985534668, 0.021156543731689452, 0.021100255966186525, 0.020989952087402345, 0.021338111877441408, 0.021346303939819337, 0.021014303207397462, 0.020955360412597657, 0.020813695907592772, 0.020944063186645507, 0.020884288787841796, 0.020983936309814454, 0.020918272018432618, 0.021164031982421876, 0.02100169563293457, 0.021025312423706054, 0.020973567962646485, 0.022478496551513672, 0.0210883846282959, 0.02113148880004883, 0.021165887832641603, 0.02077033615112305, 0.021172895431518554, 0.021301248550415038, 0.021159936904907226, 0.02159993553161621, 0.021086208343505858, 0.021263839721679688, 0.02109014320373535, 0.021152767181396484, 0.02088707160949707, 0.02089219284057617, 0.021107776641845703, 0.021039424896240236, 0.02105196762084961, 0.020973472595214843, 0.020862335205078124, 0.02087731170654297, 0.02116387176513672, 0.021119808197021483, 0.021264032363891603, 0.021094816207885742, 0.021003744125366212, 0.021641408920288086, 0.02107145690917969, 0.021463327407836914, 0.021072063446044922, 0.02181353569030762, 0.021118976593017577, 0.02106368064880371, 0.021004287719726563, 0.02129305648803711, 0.021025920867919923, 0.020757375717163087, 0.021223424911499023, 0.021141504287719725, 0.021190656661987304, 0.02123788833618164, 0.020848512649536133, 0.020865119934082032, 0.021062944412231447, 0.02130803108215332, 0.02098726463317871, 0.020863616943359375, 0.020983808517456053, 0.02106368064880371, 0.02106368064880371, 0.021126304626464844, 0.020957504272460938, 0.02071401596069336, 0.021174272537231444, 0.02119411277770996, 0.020829919815063477, 0.020660863876342774, 0.02079977607727051, 0.020815872192382814, 0.02086911964416504, 0.020914176940917968, 0.020997472763061523, 0.020768960952758788, 0.02086960029602051, 0.020570175170898437, 0.02060076713562012, 0.02065203285217285, 0.020559648513793945, 0.020464096069335937, 0.02050534439086914, 0.0202926082611084, 0.020352575302124025, 0.02063961601257324, 0.020547264099121092, 0.020590976715087892, 0.02059913635253906, 0.020692928314208985, 0.020623231887817384, 0.021147775650024413, 0.020610464096069335, 0.02085327911376953, 0.02086742401123047, 0.022033407211303712, 0.021386175155639647, 0.020756479263305663, 0.020999231338500977, 0.020482559204101563, 0.020644512176513672, 0.020692768096923827, 0.02065344047546387, 0.021655263900756835, 0.02179574394226074, 0.02090598487854004, 0.02077516746520996, 0.02072313690185547, 0.02077948760986328, 0.020815328598022462, 0.020680351257324217, 0.020628416061401367, 0.02059267234802246, 0.020736000061035157, 0.020951040267944337, 0.020602880477905275, 0.02046976089477539, 0.02041801643371582, 0.020910144805908203, 0.020738079071044923, 0.02066486358642578, 0.02071072006225586, 0.02058700752258301, 0.020574304580688478, 0.020512960433959962, 0.020383455276489257, 0.02050444793701172, 0.020537567138671876, 0.020669536590576174, 0.020458080291748046, 0.02045574378967285, 0.020371456146240235, 0.020916223526000977, 0.020980768203735352, 0.02090902328491211, 0.020522655487060545, 0.020424896240234375, 0.020766271591186523, 0.020770591735839845, 0.02085750389099121, 0.020574207305908202, 0.020508575439453124, 0.020788831710815428, 0.020699167251586915, 0.020494976043701173, 0.020407712936401368, 0.020338848114013673, 0.020516895294189454, 0.020468128204345702, 0.02047337532043457, 0.020463327407836913, 0.02056012725830078, 0.02071340751647949, 0.020451904296875, 0.020401567459106446, 0.02039664077758789, 0.020508672714233397, 0.020762624740600585, 0.020488191604614257, 0.020330495834350586, 0.020395296096801758, 0.02060969543457031, 0.0208590087890625, 0.020745344161987304, 0.020795743942260744, 0.020732383728027343, 0.020867071151733398, 0.020549503326416016, 0.02058457565307617, 0.02040575981140137, 0.02074425506591797, 0.020609024047851563, 0.020540672302246092, 0.020695808410644532, 0.020545183181762697, 0.020485599517822264, 0.0205402889251709, 0.020602880477905275, 0.02068252754211426, 0.020551776885986327, 0.020881311416625976, 0.02068876838684082, 0.020467136383056642, 0.02041539192199707, 0.02062745666503906, 0.020537343978881836, 0.020649311065673828, 0.020510463714599608, 0.020435903549194338, 0.020663455963134767, 0.020663103103637694, 0.020562112808227537, 0.02059654426574707, 0.020676607131958007, 0.02102272033691406, 0.02097260856628418, 0.021095359802246094, 0.021016031265258788, 0.021221920013427733, 0.02112512016296387, 0.021133312225341795, 0.021098495483398438, 0.02099190330505371, 0.02112870407104492, 0.021363296508789063, 0.021151296615600584, 0.021913055419921876, 0.020964319229125977, 0.021319679260253906, 0.021409887313842774, 0.02133795166015625, 0.021112863540649413, 0.021317087173461913, 0.021297727584838867, 0.021323776245117186, 0.021121023178100586, 0.021300960540771484, 0.021202720642089844, 0.02109491157531738, 0.02124799919128418, 0.021336063385009766, 0.021155839920043946, 0.021120351791381838, 0.021146272659301756, 0.020997343063354493, 0.02129961585998535, 0.021055871963500977, 0.021151199340820312, 0.021424671173095704, 0.021120607376098634, 0.020953088760375976, 0.021729696273803712, 0.027923967361450194, 0.021534496307373047, 0.02133577537536621, 0.021623296737670897, 0.021307008743286133, 0.02121561622619629, 0.02126006317138672, 0.021159999847412108, 0.02136284828186035, 0.021358591079711914, 0.02147737693786621, 0.021180128097534178, 0.021145376205444336, 0.021199359893798828, 0.021036575317382813, 0.021123552322387697, 0.02127667236328125, 0.021086208343505858, 0.021186176300048827, 0.02095552062988281, 0.021204992294311522, 0.021082111358642578, 0.0218787841796875, 0.021235712051391603, 0.021211135864257814, 0.02111510467529297, 0.021208032608032227, 0.021093183517456055, 0.021173664093017578, 0.021135040283203125, 0.021244831085205078, 0.021062719345092774, 0.020973600387573243, 0.02145987129211426, 0.021168127059936523, 0.021166080474853514, 0.02125801658630371, 0.021291231155395506, 0.02122547149658203, 0.021001983642578125, 0.02092460823059082, 0.021215200424194336, 0.021076095581054687, 0.02138502311706543, 0.02113580894470215, 0.021075775146484375, 0.021067487716674806, 0.021385120391845702, 0.02118684768676758, 0.02105094337463379, 0.021217727661132814, 0.02169036865234375, 0.020946943283081054, 0.021184511184692383, 0.021247104644775392, 0.021187456130981445, 0.02109644889831543, 0.02107948875427246, 0.021115455627441406, 0.021202943801879884, 0.02109235191345215, 0.02109596824645996, 0.021063840866088868, 0.02117206382751465]",tokens/s,47.48066892971985,, float16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,836.018176,4675.534848,0.0,4280.287232,4115.121152,s,1,8.0935927734375,8.0935927734375,0.0,8.0935927734375,8.0935927734375,8.0935927734375,8.0935927734375,[8.0935927734375],,kWh,1.0311723070882786e-05,1.130143968225839e-06,4.96389286000487e-06,1.6405759899113496e-05,,MB,1174.614016,4983.816192,0.0,4575.985664,4408.408064,s,10,0.4055550994873047,0.04055550994873047,0.0018906092084394035,0.04021809577941894,0.04169289970397949,0.04372158527374267,0.04534453372955322,"[0.04575027084350586, 0.04020310211181641, 0.040419647216796875, 0.03980409622192383, 0.04040787124633789, 0.03984611129760742, 0.04023308944702148, 0.039516319274902345, 0.04124208068847656, 0.03813251113891602]",tokens/s,6312.335865672272,kWh,1.4787861881734404e-06,1.6299069460646011e-07,9.893933279898385e-07,2.631170210769739e-06,tokens/kWh,97295111.86777543,MB,1203.552256,4983.816192,0.0,4575.985664,4408.410624,s,10,13.95576257324219,1.395576257324219,0.007290252780742853,1.3983818359375,1.4026697021484376,1.40456220703125,1.4060762109375,"[1.38884130859375, 1.4064547119140625, 1.39838720703125, 1.399352294921875, 1.39837646484375, 1.395798828125, 1.38310400390625, 1.38431884765625, 1.4022491455078125, 1.3988797607421875]",tokens/s,45.14264245279712,kWh,4.0314031168912836e-05,4.44631747783814e-06,2.6443989729811237e-05,7.120433837656222e-05,tokens/kWh,884777.5491828349,,s,630,13.953395492553726,0.022148246813577317,0.00035882815347562457,0.02210428810119629,0.022449370384216308,0.022625327491760255,0.023180296020507814,"[0.02265292739868164, 0.022458368301391602, 0.022116352081298828, 0.022278144836425783, 0.022360063552856444, 0.022321151733398437, 0.02226380729675293, 0.022046720504760742, 0.022244543075561524, 0.02204960060119629, 0.022237184524536133, 0.022209920883178712, 0.02222496032714844, 0.022226943969726562, 0.02204444885253906, 0.022170400619506835, 0.022382591247558595, 0.022267520904541014, 0.022343263626098633, 0.022112703323364256, 0.022094079971313477, 0.022316415786743163, 0.022466272354125977, 0.022445056915283205, 0.022089696884155272, 0.02208736038208008, 0.022132863998413087, 0.0219486083984375, 0.021932064056396486, 0.02191564750671387, 0.022009855270385743, 0.02188083267211914, 0.022001440048217774, 0.021975263595581055, 0.02200371170043945, 0.021939807891845704, 0.021969120025634767, 0.021907936096191405, 0.022162431716918944, 0.021955039978027342, 0.022098175048828127, 0.021875999450683595, 0.02200649642944336, 0.022117759704589842, 0.022196863174438478, 0.022147071838378905, 0.02216524887084961, 0.021815200805664063, 0.021801120758056642, 0.021684415817260744, 0.021716575622558593, 0.021722528457641603, 0.021619712829589844, 0.021985279083251954, 0.02159539222717285, 0.021792863845825194, 0.021864511489868163, 0.021800928115844727, 0.021765888214111326, 0.021699455261230467, 0.021681247711181642, 0.021610719680786133, 0.021626815795898438, 0.022214208602905273, 0.022192960739135743, 0.02190889549255371, 0.022146879196166994, 0.021861120223999022, 0.021825536727905274, 0.02194384002685547, 0.02178233528137207, 0.02169923210144043, 0.021954559326171876, 0.022150943756103516, 0.022476287841796876, 0.022123008728027343, 0.02239094352722168, 0.02237392044067383, 0.02225974464416504, 0.02240768051147461, 0.022331552505493166, 0.022352863311767578, 0.022196992874145508, 0.02231513595581055, 0.022515520095825196, 0.022231231689453124, 0.022837247848510742, 0.022284095764160156, 0.022325439453125, 0.022168607711791993, 0.02208867263793945, 0.022433759689331055, 0.02254198455810547, 0.02267788887023926, 0.022437887191772463, 0.02244812774658203, 0.022417407989501953, 0.022109792709350585, 0.02219254493713379, 0.022196224212646484, 0.02241244888305664, 0.022254432678222656, 0.022194496154785158, 0.022791807174682616, 0.022763456344604492, 0.02220044708251953, 0.022527999877929687, 0.022257471084594728, 0.022603391647338867, 0.022628927230834962, 0.022449216842651366, 0.02219919967651367, 0.02423811149597168, 0.02319491195678711, 0.0222194881439209, 0.022235071182250977, 0.02227168083190918, 0.022226783752441408, 0.02242729568481445, 0.02226880073547363, 0.022152671813964842, 0.022128223419189453, 0.022122592926025392, 0.02219036865234375, 0.022274623870849608, 0.0221265926361084, 0.022955743789672852, 0.022495487213134765, 0.02235411262512207, 0.02233718490600586, 0.022134048461914062, 0.02235215950012207, 0.02209404754638672, 0.022074911117553712, 0.022256511688232422, 0.02217363166809082, 0.02226131248474121, 0.022092159271240235, 0.02210147285461426, 0.02214476776123047, 0.022090656280517578, 0.02216655921936035, 0.022069280624389648, 0.02239788818359375, 0.022607872009277344, 0.022380352020263672, 0.02234796714782715, 0.022147071838378905, 0.022273279190063475, 0.022620927810668944, 0.022237184524536133, 0.022084703445434572, 0.02207836723327637, 0.022306528091430664, 0.02234956741333008, 0.022004255294799803, 0.022070816040039062, 0.022214719772338867, 0.022249631881713867, 0.021958335876464844, 0.02227801513671875, 0.022790304183959963, 0.02210256004333496, 0.022212608337402344, 0.02211840057373047, 0.022161407470703123, 0.02230067253112793, 0.021988447189331056, 0.02203887939453125, 0.021936704635620117, 0.022228992462158204, 0.022093856811523437, 0.022091392517089845, 0.021924192428588868, 0.022145023345947267, 0.021914623260498048, 0.022135295867919923, 0.022516223907470705, 0.022202495574951173, 0.02207935905456543, 0.022138879776000975, 0.02202822494506836, 0.022083648681640623, 0.02217091178894043, 0.02201260757446289, 0.02203241539001465, 0.02202956771850586, 0.021977247238159178, 0.021924415588378907, 0.022384639739990234, 0.022173696517944336, 0.02276118469238281, 0.022388832092285156, 0.022042816162109374, 0.02222447967529297, 0.022032800674438476, 0.02247065544128418, 0.02209526443481445, 0.022046304702758788, 0.022004735946655272, 0.02225276756286621, 0.022020896911621093, 0.021859807968139647, 0.021769952774047852, 0.022174528121948242, 0.021968896865844727, 0.021977088928222657, 0.022476512908935545, 0.022429983139038087, 0.02226121520996094, 0.02219910430908203, 0.02221232032775879, 0.022001407623291017, 0.022300928115844727, 0.022155263900756835, 0.02197292709350586, 0.02204579162597656, 0.022340576171875, 0.02244607925415039, 0.02197305679321289, 0.02193939208984375, 0.02189798355102539, 0.022087200164794922, 0.022317535400390626, 0.022386688232421875, 0.022001663208007814, 0.022437887191772463, 0.022466527938842774, 0.02238377571105957, 0.022278848648071288, 0.02201747131347656, 0.022186111450195313, 0.022233728408813477, 0.024420352935791017, 0.02215443229675293, 0.021907360076904296, 0.022097824096679687, 0.022471263885498048, 0.02209833526611328, 0.022478847503662108, 0.02235148811340332, 0.02224985694885254, 0.02223695945739746, 0.02208585548400879, 0.021927967071533203, 0.02222831916809082, 0.02212723159790039, 0.022094976425170897, 0.02211520004272461, 0.02207744026184082, 0.02208358383178711, 0.021825536727905274, 0.02224127960205078, 0.022147071838378905, 0.02266111946105957, 0.022267871856689454, 0.022077472686767578, 0.022180864334106445, 0.022019168853759766, 0.02209721565246582, 0.022114591598510744, 0.02209823989868164, 0.021999616622924805, 0.021958784103393556, 0.022101600646972655, 0.02198361587524414, 0.021899168014526366, 0.02199660873413086, 0.02198624038696289, 0.022955392837524412, 0.025219711303710937, 0.02224892807006836, 0.02210665512084961, 0.02208345603942871, 0.022214784622192382, 0.022169599533081053, 0.0220446720123291, 0.022003679275512694, 0.022013343811035157, 0.022015775680541992, 0.022168415069580078, 0.02205695915222168, 0.02176582336425781, 0.022004032135009767, 0.02287958335876465, 0.022302944183349608, 0.02210652732849121, 0.022126623153686523, 0.02214236831665039, 0.022057567596435547, 0.02209587287902832, 0.02208358383178711, 0.021893119812011717, 0.022255136489868165, 0.022125024795532227, 0.02214499282836914, 0.022173728942871094, 0.022066560745239258, 0.021936128616333008, 0.022063615798950196, 0.02314451217651367, 0.022220191955566407, 0.022147743225097657, 0.022246944427490235, 0.022104543685913088, 0.02239641571044922, 0.022266368865966796, 0.022054784774780272, 0.02197657585144043, 0.022050975799560547, 0.02203286361694336, 0.02230790328979492, 0.022092735290527344, 0.02200371170043945, 0.021759456634521484, 0.02286534309387207, 0.022354496002197265, 0.022920543670654298, 0.023920927047729492, 0.022344064712524415, 0.022279680252075194, 0.022114816665649413, 0.022081087112426758, 0.02207583999633789, 0.022041856765747072, 0.021721216201782228, 0.021979743957519532, 0.022044160842895507, 0.022157855987548828, 0.022300575256347658, 0.022467807769775392, 0.02224371147155762, 0.022094335556030274, 0.022091775894165038, 0.02204857635498047, 0.02233145523071289, 0.02224550437927246, 0.02212224006652832, 0.022069503784179687, 0.022219903945922853, 0.02267225646972656, 0.02209382438659668, 0.02209791946411133, 0.02211020851135254, 0.022171648025512695, 0.022589439392089843, 0.022351295471191406, 0.022153823852539063, 0.02206480026245117, 0.02210028839111328, 0.022345632553100587, 0.022088863372802733, 0.022074304580688476, 0.02187468719482422, 0.022122432708740234, 0.021950527191162108, 0.021807104110717773, 0.02168422317504883, 0.021946176528930664, 0.022071487426757814, 0.021727231979370116, 0.021753856658935547, 0.022136831283569337, 0.022475807189941407, 0.022106271743774414, 0.021881248474121092, 0.02194063949584961, 0.02214816093444824, 0.022157472610473634, 0.022190879821777344, 0.02186444854736328, 0.021999616622924805, 0.022095903396606446, 0.022104032516479494, 0.021796415328979492, 0.021633472442626953, 0.021941568374633787, 0.022097663879394533, 0.022413055419921876, 0.022702655792236327, 0.022215744018554688, 0.022393407821655272, 0.021983135223388673, 0.022109760284423827, 0.022420352935791015, 0.022024192810058595, 0.02188287925720215, 0.021893119812011717, 0.021960704803466798, 0.022023616790771486, 0.02185273551940918, 0.021831424713134765, 0.02197491264343262, 0.022038911819458006, 0.022023359298706056, 0.02199193572998047, 0.022109983444213867, 0.022261632919311523, 0.022151872634887694, 0.02181100845336914, 0.021643423080444337, 0.021516000747680664, 0.02148748779296875, 0.02157814407348633, 0.021399551391601563, 0.021527999877929686, 0.02169913673400879, 0.021677152633666992, 0.021767072677612305, 0.021935840606689454, 0.021911840438842773, 0.021983232498168945, 0.022124544143676757, 0.02201580810546875, 0.021821632385253906, 0.0217509765625, 0.02183865547180176, 0.022749183654785156, 0.021745664596557617, 0.0216944637298584, 0.02175721549987793, 0.02197372817993164, 0.021790464401245116, 0.021740928649902343, 0.021808223724365236, 0.021792543411254882, 0.02185420799255371, 0.02175574493408203, 0.021702816009521484, 0.021829120635986327, 0.021846527099609374, 0.02174550437927246, 0.02152668762207031, 0.021618688583374023, 0.021932031631469725, 0.022018400192260743, 0.02196553611755371, 0.021905887603759767, 0.02292732810974121, 0.023066816329956056, 0.022391103744506837, 0.024497823715209963, 0.022268287658691405, 0.021917535781860353, 0.02193401527404785, 0.02182476806640625, 0.022027103424072266, 0.022128288269042968, 0.02196054458618164, 0.0218240966796875, 0.021904991149902343, 0.02193040084838867, 0.022007167816162108, 0.021792415618896485, 0.021776351928710937, 0.021895999908447265, 0.0220960636138916, 0.02186240005493164, 0.021778432846069336, 0.02168160057067871, 0.02223161506652832, 0.021812223434448243, 0.02182655906677246, 0.021938175201416017, 0.021977088928222657, 0.02212819290161133, 0.021956031799316406, 0.021969919204711915, 0.0219238395690918, 0.02207846450805664, 0.022145792007446288, 0.021777887344360352, 0.021979936599731444, 0.021780479431152345, 0.022159231185913085, 0.021931360244750977, 0.02187696075439453, 0.021791296005249025, 0.021910879135131837, 0.022008480072021483, 0.021704736709594726, 0.021678047180175783, 0.02209334373474121, 0.021869024276733397, 0.021898719787597658, 0.021963167190551757, 0.021907167434692384, 0.022018463134765624, 0.0221441593170166, 0.021826400756835937, 0.021841983795166015, 0.021935359954833984, 0.021893407821655272, 0.021764127731323243, 0.021703039169311523, 0.02173516845703125, 0.021833984375, 0.022009855270385743, 0.02224051284790039, 0.022037248611450195, 0.02202009582519531, 0.021827583312988282, 0.02209382438659668, 0.021747711181640626, 0.021984256744384766, 0.02233907127380371, 0.02180339241027832, 0.02180726432800293, 0.021835136413574218, 0.021851743698120117, 0.02184239959716797, 0.02196329689025879, 0.022013952255249023, 0.02207139205932617, 0.02195027160644531, 0.02209187126159668, 0.021962751388549806, 0.022005184173583985, 0.02206979179382324, 0.021921087265014648, 0.021682912826538087, 0.021587968826293946, 0.021702495574951172, 0.021874528884887695, 0.02190745544433594, 0.02185843276977539, 0.021823680877685547, 0.021884288787841797, 0.021966880798339843, 0.02204323196411133, 0.022189760208129884, 0.02222876739501953, 0.022569503784179688, 0.022642688751220705, 0.022420799255371094, 0.02242953681945801, 0.02245075225830078, 0.022410560607910156, 0.022309856414794924, 0.022280191421508787, 0.02229212760925293, 0.02250992012023926, 0.022355520248413085, 0.02242195129394531, 0.022523551940917968, 0.022483295440673828, 0.02248294448852539, 0.022347776412963868, 0.022433792114257813, 0.022771711349487304, 0.022540288925170897, 0.023017471313476562, 0.025333696365356446, 0.02252364730834961, 0.022434112548828124, 0.022222848892211915, 0.02234377670288086, 0.022306175231933595, 0.02213532829284668, 0.022494207382202147, 0.0222873592376709, 0.022571008682250978, 0.02227609634399414, 0.02231430435180664, 0.022229696273803713, 0.02226585578918457, 0.022278144836425783, 0.02290278434753418, 0.02237811279296875, 0.022718175888061524, 0.02257695960998535, 0.02224006462097168, 0.022392736434936524, 0.022156991958618165, 0.022278560638427734, 0.0221265926361084, 0.021946367263793946, 0.022128639221191407, 0.02232035255432129, 0.02207619285583496, 0.02211020851135254, 0.02225904083251953, 0.022198944091796874, 0.022195711135864257, 0.022424064636230468, 0.02232249641418457, 0.02231091117858887, 0.022221504211425783, 0.02234880065917969, 0.02225868797302246, 0.022220800399780274, 0.022032384872436524, 0.0220897274017334, 0.022347583770751953, 0.022028255462646484, 0.021968704223632812, 0.021718496322631835, 0.02202239990234375, 0.022022848129272462, 0.021807104110717773, 0.02240716743469238, 0.022345727920532226, 0.022360063552856444, 0.022169599533081053, 0.022109344482421876, 0.022214847564697264, 0.022245759963989257, 0.022308416366577148, 0.02216009521484375, 0.02210358428955078, 0.022251840591430663, 0.02206096076965332, 0.02216886329650879, 0.022059999465942382, 0.02201190376281738, 0.02204876708984375, 0.022486272811889647, 0.02236288070678711, 0.022103071212768555, 0.02207423973083496, 0.022132831573486327, 0.021972864151000977, 0.02225369644165039, 0.022024192810058595, 0.022251487731933594, 0.02222012710571289, 0.022184608459472656, 0.022147296905517578, 0.022095680236816406, 0.02214240074157715]",tokens/s,45.150300536969816,, float16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,814.63296,516.882432,0.0,174.063616,172.57984,s,1,7.257505859375,7.257505859375,0.0,7.257505859375,7.257505859375,7.257505859375,7.257505859375,[7.257505859375],,kWh,4.556478499978311e-06,4.953557472553107e-07,1.993334927993806e-06,7.045169175227427e-06,,MB,1146.044416,642.711552,0.0,234.881024,215.589888,s,32,0.1822226881980896,0.0056944590061903,0.00011450180687880147,0.005671855926513671,0.005745030546188355,0.0059754145860672,0.006084908156394959,"[0.0060908799171447755, 0.005681056022644043, 0.005745632171630859, 0.005715551853179931, 0.005696095943450928, 0.0056877121925354, 0.005663871765136719, 0.00567142391204834, 0.005592832088470459, 0.005616000175476074, 0.005704319953918457, 0.0056828479766845704, 0.005642687797546387, 0.005672287940979004, 0.005628384113311767, 0.005597599983215332, 0.0056349759101867675, 0.006071616172790528, 0.0056938881874084475, 0.005676320075988769, 0.00573961591720581, 0.005615551948547363, 0.005654208183288574, 0.0056230401992797855, 0.005657887935638427, 0.005622687816619873, 0.005689407825469971, 0.0056431999206542965, 0.005635424137115479, 0.005896704196929932, 0.005598720073699951, 0.005680255889892578]",tokens/s,44955.982600227515,kWh,1.6538748928571e-07,1.823924301159991e-08,8.807845922562414e-08,2.7170519152293407e-07,tokens/kWh,942197675.9630357,MB,1174.319104,646.905856,0.0,239.075328,215.592448,s,32,10.018107879638674,0.3130658712387085,0.02405860689388873,0.3079739990234375,0.31471940002441406,0.3182858184814453,0.40618933898925796,"[0.317748779296875, 0.4453873291015625, 0.31407513427734374, 0.31141497802734375, 0.3147909851074219, 0.3109840698242187, 0.31894219970703125, 0.31339761352539064, 0.3118016357421875, 0.3115425109863281, 0.30998098754882814, 0.3064769897460938, 0.30851312255859376, 0.30743487548828125, 0.3044540710449219, 0.3086247863769531, 0.3065010986328125, 0.3053970031738281, 0.3058859558105469, 0.30894720458984376, 0.3051858215332031, 0.3060135498046875, 0.3067017517089844, 0.30892779541015625, 0.3048805541992187, 0.30572418212890623, 0.30633673095703123, 0.30638446044921874, 0.3061524353027344, 0.3095575866699219, 0.30547216796875, 0.3044695129394531]",tokens/s,201.23560498858515,kWh,8.70659662397215e-06,9.601826387654262e-07,3.6837764101080034e-06,1.3350555672845578e-05,tokens/kWh,4718904.706576306,,s,2016,10.003623904705027,0.004962115032095758,0.0029838044893107014,0.0048530719280242916,0.005034496068954468,0.005185472130775451,0.0054494496345520015,"[0.005335008144378662, 0.005156896114349365, 0.006113247871398926, 0.005140511989593506, 0.005128479957580566, 0.005082464218139649, 0.0051625919342041015, 0.005249824047088623, 0.005186944007873535, 0.005190271854400635, 0.00512175989151001, 0.005148960113525391, 0.005062975883483887, 0.0050495038032531735, 0.0050161280632019046, 0.004988255977630615, 0.0049437122344970705, 0.005042975902557373, 0.00505401611328125, 0.00548089599609375, 0.0053678078651428224, 0.005316127777099609, 0.0050973758697509764, 0.005171807765960693, 0.005079296112060547, 0.005083168029785156, 0.00507257604598999, 0.005038047790527344, 0.004941664218902588, 0.004902207851409912, 0.004965472221374512, 0.005025311946868897, 0.005043807983398437, 0.004879007816314698, 0.0049192957878112795, 0.0049146881103515625, 0.004964863777160645, 0.004937727928161621, 0.0049482879638671875, 0.005002943992614746, 0.0050003199577331545, 0.00496892786026001, 0.004914656162261963, 0.004993887901306152, 0.004955935955047608, 0.004902688026428223, 0.00486630392074585, 0.004847775936126709, 0.004883679866790771, 0.005194655895233154, 0.004882463932037354, 0.004879776000976562, 0.004886911869049072, 0.004917439937591553, 0.0049192957878112795, 0.004900864124298096, 0.004859903812408447, 0.004896192073822021, 0.004878880023956299, 0.004853631973266602, 0.004871871948242188, 0.00483292818069458, 0.004859871864318847, 0.004777056217193603, 0.004970335960388183, 0.004855584144592285, 0.0048273601531982424, 0.0048492798805236815, 0.004950751781463623, 0.004964000225067139, 0.004903103828430176, 0.004861440181732178, 0.004894303798675537, 0.00490553617477417, 0.004898975849151612, 0.004882400035858154, 0.004952095985412598, 0.1387552032470703, 0.005401472091674805, 0.005199391841888428, 0.00506060791015625, 0.005013887882232666, 0.005037856101989746, 0.00493395185470581, 0.004888576030731201, 0.004888576030731201, 0.004884223937988281, 0.004909023761749267, 0.004917535781860351, 0.004878335952758789, 0.00495747184753418, 0.005005792140960693, 0.004892928123474121, 0.004951519966125488, 0.004859871864318847, 0.004841311931610108, 0.004903488159179688, 0.00487340784072876, 0.00488044786453247, 0.004862880229949951, 0.004931583881378174, 0.004874239921569825, 0.0050787200927734375, 0.005136703968048096, 0.005147712230682373, 0.0050308480262756345, 0.004970335960388183, 0.0049153599739074705, 0.005026815891265869, 0.00498748779296875, 0.004942240238189698, 0.00493065595626831, 0.0049136638641357425, 0.004888927936553955, 0.004894271850585937, 0.004946176052093506, 0.004860000133514404, 0.004935711860656738, 0.004913280010223389, 0.004900063991546631, 0.004886943817138672, 0.004940159797668457, 0.00496230411529541, 0.004872191905975342, 0.004876287937164306, 0.004867104053497315, 0.004776415824890137, 0.0048989119529724125, 0.004866079807281494, 0.004902400016784668, 0.004902431964874268, 0.0048670082092285155, 0.004904960155487061, 0.004833280086517334, 0.004828288078308106, 0.004885312080383301, 0.004890367984771728, 0.00489299201965332, 0.004855264186859131, 0.0048788161277771, 0.004899199962615967, 0.0048923521041870114, 0.0049716482162475584, 0.004975552082061767, 0.0049558720588684085, 0.005007391929626465, 0.004966591835021973, 0.004997119903564453, 0.0050094079971313476, 0.0049459199905395506, 0.004982912063598633, 0.004900352001190185, 0.004868480205535888, 0.004839456081390381, 0.004927455902099609, 0.004859295845031739, 0.004894911766052246, 0.004909408092498779, 0.004888288021087647, 0.00495958423614502, 0.004885727882385254, 0.0048886399269104, 0.004910816192626953, 0.004890719890594483, 0.004879744052886963, 0.004866591930389404, 0.004873856067657471, 0.004958591938018799, 0.0050516161918640135, 0.005139232158660889, 0.005449728012084961, 0.005341343879699707, 0.005386079788208008, 0.00535964822769165, 0.005425119876861572, 0.00529372787475586, 0.005206431865692139, 0.005208000183105469, 0.005060544013977051, 0.005015552043914795, 0.005081151962280274, 0.0049658560752868655, 0.0049270401000976564, 0.004922336101531983, 0.004934783935546875, 0.0049552001953125, 0.004976672172546387, 0.004896543979644776, 0.005021599769592286, 0.004775167942047119, 0.00504256010055542, 0.005314943790435791, 0.005130239963531494, 0.0049658560752868655, 0.0050795841217041015, 0.005119999885559082, 0.005021376132965088, 0.004997087955474854, 0.004919648170471191, 0.004911104202270508, 0.004874495983123779, 0.004922368049621582, 0.00489577579498291, 0.0048657598495483395, 0.005146368026733399, 0.004888544082641602, 0.004985119819641113, 0.004907040119171142, 0.004890495777130127, 0.004884575843811035, 0.004928800106048584, 0.004899392127990723, 0.005003168106079102, 0.004884736061096191, 0.004861152172088623, 0.004852511882781982, 0.0048919358253479, 0.004856895923614502, 0.004873439788818359, 0.0049064640998840335, 0.005032927989959717, 0.004906527996063233, 0.004858528137207031, 0.00491871976852417, 0.004848000049591065, 0.004907008171081543, 0.004871712207794189, 0.00488047981262207, 0.004825471878051758, 0.00491315221786499, 0.004841567993164063, 0.004867072105407715, 0.004832159996032715, 0.004810272216796875, 0.004864319801330567, 0.0048784961700439455, 0.004875775814056397, 0.004857503890991211, 0.004896607875823975, 0.004891647815704346, 0.004863423824310303, 0.005185344219207764, 0.004884384155273438, 0.004978720188140869, 0.00506544017791748, 0.004985951900482178, 0.005026463985443115, 0.005034336090087891, 0.005033984184265137, 0.004984831809997559, 0.004904096126556397, 0.004926015853881836, 0.004779232025146484, 0.004861887931823731, 0.004993887901306152, 0.004859903812408447, 0.004888576030731201, 0.004925248146057129, 0.0050833277702331545, 0.004875775814056397, 0.004973055839538575, 0.005031199932098389, 0.0049927678108215336, 0.004959487915039062, 0.004952896118164063, 0.004956223964691162, 0.004952735900878906, 0.004950399875640869, 0.004857664108276367, 0.004859903812408447, 0.00492083215713501, 0.004880735874176026, 0.004896927833557129, 0.004878560066223145, 0.004982560157775879, 0.005209504127502441, 0.005435167789459228, 0.005477183818817138, 0.0054579200744628905, 0.005336895942687988, 0.005327040195465088, 0.0053244481086730956, 0.0052820158004760745, 0.005081471920013428, 0.005063456058502197, 0.005081920146942138, 0.005050528049468994, 0.004943871974945068, 0.004941823959350586, 0.004886144161224365, 0.004868480205535888, 0.004836800098419189, 0.004899519920349121, 0.0048536000251770016, 0.004869984149932861, 0.004867712020874024, 0.005083712100982666, 0.0050854082107543944, 0.00502291202545166, 0.005022304058074951, 0.005050687789916992, 0.005029407978057862, 0.005017792224884033, 0.00497046422958374, 0.004941215991973877, 0.004868703842163086, 0.004884479999542236, 0.004855103969573974, 0.004875135898590088, 0.0048453760147094726, 0.004888415813446045, 0.004868256092071533, 0.004853087902069092, 0.004924191951751709, 0.00484768009185791, 0.0047924799919128415, 0.0048815679550170896, 0.004907872200012207, 0.004947840213775635, 0.004896895885467529, 0.005031871795654297, 0.004893760204315186, 0.004850687980651855, 0.004871327877044678, 0.004860511779785156, 0.004903359889984131, 0.004865856170654297, 0.004829504013061523, 0.0048429441452026364, 0.004833280086517334, 0.0048287358283996586, 0.004823647975921631, 0.004849215984344482, 0.004848159790039062, 0.0048352317810058595, 0.004851263999938965, 0.004847392082214356, 0.004864768028259277, 0.00496230411529541, 0.004942016124725342, 0.004910751819610596, 0.004872352123260498, 0.00496614408493042, 0.004954495906829834, 0.004866047859191895, 0.004859583854675293, 0.004808159828186035, 0.00486630392074585, 0.004839903831481933, 0.00488259220123291, 0.004855648040771484, 0.004937568187713623, 0.005093535900115967, 0.005294079780578613, 0.0053821439743042, 0.005304255962371826, 0.005144639968872071, 0.005130239963531494, 0.005158912181854248, 0.005068992137908936, 0.005053279876708984, 0.004993087768554687, 0.005000224113464355, 0.004988800048828125, 0.004879744052886963, 0.004921664237976074, 0.004903232097625733, 0.00493990421295166, 0.004837247848510742, 0.004883999824523926, 0.004854527950286866, 0.004877312183380127, 0.004850399971008301, 0.0048455681800842285, 0.004880352020263672, 0.004895040035247803, 0.004951168060302735, 0.004911712169647217, 0.004885183811187744, 0.004841311931610108, 0.004872096061706543, 0.004892672061920166, 0.005029664039611816, 0.005042367935180664, 0.004912447929382324, 0.004960959911346436, 0.004972576141357422, 0.004853759765625, 0.004853759765625, 0.004988704204559326, 0.0049268159866333, 0.005001440048217774, 0.005194399833679199, 0.005349376201629639, 0.005293407917022705, 0.005184160232543945, 0.005146240234375, 0.0052893757820129395, 0.00502678394317627, 0.004906303882598877, 0.0049220480918884275, 0.004894720077514648, 0.004911104202270508, 0.0048323521614074706, 0.005189568042755127, 0.00492412805557251, 0.005044479846954345, 0.004865439891815185, 0.00498748779296875, 0.004904960155487061, 0.005332992076873779, 0.005281792163848877, 0.00542310380935669, 0.005691391944885254, 0.005476352214813233, 0.005134335994720459, 0.0050360321998596195, 0.005217311859130859, 0.005098080158233643, 0.004952544212341308, 0.004929567813873291, 0.004934783935546875, 0.004932608127593994, 0.004952159881591797, 0.004933631896972656, 0.00488150405883789, 0.004872767925262451, 0.00487014389038086, 0.004859903812408447, 0.004886271953582763, 0.004986911773681641, 0.005221727848052978, 0.0054997758865356445, 0.005306367874145508, 0.005302432060241699, 0.0052420802116394044, 0.005090943813323975, 0.0052070398330688475, 0.00509881591796875, 0.004974783897399903, 0.004966911792755127, 0.0047422399520874025, 0.0048278717994689946, 0.004958399772644043, 0.005199391841888428, 0.00519212818145752, 0.005202303886413575, 0.005253056049346924, 0.005142271995544434, 0.005160927772521973, 0.0052219839096069335, 0.005035871982574463, 0.004983391761779785, 0.004949440002441406, 0.004975135803222656, 0.005004543781280518, 0.005116672039031983, 0.005691391944885254, 0.005136223793029785, 0.0050136961936950684, 0.004914368152618408, 0.00494601583480835, 0.004949984073638916, 0.004943840026855469, 0.004915967941284179, 0.00480460786819458, 0.004968448162078858, 0.005094592094421387, 0.005009759902954101, 0.004880544185638428, 0.004903232097625733, 0.0050011839866638185, 0.004976319789886475, 0.004882783889770508, 0.0048594241142272945, 0.004881120204925537, 0.00491212797164917, 0.004966879844665527, 0.004878623962402344, 0.004888576030731201, 0.004875584125518799, 0.0048789758682250975, 0.004879648208618164, 0.004901663780212402, 0.004896096229553223, 0.004868671894073486, 0.004851295948028565, 0.004833631992340088, 0.004868256092071533, 0.004896383762359619, 0.004859936237335205, 0.004866240024566651, 0.004868256092071533, 0.005447872161865234, 0.005324672222137452, 0.004810688018798828, 0.0048230400085449215, 0.004820096015930176, 0.004880288124084473, 0.0048178877830505375, 0.004824192047119141, 0.00483622407913208, 0.00481279993057251, 0.004828159809112549, 0.004894879817962647, 0.004803904056549072, 0.004807360172271728, 0.004788064002990723, 0.004824543952941894, 0.00490550422668457, 0.005205632209777832, 0.005427584171295166, 0.0053821439743042, 0.005293248176574707, 0.005235519886016846, 0.005395584106445313, 0.005395328044891358, 0.005154816150665284, 0.004943295955657959, 0.004862527847290039, 0.0049502401351928715, 0.004984608173370361, 0.004933695793151855, 0.004855743885040283, 0.004865568161010742, 0.004853439807891846, 0.004901023864746093, 0.004846208095550537, 0.004859903812408447, 0.004872128009796143, 0.004947616100311279, 0.004856224060058594, 0.004896768093109131, 0.0052286720275878905, 0.005323775768280029, 0.005218207836151123, 0.004967520236968994, 0.004932544231414795, 0.004946879863739014, 0.0048865280151367185, 0.00488431978225708, 0.004849823951721191, 0.004833280086517334, 0.004825088024139404, 0.004877376079559326, 0.004826272010803222, 0.004810656070709228, 0.004810111999511719, 0.004993152141571045, 0.004907264232635498, 0.004906784057617188, 0.004843008041381836, 0.0048382081985473635, 0.004835360050201416, 0.004833280086517334, 0.004872223854064941, 0.004896736145019532, 0.004820991992950439, 0.004845119953155517, 0.004848063945770264, 0.004820799827575684, 0.004800511837005615, 0.004806496143341064, 0.004845823764801025, 0.004829279899597168, 0.004834911823272705, 0.0048206720352172855, 0.004733503818511963, 0.004800672054290771, 0.004829184055328369, 0.004903103828430176, 0.0048822398185729985, 0.004831232070922851, 0.004796544075012207, 0.00482857608795166, 0.004834047794342041, 0.004822688102722168, 0.004811007976531983, 0.004806464195251465, 0.004959392070770264, 0.00494268798828125, 0.004925407886505127, 0.00482860803604126, 0.004813504219055176, 0.004954368114471436, 0.004824192047119141, 0.004841216087341308, 0.00495900821685791, 0.004872159957885742, 0.004839200019836426, 0.004888832092285156, 0.004988927841186524, 0.005177184104919434, 0.005365568161010742, 0.005357920169830322, 0.0053821439743042, 0.005298175811767578, 0.005251071929931641, 0.0052657599449157716, 0.005213247776031494, 0.00498748779296875, 0.004883552074432373, 0.004864927768707276, 0.005111711978912354, 0.004991231918334961, 0.005007199764251709, 0.004849823951721191, 0.0048776321411132815, 0.004899360179901123, 0.00485587215423584, 0.0048657598495483395, 0.0049151678085327145, 0.004880640029907226, 0.004898816108703613, 0.004907008171081543, 0.005060895919799805, 0.005137856006622314, 0.004915487766265869, 0.004865183830261231, 0.004803423881530762, 0.004856895923614502, 0.004865024089813232, 0.004874176025390625, 0.004843200206756592, 0.00485203218460083, 0.004925439834594727, 0.0048865280151367185, 0.0048540477752685544, 0.004857567787170411, 0.004872191905975342, 0.004791296005249023, 0.00489024019241333, 0.0048676800727844236, 0.004862016201019287, 0.004868832111358643, 0.004947968006134033, 0.0049695358276367185, 0.004878335952758789, 0.004869056224822998, 0.004859903812408447, 0.004857855796813965, 0.004856128215789795, 0.0048453760147094726, 0.004840991973876953, 0.004832704067230225, 0.0048362560272216795, 0.004894720077514648, 0.0048148479461669925, 0.004836991786956787, 0.004810688018798828, 0.004962687969207764, 0.004868447780609131, 0.004861216068267823, 0.005134143829345703, 0.005034656047821045, 0.004894527912139892, 0.0048594560623168945, 0.0049016962051391605, 0.004902431964874268, 0.004864575862884521, 0.00493126392364502, 0.004941408157348633, 0.005024288177490234, 0.0049580798149108886, 0.004927487850189209, 0.004913055896759033, 0.004931680202484131, 0.004878335952758789, 0.00486191987991333, 0.004920928001403808, 0.004977087974548339, 0.004930848121643066, 0.004904704093933105, 0.004996064186096191, 0.005031775951385498, 0.005140160083770752, 0.005144159793853759, 0.005094207763671875, 0.005064223766326904, 0.0050507521629333495, 0.004993184089660645, 0.004871840000152588, 0.004860256195068359, 0.004863423824310303, 0.004864575862884521, 0.0049192957878112795, 0.004835328102111816, 0.004810207843780517, 0.00489731216430664, 0.0048351998329162595, 0.004856063842773438, 0.004904895782470703, 0.0048700799942016605, 0.004744991779327392, 0.004850272178649902, 0.00493065595626831, 0.004864927768707276, 0.00483948802947998, 0.004831168174743652, 0.00487014389038086, 0.004843520164489746, 0.004883840084075928, 0.0048154878616333005, 0.004827072143554687, 0.004952127933502197, 0.004839104175567627, 0.004837567806243896, 0.004816927909851074, 0.004816864013671875, 0.0048388481140136715, 0.004821695804595947, 0.0048189439773559575, 0.004911104202270508, 0.004888063907623291, 0.004927455902099609, 0.004896736145019532, 0.004862592220306396, 0.004857791900634766, 0.004970176219940186, 0.004866367816925049, 0.004851295948028565, 0.004825407981872558, 0.004843616008758545, 0.0048537921905517575, 0.004937600135803222, 0.004956223964691162, 0.004833312034606934, 0.004833280086517334, 0.00482915210723877, 0.00487446403503418, 0.004832575798034668, 0.004815328121185303, 0.004855743885040283, 0.004849152088165283, 0.004895328044891357, 0.004947968006134033, 0.004887936115264893, 0.004843520164489746, 0.004976895809173584, 0.004830719947814942, 0.0048065919876098635, 0.004856768131256103, 0.004825088024139404, 0.004834368228912354, 0.004817855834960937, 0.004810751914978028, 0.0049666881561279295, 0.004859615802764892, 0.004812384128570556, 0.004790463924407959, 0.004876480102539062, 0.004820256233215332, 0.004854527950286866, 0.004841599941253662, 0.0048167681694030766, 0.004845471858978272, 0.0047545919418334965, 0.004825952053070068, 0.004820320129394531, 0.004847328186035157, 0.0048232641220092775, 0.004845439910888672, 0.004860256195068359, 0.004853888034820557, 0.004823808193206787, 0.0048986878395080565, 0.004826879978179931, 0.004843552112579346, 0.004859871864318847, 0.004837376117706299, 0.004820991992950439, 0.004834400177001953, 0.0048650879859924315, 0.004818784236907959, 0.004831232070922851, 0.004841311931610108, 0.004852960109710694, 0.004858816146850586, 0.004836703777313232, 0.004870463848114013, 0.004878015995025635, 0.004854432106018066, 0.004868095874786377, 0.004820991992950439, 0.004847424030303955, 0.0048215041160583495, 0.004996096134185791, 0.005114560127258301, 0.004857855796813965, 0.0048455681800842285, 0.004956352233886719, 0.004862815856933594, 0.0048752322196960445, 0.004837376117706299, 0.004843520164489746, 0.004877952098846436, 0.004841856002807617, 0.004827136039733886, 0.004845471858978272, 0.004856927871704102, 0.004837952136993408, 0.004905248165130615, 0.004864160060882568, 0.004841311931610108, 0.004935840129852295, 0.00486195182800293, 0.004861728191375732, 0.0051216320991516115, 0.00487283182144165, 0.004997375965118408, 0.0048873920440673825, 0.004862751960754395, 0.004866399765014648, 0.004968128204345703, 0.004890912055969239, 0.0048529281616210935, 0.004958847999572754, 0.005185855865478516, 0.005813024044036865, 0.004753536224365235, 0.004802432060241699, 0.004860032081604004, 0.004859776020050049, 0.0047924799919128415, 0.004882431983947754, 0.00485152006149292, 0.004867743968963623, 0.0048336639404296874, 0.004803711891174316, 0.004806848049163819, 0.0049276800155639644, 0.005423808097839355, 0.005127999782562256, 0.005007359981536865, 0.004865407943725586, 0.004967040061950684, 0.0048187518119812015, 0.004857183933258057, 0.00481932783126831, 0.00482147216796875, 0.004833343982696533, 0.004825024127960205, 0.00478985595703125, 0.004813216209411621, 0.0048230400085449215, 0.004901887893676758, 0.004936384201049805, 0.004802400112152099, 0.004796256065368652, 0.0048362560272216795, 0.00486195182800293, 0.004847712039947509, 0.00486953592300415, 0.004993472099304199, 0.004837215900421143, 0.0048427839279174805, 0.004879007816314698, 0.005195551872253418, 0.0050210561752319334, 0.0048377919197082515, 0.004868671894073486, 0.004845600128173828, 0.0048167362213134765, 0.004884479999542236, 0.004822879791259766, 0.0048041920661926266, 0.0048063678741455075, 0.004899871826171875, 0.004818816184997559, 0.004848576068878173, 0.004814943790435791, 0.00490777587890625, 0.004841824054718017, 0.004831168174743652, 0.004830912113189697, 0.0048232321739196775, 0.004838943958282471, 0.004877920150756836, 0.004806943893432617, 0.004970528125762939, 0.004903647899627685, 0.004816256046295166, 0.00468998384475708, 0.004793983936309814, 0.0048195838928222655, 0.004779935836791992, 0.004928832054138184, 0.004837887763977051, 0.004775936126708984, 0.004841472148895264, 0.004841407775878906, 0.004810815811157227, 0.004843008041381836, 0.004796351909637451, 0.0048023362159729, 0.004807487964630127, 0.004783584117889404, 0.0047940478324890136, 0.004794847965240478, 0.0048254399299621584, 0.0048512320518493655, 0.004788864135742188, 0.004819104194641113, 0.004824704170227051, 0.004817984104156494, 0.004868256092071533, 0.004798719882965088, 0.004919904232025147, 0.004802559852600098, 0.004841472148895264, 0.004860095977783203, 0.004819104194641113, 0.00484227180480957, 0.004843391895294189, 0.004784895896911621, 0.004828832149505615, 0.0049014720916748045, 0.004803808212280274, 0.004827936172485351, 0.004792031764984131, 0.004814720153808594, 0.004880959987640381, 0.0048067841529846195, 0.004855008125305176, 0.004829504013061523, 0.004777152061462403, 0.004896895885467529, 0.004795392036437988, 0.004939167976379394, 0.004818975925445557, 0.004766143798828125, 0.004794367790222168, 0.0049090561866760255, 0.004843232154846192, 0.004861343860626221, 0.004811456203460693, 0.004886176109313965, 0.004813216209411621, 0.00478220796585083, 0.004810688018798828, 0.004900928020477295, 0.004787231922149658, 0.004835296154022217, 0.00479744005203247, 0.0047983360290527344, 0.004910624027252198, 0.004785632133483887, 0.004878399848937988, 0.0048772478103637695, 0.0051849279403686525, 0.0052436161041259765, 0.004848703861236572, 0.005105567932128906, 0.005626783847808838, 0.004949440002441406, 0.004882688045501709, 0.005509119987487793, 0.0051840639114379885, 0.004828927993774414, 0.004816895961761475, 0.004844927787780761, 0.004864640235900879, 0.004819295883178711, 0.004820608139038086, 0.004783967971801758, 0.004839615821838379, 0.004871424198150635, 0.004807104110717773, 0.00485641622543335, 0.004779744148254395, 0.004827424049377442, 0.004867519855499268, 0.004858143806457519, 0.004825088024139404, 0.004833280086517334, 0.004856128215789795, 0.004845471858978272, 0.004856991767883301, 0.0048616318702697755, 0.004864607810974121, 0.004846303939819336, 0.004838592052459717, 0.004816927909851074, 0.0048306241035461425, 0.0048642559051513675, 0.004834047794342041, 0.004849184036254883, 0.004837408065795899, 0.004835775852203369, 0.0052583680152893065, 0.004831967830657959, 0.00487340784072876, 0.0048644161224365235, 0.0048596482276916505, 0.004806655883789063, 0.0048156800270080565, 0.004826560020446778, 0.004801087856292725, 0.0048455681800842285, 0.004808832168579102, 0.004876160144805909, 0.004822751998901367, 0.004855264186859131, 0.004821824073791504, 0.004818975925445557, 0.00480998420715332, 0.004804800033569336, 0.004815392017364502, 0.004708320140838623, 0.005086495876312256, 0.004821760177612305, 0.005007455825805664, 0.004842688083648681, 0.004822847843170166, 0.0048546562194824215, 0.004832799911499023, 0.0049275197982788085, 0.004831711769104004, 0.004819071769714355, 0.004844863891601562, 0.004810400009155273, 0.004814911842346192, 0.0048607678413391114, 0.004784128189086914, 0.00484281587600708, 0.004821695804595947, 0.004816383838653565, 0.004790592193603516, 0.004966591835021973, 0.004880544185638428, 0.004829216003417969, 0.0048652801513671875, 0.0048371520042419435, 0.004877088069915772, 0.0048189439773559575, 0.004843776226043701, 0.004821760177612305, 0.005183680057525635, 0.004848512172698974, 0.004827072143554687, 0.0048429760932922365, 0.004827936172485351, 0.004840928077697754, 0.004829472064971924, 0.004857567787170411, 0.0048063998222351075, 0.004810368061065674, 0.004825056076049805, 0.00483843183517456, 0.004845471858978272, 0.004830880165100098, 0.0048150081634521485, 0.004872128009796143, 0.004853055953979492, 0.0048438720703125, 0.004805215835571289, 0.0050728960037231445, 0.004912255764007568, 0.004840320110321045, 0.004810751914978028, 0.004806943893432617, 0.004830495834350586, 0.0048540477752685544, 0.004804224014282227, 0.004807199954986572, 0.00479747200012207, 0.004830143928527832, 0.004865056037902832, 0.004809728145599365, 0.0048022718429565426, 0.00521449613571167, 0.004769792079925537, 0.0050421757698059086, 0.0048865280151367185, 0.004841472148895264, 0.004882431983947754, 0.00483513593673706, 0.00487443208694458, 0.004827136039733886, 0.004816256046295166, 0.00482367992401123, 0.004869311809539795, 0.0048525438308715824, 0.004906752109527588, 0.004856063842773438, 0.004794367790222168, 0.004808703899383545, 0.004842688083648681, 0.00487446403503418, 0.004876895904541016, 0.004833280086517334, 0.004828383922576904, 0.004856607913970947, 0.004843520164489746, 0.004831232070922851, 0.0048332161903381346, 0.004818496227264405, 0.004827583789825439, 0.004821407794952393, 0.004832096099853515, 0.004897280216217041, 0.004836991786956787, 0.004811744213104248, 0.004810463905334472, 0.00480460786819458, 0.004847616195678711, 0.004836544036865235, 0.004796895980834961, 0.004796768188476562, 0.004769792079925537, 0.004941343784332275, 0.004855423927307129, 0.0048607678413391114, 0.0048455681800842285, 0.0048063998222351075, 0.004876543998718261, 0.00479859209060669, 0.004806528091430664, 0.004888576030731201, 0.004837376117706299, 0.004777791976928711, 0.004800479888916015, 0.004838719844818116, 0.004791200160980225, 0.004814879894256592, 0.0048793601989746095, 0.004793312072753906, 0.004775328159332275, 0.0049049282073974606, 0.00482367992401123, 0.004827136039733886, 0.004908512115478516, 0.004823391914367676, 0.004837376117706299, 0.004709824085235596, 0.004787327766418457, 0.004840735912322998, 0.004894464015960693, 0.004802591800689697, 0.004817279815673828, 0.004810336112976074, 0.004934495925903321, 0.004810656070709228, 0.004777503967285156, 0.004814943790435791, 0.004841631889343262, 0.004831456184387207, 0.004825088024139404, 0.004800511837005615, 0.0047961602210998535, 0.004819200038909912, 0.004902495861053467, 0.004808576107025147, 0.004821792125701905, 0.0048005437850952145, 0.004953695774078369, 0.004810592174530029, 0.004898560047149658, 0.004811295986175537, 0.00481279993057251, 0.004835328102111816, 0.004820127964019775, 0.0048091840744018555, 0.004809088230133056, 0.004810751914978028, 0.004874239921569825, 0.004834368228912354, 0.00486191987991333, 0.004797023773193359, 0.004798719882965088, 0.004833407878875732, 0.004810751914978028, 0.0049469761848449706, 0.0048273601531982424, 0.004794496059417725, 0.004821631908416748, 0.004833280086517334, 0.004845056056976318, 0.00490070390701294, 0.0048401918411254885, 0.004822688102722168, 0.00545743989944458, 0.004885216236114502, 0.004857855796813965, 0.004822783946990967, 0.0048063678741455075, 0.004801055908203125, 0.004800352096557617, 0.004831615924835205, 0.0048781118392944335, 0.00482038402557373, 0.004790143966674805, 0.00524502420425415, 0.0049015040397644045, 0.004833600044250488, 0.004810592174530029, 0.004839263916015625, 0.005285791873931885, 0.006253119945526123, 0.005736063957214355, 0.005308095932006836, 0.0048668160438537595, 0.004861887931823731, 0.004863999843597412, 0.004855519771575928, 0.004882143974304199, 0.004848095893859863, 0.004814432144165039, 0.00481331205368042, 0.0047923197746276855, 0.0048865280151367185, 0.004837088108062744, 0.004798751831054687, 0.005115903854370117, 0.004847904205322265, 0.004998784065246582, 0.004850880146026611, 0.0048419198989868165, 0.0049361600875854495, 0.004872352123260498, 0.004820831775665283, 0.004849088191986084, 0.004840223789215088, 0.004839200019836426, 0.0048189439773559575, 0.0048139519691467285, 0.004811647891998291, 0.00482476806640625, 0.004833600044250488, 0.004824351787567138, 0.0048278717994689946, 0.004816895961761475, 0.004783711910247803, 0.004894271850585937, 0.004860191822052002, 0.00483513593673706, 0.00482585620880127, 0.004825088024139404, 0.004841760158538818, 0.004990687847137451, 0.0048393278121948245, 0.004886623859405518, 0.004833119869232178, 0.004813183784484863, 0.004882400035858154, 0.004804416179656983, 0.004804895877838135, 0.0048198080062866215, 0.004818848133087158, 0.004834239959716797, 0.004810624122619629, 0.004806240081787109, 0.004821568012237549, 0.004820864200592041, 0.0048211197853088375, 0.004837376117706299, 0.004829184055328369, 0.004841472148895264, 0.004830751895904541, 0.004805088043212891, 0.005019680023193359, 0.004822847843170166, 0.004798912048339844, 0.004802495956420899, 0.004826591968536377, 0.004860256195068359, 0.0048230400085449215, 0.004835487842559815, 0.004847424030303955, 0.004836415767669678, 0.0048670401573181156, 0.004806655883789063, 0.00486195182800293, 0.004874239921569825, 0.004931583881378174, 0.004832704067230225, 0.004815231800079345, 0.004874591827392578, 0.00481660795211792, 0.00482316780090332, 0.004840576171875, 0.004825215816497802, 0.004823808193206787, 0.004911104202270508, 0.004825088024139404, 0.004814271926879883, 0.004813375949859619, 0.00480460786819458, 0.004876639842987061, 0.0048165440559387205, 0.004798463821411133, 0.004819136142730713, 0.004828767776489258, 0.004869984149932861, 0.004835872173309326, 0.0048122878074646, 0.004809055805206299, 0.004836959838867188, 0.004825632095336914, 0.004867263793945312, 0.004818848133087158, 0.004791071891784668, 0.0048189439773559575, 0.004792223930358887, 0.004825471878051758, 0.004807807922363281, 0.0048249921798706056, 0.00482374382019043, 0.004802527904510498, 0.0047916479110717775, 0.004795072078704834, 0.004857855796813965, 0.004799647808074951, 0.004887296199798584, 0.004831327915191651, 0.004910560131072998, 0.004919839859008789, 0.004827104091644287, 0.004816927909851074, 0.00480460786819458, 0.004886911869049072, 0.004824704170227051, 0.004845695972442627, 0.004706783771514893, 0.004873951911926269, 0.004812640190124512, 0.004815135955810547, 0.005631552219390869, 0.004862559795379639, 0.004838912010192871, 0.004838751792907715, 0.004798431873321533, 0.004873119831085205, 0.004884736061096191, 0.004832640171051026, 0.004804704189300537, 0.004795904159545898, 0.004846367835998535, 0.0048023362159729, 0.004812960147857666, 0.004808767795562744, 0.004811071872711182, 0.004838719844818116, 0.004885119915008545, 0.004818784236907959, 0.0048065600395202634, 0.004808703899383545, 0.004833439826965332, 0.004820703983306885, 0.0048100481033325196, 0.004819424152374268, 0.00480291223526001, 0.004843200206756592, 0.004847712039947509, 0.004816415786743164, 0.004866112232208252, 0.00488047981262207, 0.0048215360641479495, 0.004839424133300781, 0.004829184055328369, 0.00481603193283081, 0.004859072208404541, 0.004808224201202392, 0.004817024230957031, 0.0048100161552429195, 0.004822944164276123, 0.0048791680335998535, 0.004881887912750244, 0.004823359966278076, 0.00483571195602417, 0.004827328205108642, 0.004852896213531494, 0.004812992095947265, 0.0048455362319946285, 0.00482751989364624, 0.0047918400764465335, 0.004819392204284668, 0.004866047859191895, 0.004835328102111816, 0.004845695972442627, 0.004861792087554931, 0.004836959838867188, 0.004816959857940674, 0.004802976131439209, 0.004808383941650391, 0.005316319942474365, 0.004695744037628174, 0.004822624206542969, 0.004883520126342774, 0.004779679775238037, 0.004794464111328125, 0.004794271945953369, 0.0048189439773559575, 0.005156864166259765, 0.00488969612121582, 0.004840352058410644, 0.004875679969787597, 0.004822847843170166, 0.004848095893859863, 0.004876607894897461, 0.004834400177001953, 0.004856224060058594, 0.004825600147247314, 0.004792255878448486, 0.004821216106414795, 0.004780032157897949, 0.004834464073181152, 0.004819168090820313, 0.004808640003204346, 0.00485430383682251, 0.004823359966278076, 0.004832863807678223, 0.004811103820800781, 0.004853119850158691, 0.004936255931854248, 0.004894527912139892, 0.004831232070922851, 0.004858176231384278, 0.005182784080505371, 0.004954495906829834, 0.005048319816589355, 0.004918591976165771, 0.004860608100891113, 0.004833280086517334, 0.004876287937164306, 0.004845791816711425, 0.004831007957458496, 0.004831232070922851, 0.004817152023315429, 0.004858880043029785, 0.0050525121688842775, 0.004844255924224853, 0.004835264205932617, 0.004885791778564453, 0.004809440135955811, 0.0048949441909790035, 0.00483622407913208, 0.004864319801330567, 0.004901631832122803, 0.004855552196502686, 0.004851808071136474, 0.004810751914978028, 0.004945184230804443, 0.004827231884002686, 0.004893311977386475, 0.004811967849731445, 0.004796576023101806, 0.004830143928527832, 0.004888288021087647, 0.004709727764129638, 0.004865920066833496, 0.00482751989364624, 0.0048287038803100585, 0.004807007789611816, 0.004914944171905518, 0.00480950403213501, 0.004843520164489746, 0.004833280086517334, 0.00482092809677124, 0.0049845118522644045, 0.004863967895507812, 0.00482480001449585, 0.00482371187210083, 0.004818975925445557, 0.004820831775665283, 0.004862112045288086, 0.0048130879402160645, 0.004791808128356933, 0.005223775863647461, 0.0050338878631591795, 0.0053851838111877446, 0.005140192031860351, 0.006209695816040039, 0.005349696159362793, 0.004919104099273682, 0.004935679912567138, 0.004900288105010986, 0.004850560188293457, 0.00484284782409668, 0.004955967903137207, 0.0048624958992004395, 0.004834911823272705, 0.004834784030914307, 0.004862239837646484, 0.004838335990905762, 0.0048323521614074706, 0.004816832065582276, 0.004840415954589844, 0.004826655864715576, 0.004832960128784179, 0.0048009281158447265, 0.004786240100860596, 0.0048005437850952145, 0.004868256092071533, 0.004806496143341064, 0.004872191905975342, 0.004797952175140381, 0.004827136039733886, 0.004811200141906738, 0.004872255802154541, 0.004797984123229981, 0.004796224117279053, 0.004811423778533936, 0.004891871929168701, 0.004853631973266602, 0.004886879920959473, 0.004948031902313232, 0.004857376098632813, 0.004864160060882568, 0.004809535980224609, 0.004887743949890137, 0.004821375846862793, 0.004702208042144776, 0.0047923197746276855, 0.004854976177215576, 0.004903744220733643, 0.004824543952941894, 0.004817440032958985, 0.004802559852600098, 0.004838719844818116, 0.0048698558807373045, 0.00481990385055542, 0.004811903953552246, 0.004823328018188477, 0.004844160079956055, 0.004825088024139404, 0.004789504051208496, 0.004801568031311035, 0.0047983360290527344, 0.004791296005249023, 0.004892831802368164, 0.004827712059020996, 0.004855936050415039, 0.004832992076873779, 0.004902751922607422, 0.004821663856506348, 0.004886303901672363, 0.004840991973876953, 0.004847775936126709, 0.004833183765411377, 0.004899231910705566, 0.00484768009185791, 0.004822271823883057, 0.004889440059661865, 0.004839360237121582, 0.004824575901031494, 0.004833983898162842, 0.004833151817321777, 0.00483516788482666, 0.00482860803604126, 0.004832960128784179, 0.004872735977172852, 0.004808735847473144, 0.004803199768066407, 0.0048906559944152835, 0.004795231819152832, 0.004892928123474121, 0.004846144199371338, 0.004833280086517334, 0.004830880165100098, 0.004817376136779785, 0.004800032138824463, 0.004819295883178711, 0.004800672054290771, 0.004796512126922607, 0.004810495853424072, 0.004876287937164306, 0.004837376117706299, 0.004837279796600342, 0.0048026561737060545, 0.004825344085693359, 0.004798208236694336, 0.004820991992950439, 0.004802559852600098, 0.004882431983947754, 0.0047291841506958004, 0.004978271961212158, 0.004796319961547851, 0.004812928199768066, 0.00480787181854248, 0.00483619213104248, 0.0048089919090270996, 0.004797152042388916, 0.004806943893432617, 0.004825664043426514, 0.004796576023101806, 0.004802559852600098, 0.0048570241928100584, 0.004801343917846679, 0.004839424133300781, 0.0048083200454711915, 0.004796095848083496, 0.0047909760475158695, 0.004806655883789063, 0.004838687896728516, 0.005176032066345215, 0.004835328102111816, 0.004926720142364502, 0.004932352066040039, 0.0048369278907775875, 0.0048355841636657714, 0.004838784217834472, 0.004823872089385986, 0.004848800182342529, 0.004833792209625244, 0.00480291223526001, 0.0048211197853088375, 0.004841119766235352, 0.004804927825927735, 0.004831039905548095, 0.0048434557914733885, 0.004814112186431884, 0.004823935985565186, 0.00481279993057251, 0.0048232641220092775, 0.004810431957244873, 0.004792352199554443, 0.004889984130859375, 0.004819647789001465, 0.00486300802230835, 0.004791264057159424, 0.004855519771575928, 0.00495849609375, 0.0049500160217285155, 0.004958208084106445, 0.0048269758224487305, 0.004876416206359863, 0.004888607978820801, 0.0048438401222229005, 0.004856959819793701, 0.004823488235473633, 0.004863903999328613, 0.004951295852661133, 0.004813504219055176, 0.004837024211883545, 0.00482367992401123, 0.004876319885253906, 0.00486191987991333, 0.004763775825500488, 0.004837503910064697, 0.004849535942077637, 0.004947968006134033, 0.005063007831573487, 0.004880095958709717, 0.004831168174743652, 0.004839424133300781, 0.004872096061706543, 0.0048776321411132815, 0.004823840141296386, 0.0048189439773559575, 0.004820991992950439, 0.004798463821411133, 0.0048455681800842285, 0.004829184055328369, 0.004878335952758789, 0.004818208217620849, 0.004819680213928223, 0.004890399932861328, 0.004825376033782959, 0.004830719947814942, 0.004833439826965332, 0.004899168014526367, 0.0048065919876098635, 0.004809823989868164, 0.005219232082366943, 0.004922368049621582, 0.004840447902679444, 0.004867263793945312, 0.004852128028869629, 0.004974431991577148, 0.004844096183776856, 0.004840672016143799, 0.00481279993057251, 0.004800511837005615, 0.004813600063323975, 0.004827136039733886, 0.004884672164916992, 0.004820223808288574, 0.004913472175598145, 0.004798304080963134, 0.004856224060058594, 0.004875775814056397, 0.004845183849334717, 0.00482751989364624, 0.004838175773620605, 0.004818431854248047, 0.004835103988647461, 0.004808703899383545, 0.0048685441017150876, 0.004863296031951904, 0.004840223789215088, 0.004824416160583496, 0.0048379840850830075, 0.004826816082000732, 0.004839456081390381, 0.004835519790649414, 0.004785344123840332, 0.004797311782836914, 0.004831232070922851, 0.004988287925720215, 0.004913792133331298, 0.0047820801734924315, 0.004894720077514648, 0.004829184055328369, 0.0048559679985046384, 0.004806623935699463, 0.004853024005889893, 0.004842144012451172, 0.004827072143554687, 0.004867072105407715, 0.004834080219268799, 0.004849215984344482, 0.004841856002807617, 0.004818336009979248, 0.005354432106018067, 0.004846528053283692, 0.00486297607421875, 0.004843520164489746, 0.0049081602096557615, 0.004889472007751465, 0.004935328006744385, 0.004905280113220215, 0.004861983776092529, 0.004853824138641358, 0.00486630392074585, 0.004838496208190918, 0.0048198080062866215, 0.004830592155456543, 0.004875840187072754, 0.004830111980438232, 0.0048369278907775875, 0.004827487945556641, 0.004880383968353271, 0.004905280113220215, 0.004823999881744385, 0.004810527801513672, 0.004833920001983643, 0.004808032035827637, 0.0048895998001098635, 0.004919616222381592, 0.004810175895690918, 0.004812863826751709, 0.004827328205108642, 0.004918879985809326, 0.004838943958282471, 0.004883488178253174, 0.004806496143341064, 0.004843103885650635, 0.0048410239219665524, 0.004807168006896972, 0.0048213438987731935, 0.004829311847686767, 0.004810272216796875, 0.0047926721572875974, 0.004841567993164063, 0.004795616149902344, 0.004803552150726319, 0.004878047943115234, 0.004826464176177978, 0.00492633581161499, 0.0048412480354309085, 0.004829184055328369, 0.004868095874786377, 0.004923391819000244, 0.004818816184997559, 0.004837503910064697, 0.004840479850769043, 0.004807712078094483, 0.004860928058624267, 0.004817279815673828, 0.004856256008148194, 0.004825215816497802, 0.004821280002593994, 0.004851391792297363, 0.004822080135345459, 0.004831232070922851, 0.004886943817138672, 0.004856383800506592, 0.004848735809326172, 0.004961184024810791, 0.004856128215789795, 0.0048263039588928225, 0.004837887763977051, 0.0048496642112731934, 0.0048223681449890135, 0.004792992115020752, 0.00483241605758667, 0.004952799797058105, 0.004814976215362548, 0.004901216030120849, 0.004808351993560791, 0.004820576190948486, 0.004837471961975098, 0.004837056159973144, 0.004807104110717773, 0.004810080051422119, 0.004821856021881104, 0.004837376117706299, 0.005093311786651612, 0.004849728107452393, 0.004878464221954345, 0.004855040073394775, 0.00482367992401123, 0.004853919982910156, 0.00481990385055542, 0.004825632095336914, 0.004831999778747559, 0.004826752185821534, 0.004827040195465088, 0.004816991806030273, 0.004860191822052002, 0.004833343982696533, 0.004808191776275635, 0.004812320232391357, 0.004811391830444336, 0.004814271926879883, 0.004858431816101075, 0.004810751914978028, 0.0051363840103149415, 0.0049909758567810054, 0.004907072067260742, 0.004895008087158203, 0.004843391895294189, 0.0048364801406860355, 0.004821663856506348, 0.004851712226867676, 0.004907008171081543, 0.004811135768890381, 0.004956192016601563, 0.0048373441696166995, 0.004835360050201416, 0.004937983989715576, 0.004839136123657227, 0.004837376117706299, 0.004825088024139404, 0.004810751914978028, 0.004839424133300781, 0.004843520164489746, 0.004827136039733886, 0.004845727920532226, 0.004910943984985351, 0.004804224014282227, 0.005154304027557373, 0.0050553598403930665, 0.005570047855377197, 0.005091839790344238, 0.005136288166046142, 0.005193888187408447, 0.004902016162872314, 0.004913983821868896, 0.0050360321998596195, 0.004851583957672119, 0.005140096187591553, 0.004944543838500976, 0.004873184204101563, 0.004862847805023193, 0.004892672061920166, 0.004863296031951904, 0.004850240230560303, 0.004849760055541992, 0.004863647937774658, 0.004884191989898682, 0.00589024019241333, 0.004908927917480469, 0.004919904232025147, 0.004843520164489746, 0.0048384637832641604, 0.0048438081741333005, 0.004823135852813721, 0.004822688102722168, 0.004868864059448242, 0.004791808128356933, 0.004795040130615234, 0.004809055805206299, 0.004830239772796631, 0.004856063842773438, 0.004798848152160645, 0.004808576107025147, 0.0048100481033325196, 0.004877120018005371, 0.004820991992950439, 0.004838784217834472, 0.004815392017364502, 0.004819039821624756, 0.00481279993057251, 0.004839744091033936, 0.004822720050811768, 0.004861311912536621, 0.0048380160331726076, 0.004806816101074219, 0.004679456233978272, 0.004821407794952393, 0.00482147216796875, 0.0048496642112731934, 0.004833183765411377, 0.0048661441802978515, 0.004816895961761475, 0.004884416103363037, 0.0048429760932922365, 0.004815584182739258, 0.004863776206970215, 0.00482092809677124, 0.004826687812805176, 0.004835487842559815, 0.004822624206542969, 0.004842336177825928, 0.0048475837707519535, 0.004818975925445557, 0.004863999843597412, 0.004845791816711425, 0.004847392082214356, 0.004839424133300781, 0.004859776020050049, 0.004810368061065674, 0.004798880100250244, 0.00483951997756958, 0.004811808109283448, 0.004815839767456055, 0.004800511837005615, 0.004845183849334717, 0.004845503807067871, 0.004839744091033936, 0.004812928199768066, 0.004818848133087158, 0.0048323521614074706, 0.004810976028442383, 0.004814655780792237, 0.004795040130615234, 0.004818655967712402, 0.004830912113189697, 0.0047578558921813965, 0.004840159893035888, 0.004796256065368652, 0.004788127899169922, 0.004816991806030273, 0.004794591903686523, 0.004818816184997559, 0.00478607988357544, 0.004780223846435547, 0.004830048084259033, 0.004852255821228027, 0.0049008002281188965, 0.004860095977783203, 0.0048269758224487305, 0.004856063842773438, 0.00482528018951416, 0.0048373441696166995, 0.004810815811157227, 0.005746304035186767, 0.004872416019439697, 0.004806303977966308, 0.00480947208404541, 0.004912896156311035, 0.004710400104522705, 0.004851712226867676, 0.00481385612487793, 0.0048273601531982424, 0.004797183990478516, 0.004810751914978028, 0.0048323521614074706, 0.004838592052459717, 0.004847328186035157, 0.004823135852813721, 0.004796319961547851, 0.004890624046325683, 0.004793824195861817, 0.00485152006149292, 0.004799488067626953, 0.004812511920928955, 0.0048371520042419435, 0.004814208030700684, 0.004807519912719727, 0.004811808109283448, 0.004828383922576904, 0.004832511901855469, 0.004895423889160156, 0.00482425594329834, 0.004809343814849853, 0.004822783946990967, 0.004853759765625, 0.004858463764190674, 0.004836319923400879, 0.0048146238327026365, 0.004789152145385742, 0.004841087818145752, 0.004837024211883545, 0.004815584182739258, 0.004873856067657471, 0.004823488235473633, 0.004827072143554687, 0.00482912015914917, 0.004812064170837402, 0.004809055805206299, 0.004832992076873779, 0.004791007995605469, 0.004832863807678223, 0.004816864013671875, 0.004876832008361817, 0.0048616318702697755, 0.004810143947601318, 0.004967232227325439, 0.004816991806030273, 0.004803616046905518, 0.004844639778137207, 0.004811679840087891, 0.004819839954376221, 0.004802432060241699, 0.004788352012634277, 0.004820991992950439, 0.004885600090026855, 0.004860703945159912, 0.004777919769287109, 0.004788288116455078, 0.004812928199768066, 0.004820543766021729, 0.004788447856903076]",tokens/s,201.52696854704882,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,938.31168,6533.61152,0.0,6138.363904,6060.931072,s,1,6.96679052734375,6.96679052734375,0.0,6.96679052734375,6.96679052734375,6.96679052734375,6.96679052734375,[6.96679052734375],,kWh,5.085252083328366e-06,5.534977879280402e-07,1.185278726001382e-06,6.824028597257788e-06,,MB,1379.749888,6558.777344,0.0,6150.946816,5419.87328,s,10,0.6020774116516113,0.06020774116516113,0.0018453734187563265,0.05972475242614746,0.0627747314453125,0.0633516544342041,0.06381319282531737,"[0.06264652633666992, 0.0578870735168457, 0.061093887329101565, 0.05857558441162109, 0.058743072509765626, 0.05876416015625, 0.05997062301635742, 0.0639285774230957, 0.0594788818359375, 0.060989025115966794]",tokens/s,4251.944933422165,kWh,1.9568901477222326e-06,2.157116488981847e-07,1.3030325239066221e-06,3.475634320527039e-06,tokens/kWh,73655619.77796923,MB,1423.233024,6558.777344,0.0,6150.946816,5419.87584,s,10,15.658351074218748,1.5658351074218753,0.003458824543806209,1.5653187866210936,1.570976623535156,1.5718140563964844,1.5724840026855469,"[1.562399658203125, 1.5664119873046876, 1.57079052734375, 1.56212451171875, 1.562656494140625, 1.5660498046875, 1.56763232421875, 1.5726514892578125, 1.5645877685546874, 1.5630465087890626]",tokens/s,40.23412152492135,kWh,4.5555347025613113e-05,5.024060454978115e-06,3.0192659339294274e-05,8.07720668198855e-05,tokens/kWh,779972.6128153236,,s,630,15.656249246597312,0.02485118928031316,0.0005200062189687375,0.024734368324279783,0.024987286949157715,0.02553708686828613,0.027211076564788824,"[0.02589961624145508, 0.025453664779663085, 0.025055807113647462, 0.02475379180908203, 0.024621280670166015, 0.024597024917602538, 0.02693120002746582, 0.024621055603027343, 0.025525312423706054, 0.02461996841430664, 0.024572128295898436, 0.0245645751953125, 0.02460358428955078, 0.024588287353515623, 0.02454528045654297, 0.024649152755737303, 0.024604736328125, 0.02458995246887207, 0.024578943252563476, 0.024739103317260744, 0.024786943435668944, 0.024641599655151367, 0.024608640670776366, 0.02457270431518555, 0.024598272323608398, 0.02468016052246094, 0.024723520278930666, 0.02468707275390625, 0.02473369598388672, 0.02488675117492676, 0.02481376075744629, 0.02470070457458496, 0.02467487907409668, 0.02473574447631836, 0.02473779106140137, 0.02465702438354492, 0.024648576736450194, 0.024795007705688477, 0.024915935516357422, 0.024885408401489256, 0.024890720367431642, 0.024992416381835938, 0.024915807723999022, 0.024882911682128906, 0.024833663940429688, 0.02467238426208496, 0.024756927490234375, 0.024734848022460936, 0.024695104598999023, 0.024650304794311524, 0.024794879913330077, 0.024837888717651368, 0.024746496200561522, 0.024659584045410157, 0.024710880279541016, 0.024648351669311522, 0.024645631790161132, 0.024692703247070312, 0.024684576034545897, 0.024821760177612305, 0.02480678367614746, 0.02478054428100586, 0.024736576080322266, 0.027100543975830078, 0.026265567779541015, 0.025604768753051756, 0.024977407455444335, 0.024818880081176758, 0.02469055938720703, 0.024673183441162108, 0.02463542366027832, 0.024713216781616212, 0.024696832656860353, 0.024678367614746094, 0.024653823852539062, 0.02466975975036621, 0.024691167831420897, 0.02481718444824219, 0.024760799407958986, 0.024780799865722656, 0.02474188804626465, 0.02488662338256836, 0.024891424179077148, 0.02485107231140137, 0.024722719192504884, 0.024698879241943358, 0.024777664184570312, 0.024726495742797852, 0.024656095504760743, 0.02465167999267578, 0.024742591857910157, 0.024784320831298827, 0.02466649627685547, 0.02463148880004883, 0.024611967086791992, 0.02471820831298828, 0.024811519622802734, 0.024707199096679688, 0.024614784240722658, 0.02484223937988281, 0.024793088912963866, 0.024814943313598632, 0.02482806396484375, 0.024821983337402344, 0.02490380859375, 0.025909151077270508, 0.024884767532348633, 0.024715967178344726, 0.024842208862304687, 0.024804479598999025, 0.02483296012878418, 0.024719263076782228, 0.024809568405151368, 0.024782079696655274, 0.024779552459716796, 0.02477052879333496, 0.02467430305480957, 0.02484223937988281, 0.024795135498046874, 0.02480316734313965, 0.02487516784667969, 0.024986976623535155, 0.024924095153808595, 0.024838720321655273, 0.024752288818359374, 0.024735008239746094, 0.02897635269165039, 0.026788639068603515, 0.02592095947265625, 0.025365055084228514, 0.024923519134521486, 0.02474015998840332, 0.024615232467651366, 0.024626720428466798, 0.025155359268188477, 0.02463587188720703, 0.024582143783569335, 0.024803552627563476, 0.024756223678588866, 0.024729600906372072, 0.024622304916381836, 0.025016191482543946, 0.025057376861572264, 0.025029024124145507, 0.024600992202758788, 0.02454528045654297, 0.024755456924438476, 0.024787712097167968, 0.024807424545288087, 0.02471731185913086, 0.02476144027709961, 0.02468342399597168, 0.0247193603515625, 0.024672256469726563, 0.024664064407348633, 0.02466953659057617, 0.024640159606933595, 0.024662015914916992, 0.024624895095825196, 0.024754432678222655, 0.024767839431762695, 0.024668832778930665, 0.024637632369995117, 0.024651584625244142, 0.024832000732421877, 0.02488502311706543, 0.024913280487060548, 0.024861312866210936, 0.025026784896850587, 0.0250817928314209, 0.025004095077514648, 0.024813343048095703, 0.02486617660522461, 0.024793952941894532, 0.02478489685058594, 0.02476348876953125, 0.024644384384155272, 0.024776063919067382, 0.02476089668273926, 0.02464787292480469, 0.024688512802124023, 0.02459823989868164, 0.024654239654541017, 0.027891712188720705, 0.02455904006958008, 0.024582719802856444, 0.024649311065673828, 0.024654239654541017, 0.024696832656860353, 0.02725622367858887, 0.026458751678466796, 0.025546720504760742, 0.02507161521911621, 0.024815616607666017, 0.024705024719238283, 0.02467840003967285, 0.024557567596435546, 0.02451456069946289, 0.02454652786254883, 0.02459219169616699, 0.024527103424072265, 0.024511199951171875, 0.024596479415893553, 0.024767936706542967, 0.02479136085510254, 0.024764543533325196, 0.02471232032775879, 0.02489241600036621, 0.024846336364746095, 0.024868928909301757, 0.024704896926879882, 0.02465184020996094, 0.024650751113891603, 0.024642559051513673, 0.024647680282592774, 0.024606719970703125, 0.024816736221313477, 0.024858720779418947, 0.024733888626098634, 0.02459679985046387, 0.02455379295349121, 0.024647327423095704, 0.024746335983276368, 0.02466815948486328, 0.024608415603637697, 0.024565664291381836, 0.024580543518066406, 0.02464748764038086, 0.02474732780456543, 0.024896064758300782, 0.024867231369018555, 0.02488515281677246, 0.024841888427734375, 0.02480073547363281, 0.02475916862487793, 0.02474345588684082, 0.024723936080932617, 0.02468822479248047, 0.024621055603027343, 0.024717727661132814, 0.024686111450195312, 0.02462918472290039, 0.024616992950439454, 0.024817472457885743, 0.024820415496826172, 0.02479523277282715, 0.02472857666015625, 0.024738719940185547, 0.024729248046875, 0.024789215087890625, 0.024730880737304686, 0.024593151092529297, 0.026720991134643556, 0.026142431259155274, 0.025415903091430665, 0.02491360092163086, 0.024781375885009765, 0.024657920837402345, 0.024610815048217775, 0.02456985664367676, 0.02458620834350586, 0.024649087905883788, 0.024699071884155273, 0.024633440017700195, 0.02458457565307617, 0.024688640594482423, 0.024656959533691406, 0.024687551498413087, 0.02466396713256836, 0.024645727157592775, 0.024713216781616212, 0.024707071304321288, 0.024633344650268556, 0.024589920043945314, 0.024749664306640624, 0.02479801559448242, 0.024731359481811523, 0.024583488464355468, 0.024562656402587892, 0.024731647491455077, 0.02474095916748047, 0.02474838447570801, 0.024635488510131837, 0.024739871978759764, 0.024795583724975586, 0.024827648162841796, 0.024756479263305663, 0.02468454360961914, 0.024696832656860353, 0.024687967300415038, 0.024861343383789064, 0.02484003257751465, 0.024998048782348632, 0.024978912353515625, 0.02492880058288574, 0.02486016082763672, 0.024788639068603516, 0.024765151977539063, 0.024718496322631837, 0.024710111618041992, 0.024688640594482423, 0.024867904663085937, 0.024901567459106447, 0.02476255989074707, 0.024680383682250978, 0.024685440063476564, 0.024729183197021484, 0.024703359603881835, 0.024719392776489258, 0.024780832290649413, 0.0248502082824707, 0.024871103286743163, 0.024876928329467772, 0.024676319122314452, 0.024771839141845702, 0.028639135360717775, 0.026617952346801758, 0.02574332809448242, 0.02521887969970703, 0.024971136093139647, 0.024803647994995116, 0.02471116828918457, 0.024696832656860353, 0.024705024719238283, 0.02465177536010742, 0.024590335845947265, 0.024594432830810548, 0.024641151428222655, 0.02465830421447754, 0.024620927810668946, 0.024670335769653322, 0.024808736801147462, 0.02476233673095703, 0.024747840881347655, 0.024621856689453124, 0.024591808319091798, 0.024789728164672852, 0.024780799865722656, 0.024647680282592774, 0.024628543853759767, 0.02467910385131836, 0.024690944671630858, 0.024669952392578125, 0.02462054443359375, 0.024619520187377928, 0.024735519409179688, 0.02478102493286133, 0.024790719985961916, 0.024707391738891603, 0.024749216079711915, 0.024766656875610353, 0.024760160446166992, 0.024671039581298827, 0.02473958396911621, 0.02487731170654297, 0.024930303573608398, 0.0248668155670166, 0.024913375854492187, 0.025012767791748047, 0.02496512031555176, 0.024911136627197267, 0.02486297607421875, 0.024822240829467775, 0.02471228790283203, 0.024630176544189454, 0.024643680572509766, 0.024675487518310547, 0.024723295211791993, 0.02481577682495117, 0.024759040832519532, 0.024702016830444335, 0.024642688751220703, 0.024743743896484375, 0.024739072799682616, 0.024722175598144533, 0.0246824951171875, 0.02475164794921875, 0.024841760635375975, 0.02667728042602539, 0.025870336532592773, 0.025402528762817383, 0.024990079879760742, 0.024744384765625, 0.024623104095458984, 0.02470297622680664, 0.02464358329772949, 0.024589376449584963, 0.024562559127807616, 0.0245863037109375, 0.024618240356445314, 0.024684799194335937, 0.024644096374511718, 0.02465177536010742, 0.0247314567565918, 0.02473289680480957, 0.026029024124145508, 0.027024959564208983, 0.026042816162109374, 0.024751840591430666, 0.024758367538452147, 0.025274560928344725, 0.025042943954467774, 0.02479871940612793, 0.024773216247558592, 0.024813472747802736, 0.0246824951171875, 0.024731647491455077, 0.024672256469726563, 0.02466815948486328, 0.024624319076538087, 0.02480620765686035, 0.02469478416442871, 0.02472550392150879, 0.024667423248291017, 0.024543968200683594, 0.024628608703613282, 0.024724096298217774, 0.024747936248779297, 0.02473583984375, 0.025027999877929686, 0.024910432815551758, 0.02492006492614746, 0.024813440322875975, 0.02470515251159668, 0.02467856025695801, 0.024679744720458984, 0.024642080307006837, 0.024649599075317382, 0.024735872268676757, 0.024750080108642578, 0.024753759384155274, 0.024703392028808592, 0.024813568115234375, 0.024839744567871094, 0.024824256896972655, 0.02487843132019043, 0.024799007415771485, 0.024761215209960937, 0.02469193649291992, 0.02471811294555664, 0.024711200714111328, 0.030552448272705077, 0.027061792373657228, 0.02592201614379883, 0.025268224716186522, 0.024975135803222658, 0.02471667289733887, 0.024724319458007814, 0.024610815048217775, 0.02742787170410156, 0.024673248291015627, 0.024657920837402345, 0.02473369598388672, 0.024664064407348633, 0.02456729507446289, 0.024549888610839843, 0.024673887252807617, 0.024681024551391602, 0.024655712127685546, 0.024610815048217775, 0.02472540855407715, 0.024749311447143554, 0.02465059280395508, 0.02456515121459961, 0.02460732841491699, 0.02480710411071777, 0.024701311111450196, 0.024610591888427735, 0.02458576011657715, 0.024899967193603517, 0.024733184814453125, 0.024702720642089844, 0.024687616348266602, 0.024624767303466796, 0.024680831909179687, 0.02468832015991211, 0.024680320739746093, 0.024625600814819334, 0.024803136825561522, 0.024856767654418944, 0.02491596794128418, 0.024919040679931642, 0.024869888305664063, 0.02486182403564453, 0.024894336700439453, 0.024961023330688475, 0.02472697639465332, 0.024803903579711913, 0.024807424545288087, 0.024795135498046874, 0.0247926082611084, 0.024771039962768554, 0.026279775619506836, 0.025005983352661132, 0.024690944671630858, 0.024659423828125, 0.02476700782775879, 0.024756223678588866, 0.024705120086669922, 0.024696735382080077, 0.02483404731750488, 0.02477670478820801, 0.024760160446166992, 0.02468675231933594, 0.02684761619567871, 0.02618684768676758, 0.025475263595581055, 0.024950912475585937, 0.024838623046875, 0.02471494483947754, 0.024861312866210936, 0.02458399963378906, 0.024522687911987303, 0.024588319778442384, 0.024600095748901367, 0.024652448654174805, 0.02463052749633789, 0.024797760009765624, 0.02484182357788086, 0.024778911590576172, 0.024727712631225585, 0.02471664047241211, 0.02479529571533203, 0.024698944091796876, 0.02466431999206543, 0.024710527420043947, 0.024832639694213867, 0.02485068893432617, 0.024757856369018554, 0.024660480499267577, 0.024698848724365233, 0.02472137641906738, 0.0247459831237793, 0.02464681625366211, 0.024591199874877928, 0.024755935668945312, 0.02475811195373535, 0.024807872772216796, 0.024722944259643553, 0.02480400085449219, 0.024743839263916014, 0.02471529579162598, 0.0247459831237793, 0.024847776412963866, 0.025034528732299804, 0.025047775268554687, 0.02505846405029297, 0.02489792060852051, 0.024963552474975587, 0.024893440246582032, 0.02496614456176758, 0.024738815307617186, 0.024612863540649413, 0.02469808006286621, 0.024683296203613283, 0.024659135818481445, 0.02463212776184082, 0.0248668155670166, 0.0248668155670166, 0.024786943435668944, 0.02471664047241211, 0.024741695404052733, 0.02499260711669922, 0.024669984817504882, 0.02466633605957031, 0.024702016830444335, 0.024894399642944334, 0.0277040958404541, 0.026216447830200194, 0.025458688735961913, 0.0250548152923584, 0.024836448669433592, 0.024700159072875975, 0.024628032684326173, 0.024706111907958985, 0.024667072296142577, 0.024559616088867187, 0.02453494453430176, 0.024590463638305665, 0.02456163215637207, 0.024537216186523436, 0.024616191864013672, 0.024650367736816406, 0.02473561668395996, 0.02473516845703125, 0.024715967178344726, 0.024608768463134766, 0.02465996742248535, 0.02468822479248047, 0.024674720764160156, 0.024640703201293947, 0.024585023880004882, 0.02483363151550293, 0.02482329559326172, 0.024755264282226564, 0.024717151641845705, 0.024780799865722656, 0.02477004814147949, 0.02487945556640625, 0.02466524887084961, 0.024624128341674805, 0.024698879241943358, 0.024733631134033204, 0.02464348793029785, 0.024720735549926758, 0.02487993621826172, 0.024986751556396486, 0.02488105583190918, 0.024859136581420898, 0.024803808212280273, 0.02479292869567871, 0.024780319213867186, 0.024809600830078125, 0.024774528503417968, 0.024813663482666014, 0.02476291275024414, 0.024721408843994142, 0.02465407943725586, 0.024590080261230468, 0.0247459831237793, 0.024710559844970705, 0.02462371253967285, 0.024630847930908202, 0.024818111419677734, 0.02486403274536133, 0.02485321617126465, 0.024790016174316407, 0.024624000549316405, 0.024670335769653322, 0.024677984237670897]",tokens/s,40.23952289447125,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 1001, in __init__ self.model = GemmaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 780, in __init__ [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 780, in [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 571, in __init__ self.mlp = GemmaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 167, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 144.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 34.12 MiB is free. Process 141167 has 14.71 GiB memory in use. Of the allocated memory 14.59 GiB is allocated by PyTorch, and 1.69 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,dbrx,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1234, in __init__ self.transformer = DbrxModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1007, in __init__ self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1007, in self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 787, in __init__ self.ffn = DbrxFFN(config=config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 764, in __init__ self.experts = DbrxExperts( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 703, in __init__ self.mlp = DbrxExpertGLU( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 681, in __init__ self.w1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.97 GiB. GPU 0 has a total capacity of 14.74 GiB of which 1.17 GiB is free. Process 111717 has 13.57 GiB memory in use. Of the allocated memory 13.45 GiB is allocated by PyTorch, and 1.36 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 634, in __init__ self.attention = GPT_NEOX_ATTENTION_CLASSES[config._attn_implementation](config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 402, in __init__ super().__init__(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 102, in __init__ self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 150.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 132.12 MiB is free. Process 41561 has 14.61 GiB memory in use. Of the allocated memory 14.47 GiB is allocated by PyTorch, and 21.89 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt2,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, float16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,815.214592,1326.383104,0.0,931.135488,917.648384,s,1,7.24930126953125,7.24930126953125,0.0,7.24930126953125,7.24930126953125,7.24930126953125,7.24930126953125,[7.24930126953125],,kWh,9.300030833340618e-06,1.0187963388527686e-06,3.1194469399947744e-06,1.343827411218816e-05,,MB,1148.239872,1458.50368,0.0,1050.673152,1018.330112,s,10,0.17473472023010256,0.017473472023010257,0.00032826587233633533,0.017637968063354492,0.017802262306213377,0.017810283184051513,0.01781669988632202,"[0.01692780876159668, 0.01697609519958496, 0.017071264266967773, 0.017644447326660158, 0.017800479888916015, 0.017631488800048827, 0.017719167709350586, 0.017500288009643556, 0.01781830406188965, 0.017645376205444336]",tokens/s,14650.780317894565,kWh,5.129729545540996e-07,5.6536604880475513e-08,3.414330216842004e-07,9.109425811187756e-07,tokens/kWh,281027591.97576773,MB,1176.51456,1475.280896,0.0,1067.450368,1033.282048,s,10,10.554966979980469,1.055496697998047,0.019562259450065147,1.0613449096679688,1.0746231079101562,1.076492706298828,1.0779883850097656,"[1.0216134643554688, 1.019472412109375, 1.0551478271484376, 1.0742076416015625, 1.071249755859375, 1.0658709716796875, 1.06161083984375, 1.046352783203125, 1.0783623046875, 1.0610789794921875]",tokens/s,59.68753869101784,kWh,2.952359973044379e-05,3.255993862737637e-06,1.4851884688515072e-05,4.7631478281696486e-05,tokens/kWh,1322654.7290305123,,s,630,10.548605572700493,0.016743818369365872,0.0004883465879551693,0.016839056015014647,0.017199705696105957,0.017319140911102295,0.017867099857330326,"[0.015735648155212403, 0.016029695510864257, 0.0160328311920166, 0.01604243278503418, 0.015974464416503905, 0.016023296356201172, 0.016036544799804688, 0.017674495697021484, 0.016321632385253908, 0.016054943084716798, 0.016043455123901366, 0.016112192153930664, 0.01601740837097168, 0.016089088439941408, 0.016088607788085938, 0.016128032684326173, 0.01617145538330078, 0.016051200866699217, 0.01614463996887207, 0.016037664413452148, 0.016076959609985352, 0.01610016059875488, 0.016183296203613282, 0.01608697509765625, 0.016150592803955078, 0.016082239151000977, 0.01610406494140625, 0.016195648193359374, 0.016128000259399415, 0.016496639251708984, 0.01596726417541504, 0.016001535415649415, 0.016041439056396486, 0.016153600692749022, 0.01612953567504883, 0.016041696548461912, 0.016371679306030274, 0.016505727767944334, 0.016426944732666017, 0.016332799911499024, 0.016385791778564453, 0.016278976440429686, 0.016296768188476564, 0.01621401596069336, 0.016183296203613282, 0.016060415267944335, 0.01600223922729492, 0.015999808311462402, 0.016017055511474608, 0.016078624725341797, 0.016155199050903322, 0.015984095573425294, 0.01602409553527832, 0.016262208938598633, 0.016014272689819337, 0.01603379249572754, 0.01602681541442871, 0.016895872116088867, 0.0175031681060791, 0.01760665512084961, 0.016152576446533205, 0.016281183242797852, 0.01628758430480957, 0.015768608093261718, 0.015981535911560058, 0.015935487747192383, 0.01598591995239258, 0.01641753578186035, 0.016683008193969725, 0.016441408157348632, 0.016324256896972655, 0.016214303970336914, 0.016297536849975584, 0.016320415496826172, 0.016322816848754883, 0.016174976348876952, 0.016126495361328125, 0.016121248245239257, 0.016017887115478517, 0.016273344039916992, 0.016175167083740234, 0.016039039611816405, 0.01624153518676758, 0.016107519149780272, 0.016018463134765626, 0.01605116844177246, 0.016006816864013673, 0.016021856307983397, 0.017209344863891602, 0.01609884834289551, 0.016044448852539063, 0.01607686424255371, 0.016088096618652344, 0.01603843116760254, 0.01605062484741211, 0.01605788803100586, 0.016019264221191407, 0.016368127822875975, 0.016300191879272462, 0.016652288436889647, 0.016696672439575195, 0.01655695915222168, 0.016360864639282227, 0.01609539222717285, 0.016152767181396483, 0.016205087661743164, 0.015977184295654298, 0.016004831314086913, 0.015994303703308104, 0.016048896789550782, 0.016133567810058595, 0.016111679077148437, 0.016028255462646485, 0.016164735794067384, 0.016054048538208007, 0.016007104873657228, 0.01603830337524414, 0.016138240814208983, 0.016111616134643555, 0.016039743423461914, 0.01643846321105957, 0.016089696884155274, 0.01625904083251953, 0.01607651138305664, 0.016032480239868165, 0.016090208053588868, 0.0157260799407959, 0.015909055709838867, 0.016009536743164063, 0.016273408889770507, 0.016209312438964844, 0.016144256591796875, 0.016095968246459962, 0.0160296630859375, 0.016172607421875, 0.016134431838989258, 0.0161112003326416, 0.016074783325195314, 0.016102079391479493, 0.0160515193939209, 0.016048704147338867, 0.016150527954101563, 0.016072704315185548, 0.016225791931152343, 0.0160317440032959, 0.01606447982788086, 0.016022048950195312, 0.01619055938720703, 0.016560415267944335, 0.016674720764160156, 0.017380191802978517, 0.017051519393920897, 0.01705743980407715, 0.017076095581054686, 0.01695996856689453, 0.017227327346801758, 0.017111488342285156, 0.017641471862792968, 0.01706972885131836, 0.0172445125579834, 0.017063936233520507, 0.01726438331604004, 0.01700057601928711, 0.01697385597229004, 0.017112159729003908, 0.01703424072265625, 0.016903999328613282, 0.016742591857910157, 0.01728102493286133, 0.016887807846069337, 0.01721958351135254, 0.017137664794921875, 0.016859136581420898, 0.01696076774597168, 0.01703785514831543, 0.017029056549072264, 0.017166624069213866, 0.017133567810058595, 0.017176607131958007, 0.017237535476684572, 0.017308095932006835, 0.01717612838745117, 0.017160640716552735, 0.01717625617980957, 0.016970048904418944, 0.01680179214477539, 0.017479679107666016, 0.017108991622924806, 0.01713961601257324, 0.01660412788391113, 0.01707414436340332, 0.01686960029602051, 0.016716960906982423, 0.0169007682800293, 0.016889856338500975, 0.016732160568237304, 0.01656559944152832, 0.01684342384338379, 0.016699392318725585, 0.01659699249267578, 0.016658143997192384, 0.01705603218078613, 0.016842815399169923, 0.01669865608215332, 0.016691583633422852, 0.016787839889526368, 0.01712268829345703, 0.01745952033996582, 0.01720137596130371, 0.017499391555786132, 0.019490848541259764, 0.018039199829101564, 0.017139936447143556, 0.016836511611938478, 0.01686137580871582, 0.016791263580322267, 0.016924224853515624, 0.01713385581970215, 0.017101247787475585, 0.016881023406982422, 0.017132192611694335, 0.017317855834960937, 0.016922399520874022, 0.01707766342163086, 0.016802623748779298, 0.017004512786865236, 0.01697932815551758, 0.016927391052246093, 0.016970848083496092, 0.017133600234985353, 0.017019392013549805, 0.01694963264465332, 0.01701888084411621, 0.01689616012573242, 0.016933984756469726, 0.017889919281005858, 0.016887935638427734, 0.017308832168579102, 0.017179519653320312, 0.017304832458496094, 0.01675075149536133, 0.017304128646850585, 0.017059743881225584, 0.017016927719116212, 0.017035263061523438, 0.016920576095581053, 0.01691788864135742, 0.017207679748535157, 0.01695155143737793, 0.01704960060119629, 0.017016000747680664, 0.016941343307495117, 0.01683008003234863, 0.016934688568115235, 0.017101343154907227, 0.017596063613891603, 0.017020448684692383, 0.01705068778991699, 0.01714156723022461, 0.017049407958984374, 0.017006175994873047, 0.01715827178955078, 0.01697849655151367, 0.0171560001373291, 0.017129472732543945, 0.017449184417724608, 0.0171428165435791, 0.01698508834838867, 0.017168127059936523, 0.01710470390319824, 0.01690812873840332, 0.017310047149658205, 0.016863231658935548, 0.016689151763916017, 0.016855039596557618, 0.017303552627563477, 0.01717043113708496, 0.017145856857299805, 0.01717180824279785, 0.017076896667480468, 0.016988256454467773, 0.01695120048522949, 0.01707241630554199, 0.016762239456176758, 0.01715439987182617, 0.016772512435913087, 0.016833120346069336, 0.017077312469482422, 0.016853952407836915, 0.01687548828125, 0.016947328567504884, 0.016959327697753906, 0.017223743438720702, 0.017158432006835936, 0.017413856506347657, 0.016990207672119142, 0.016986112594604492, 0.016949247360229493, 0.01661948776245117, 0.01665827178955078, 0.016977407455444335, 0.01674934387207031, 0.016746400833129883, 0.016785408020019533, 0.016855039596557618, 0.01681203269958496, 0.01682841682434082, 0.017004831314086914, 0.017100511550903322, 0.016942975997924804, 0.016630975723266602, 0.01633523178100586, 0.0169451847076416, 0.017103391647338866, 0.01703340721130371, 0.016616800308227538, 0.016629663467407227, 0.016738496780395507, 0.016527103424072265, 0.016677343368530273, 0.016856704711914063, 0.017048383712768556, 0.01727065658569336, 0.016943136215209962, 0.016651872634887696, 0.01661292839050293, 0.01673616027832031, 0.01655072021484375, 0.016924736022949218, 0.01669126319885254, 0.016363519668579102, 0.016007104873657228, 0.016673887252807617, 0.017052223205566406, 0.017199520111083985, 0.016957504272460937, 0.016935935974121095, 0.01691334342956543, 0.016670719146728515, 0.016515071868896485, 0.016594112396240233, 0.016783327102661134, 0.0168723201751709, 0.01683987236022949, 0.016950368881225586, 0.016844480514526368, 0.016918527603149415, 0.01683046340942383, 0.016702911376953126, 0.016877695083618163, 0.01683705520629883, 0.016821535110473632, 0.017025760650634766, 0.01735856056213379, 0.017192960739135742, 0.017168031692504884, 0.016917119979858397, 0.017004032135009766, 0.016648544311523437, 0.01672412872314453, 0.016930240631103516, 0.01694927978515625, 0.01683305549621582, 0.01737107276916504, 0.01671993637084961, 0.016801055908203126, 0.01647177505493164, 0.01691766357421875, 0.016973087310791016, 0.016917055130004882, 0.016871423721313478, 0.01695088005065918, 0.019883712768554686, 0.017387840270996095, 0.017113664627075195, 0.017219423294067383, 0.017301055908203126, 0.016910783767700194, 0.016424800872802733, 0.016643360137939454, 0.016883392333984375, 0.017431936264038085, 0.017148672103881837, 0.016998176574707032, 0.016732160568237304, 0.01664009666442871, 0.017137664794921875, 0.016626848220825195, 0.016675615310668947, 0.016680288314819335, 0.016858112335205077, 0.01693462371826172, 0.016982015609741212, 0.016744447708129884, 0.016644096374511717, 0.01702911949157715, 0.01699260711669922, 0.016887584686279298, 0.017104448318481444, 0.016875839233398436, 0.016975360870361327, 0.016861919403076173, 0.01681545639038086, 0.01687366485595703, 0.01711568069458008, 0.016803455352783204, 0.016765024185180662, 0.01676255989074707, 0.01688960075378418, 0.016937311172485352, 0.016838239669799804, 0.016856767654418944, 0.016697568893432616, 0.016454368591308593, 0.016539264678955078, 0.01675916862487793, 0.016584447860717774, 0.01634124755859375, 0.016725120544433595, 0.01714441680908203, 0.017104639053344726, 0.016986879348754882, 0.016903968811035158, 0.016805919647216797, 0.01687548828125, 0.016955392837524414, 0.016846975326538085, 0.016885631561279296, 0.01697587203979492, 0.01686083221435547, 0.016890207290649415, 0.016873472213745116, 0.01659699249267578, 0.016670400619506837, 0.016777151107788085, 0.016510847091674805, 0.01657907295227051, 0.0163492488861084, 0.01676691246032715, 0.018147327423095702, 0.01682431983947754, 0.016661792755126952, 0.01697455978393555, 0.016766016006469726, 0.016810815811157228, 0.016449151992797853, 0.016224544525146486, 0.016248128890991212, 0.01618217658996582, 0.016162080764770506, 0.016253664016723634, 0.016476415634155275, 0.01689356803894043, 0.016647359848022462, 0.0163624324798584, 0.01617100715637207, 0.016174240112304686, 0.016190303802490234, 0.016154624938964843, 0.016670719146728515, 0.016717824935913086, 0.016862464904785157, 0.016742719650268554, 0.016726463317871094, 0.016447488784790038, 0.016321760177612304, 0.016083711624145507, 0.01606768035888672, 0.016177951812744142, 0.0162653751373291, 0.016338815689086916, 0.01617897605895996, 0.016385759353637695, 0.01608768081665039, 0.01601068878173828, 0.01624940872192383, 0.016044031143188475, 0.016022880554199218, 0.016165536880493166, 0.016166431427001953, 0.016058847427368163, 0.016106527328491212, 0.015979616165161133, 0.016150400161743163, 0.01598259162902832, 0.01642300796508789, 0.0165579833984375, 0.01741823959350586, 0.01635103988647461, 0.016734399795532227, 0.01706710433959961, 0.017089439392089845, 0.016941247940063478, 0.01781123161315918, 0.020127071380615234, 0.017105855941772462, 0.017173728942871093, 0.016986848831176758, 0.017149728775024416, 0.01705561637878418, 0.017591615676879883, 0.017134687423706055, 0.017103904724121093, 0.0170133113861084, 0.01682044792175293, 0.017222911834716796, 0.017117727279663087, 0.01699430465698242, 0.01697590446472168, 0.01714787292480469, 0.01700399971008301, 0.01722217559814453, 0.01730294418334961, 0.017320192337036133, 0.017471839904785156, 0.017056896209716798, 0.01705459213256836, 0.01696767997741699, 0.01697567939758301, 0.017123199462890624, 0.017099071502685546, 0.017098751068115235, 0.01721139144897461, 0.017139360427856444, 0.01708847999572754, 0.017071935653686525, 0.017068607330322266, 0.017131519317626954, 0.017242271423339842, 0.01707811164855957, 0.017257984161376954, 0.01709926414489746, 0.01710652732849121, 0.01733286476135254, 0.017198879241943358, 0.017238016128540038, 0.01705513572692871, 0.01700271987915039, 0.016953344345092772, 0.017184160232543946, 0.017066976547241212, 0.017039039611816405, 0.017090879440307617, 0.0175916805267334, 0.016969600677490235, 0.016978015899658205, 0.01715852737426758, 0.01703753662109375, 0.017006784439086913, 0.01703327941894531, 0.01719043159484863, 0.017170400619506837, 0.017434944152832033, 0.017268735885620116, 0.017196928024291992, 0.017165760040283203, 0.017553951263427733, 0.01718492889404297, 0.01679302406311035, 0.016891456604003905, 0.016806848526000978, 0.01701091194152832, 0.017106880187988283, 0.01687558364868164, 0.01675257682800293, 0.016844736099243165, 0.017045408248901366, 0.0165513916015625, 0.016777759552001954, 0.017000064849853516, 0.01718729591369629, 0.0173156795501709, 0.017073568344116212, 0.01687558364868164, 0.016775775909423828, 0.01679545593261719, 0.01692185592651367, 0.017187776565551757, 0.01690118408203125, 0.01694611167907715, 0.016781343460083007, 0.016730112075805666, 0.016586143493652342, 0.016627328872680664, 0.016755264282226564, 0.016714111328125, 0.01661952018737793, 0.01662156867980957, 0.01682784080505371, 0.017351232528686523, 0.017133663177490235, 0.01688675117492676, 0.016792768478393554, 0.01682815933227539, 0.01820240020751953, 0.017045728683471678, 0.016780799865722656, 0.016765439987182617, 0.016857311248779296, 0.016879295349121092, 0.016852575302124022, 0.016908191680908204, 0.016750688552856444, 0.016695327758789062, 0.01670569610595703, 0.01668947219848633, 0.01635327911376953, 0.01613804817199707, 0.0166627197265625, 0.017133567810058595, 0.017024896621704103, 0.016902496337890625, 0.016841535568237306, 0.01692720031738281, 0.01693084716796875, 0.017205024719238283, 0.01684883117675781, 0.016841215133666994, 0.01676313591003418, 0.016742399215698242, 0.01658470344543457, 0.016695295333862305, 0.01664204788208008, 0.016582656860351562, 0.016711679458618164, 0.016514688491821288, 0.01621343994140625, 0.016183935165405273, 0.016951616287231446, 0.017260671615600586]",tokens/s,59.723533661209466,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,837.615616,9637.39648,0.0,9242.148864,8603.568128,s,1,7.7355849609375,7.7355849609375,0.0,7.7355849609375,7.7355849609375,7.7355849609375,7.7355849609375,[7.7355849609375],,kWh,1.466184626665381e-05,1.4242632171994635e-06,7.069727877992427e-06,2.31558373618457e-05,,MB,1139.339264,9886.957568,0.0,9481.224192,8972.090368,s,10,6.982478088378905,0.6982478088378905,0.0036517305287179706,0.6994198913574219,0.7011476623535157,0.7023103729248047,0.7032405413818359,"[0.69003857421875, 0.697864501953125, 0.6987088012695313, 0.6942640380859375, 0.6964507446289062, 0.700400634765625, 0.7002574462890625, 0.7034730834960937, 0.7001309814453125, 0.7008892822265625]",tokens/s,366.6320133908713,kWh,2.0463702589164413e-05,2.256788519096522e-06,1.354058490653324e-05,3.6261076014794174e-05,tokens/kWh,7059911.843089114,MB,1161.076736,9891.151872,0.0,9485.418496,8972.092928,s,10,24.507166992187496,2.45071669921875,0.0028596785383194555,2.45123291015625,2.453633666992187,2.4545537719726562,2.455289855957031,"[2.450625244140625, 2.447038330078125, 2.445943115234375, 2.45255517578125, 2.448777099609375, 2.44886376953125, 2.451840576171875, 2.45342919921875, 2.45262060546875, 2.455473876953125]",tokens/s,25.706765706572046,kWh,7.17809645554217e-05,7.917776365660735e-06,4.777901970466671e-05,0.00012747776062574915,tokens/kWh,494203.84928910236,,s,630,24.50396546554564,0.03889518327864389,0.0005780801186598636,0.03882415962219238,0.039298535919189456,0.03955597248077392,0.0418481328201294,"[0.04240982437133789, 0.03919449615478516, 0.038448894500732425, 0.03843920135498047, 0.038400318145751955, 0.03821561431884766, 0.038188255310058594, 0.03821200180053711, 0.038166912078857425, 0.03850604629516602, 0.03846115112304688, 0.0384453125, 0.038309761047363285, 0.03864358520507812, 0.03840892791748047, 0.03843600082397461, 0.03828412628173828, 0.03838771057128906, 0.03832371139526367, 0.038511104583740234, 0.041850879669189454, 0.03854441452026367, 0.038468257904052734, 0.03840646362304687, 0.03894681549072266, 0.039301185607910155, 0.03922323226928711, 0.03886297607421875, 0.03875212860107422, 0.03869465637207031, 0.03862963104248047, 0.03875859069824219, 0.038529983520507814, 0.038953857421875, 0.03902822494506836, 0.03879542541503906, 0.03858003234863281, 0.03874256134033203, 0.03874611282348633, 0.03896115112304688, 0.03889126586914062, 0.03896275329589844, 0.03880422210693359, 0.03891299057006836, 0.03892937469482422, 0.03910041427612305, 0.038809600830078124, 0.038768638610839845, 0.039041023254394534, 0.03917004776000976, 0.03905331039428711, 0.039137279510498044, 0.03910041427612305, 0.039375873565673826, 0.03939430236816406, 0.03921820831298828, 0.03953142547607422, 0.03900831985473633, 0.03985203170776367, 0.038983680725097655, 0.03911398315429687, 0.03894553756713867, 0.039024063110351566, 0.04228028869628906, 0.039467681884765626, 0.03859199905395508, 0.03863798522949219, 0.038174110412597655, 0.03832048034667969, 0.0382081298828125, 0.0384983024597168, 0.038449153900146485, 0.03842067337036133, 0.03831788635253906, 0.03850239944458008, 0.03843699264526367, 0.038504318237304686, 0.03838137435913086, 0.038328033447265625, 0.03826736068725586, 0.03842639923095703, 0.04023945617675781, 0.03832819366455078, 0.03829945755004883, 0.03852921676635742, 0.03851059341430664, 0.03851676940917969, 0.03917820739746094, 0.039392799377441404, 0.039156192779541014, 0.038991870880126955, 0.03890176010131836, 0.03886489486694336, 0.03877814483642578, 0.03855228805541992, 0.03853094482421875, 0.038678657531738284, 0.038649406433105465, 0.03873427200317383, 0.03861420822143555, 0.03869164657592773, 0.03888947296142578, 0.03896934509277344, 0.038778881072998046, 0.03892950439453125, 0.03887401580810547, 0.03883974456787109, 0.038812095642089844, 0.03884431838989258, 0.0386992301940918, 0.03865190505981445, 0.03917004776000976, 0.03892428970336914, 0.039000064849853515, 0.03933388900756836, 0.03938508987426758, 0.03971072006225586, 0.038909217834472654, 0.03890454483032227, 0.038979167938232424, 0.03910083389282227, 0.03894236755371094, 0.03895449447631836, 0.03881260681152344, 0.038983585357666016, 0.03899955368041992, 0.04168294525146484, 0.03928044891357422, 0.03848211288452148, 0.038397823333740234, 0.03837145614624023, 0.03829900741577148, 0.03815078353881836, 0.03844230270385742, 0.038287487030029294, 0.038359264373779296, 0.03845119857788086, 0.038693248748779295, 0.03854131317138672, 0.03895817565917969, 0.03849305725097656, 0.038330368041992184, 0.03844707107543945, 0.03850841522216797, 0.03833414459228516, 0.03849264144897461, 0.03854950332641602, 0.03890892791748047, 0.03855683135986328, 0.03847971343994141, 0.03858432006835937, 0.03910438537597656, 0.03901401519775391, 0.03887363052368164, 0.0387806396484375, 0.038785057067871095, 0.03871120071411133, 0.038760353088378906, 0.03867075347900391, 0.03887011337280273, 0.038924320220947266, 0.03873891067504883, 0.03874332809448242, 0.03887776184082031, 0.03867654418945313, 0.038662143707275394, 0.038950912475585936, 0.03869900894165039, 0.03893155288696289, 0.039447456359863284, 0.03983321762084961, 0.038766975402832034, 0.03877478408813476, 0.038715328216552734, 0.0390423698425293, 0.03913324737548828, 0.03901830291748047, 0.03903084945678711, 0.038886207580566406, 0.03893068695068359, 0.038843711853027346, 0.03899951934814453, 0.03906835174560547, 0.039080223083496096, 0.03912908935546875, 0.03902873611450195, 0.03894428634643555, 0.0389964485168457, 0.03914547348022461, 0.04183116912841797, 0.03911676788330078, 0.03839340972900391, 0.03831145477294922, 0.03812035369873047, 0.03829350280761719, 0.03823782348632813, 0.03829983901977539, 0.03849849700927734, 0.03841212844848633, 0.038434814453125, 0.03860617446899414, 0.03827590560913086, 0.04026163101196289, 0.03870719909667969, 0.03842876815795898, 0.03836710357666016, 0.038593727111816405, 0.03867939376831055, 0.03879731369018555, 0.03861836624145508, 0.03873276901245117, 0.0387968635559082, 0.03864303970336914, 0.03889849472045898, 0.03930492782592773, 0.039372638702392576, 0.03893503952026367, 0.038752254486083985, 0.04029439926147461, 0.038621185302734375, 0.0385986557006836, 0.038757633209228516, 0.03874819183349609, 0.03879600143432617, 0.04150476837158203, 0.038416385650634766, 0.0385269775390625, 0.038637569427490234, 0.038823486328125, 0.03871334457397461, 0.03867078399658203, 0.039019519805908204, 0.038816959381103515, 0.03877225494384766, 0.038856990814208986, 0.03897919845581055, 0.03913356781005859, 0.039144927978515626, 0.039119392395019534, 0.03903692626953125, 0.03902246475219726, 0.03912511825561524, 0.03929449462890625, 0.03948191833496094, 0.039147422790527346, 0.03908758544921875, 0.03906000137329101, 0.03908403015136719, 0.03907139205932617, 0.039184703826904296, 0.03899955368041992, 0.03895286560058594, 0.04184140777587891, 0.039497695922851565, 0.03907993698120117, 0.03835811233520508, 0.03825551986694336, 0.03832831954956055, 0.038371326446533204, 0.03828700637817383, 0.038516670227050784, 0.03856835174560547, 0.03844255828857422, 0.03854380798339844, 0.03834864044189453, 0.03848195266723633, 0.03841443252563476, 0.03829558563232422, 0.03884425735473633, 0.03888336181640625, 0.03840134429931641, 0.03855238342285156, 0.03867776107788086, 0.038615806579589844, 0.03846758270263672, 0.03863935852050781, 0.039032161712646486, 0.039371681213378903, 0.039139328002929685, 0.03901440048217773, 0.03904092788696289, 0.03867043304443359, 0.038752254486083985, 0.03890585708618164, 0.03881369781494141, 0.038803455352783206, 0.03864371109008789, 0.0388455696105957, 0.038817790985107424, 0.038806400299072265, 0.03878092956542969, 0.03868832015991211, 0.03870550537109375, 0.03929916763305664, 0.03864780807495117, 0.038788223266601564, 0.038824832916259766, 0.03894268798828125, 0.039077919006347654, 0.03896105575561523, 0.039172191619873044, 0.03911884689331055, 0.03901235198974609, 0.03905535888671875, 0.03905535888671875, 0.03911475372314453, 0.039180286407470705, 0.03903078460693359, 0.03909632110595703, 0.03928387069702149, 0.039023456573486326, 0.038905406951904295, 0.03894931030273437, 0.0391657600402832, 0.03923747253417969, 0.04187583923339844, 0.039359935760498045, 0.03847574234008789, 0.038427169799804685, 0.038367584228515626, 0.03836928176879883, 0.038255615234375, 0.038691841125488284, 0.03841999816894531, 0.03863619232177734, 0.03843462371826172, 0.03851878356933594, 0.03831193542480469, 0.03847568130493164, 0.038506591796875, 0.038338207244873045, 0.03842287826538086, 0.038561790466308594, 0.038413665771484376, 0.03881337738037109, 0.038652671813964846, 0.03866236877441406, 0.0385167350769043, 0.03869081497192383, 0.038834175109863284, 0.038940673828125, 0.0388485107421875, 0.03907583999633789, 0.03894883346557617, 0.039006240844726564, 0.03888483047485351, 0.038725536346435545, 0.038574718475341795, 0.03904512023925781, 0.03900201416015625, 0.03889564895629883, 0.038723777770996094, 0.03876236724853516, 0.03863347244262695, 0.03871091079711914, 0.03869529724121094, 0.039021568298339845, 0.03878806304931641, 0.038819103240966796, 0.038808319091796876, 0.039018497467041016, 0.03906355285644531, 0.03907174301147461, 0.039257377624511716, 0.039254753112792966, 0.039005470275878903, 0.03901103973388672, 0.03900572967529297, 0.03913679885864258, 0.039078208923339845, 0.03920550537109375, 0.03904716873168945, 0.03918048095703125, 0.03927366256713867, 0.03907648086547852, 0.03912089538574219, 0.039569408416748046, 0.039122943878173826, 0.041544288635253904, 0.03916595077514649, 0.03852313613891602, 0.03836883163452148, 0.03838969421386719, 0.03837974548339844, 0.038141632080078126, 0.0385043830871582, 0.0383944320678711, 0.03843609619140625, 0.03854217529296875, 0.03851590347290039, 0.03836521530151367, 0.03840252685546875, 0.03826921463012695, 0.03835644912719727, 0.03848988723754883, 0.03864451217651367, 0.03867824172973633, 0.038508033752441405, 0.03879919815063477, 0.03901740646362305, 0.03867232131958008, 0.03867388916015625, 0.039014209747314454, 0.03933795166015625, 0.03914956665039063, 0.04085228729248047, 0.03866009521484375, 0.038813793182373046, 0.03863951873779297, 0.038596607208251955, 0.03867427062988281, 0.03875446319580078, 0.03879683303833008, 0.03904710388183594, 0.038707744598388674, 0.038742015838623044, 0.03867443084716797, 0.03867567825317383, 0.03883087921142578, 0.03879116821289062, 0.03914547348022461, 0.03884236907958984, 0.038793216705322264, 0.03902054214477539, 0.03889273452758789, 0.038832416534423826, 0.03905795288085938, 0.0396308479309082, 0.042305057525634765, 0.039413951873779295, 0.03916009521484375, 0.039174144744873046, 0.0390709114074707, 0.039008544921875, 0.039019039154052734, 0.03905875015258789, 0.038918846130371096, 0.03890924835205078, 0.038892032623291016, 0.03895856094360352, 0.03892707061767578, 0.042289119720458984, 0.039257984161376956, 0.038289535522460935, 0.03848396682739258, 0.038345951080322266, 0.03889641571044922, 0.038098846435546875, 0.03801094436645508, 0.0381495361328125, 0.038375518798828126, 0.03826742553710937, 0.03844095993041992, 0.03830579376220703, 0.03846553421020508, 0.038539134979248046, 0.038324352264404296, 0.03925196838378906, 0.03841024017333984, 0.03835299301147461, 0.038743968963623046, 0.0384983024597168, 0.03860070419311523, 0.03845487976074219, 0.038650272369384765, 0.04048691177368164, 0.03898323059082031, 0.03893088150024414, 0.03907993698120117, 0.039239646911621094, 0.03926339340209961, 0.038836544036865234, 0.038591041564941406, 0.03861913681030273, 0.038733631134033206, 0.03861318588256836, 0.03873382568359375, 0.03885670471191406, 0.038760448455810545, 0.038916095733642575, 0.03890995025634766, 0.038874336242675785, 0.03903116989135742, 0.0387977294921875, 0.03885055923461914, 0.03893990325927734, 0.039088897705078125, 0.03906889724731445, 0.03907254409790039, 0.039448673248291016, 0.03914947128295899, 0.03933139038085937, 0.03974803161621094, 0.0392806396484375, 0.039298465728759766, 0.039199329376220705, 0.03995340728759766, 0.039610721588134765, 0.039182815551757816, 0.03916204833984375, 0.03927040100097656, 0.03917571258544922, 0.03916233444213867, 0.03933763122558594, 0.04176278305053711, 0.03926428985595703, 0.03845248031616211, 0.038432960510253904, 0.03846611022949219, 0.03868057632446289, 0.03832831954956055, 0.038388832092285156, 0.03837948989868164, 0.03873174285888672, 0.03843376159667969, 0.038569984436035154, 0.03841203308105469, 0.03857209777832031, 0.03845465469360351, 0.03844384002685547, 0.03842832183837891, 0.03875875091552734, 0.038645759582519534, 0.03867647933959961, 0.03896115112304688, 0.038943870544433594, 0.03871587371826172, 0.03870966339111328, 0.03891404724121094, 0.03907174301147461, 0.03901808166503906, 0.039010719299316404, 0.038828033447265625, 0.03888127899169922, 0.03886016082763672, 0.03882611083984375, 0.03859711837768555, 0.038950912475585936, 0.039024639129638675, 0.03890998458862305, 0.038760257720947267, 0.03876422500610351, 0.038902240753173827, 0.03875743865966797, 0.03901126480102539, 0.03870719909667969, 0.03909222412109375, 0.03882150268554688, 0.03886262512207031, 0.03905187225341797, 0.03906150436401367, 0.03932070541381836, 0.03965574264526367, 0.039745471954345704, 0.039712928771972654, 0.039465152740478515, 0.039112991333007815, 0.03900774383544922, 0.03898121643066406, 0.03892496109008789, 0.03925404739379883, 0.03916003036499023, 0.0391736946105957, 0.039389537811279296, 0.038991966247558595, 0.039061054229736325, 0.03904739379882813, 0.042189983367919924, 0.03953955078125, 0.03873708724975586, 0.03855974578857422, 0.03835481643676758, 0.03852134323120117, 0.038801151275634764, 0.038230270385742185, 0.03829542541503906, 0.03843260955810547, 0.038470497131347654, 0.038594017028808596, 0.03839215850830078, 0.038856769561767576, 0.038499679565429684, 0.03836937713623047, 0.03883875274658203, 0.03846358489990234, 0.03857408142089844, 0.03860595321655273, 0.038614974975585935, 0.03986928176879883, 0.0385081901550293, 0.03874246215820312, 0.03907353591918945, 0.03920111846923828, 0.03945257568359375, 0.039479263305664064, 0.03925747299194336, 0.03923830413818359, 0.03870505523681641, 0.038638847351074215, 0.03867324829101562, 0.038727294921875, 0.03866457748413086, 0.03866419219970703, 0.0389939193725586, 0.03876051330566406, 0.0386682243347168, 0.03870719909667969, 0.03889152145385742, 0.04039475250244141, 0.0388853759765625, 0.03886284637451172, 0.038776641845703126, 0.03885689544677735, 0.038950912475585936, 0.03937497711181641, 0.03889753723144531, 0.03926015853881836, 0.03914080047607422, 0.03937068939208985, 0.0393939208984375, 0.03947315216064453, 0.039103488922119144, 0.039136257171630856, 0.03924991989135742, 0.03964313507080078, 0.03922534561157227, 0.03917619323730469, 0.038957054138183594, 0.03916799926757813, 0.038960289001464844]",tokens/s,25.710124383166697,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm2,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 1138, in __init__ self.model = InternLM2Model(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 918, in __init__ [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 918, in [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 709, in __init__ self.feed_forward = InternLM2MLP(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/b43f37b9cd705c287752cb00fa725cc983401edf/modeling_internlm2.py"", line 205, in __init__ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 192.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 136.12 MiB is free. Process 152695 has 14.61 GiB memory in use. Of the allocated memory 14.49 GiB is allocated by PyTorch, and 3.07 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,deci,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: DeciLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 689, in __init__ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 357, in __init__ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 18.12 MiB is free. Process 167377 has 14.72 GiB memory in use. Of the allocated memory 14.60 GiB is allocated by PyTorch, and 3.02 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,phi,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: RecurrentGemmaForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gptj,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: GPTJForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 134.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 52.12 MiB is free. Process 97692 has 14.69 GiB memory in use. Of the allocated memory 14.47 GiB is allocated by PyTorch, and 108.93 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 614, in __init__ self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 274, in __init__ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 50.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 30.12 MiB is free. Process 85648 has 14.71 GiB memory in use. Of the allocated memory 14.37 GiB is allocated by PyTorch, and 229.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,,MB,869.859328,13880.918016,0.0,13478.395904,13476.849152,s,1,7.33473486328125,7.33473486328125,0.0,7.33473486328125,7.33473486328125,7.33473486328125,7.33473486328125,[7.33473486328125],,kWh,8.746261008328322e-06,9.571777526443453e-07,4.518059169997257e-06,1.4221497930969926e-05,,MB,1208.328192,14113.701888,0.0,13700.694016,13671.637504,s,10,12.465203002929687,1.2465203002929688,0.004124346161829083,1.2461522216796874,1.2513182739257813,1.2517716247558595,1.2521343054199219,"[1.237404296875, 1.2436973876953126, 1.2450819091796874, 1.24515478515625, 1.2462760009765625, 1.2460284423828125, 1.247148193359375, 1.2522249755859376, 1.250969482421875, 1.251217529296875]",tokens/s,205.3717054907429,kWh,3.6381039097082826e-05,4.012331093909132e-06,2.4127130412799484e-05,6.452050060379144e-05,tokens/kWh,3967731.149081577,MB,1256.46848,14115.79904,0.0,13702.791168,13671.640064,s,10,37.689654296875005,3.7689654296875,0.00349155729303844,3.7675452880859375,3.7741384033203125,3.7743107788085934,3.7744486791992187,"[3.764998046875, 3.765468994140625, 3.767377685546875, 3.766267822265625, 3.767712890625, 3.766569091796875, 3.774483154296875, 3.769244873046875, 3.773431640625, 3.77410009765625]",tokens/s,16.71546241941083,kWh,0.00011014184260041703,1.2149533402413405e-05,7.336978091800062e-05,0.00019566115692083106,tokens/kWh,321985.216644156,,s,630,37.68689885330206,0.059820474370320634,0.00030086199764592673,0.059817808151245114,0.06011069374084473,0.06018684043884277,0.06111489501953125,"[0.061041374206542966, 0.05948416137695312, 0.059227489471435545, 0.05929846572875976, 0.0592828483581543, 0.0594417610168457, 0.05934908676147461, 0.05932380676269531, 0.05948627090454101, 0.05961580657958984, 0.059596641540527344, 0.05973948669433594, 0.05961299133300781, 0.059664798736572267, 0.059533790588378904, 0.05953875350952149, 0.059653984069824216, 0.059706207275390624, 0.05947903823852539, 0.0594442253112793, 0.059445343017578124, 0.059547550201416014, 0.05954870223999023, 0.05948720169067383, 0.059617279052734375, 0.05974425506591797, 0.059662303924560546, 0.05970537567138672, 0.05969276809692383, 0.05979900741577148, 0.059718463897705076, 0.059754528045654294, 0.0598263053894043, 0.059899742126464844, 0.0598364143371582, 0.05976473617553711, 0.05969036865234375, 0.059873184204101565, 0.0597061767578125, 0.05978307342529297, 0.05970934295654297, 0.05990409469604492, 0.059822078704833984, 0.059848705291748044, 0.059957248687744144, 0.05998387145996094, 0.05989548873901367, 0.05991872024536133, 0.05991740798950195, 0.05999494552612305, 0.05989174270629883, 0.05999411010742187, 0.059840511322021485, 0.05994291305541992, 0.059875328063964846, 0.059890846252441406, 0.060174625396728514, 0.0600945930480957, 0.06011654281616211, 0.06011379241943359, 0.0600656623840332, 0.06011068725585938, 0.060068126678466796, 0.06112598419189453, 0.059519550323486325, 0.05923209762573242, 0.05927088165283203, 0.05934710311889648, 0.05955807876586914, 0.05942911911010742, 0.05938143920898437, 0.059477886199951174, 0.059560447692871096, 0.059514976501464846, 0.05965619277954102, 0.05957804870605469, 0.05981430435180664, 0.059688545227050784, 0.05977734375, 0.059690559387207034, 0.059761089324951173, 0.05954969787597656, 0.05957827377319336, 0.05942486572265625, 0.05950892639160156, 0.05950444793701172, 0.059578369140625, 0.0596049919128418, 0.05972147369384766, 0.05957807922363281, 0.05969359970092773, 0.05964495849609375, 0.05982716751098633, 0.05978281784057617, 0.05986953735351563, 0.05986099243164063, 0.05987644958496094, 0.05980662536621094, 0.059830398559570314, 0.05967264175415039, 0.05990323257446289, 0.05978374481201172, 0.05976652908325195, 0.059783424377441406, 0.060071937561035155, 0.059908096313476565, 0.059824127197265625, 0.059735424041748045, 0.05977561569213867, 0.059813663482666014, 0.05988288116455078, 0.05989788818359375, 0.059988479614257816, 0.05992591857910156, 0.060015518188476565, 0.05985609436035156, 0.05994575881958008, 0.05986646270751953, 0.05992515182495117, 0.05992879867553711, 0.06002256011962891, 0.060055328369140626, 0.060215007781982424, 0.059963905334472656, 0.06005526351928711, 0.06002511978149414, 0.061005313873291014, 0.05955039978027344, 0.059289344787597655, 0.059351295471191404, 0.05920486450195313, 0.05940505599975586, 0.05937263870239258, 0.0593554573059082, 0.05944915390014648, 0.05953567886352539, 0.0595972785949707, 0.05954150390625, 0.059516960144042966, 0.059604961395263674, 0.05957632064819336, 0.059690784454345704, 0.05981721496582031, 0.05989884948730469, 0.05976063919067383, 0.059748382568359376, 0.05963983917236328, 0.05970899200439453, 0.05954207992553711, 0.059563838958740234, 0.059584510803222655, 0.05964396667480469, 0.05952710342407227, 0.059792896270751954, 0.05967923355102539, 0.05978316879272461, 0.05979750442504883, 0.05976681518554688, 0.05978470230102539, 0.05989785766601562, 0.059815711975097656, 0.05983916854858398, 0.05997568130493164, 0.05996035385131836, 0.059855838775634766, 0.05981561660766602, 0.05989961624145508, 0.059996768951416014, 0.05982316970825195, 0.05978412628173828, 0.06032179260253906, 0.0599920654296875, 0.0599101448059082, 0.059888992309570316, 0.05998659133911133, 0.060044734954833985, 0.06007251358032226, 0.060050559997558595, 0.05996540832519531, 0.060032161712646484, 0.05994041442871094, 0.05986323165893555, 0.06002483367919922, 0.06004956817626953, 0.06022332763671875, 0.060063838958740234, 0.05991414260864258, 0.05997568130493164, 0.06003683090209961, 0.06143532943725586, 0.059587230682373045, 0.059348926544189454, 0.05938079833984375, 0.059482398986816405, 0.05958623886108398, 0.059409374237060546, 0.059379711151123046, 0.0596234245300293, 0.059650047302246094, 0.05941657638549805, 0.059404289245605466, 0.059394046783447264, 0.05960217666625976, 0.059515647888183594, 0.059684864044189455, 0.05988880157470703, 0.05987728118896484, 0.05964048004150391, 0.05959724807739258, 0.059493377685546876, 0.05957923126220703, 0.05950848007202148, 0.059590240478515626, 0.059654335021972656, 0.05978774261474609, 0.059611137390136716, 0.05975449752807617, 0.0596580810546875, 0.05983833694458008, 0.059856895446777345, 0.05983273696899414, 0.05979673767089844, 0.059990367889404296, 0.05978134536743164, 0.05978937530517578, 0.059666431427001954, 0.059957248687744144, 0.05970534515380859, 0.05966201782226563, 0.059705665588378906, 0.05985686492919922, 0.05968694305419922, 0.05987523269653321, 0.05978489685058594, 0.05988803100585938, 0.059864959716796874, 0.059825920104980466, 0.05994643020629883, 0.060064704895019534, 0.06003302383422852, 0.060007713317871095, 0.05993667221069336, 0.06006425476074219, 0.05995756912231445, 0.05987942504882812, 0.05990195083618164, 0.06006719970703125, 0.05995280075073242, 0.06008127975463867, 0.06007513427734375, 0.06012979125976563, 0.06002521514892578, 0.061087745666503906, 0.059542625427246094, 0.05928236770629883, 0.05933580780029297, 0.05933961486816406, 0.059445247650146485, 0.059322368621826174, 0.059418174743652345, 0.05943545532226562, 0.059504638671875, 0.0594944953918457, 0.05961308670043945, 0.059584510803222655, 0.059697345733642576, 0.05970415878295898, 0.0599582405090332, 0.05974246215820313, 0.05971327972412109, 0.05958860778808594, 0.05952511978149414, 0.05951692962646484, 0.05961523056030273, 0.059545215606689454, 0.05950604629516602, 0.05996243286132812, 0.059684574127197264, 0.059601119995117184, 0.059678943634033206, 0.05969488143920899, 0.059822078704833984, 0.05974220657348633, 0.059827457427978514, 0.05998873519897461, 0.06003302383422852, 0.059873279571533204, 0.05985263824462891, 0.06004751968383789, 0.05991424179077148, 0.05989542388916016, 0.05983679962158203, 0.05978313446044922, 0.05991756820678711, 0.059723678588867186, 0.059730464935302735, 0.05990544128417969, 0.059929534912109374, 0.059850753784179686, 0.059870655059814454, 0.05994355010986328, 0.060093536376953124, 0.06007484817504883, 0.06006547164916992, 0.05990848159790039, 0.059950977325439456, 0.05986928176879883, 0.06021731185913086, 0.060001953125, 0.06025046539306641, 0.06009241485595703, 0.06007580947875977, 0.059995712280273436, 0.06010723114013672, 0.06004140853881836, 0.061257728576660155, 0.05964169692993164, 0.059248897552490236, 0.05925878524780273, 0.05935244750976563, 0.059453697204589845, 0.059401790618896486, 0.05936825561523437, 0.05952102279663086, 0.05955987167358399, 0.0594106559753418, 0.05962940979003906, 0.05952511978149414, 0.0596267204284668, 0.05964060974121094, 0.05974390411376953, 0.05989984130859375, 0.059867198944091794, 0.05975484848022461, 0.05966166305541992, 0.05956582260131836, 0.05967350387573242, 0.059671775817871094, 0.05949705505371094, 0.059494144439697264, 0.05964025497436523, 0.0596049919128418, 0.05965619277954102, 0.05981388854980469, 0.059815231323242186, 0.05984860610961914, 0.05981996917724609, 0.05990620803833008, 0.05996108627319336, 0.0597534065246582, 0.0598359375, 0.05979132843017578, 0.059904510498046876, 0.05978112030029297, 0.05978112030029297, 0.05977920150756836, 0.05989497756958008, 0.05985948944091797, 0.059878623962402344, 0.059810752868652346, 0.05994496154785156, 0.059875328063964846, 0.05996748733520508, 0.060152896881103514, 0.06013558578491211, 0.059853599548339846, 0.059863105773925784, 0.05983020782470703, 0.05993881607055664, 0.05984281539916992, 0.059929439544677734, 0.05989494323730469, 0.06003830337524414, 0.05990256118774414, 0.06004028701782226, 0.05997628784179688, 0.060150081634521485, 0.06008422470092773, 0.061479072570800784, 0.05981840133666992, 0.059478145599365234, 0.05956390380859375, 0.05943427276611328, 0.05960163116455078, 0.05953744125366211, 0.05954966354370117, 0.05944729614257813, 0.05950668716430664, 0.05948579025268555, 0.05959280014038086, 0.05970758438110352, 0.05976486587524414, 0.05969641494750977, 0.059815711975097656, 0.05998041534423828, 0.05990387344360352, 0.05965167999267578, 0.05962838363647461, 0.059616447448730465, 0.05979385757446289, 0.05969715118408203, 0.05967910385131836, 0.05983027267456055, 0.05982537460327148, 0.0598249282836914, 0.05975449752807617, 0.05977702331542969, 0.05997260665893555, 0.059894783020019535, 0.060073726654052736, 0.060088577270507815, 0.05996300888061523, 0.05974668884277344, 0.059829662322998044, 0.059644447326660154, 0.05989494323730469, 0.05985782241821289, 0.059830528259277344, 0.05978291320800781, 0.05986304092407226, 0.05973606491088867, 0.06005702209472656, 0.06044303894042969, 0.0601313591003418, 0.060020862579345705, 0.060047359466552735, 0.060211200714111325, 0.060450817108154295, 0.06014771270751953, 0.060290081024169925, 0.06001353454589844, 0.06009030532836914, 0.06023920059204101, 0.06018735885620117, 0.060028926849365234, 0.060252159118652344, 0.06008182525634766, 0.06006182479858398, 0.06029129409790039, 0.06012895965576172, 0.060348129272460936, 0.06145040130615234, 0.05973769760131836, 0.05935753631591797, 0.059502113342285154, 0.059368320465087894, 0.05949020767211914, 0.059594753265380856, 0.0595148811340332, 0.059404289245605466, 0.05949017715454102, 0.05939532852172852, 0.059493247985839846, 0.05963270568847656, 0.05966249465942383, 0.05957244873046875, 0.059744033813476566, 0.0598836784362793, 0.05990873718261719, 0.05972115325927734, 0.05959075164794922, 0.05951724624633789, 0.05973980712890625, 0.059798015594482425, 0.05969305419921875, 0.05971343994140625, 0.059684959411621094, 0.05969715118408203, 0.05972361755371094, 0.059846817016601564, 0.05993024063110351, 0.059945343017578125, 0.05997081756591797, 0.05985766220092773, 0.0598851203918457, 0.059728321075439454, 0.059713249206542966, 0.059797088623046876, 0.05976339340209961, 0.05972991943359375, 0.05975244903564453, 0.05997798538208008, 0.059919105529785154, 0.05998284912109375, 0.059915904998779294, 0.05980403137207031, 0.059892768859863284, 0.05987427139282227, 0.06001049423217773, 0.060071456909179685, 0.06011542510986328, 0.05998096084594726, 0.06004822540283203, 0.059947135925292966, 0.0600021743774414, 0.05988556671142578, 0.05996656036376953, 0.05995999908447266, 0.060143424987792966, 0.060002815246582034, 0.06011075210571289, 0.06007593536376953, 0.06019900894165039, 0.060114559173583985, 0.061517822265625, 0.05991526412963867, 0.05934592056274414, 0.059350143432617186, 0.059245441436767576, 0.059440513610839844, 0.059426464080810544, 0.05943190383911133, 0.05945923233032226, 0.059529441833496094, 0.05951702499389649, 0.05963779067993164, 0.059594753265380856, 0.059749534606933594, 0.0597053108215332, 0.05972876739501953, 0.0599384651184082, 0.06000387191772461, 0.05972665786743164, 0.05966233444213867, 0.05957020950317383, 0.05965388870239258, 0.059576446533203126, 0.05968905639648438, 0.05963289642333985, 0.059670654296875, 0.05959686279296875, 0.059654720306396486, 0.05969004821777344, 0.059805694580078124, 0.05979142379760742, 0.05983321762084961, 0.06001996612548828, 0.060033790588378905, 0.059854881286621094, 0.0600370864868164, 0.059834369659423826, 0.06001152038574219, 0.059808448791503904, 0.05987753677368164, 0.059988128662109376, 0.060065887451171876, 0.0601794548034668, 0.06000428771972656, 0.060670944213867185, 0.06003836822509766, 0.06001334381103516, 0.06015999984741211, 0.06018048095703125, 0.0603873291015625, 0.06014976119995117, 0.06015488052368164, 0.06001971054077149, 0.060104705810546874, 0.06018620681762695, 0.060080352783203124, 0.06015404891967773, 0.060184574127197264, 0.060032958984375, 0.06016825485229492, 0.060165855407714845, 0.06020915222167969, 0.0602578239440918, 0.06144985580444336, 0.0599315185546875, 0.06007580947875977, 0.05966780853271485, 0.05939904022216797, 0.05953279876708984, 0.059582847595214844, 0.059445247650146485, 0.05945561599731446, 0.05954764938354492, 0.05971775817871094, 0.0597125129699707, 0.059673473358154296, 0.059789310455322264, 0.05972991943359375, 0.05977251052856445, 0.059986335754394535, 0.05994694519042969, 0.05980271911621094, 0.059749343872070315, 0.05958041763305664, 0.05972172927856445, 0.05963145446777344, 0.0596841926574707, 0.059663169860839846, 0.059764801025390626, 0.059779041290283205, 0.059934688568115235, 0.05985599899291992, 0.05984156799316406, 0.05983216094970703, 0.059837825775146486, 0.05995174407958984, 0.06003497695922851, 0.05995119857788086, 0.0601099853515625, 0.059893695831298825, 0.059848670959472654, 0.05974233627319336, 0.059734848022460936, 0.05986431884765625, 0.05989868927001953, 0.05990188980102539, 0.06007350540161133, 0.05992700958251953, 0.06009369659423828, 0.060257022857666015, 0.060217342376708984, 0.06008214569091797, 0.06016175842285156, 0.060159809112548826, 0.06027065658569336, 0.06011743927001953, 0.060127391815185546, 0.05991193771362305, 0.06001264190673828, 0.06003926467895508, 0.060113822937011716, 0.060025856018066405, 0.06011904144287109, 0.05997903823852539, 0.06000918579101563, 0.06011222457885742]",tokens/s,16.716684555349172,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mixtral,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained model_class = get_class_from_dynamic_module( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module final_module = get_cached_module_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file modules_needed = check_imports(resolved_module_file) File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2_moe,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 1203, in __init__ self.model = Qwen2MoeModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 977, in __init__ [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 977, in [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 750, in __init__ self.self_attn = QWEN2MOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py"", line 349, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 12.12 MiB is free. Process 94656 has 14.73 GiB memory in use. Of the allocated memory 12.32 GiB is allocated by PyTorch, and 2.30 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,815.177728,3354.329088,0.0,2959.081472,2942.567424,s,1,7.613796875,7.613796875,0.0,7.613796875,7.613796875,7.613796875,7.613796875,[7.613796875],,kWh,1.060672593750193e-05,1.1526767979209956e-06,4.308059002006148e-06,1.6067461737429074e-05,,MB,1100.869632,3547.267072,0.0,3141.533696,3105.830912,s,10,2.598595458984375,0.2598595458984375,0.0010426096901951518,0.25929754638671876,0.2613603698730469,0.2614039855957031,0.2614388781738281,"[0.2589762268066406, 0.25927383422851563, 0.2591113586425781, 0.2612887878417969, 0.2588882141113281, 0.2593212585449219, 0.2588128356933594, 0.26144760131835937, 0.2601246643066406, 0.2613506774902344]",tokens/s,985.1475692951993,kWh,7.642937999786426e-06,8.428794512388161e-07,5.078194945743549e-06,1.3564012396768791e-05,tokens/kWh,18873471.397075996,MB,1122.267136,3589.210112,0.0,3183.476736,3163.057152,s,10,11.634897216796876,1.1634897216796873,0.01150969353260174,1.1660227661132812,1.177038916015625,1.1774024536132812,1.1776932836914062,"[1.1777659912109375, 1.1690953369140624, 1.1769581298828125, 1.1456146240234375, 1.141520751953125, 1.158644775390625, 1.1683118896484375, 1.163733642578125, 1.1710692138671874, 1.162182861328125]",tokens/s,54.147448684848904,kWh,3.4141401808964265e-05,3.763897673904306e-06,2.2511104903456173e-05,6.041640438632475e-05,tokens/kWh,1042763.1475245495,,s,630,11.63173612594604,0.018463073215787374,0.0004140495528841139,0.018481151580810547,0.01874390411376953,0.018877248573303224,0.020176229000091556,"[0.01915817642211914, 0.018645503997802734, 0.01864534378051758, 0.018683904647827147, 0.01863065528869629, 0.01859174346923828, 0.018743263244628907, 0.01859177589416504, 0.01863680076599121, 0.01860323143005371, 0.01851798439025879, 0.018459455490112305, 0.018545984268188476, 0.018516672134399413, 0.018518016815185546, 0.018530303955078126, 0.018343936920166014, 0.018617599487304688, 0.01888128089904785, 0.019720191955566405, 0.018764991760253907, 0.018629440307617186, 0.018517120361328125, 0.01843903923034668, 0.018597888946533202, 0.018564512252807617, 0.01841551971435547, 0.021264991760253905, 0.01870857620239258, 0.018677759170532226, 0.0184597110748291, 0.018441152572631837, 0.01844432067871094, 0.018483072280883788, 0.018518047332763674, 0.01846665573120117, 0.01838243293762207, 0.018802623748779296, 0.018848447799682616, 0.018628639221191408, 0.018695423126220703, 0.01856175994873047, 0.018448352813720703, 0.018704032897949217, 0.018551168441772462, 0.018622175216674804, 0.01847324752807617, 0.018397184371948243, 0.018577407836914063, 0.018581504821777343, 0.018597440719604494, 0.018526655197143554, 0.01868720054626465, 0.018505727767944336, 0.01845737648010254, 0.01865100860595703, 0.018757888793945313, 0.018592767715454102, 0.018566015243530274, 0.018669567108154296, 0.0188272647857666, 0.02052412796020508, 0.018760608673095702, 0.019173887252807616, 0.01856515121459961, 0.018584800720214845, 0.018772735595703124, 0.018481151580810547, 0.01867923164367676, 0.018670143127441405, 0.018517183303833007, 0.01865609550476074, 0.018343711853027345, 0.018409664154052735, 0.018737152099609376, 0.018492992401123048, 0.01833011245727539, 0.018454368591308595, 0.018607616424560547, 0.01874390411376953, 0.0188723201751709, 0.01862860870361328, 0.018597728729248048, 0.0183338565826416, 0.018350080490112306, 0.018353471755981444, 0.01835897636413574, 0.018587648391723634, 0.018322528839111327, 0.018250656127929688, 0.018601984024047852, 0.018689056396484376, 0.018640863418579103, 0.01863987159729004, 0.01855824089050293, 0.01849212837219238, 0.01848518371582031, 0.018372671127319336, 0.018610176086425782, 0.018583200454711915, 0.018686304092407225, 0.018759359359741212, 0.018594079971313477, 0.01859177589416504, 0.018491071701049806, 0.01811030387878418, 0.018466272354125977, 0.018508800506591795, 0.018609312057495116, 0.018506591796875, 0.018573312759399413, 0.018521600723266602, 0.01877452850341797, 0.018448383331298827, 0.018290176391601562, 0.01842243194580078, 0.019279712677001952, 0.01880825614929199, 0.018588224411010743, 0.018382623672485353, 0.018372352600097657, 0.018700767517089843, 0.018443391799926757, 0.018590591430664063, 0.018300928115844727, 0.018391040802001952, 0.01912214469909668, 0.018615968704223634, 0.018544288635253908, 0.01843846321105957, 0.01849081611633301, 0.01859270477294922, 0.0184770565032959, 0.018661376953125, 0.018464767456054687, 0.01859286308288574, 0.018313215255737304, 0.018231935501098633, 0.018313280105590822, 0.01870038414001465, 0.01880281639099121, 0.01875712013244629, 0.01857155227661133, 0.0184117431640625, 0.01826201629638672, 0.018356224060058594, 0.0184586238861084, 0.018534400939941405, 0.01839308738708496, 0.018525279998779298, 0.018576383590698242, 0.018540096282958985, 0.018446783065795898, 0.01880054473876953, 0.018499839782714845, 0.01836796760559082, 0.018321695327758788, 0.018495487213134765, 0.018573312759399413, 0.018684064865112305, 0.01864687919616699, 0.018534400939941405, 0.018464767456054687, 0.018461952209472655, 0.018471424102783202, 0.01841177558898926, 0.018421728134155272, 0.01835775947570801, 0.018788671493530272, 0.0192589111328125, 0.018747392654418944, 0.018756288528442383, 0.018497535705566406, 0.01860416030883789, 0.018743167877197264, 0.018602272033691407, 0.018791807174682616, 0.01875299263000488, 0.020423295974731446, 0.02287379264831543, 0.019982271194458008, 0.018472896575927735, 0.018618335723876955, 0.018572000503540038, 0.018523679733276368, 0.018452863693237304, 0.01832969665527344, 0.018447391510009764, 0.018688735961914064, 0.019151359558105468, 0.018565120697021483, 0.0186711368560791, 0.018683488845825196, 0.018404224395751952, 0.01847200012207031, 0.018675872802734375, 0.01859436798095703, 0.01855072021484375, 0.018579296112060547, 0.018532800674438476, 0.018745344161987306, 0.01865228843688965, 0.018468767166137694, 0.018283296585083007, 0.017977535247802736, 0.0180296630859375, 0.017764415740966797, 0.017879583358764647, 0.018177759170532225, 0.017926752090454103, 0.017930240631103517, 0.018165760040283203, 0.01825939178466797, 0.018391616821289064, 0.018549888610839844, 0.01827110481262207, 0.018323295593261717, 0.018049184799194335, 0.018135040283203126, 0.01815872001647949, 0.017953664779663085, 0.018306911468505858, 0.018048864364624023, 0.0178670711517334, 0.017969152450561524, 0.017928064346313475, 0.017834112167358397, 0.017920000076293945, 0.017885183334350584, 0.017870847702026366, 0.018112512588500978, 0.017946624755859376, 0.017923967361450195, 0.01800614356994629, 0.017890687942504882, 0.01804729652404785, 0.017918399810791016, 0.018187551498413085, 0.01793903923034668, 0.018024511337280273, 0.017971136093139647, 0.01816927909851074, 0.018047552108764648, 0.017889280319213868, 0.018025983810424806, 0.01786684799194336, 0.01809244728088379, 0.018081792831420897, 0.018470943450927733, 0.018034656524658202, 0.01807155227661133, 0.01803878402709961, 0.019248159408569335, 0.018264415740966797, 0.018201120376586916, 0.018126880645751953, 0.0180644474029541, 0.017988544464111328, 0.018008064270019532, 0.017983104705810545, 0.01795929527282715, 0.01816307258605957, 0.017906303405761718, 0.018077695846557617, 0.018044927597045898, 0.0182476806640625, 0.018198528289794923, 0.018542591094970702, 0.01819340705871582, 0.018042911529541017, 0.017951263427734374, 0.01801875114440918, 0.01817100715637207, 0.017941375732421876, 0.01800595283508301, 0.017991743087768554, 0.01801420783996582, 0.018089984893798827, 0.018304479598999022, 0.017986080169677735, 0.017942527770996093, 0.017890464782714843, 0.018221920013427734, 0.0179866886138916, 0.017883264541625976, 0.018486143112182617, 0.017899391174316406, 0.018054336547851563, 0.018550880432128908, 0.018064096450805665, 0.0184586238861084, 0.01919385528564453, 0.018245311737060548, 0.018097631454467772, 0.01823369598388672, 0.01802668762207031, 0.018104000091552733, 0.017971839904785156, 0.01803878402709961, 0.018059263229370116, 0.01799782371520996, 0.018000160217285156, 0.017947999954223633, 0.0178383674621582, 0.018153568267822266, 0.017989183425903322, 0.017989599227905273, 0.017948703765869142, 0.017990079879760743, 0.018013408660888672, 0.01821676826477051, 0.017945056915283204, 0.01791779136657715, 0.017948543548583985, 0.018207359313964843, 0.019017791748046874, 0.018353567123413086, 0.01842367935180664, 0.01818191909790039, 0.018381599426269532, 0.018128992080688477, 0.01809596824645996, 0.017976831436157227, 0.018232032775878905, 0.019179519653320314, 0.01912575912475586, 0.01806617546081543, 0.018194175720214843, 0.018440160751342773, 0.018519872665405272, 0.01822537612915039, 0.017967103958129883, 0.01800396728515625, 0.017928192138671875, 0.017874431610107423, 0.01815123176574707, 0.017820575714111327, 0.017900447845458984, 0.017869632720947267, 0.017979167938232423, 0.01790390396118164, 0.018062431335449217, 0.01773251152038574, 0.017835039138793946, 0.017943103790283202, 0.018127264022827147, 0.018128896713256838, 0.018380800247192384, 0.018563039779663087, 0.01864297676086426, 0.018546688079833985, 0.018666847229003906, 0.01852892875671387, 0.01871254348754883, 0.018462751388549806, 0.018625696182250975, 0.018572128295898438, 0.01861631965637207, 0.018713951110839844, 0.018639520645141603, 0.018643295288085938, 0.018576799392700197, 0.018433439254760743, 0.0186243839263916, 0.01866156768798828, 0.01849193572998047, 0.018604288101196288, 0.018542591094970702, 0.0186562557220459, 0.01860304069519043, 0.018597856521606445, 0.01869158363342285, 0.018481344223022462, 0.018732799530029296, 0.018628511428833008, 0.018681568145751955, 0.018477760314941406, 0.01870275115966797, 0.019372320175170897, 0.018633216857910157, 0.018700288772583007, 0.018638111114501952, 0.018627296447753905, 0.018667520523071288, 0.018702335357666015, 0.018638496398925782, 0.018542943954467775, 0.018540544509887694, 0.018548736572265623, 0.018481151580810547, 0.018522111892700196, 0.018528255462646484, 0.01848271942138672, 0.018483680725097658, 0.018583295822143554, 0.018630720138549803, 0.018600128173828126, 0.018509824752807616, 0.018382848739624022, 0.01844223976135254, 0.018425504684448243, 0.018441791534423827, 0.018500383377075196, 0.018597183227539064, 0.018356319427490234, 0.018641504287719726, 0.01863039970397949, 0.018530527114868165, 0.018608095169067383, 0.01853830337524414, 0.01844207954406738, 0.01869455909729004, 0.018479040145874023, 0.018626623153686524, 0.018547840118408203, 0.01845542335510254, 0.01845583915710449, 0.018614112854003908, 0.018520959854125975, 0.018308832168579103, 0.018440479278564452, 0.018630271911621095, 0.018813312530517576, 0.018699392318725586, 0.018529151916503905, 0.01860403251647949, 0.018302463531494142, 0.018612735748291014, 0.018563072204589845, 0.0186060791015625, 0.018599584579467775, 0.01863462448120117, 0.01857174491882324, 0.018333696365356447, 0.01819593620300293, 0.018275936126708983, 0.018099071502685547, 0.018028608322143556, 0.018503488540649413, 0.018728992462158204, 0.01857142448425293, 0.01909212875366211, 0.018731008529663085, 0.018849504470825194, 0.018647327423095703, 0.018636064529418947, 0.018555616378784178, 0.018554367065429688, 0.0186549129486084, 0.018440704345703125, 0.018395328521728517, 0.01872697639465332, 0.018593215942382814, 0.018815616607666015, 0.018366176605224608, 0.01814659118652344, 0.018371679306030272, 0.018470815658569336, 0.018675647735595702, 0.018245567321777345, 0.018237567901611327, 0.018718719482421875, 0.018937023162841796, 0.0185860481262207, 0.0185797119140625, 0.01857472038269043, 0.018526975631713866, 0.018696191787719727, 0.01840742492675781, 0.018647008895874024, 0.018501855850219726, 0.018554943084716797, 0.018552448272705076, 0.018368640899658204, 0.01794047927856445, 0.018092031478881835, 0.018190336227416993, 0.018163711547851562, 0.018231296539306642, 0.018569215774536133, 0.018777727127075195, 0.018545087814331056, 0.018450368881225587, 0.0186494083404541, 0.018482879638671876, 0.018374656677246092, 0.018577215194702148, 0.018309215545654296, 0.01807369613647461, 0.018247615814208983, 0.018144832611083985, 0.01804547119140625, 0.018030559539794922, 0.017956256866455078, 0.018500192642211914, 0.018366464614868162, 0.018257408142089843, 0.018102272033691406, 0.018548351287841797, 0.01874390411376953, 0.01872105598449707, 0.018513120651245118, 0.01847785568237305, 0.018448383331298827, 0.01924723243713379, 0.018618240356445312, 0.018518016815185546, 0.01878153610229492, 0.01866803169250488, 0.01847862434387207, 0.018487936019897462, 0.018589599609375, 0.018273439407348633, 0.01895315170288086, 0.018391040802001952, 0.018358272552490236, 0.018290592193603517, 0.018337888717651366, 0.018515968322753908, 0.01838489532470703, 0.01876201629638672, 0.018587360382080077, 0.01846886444091797, 0.018615743637084962, 0.018727615356445314, 0.019367040634155272, 0.02104944038391113, 0.01850828742980957, 0.01828700828552246, 0.01854745674133301, 0.01820159912109375, 0.01814246368408203, 0.018064128875732423, 0.018157567977905274, 0.018495487213134765, 0.01846790313720703, 0.018348415374755858, 0.018417823791503907, 0.018800735473632812, 0.01850809669494629, 0.018624128341674803, 0.018497087478637694, 0.018617055892944337, 0.018391136169433595, 0.018425247192382813, 0.01840140724182129, 0.01817033576965332, 0.018421695709228515, 0.018053184509277342, 0.018217023849487306, 0.018267168045043945, 0.01841417694091797, 0.018372928619384766, 0.018933759689331055, 0.018532352447509767, 0.018565120697021483, 0.020483840942382814, 0.018521888732910156, 0.01857174491882324, 0.018485248565673826, 0.018572639465332032, 0.018796575546264647, 0.018586240768432617, 0.018568479537963867, 0.018586080551147462, 0.01866326332092285, 0.018590112686157227, 0.019146751403808594, 0.01827993583679199, 0.01836435127258301, 0.018192703247070313, 0.01819878387451172, 0.01812665557861328, 0.018135232925415037, 0.018195520401000975, 0.018186464309692382, 0.018559711456298828, 0.018771968841552734, 0.018520063400268554, 0.018551040649414062, 0.01847475242614746, 0.018280448913574218, 0.018205759048461913, 0.01812371253967285, 0.01822431945800781, 0.018244224548339842, 0.01805913543701172, 0.01802272033691406, 0.01799897575378418, 0.018103168487548827, 0.01829478454589844, 0.018497055053710937, 0.01852422332763672, 0.018418079376220704, 0.018662527084350587, 0.01840937614440918, 0.01868079948425293, 0.01878131294250488, 0.018405248641967773, 0.0182609920501709, 0.01814233589172363, 0.018178943634033204, 0.01802422332763672, 0.018173152923583985, 0.018174976348876954, 0.018218271255493163, 0.01847983932495117, 0.018452159881591795, 0.01824515151977539, 0.0182523193359375, 0.01819264030456543, 0.01821696090698242, 0.01860812759399414, 0.018609792709350585, 0.018448095321655273, 0.018330400466918945, 0.018632064819335936, 0.0185533447265625, 0.018530303955078126, 0.018224735260009766, 0.01814352035522461, 0.01824492835998535, 0.018461503982543946, 0.01945315170288086, 0.019262239456176757, 0.020195104598999022, 0.020130016326904296, 0.018365472793579102, 0.018611072540283203, 0.018466047286987305]",tokens/s,54.16216402938389,, bfloat16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,816.2304,3354.329088,0.0,2959.081472,2942.567424,s,1,7.491158203125,7.491158203125,0.0,7.491158203125,7.491158203125,7.491158203125,7.491158203125,[7.491158203125],,kWh,1.0103033966659798e-05,1.1042954326628756e-06,3.3333359999998535e-06,1.4540665399322528e-05,,MB,1107.894272,3547.267072,0.0,3141.533696,3105.830912,s,10,2.592166152954102,0.2592166152954101,0.002362535045213905,0.26002906799316405,0.2611373199462891,0.26149653167724607,0.2617839010620117,"[0.25391856384277345, 0.25702288818359376, 0.2618557434082031, 0.2610574951171875, 0.2597601623535156, 0.259385498046875, 0.2569664611816406, 0.26088134765625, 0.26102001953125, 0.2602979736328125]",tokens/s,987.5910142112442,kWh,7.643231509936003e-06,8.42910826341281e-07,5.049056745794699e-06,1.353519908207198e-05,tokens/kWh,18913648.661369473,MB,1129.177088,3589.210112,0.0,3183.476736,3163.057152,s,10,11.573644653320313,1.1573644653320314,0.012999661095040372,1.1591688232421875,1.171823876953125,1.1718432128906249,1.171858681640625,"[1.1349251708984376, 1.157430419921875, 1.171819580078125, 1.16227685546875, 1.170641357421875, 1.1583616943359376, 1.1599759521484374, 1.1343333740234376, 1.171862548828125, 1.1520177001953125]",tokens/s,54.43401960844391,kWh,3.340594418672954e-05,3.684344683805461e-06,2.217671503480601e-05,5.926700390534102e-05,tokens/kWh,1062986.077390063,,s,630,11.570615110397329,0.018366055730789425,0.00036591905731029006,0.01838521671295166,0.01866156406402588,0.018822656536102295,0.019628646717071544,"[0.019042463302612306, 0.01836031913757324, 0.01830499267578125, 0.0184421443939209, 0.018424192428588868, 0.01829449653625488, 0.018257120132446288, 0.018156320571899413, 0.018214912414550782, 0.018104320526123048, 0.01807910346984863, 0.018102432250976564, 0.018143711090087892, 0.01790755271911621, 0.01811043167114258, 0.018022592544555665, 0.017938432693481447, 0.01787446403503418, 0.017916000366210938, 0.017910144805908204, 0.01790540885925293, 0.01791756820678711, 0.017947263717651367, 0.01801935958862305, 0.01811324882507324, 0.01823904037475586, 0.018235424041748046, 0.018119071960449217, 0.017932640075683594, 0.01790483283996582, 0.017777376174926758, 0.018077695846557617, 0.01789548873901367, 0.017817535400390626, 0.018032447814941406, 0.01786092758178711, 0.018283775329589844, 0.018236032485961916, 0.017978975296020508, 0.017807775497436524, 0.01796505546569824, 0.018069055557250975, 0.017938880920410155, 0.017820991516113282, 0.01771779251098633, 0.01772764778137207, 0.017755903244018555, 0.017724832534790038, 0.017830560684204102, 0.01794476890563965, 0.017924095153808595, 0.0180633602142334, 0.01803398323059082, 0.018307775497436524, 0.017885183334350584, 0.017766271591186523, 0.017846399307250977, 0.017735679626464843, 0.017821695327758787, 0.017844224929809572, 0.017846271514892577, 0.017692256927490234, 0.017715616226196287, 0.018753568649291993, 0.01827987289428711, 0.01861894416809082, 0.01860767936706543, 0.01799622344970703, 0.01802239990234375, 0.017897472381591797, 0.018244735717773436, 0.018377599716186525, 0.018298784255981446, 0.018563167572021484, 0.01846067237854004, 0.01862841606140137, 0.01852191925048828, 0.018616479873657228, 0.019132640838623045, 0.01857472038269043, 0.018590047836303712, 0.018362655639648437, 0.018466623306274414, 0.01822972869873047, 0.018202335357666015, 0.018193536758422852, 0.018361215591430665, 0.018420799255371094, 0.018432607650756837, 0.018398719787597655, 0.018540992736816406, 0.018415935516357423, 0.018357471466064455, 0.018239904403686523, 0.01835212707519531, 0.01821129608154297, 0.018447679519653322, 0.018277055740356447, 0.01850531196594238, 0.018547103881835936, 0.018513568878173826, 0.01842620849609375, 0.018391040802001952, 0.018096128463745118, 0.018147327423095702, 0.018128448486328125, 0.017983488082885742, 0.017975839614868164, 0.018061216354370118, 0.01816985511779785, 0.018534400939941405, 0.01827030372619629, 0.018267967224121093, 0.018118751525878905, 0.018316703796386717, 0.01836911964416504, 0.018263168334960937, 0.018295679092407226, 0.018195743560791015, 0.01836310386657715, 0.018679584503173828, 0.018495296478271483, 0.01849920082092285, 0.01835296058654785, 0.018407392501831054, 0.018617664337158203, 0.018977664947509767, 0.01842585563659668, 0.01863199996948242, 0.01872550392150879, 0.018660959243774415, 0.018445856094360353, 0.018371519088745118, 0.01845814323425293, 0.01851644706726074, 0.01852592086791992, 0.018432287216186522, 0.018499584197998048, 0.01827020835876465, 0.01845417594909668, 0.018589408874511718, 0.020296319961547852, 0.018468288421630858, 0.018520639419555663, 0.018448383331298827, 0.0188723201751709, 0.01883942413330078, 0.01887808036804199, 0.018550527572631835, 0.018292800903320312, 0.018526912689208985, 0.01870751953125, 0.018760639190673827, 0.01858355140686035, 0.01848320007324219, 0.01841152000427246, 0.01862041664123535, 0.018668991088867187, 0.018606655120849608, 0.018442176818847657, 0.01848531150817871, 0.018354175567626953, 0.018464799880981445, 0.018673631668090822, 0.01845020866394043, 0.018643167495727538, 0.018517311096191407, 0.018490047454833985, 0.018589696884155273, 0.018746912002563478, 0.018659807205200194, 0.018564895629882814, 0.019021472930908202, 0.01849158477783203, 0.01832383918762207, 0.019398656845092774, 0.018646240234375, 0.018524959564208986, 0.018452159881591795, 0.018476863861083985, 0.01843667221069336, 0.018437055587768553, 0.01850060844421387, 0.018656959533691408, 0.018554719924926757, 0.018518495559692382, 0.01842134475708008, 0.018454559326171877, 0.01854502487182617, 0.01898748779296875, 0.01831465530395508, 0.01843084716796875, 0.01834569549560547, 0.018262304306030274, 0.018667520523071288, 0.018528255462646484, 0.018464767456054687, 0.018549983978271484, 0.018475296020507813, 0.018487039566040038, 0.018509727478027344, 0.018385759353637697, 0.018321407318115233, 0.018323455810546875, 0.018282400131225587, 0.018275840759277344, 0.01862883186340332, 0.01838528060913086, 0.01845849609375, 0.018361600875854492, 0.01828748893737793, 0.01862041664123535, 0.018540191650390624, 0.018477407455444336, 0.018470624923706054, 0.018391328811645506, 0.0185031681060791, 0.01838515281677246, 0.018352575302124023, 0.018351295471191405, 0.018362079620361328, 0.018502527236938477, 0.01837059211730957, 0.01831078338623047, 0.0184036808013916, 0.018307104110717773, 0.018464767456054687, 0.018485248565673826, 0.018613344192504884, 0.018480031967163087, 0.01839468765258789, 0.018385343551635742, 0.018267711639404296, 0.018248191833496095, 0.01829875183105469, 0.01852422332763672, 0.018501216888427735, 0.018561279296875, 0.01858780860900879, 0.018509952545166016, 0.01857472038269043, 0.018446975708007813, 0.01824732780456543, 0.018339456558227538, 0.018562847137451172, 0.018637279510498046, 0.018485599517822266, 0.018296096801757814, 0.018459392547607423, 0.018411487579345704, 0.018601984024047852, 0.018497535705566406, 0.019444000244140624, 0.01851798439025879, 0.018350080490112306, 0.018497535705566406, 0.01854182434082031, 0.018313983917236328, 0.018036319732666017, 0.018487615585327147, 0.018700351715087892, 0.0186265926361084, 0.018485248565673826, 0.018339839935302735, 0.018298879623413086, 0.018343936920166014, 0.01884320068359375, 0.021878528594970702, 0.01910223960876465, 0.018391199111938476, 0.018306175231933595, 0.018385440826416015, 0.018406848907470703, 0.018444448471069335, 0.018238208770751954, 0.01816160011291504, 0.018354240417480468, 0.01863862419128418, 0.0186144962310791, 0.018505727767944336, 0.018526111602783203, 0.018530559539794923, 0.018302175521850587, 0.01843222427368164, 0.018288415908813478, 0.018571264266967775, 0.018363008499145506, 0.018339839935302735, 0.01839427185058594, 0.01830179214477539, 0.01836358451843262, 0.01827734375, 0.018232799530029296, 0.01799942398071289, 0.018305856704711913, 0.018720640182495116, 0.01849888038635254, 0.018596511840820312, 0.01831747245788574, 0.018255872726440428, 0.018374656677246092, 0.018593631744384765, 0.019454111099243165, 0.018333311080932616, 0.018205055236816405, 0.01838809585571289, 0.018322303771972658, 0.018411104202270507, 0.02052751922607422, 0.020413984298706056, 0.01836079978942871, 0.018224672317504884, 0.01853228759765625, 0.018788896560668945, 0.018505727767944336, 0.01930905532836914, 0.018534175872802733, 0.01869238471984863, 0.018627904891967775, 0.018438848495483398, 0.01846067237854004, 0.018415615081787108, 0.018350048065185545, 0.01837171173095703, 0.018489343643188477, 0.018232000350952147, 0.01805948829650879, 0.018159616470336915, 0.018274303436279296, 0.01821059226989746, 0.01802579116821289, 0.0181844482421875, 0.01802511978149414, 0.01799577522277832, 0.018100223541259765, 0.0188272647857666, 0.01862403106689453, 0.01832803153991699, 0.018466144561767577, 0.01845305633544922, 0.018346080780029295, 0.01827769660949707, 0.018459327697753908, 0.01829680061340332, 0.01822313690185547, 0.018208736419677733, 0.018706464767456056, 0.018149375915527344, 0.017920000076293945, 0.018251775741577148, 0.018324575424194335, 0.018092960357666017, 0.01799081611633301, 0.01868067169189453, 0.018679359436035155, 0.01841596794128418, 0.018301023483276366, 0.01823315238952637, 0.018159807205200194, 0.01814873504638672, 0.01828438377380371, 0.01860585594177246, 0.018397184371948243, 0.018389055252075195, 0.018400127410888673, 0.018439807891845704, 0.018366783142089844, 0.018437503814697265, 0.018399744033813475, 0.018290943145751953, 0.01842790412902832, 0.018538463592529298, 0.018685983657836913, 0.018671615600585938, 0.018511199951171876, 0.01880950355529785, 0.01843596839904785, 0.0184586238861084, 0.01918976020812988, 0.018634752273559572, 0.018579456329345705, 0.018605535507202148, 0.018591999053955078, 0.018409631729125978, 0.018386592864990236, 0.018292671203613282, 0.01850339126586914, 0.018397216796875, 0.018489952087402343, 0.01849718475341797, 0.018430496215820314, 0.018323392868041993, 0.018409408569335938, 0.018434175491333006, 0.018298336029052734, 0.018311616897583007, 0.018255392074584962, 0.018534400939941405, 0.01845510482788086, 0.018315263748168945, 0.018487295150756835, 0.01845452880859375, 0.01826767921447754, 0.018452384948730468, 0.018260543823242187, 0.018546367645263673, 0.018382783889770507, 0.018680160522460937, 0.018450464248657227, 0.01835612869262695, 0.018667007446289064, 0.018256128311157225, 0.01845180892944336, 0.018276704788208007, 0.018393760681152345, 0.01830019187927246, 0.018598623275756836, 0.01845625686645508, 0.018633024215698242, 0.01845846366882324, 0.018409151077270508, 0.018391519546508788, 0.018288639068603514, 0.01816166305541992, 0.018440000534057616, 0.01828883171081543, 0.018359487533569335, 0.018494144439697265, 0.01823139190673828, 0.018257951736450194, 0.018069503784179687, 0.01821900749206543, 0.018501119613647463, 0.018438432693481447, 0.018378976821899415, 0.018468320846557616, 0.01806153678894043, 0.018140832901000978, 0.018532991409301758, 0.01826806449890137, 0.018147455215454102, 0.018881759643554687, 0.018193183898925783, 0.018026208877563475, 0.017942815780639648, 0.01794767951965332, 0.017914623260498048, 0.01784649658203125, 0.017958911895751953, 0.01791328048706055, 0.01780588722229004, 0.017952127456665037, 0.017985439300537108, 0.017879776000976563, 0.017870847702026366, 0.017757568359375, 0.017737855911254884, 0.017850879669189454, 0.017756160736083985, 0.017698816299438477, 0.017752128601074217, 0.017880159378051756, 0.017840991973876952, 0.017987583160400392, 0.01795686340332031, 0.018095392227172852, 0.017965791702270507, 0.01801603126525879, 0.017860416412353516, 0.01787487983703613, 0.01782831954956055, 0.017874752044677734, 0.017833759307861328, 0.01780940818786621, 0.017811168670654298, 0.017853120803833007, 0.018271615982055664, 0.017862783432006837, 0.017779199600219727, 0.017893375396728514, 0.017838048934936523, 0.018616352081298828, 0.017977344512939454, 0.017778688430786133, 0.017880607604980468, 0.018086368560791016, 0.018020191192626954, 0.017946752548217773, 0.018068960189819336, 0.017898048400878906, 0.017837503433227538, 0.017797760009765625, 0.017874591827392577, 0.017844224929809572, 0.0179931526184082, 0.017858528137207032, 0.018099071502685547, 0.01788876724243164, 0.01828096008300781, 0.01885798454284668, 0.018491167068481446, 0.018548959732055663, 0.019050495147705078, 0.018513343811035157, 0.0191362247467041, 0.01850192070007324, 0.018522111892700196, 0.01847500801086426, 0.018773792266845703, 0.01969993591308594, 0.020068351745605468, 0.01838057518005371, 0.018460895538330076, 0.01841766357421875, 0.018722623825073243, 0.018651296615600586, 0.018711904525756835, 0.018463424682617188, 0.018406496047973633, 0.01837148857116699, 0.018655231475830078, 0.018558048248291017, 0.018688896179199218, 0.01840480041503906, 0.018535007476806642, 0.018667327880859376, 0.018558464050292968, 0.018342592239379882, 0.018448383331298827, 0.01858121681213379, 0.018474720001220704, 0.01864147186279297, 0.018817024230957033, 0.018400415420532227, 0.018483999252319337, 0.018851903915405272, 0.01901705551147461, 0.01849616050720215, 0.018757631301879883, 0.01883456039428711, 0.018652032852172852, 0.018683904647827147, 0.01869331169128418, 0.018473472595214844, 0.018624832153320312, 0.018469087600708006, 0.0186345272064209, 0.018871871948242188, 0.01842118453979492, 0.01838387107849121, 0.01846886444091797, 0.01839923286437988, 0.018547775268554688, 0.01848201560974121, 0.018597984313964845, 0.018364032745361327, 0.018212287902832032, 0.01813190460205078, 0.018522111892700196, 0.01869593620300293, 0.018658784866333007, 0.018496288299560546, 0.01846272087097168, 0.018476800918579103, 0.018425952911376952, 0.018315391540527345, 0.018413183212280273, 0.019150848388671874, 0.01862041664123535, 0.018515968322753908, 0.018480703353881835, 0.018506175994873048, 0.01822425651550293, 0.018183040618896484, 0.018092031478881835, 0.01803638458251953, 0.01822960090637207, 0.018288639068603514, 0.01832111930847168, 0.018357984542846678, 0.018182527542114257, 0.018198720932006834, 0.018592992782592774, 0.01856105613708496, 0.01827302360534668, 0.019986431121826173, 0.018534400939941405, 0.018386943817138672, 0.01846067237854004, 0.018449951171875, 0.018217439651489257, 0.018054239273071288, 0.018031520843505858, 0.018033727645874024, 0.018011072158813476, 0.018120704650878908, 0.018182144165039063, 0.018096128463745118, 0.018128896713256838, 0.017919647216796876, 0.01848512077331543, 0.018495071411132814, 0.01829158401489258, 0.018335744857788085, 0.01845180892944336, 0.018164384841918946, 0.018201759338378906, 0.01823174476623535, 0.018198623657226562, 0.017982879638671876, 0.01789139175415039, 0.01803664016723633, 0.017882047653198244, 0.01792527961730957, 0.01786556816101074, 0.018120704650878908, 0.018124799728393554, 0.017960960388183594, 0.01781273651123047, 0.018192352294921874, 0.01858639907836914, 0.018356224060058594, 0.01845043182373047, 0.018343936920166014, 0.018388992309570314, 0.018276031494140626, 0.018383167266845704, 0.018312416076660155, 0.0182906551361084, 0.018258752822875975]",tokens/s,54.448272109050016,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 286, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 280.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 42.12 MiB is free. Process 23047 has 14.70 GiB memory in use. Of the allocated memory 14.58 GiB is allocated by PyTorch, and 1.64 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 609, in __init__ self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 200.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 164.12 MiB is free. Process 46876 has 14.58 GiB memory in use. Of the allocated memory 14.46 GiB is allocated by PyTorch, and 4.94 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 218, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 134.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 52.12 MiB is free. Process 82649 has 14.69 GiB memory in use. Of the allocated memory 14.47 GiB is allocated by PyTorch, and 108.93 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 248, in __init__ self.model = DeciCoderModel(config) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 215, in __init__ self.layers = nn.ModuleList([DeciCoderDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 215, in self.layers = nn.ModuleList([DeciCoderDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 181, in __init__ self.self_attn = DeciCoderAttention(config=config) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciCoder-1b/d045c14763eab7225fe79a6bc309890fda7b1483/modeling_decicoder.py"", line 54, in __init__ self._init_rope() File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1729, in __getattr__ raise AttributeError(f""'{type(self).__name__}' object has no attribute '{name}'"") AttributeError: 'DeciCoderAttention' object has no attribute '_init_rope' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 217, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 258.12 MiB is free. Process 88728 has 14.49 GiB memory in use. Of the allocated memory 14.32 GiB is allocated by PyTorch, and 53.40 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 906, in __init__ self.model = InternLMModel(config) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in __init__ self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 545, in __init__ self.self_attn = INTERNLM_ATTENTION_CLASSES[config.attn_implementation](config=config) KeyError: 'sdpa' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 219, in __init__ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 768.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 286.12 MiB is free. Process 91668 has 14.46 GiB memory in use. Of the allocated memory 14.30 GiB is allocated by PyTorch, and 41.77 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt2,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 691, in __init__ self.mlp = LlamaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 286, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 344.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 66.12 MiB is free. Process 172971 has 14.67 GiB memory in use. Of the allocated memory 14.56 GiB is allocated by PyTorch, and 1.71 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1116, in __init__ self.model = LlamaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in __init__ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 902, in [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 689, in __init__ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 358, in __init__ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 2.12 MiB is free. Process 170179 has 14.74 GiB memory in use. Of the allocated memory 14.53 GiB is allocated by PyTorch, and 90.39 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1032, in __init__ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.16 GiB. GPU 0 has a total capacity of 14.74 GiB of which 774.12 MiB is free. Process 68116 has 13.98 GiB memory in use. Of the allocated memory 13.72 GiB is allocated by PyTorch, and 148.73 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-9b,google/recurrentgemma-9b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: RecurrentGemmaForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 635, in __init__ self.mlp = GPTNeoXMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 608, in __init__ self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 288.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 182.12 MiB is free. Process 39079 has 14.56 GiB memory in use. Of the allocated memory 14.43 GiB is allocated by PyTorch, and 13.08 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mixtral,mistralai/Mixtral-8x22B-v0.1,mistralai/Mixtral-8x22B-v0.1,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,812.05248,12523.077632,0.0,12127.830016,12122.08896,s,1,7.1470244140625,7.1470244140625,0.0,7.1470244140625,7.1470244140625,7.1470244140625,7.1470244140625,[7.1470244140625],,kWh,1.1793927454169288e-05,1.2933164151426684e-06,5.384726529999995e-06,1.847197039931195e-05,,MB,1128.370176,12695.044096,0.0,12289.31072,12248.586752,s,10,11.387053466796877,1.1387053466796877,0.0040679235285528866,1.1404854736328125,1.1433168212890623,1.14371474609375,1.1440330859375,"[1.13221044921875, 1.1353138427734375, 1.133013427734375, 1.13561669921875, 1.140848876953125, 1.1403653564453125, 1.1417381591796876, 1.1406055908203125, 1.1432283935546874, 1.1441126708984375]",tokens/s,224.81671904541568,kWh,3.331983561374988e-05,3.6729775271002274e-06,2.205385097639994e-05,5.904666411725005e-05,tokens/kWh,4335553.986448009,MB,1172.037632,12701.335552,0.0,12295.602176,12248.589312,s,10,33.83045361328125,3.383045361328125,0.0016382533517189726,3.382980712890625,3.38504169921875,3.38539853515625,3.38568400390625,"[3.38241748046875, 3.381180908203125, 3.38253857421875, 3.38005712890625, 3.3834228515625, 3.38220703125, 3.383595947265625, 3.38575537109375, 3.38431591796875, 3.38496240234375]",tokens/s,18.62227468781775,kWh,9.886225469458334e-05,1.0904857549761307e-05,6.581610820840001e-05,0.0001755832204527447,tokens/kWh,358804.21738223784,,s,630,33.827737373352036,0.05369482122754294,0.0002572514064457032,0.053686574935913084,0.053942374420166014,0.054014467430114746,0.054938772735595706,"[0.05515267181396484, 0.05363302230834961, 0.05338665771484375, 0.05337926483154297, 0.053221630096435546, 0.05333417510986328, 0.053190654754638675, 0.05322137451171875, 0.05331545639038086, 0.053556961059570314, 0.053712512969970705, 0.05363792037963867, 0.05347516632080078, 0.05363235092163086, 0.053555423736572266, 0.05354550552368164, 0.05347651290893555, 0.053695392608642575, 0.05385340881347656, 0.05386076736450195, 0.05361452865600586, 0.05363654327392578, 0.05363328170776367, 0.0534310417175293, 0.053303295135498044, 0.053651454925537106, 0.05348966217041016, 0.05359619140625, 0.05344662475585937, 0.05350400161743164, 0.053713920593261716, 0.05366400146484375, 0.053623550415039065, 0.053698558807373044, 0.05363302230834961, 0.05375503921508789, 0.053668704986572266, 0.05385420989990235, 0.05379072189331055, 0.05373270416259766, 0.05391222381591797, 0.05372854232788086, 0.0536030387878418, 0.053768192291259766, 0.05369241714477539, 0.05376803207397461, 0.053626209259033206, 0.053635902404785156, 0.05377590560913086, 0.053817825317382814, 0.053821376800537106, 0.05400515365600586, 0.05385257720947265, 0.05389132690429688, 0.0539156494140625, 0.053890625, 0.05383612823486328, 0.05412054443359375, 0.054038047790527344, 0.053801441192626955, 0.053766143798828124, 0.05377228927612305, 0.05382495880126953, 0.054830944061279294, 0.05366732788085937, 0.053269153594970704, 0.053364479064941406, 0.05316198348999023, 0.05334041595458985, 0.05325008010864258, 0.053236736297607425, 0.05365244674682617, 0.053596160888671876, 0.053466239929199216, 0.05362163162231445, 0.05352447891235351, 0.053405696868896485, 0.05346051025390625, 0.05355712127685547, 0.05342435073852539, 0.05375734329223633, 0.05364828872680664, 0.05354297637939453, 0.05347532653808594, 0.053512191772460936, 0.0533985595703125, 0.053434398651123045, 0.053315937042236326, 0.053451519012451175, 0.053664768218994144, 0.05358678436279297, 0.05346495819091797, 0.053723262786865233, 0.05363056182861328, 0.053588382720947264, 0.05350934219360352, 0.05367071914672852, 0.05369852828979492, 0.053903392791748043, 0.053778400421142576, 0.05393395233154297, 0.05378060913085937, 0.05378662490844727, 0.053653247833251955, 0.05369987106323242, 0.05363811111450195, 0.05378656005859375, 0.05376387023925781, 0.05377795028686523, 0.05366198348999023, 0.05378841781616211, 0.05356777572631836, 0.05365804672241211, 0.053663105010986326, 0.05391782379150391, 0.05375654220581055, 0.05382131195068359, 0.05379276657104492, 0.05383782577514649, 0.05430006408691406, 0.054153472900390624, 0.053868896484375, 0.05399552154541016, 0.05380204772949219, 0.05395552062988281, 0.05390457534790039, 0.05504355239868164, 0.05392438507080078, 0.053386463165283206, 0.05330614471435547, 0.05312102508544922, 0.05327462387084961, 0.053212383270263675, 0.053334815979003906, 0.053313278198242185, 0.05349811172485352, 0.05349299240112305, 0.05353657531738281, 0.05383468627929688, 0.05346889495849609, 0.053448352813720706, 0.05355916976928711, 0.05354095840454102, 0.05367055892944336, 0.05369651031494141, 0.05378211212158203, 0.05359001541137695, 0.05372560119628906, 0.053569534301757815, 0.05339129638671875, 0.05331155014038086, 0.05362483215332031, 0.05365887832641601, 0.0541124496459961, 0.05382374572753906, 0.05361056137084961, 0.05350016021728515, 0.05361395263671875, 0.05353740692138672, 0.05360435104370117, 0.053767326354980466, 0.05416159820556641, 0.053854881286621095, 0.053997566223144534, 0.0537393913269043, 0.05376422500610351, 0.05371903991699219, 0.053709854125976564, 0.05367907333374024, 0.05364326477050781, 0.053544960021972655, 0.053662750244140626, 0.05378761672973633, 0.05373747253417969, 0.05369369506835937, 0.053771007537841795, 0.053677471160888675, 0.05379945755004883, 0.053704769134521484, 0.0539422721862793, 0.0538869743347168, 0.05385942459106445, 0.05387139129638672, 0.05390742492675781, 0.05372940826416016, 0.053856288909912106, 0.05398323059082031, 0.053856254577636715, 0.053866497039794924, 0.05495568084716797, 0.053563743591308596, 0.05327462387084961, 0.05324390411376953, 0.053340160369873046, 0.053411838531494144, 0.053362144470214846, 0.05336886215209961, 0.05327718353271484, 0.05348556900024414, 0.05338521575927734, 0.05354086303710937, 0.0535530891418457, 0.05355116653442383, 0.053540542602539064, 0.05355756759643555, 0.05343027114868164, 0.05395865631103516, 0.05373747253417969, 0.05372927856445313, 0.05363507080078125, 0.053579776763916016, 0.05333353424072266, 0.05348803329467773, 0.05355023956298828, 0.05362575912475586, 0.053499454498291014, 0.05354691314697266, 0.05346563339233398, 0.05354684829711914, 0.053432289123535155, 0.05355440139770508, 0.05358252716064453, 0.053528190612792965, 0.05346985626220703, 0.05387174224853516, 0.053934974670410155, 0.053855327606201174, 0.05375596618652344, 0.053691104888916014, 0.053536895751953126, 0.05367193603515625, 0.05368627166748047, 0.053788257598876954, 0.05366620635986328, 0.053688030242919925, 0.05355753707885742, 0.05369161605834961, 0.05381324768066406, 0.053828384399414064, 0.05367193603515625, 0.05380422210693359, 0.05370758438110351, 0.05379276657104492, 0.05396889495849609, 0.05383891296386719, 0.053814208984375, 0.05387059020996094, 0.05378224182128906, 0.05392790222167969, 0.05373574447631836, 0.05393561553955078, 0.053800609588623045, 0.05472249603271485, 0.05370383834838867, 0.05342879867553711, 0.05328726577758789, 0.05326847839355469, 0.0533438720703125, 0.053288959503173826, 0.05341632080078125, 0.05352035140991211, 0.053633056640625, 0.05364070510864258, 0.05361305618286133, 0.05340972900390625, 0.05344467163085938, 0.0533988151550293, 0.053365310668945315, 0.05351628875732422, 0.05376015853881836, 0.05374092864990234, 0.053631359100341794, 0.05342972946166992, 0.05356614303588867, 0.05361667251586914, 0.05355718231201172, 0.05362700653076172, 0.053663745880126956, 0.05352243041992188, 0.05367113494873047, 0.053639968872070315, 0.05372108840942383, 0.053856510162353516, 0.05358975982666016, 0.053491519927978515, 0.05353286361694336, 0.05349484634399414, 0.053609375, 0.05357904052734375, 0.05375052642822266, 0.053755489349365235, 0.053921951293945315, 0.05372134399414062, 0.053817344665527345, 0.053733375549316405, 0.05393203353881836, 0.05361996841430664, 0.0544117431640625, 0.053644798278808595, 0.05386483383178711, 0.05403408050537109, 0.05413065719604492, 0.05381814575195312, 0.05401337432861328, 0.05377900695800781, 0.05392176055908203, 0.05382896041870117, 0.05379756927490234, 0.05387059020996094, 0.05397452926635742, 0.05380966567993164, 0.05389926528930664, 0.053997310638427734, 0.053946495056152344, 0.053858432769775394, 0.05504214477539063, 0.0534984016418457, 0.05328630447387695, 0.053279327392578124, 0.053354305267333986, 0.05372537612915039, 0.053381153106689457, 0.05333193588256836, 0.053515743255615235, 0.05364284896850586, 0.053416160583496096, 0.05359872055053711, 0.053637344360351565, 0.05349763107299805, 0.053446880340576174, 0.05352767944335937, 0.053418880462646486, 0.053814624786376955, 0.05389126586914063, 0.05381558227539063, 0.05355868911743164, 0.05365430450439453, 0.05334630584716797, 0.053376575469970704, 0.053457344055175784, 0.05368832015991211, 0.053601375579833986, 0.05368924713134766, 0.0535551986694336, 0.05363097763061524, 0.0535551986694336, 0.05371696090698242, 0.05371292877197266, 0.05360153579711914, 0.05359199905395508, 0.05381808090209961, 0.05381539154052734, 0.05374771118164062, 0.05369241714477539, 0.05376409530639648, 0.053689823150634766, 0.05365151977539063, 0.05355507278442383, 0.0536868782043457, 0.05394636917114258, 0.05384172821044922, 0.05379897689819336, 0.0536736946105957, 0.05358633422851562, 0.05374566268920898, 0.053752864837646484, 0.053856254577636715, 0.05371798324584961, 0.053824928283691405, 0.05386908721923828, 0.05405036926269531, 0.05374003219604492, 0.054086753845214844, 0.053701534271240234, 0.05386751937866211, 0.053836799621582034, 0.05390335845947265, 0.05388006210327148, 0.05498470306396484, 0.05384755325317383, 0.053370784759521485, 0.05333769607543945, 0.05325449752807617, 0.053340576171875, 0.053348190307617185, 0.053344673156738284, 0.05343231964111328, 0.053438465118408204, 0.053605537414550784, 0.053773151397705075, 0.05350400161743164, 0.05340774536132813, 0.053351585388183596, 0.05336147308349609, 0.053558334350585934, 0.05362992095947266, 0.05366294479370117, 0.05380585479736328, 0.053628929138183595, 0.053710849761962894, 0.05365264129638672, 0.053437278747558596, 0.053433345794677733, 0.053648384094238284, 0.05347078323364258, 0.053580223083496095, 0.05365964889526367, 0.05372915267944336, 0.05373759841918945, 0.0536346549987793, 0.05358428955078125, 0.05364227294921875, 0.05361059188842773, 0.05376895904541015, 0.053864574432373045, 0.05367724609375, 0.05371769714355469, 0.05389516830444336, 0.05359580612182617, 0.05361865615844726, 0.05363750457763672, 0.05379904174804687, 0.05375696182250977, 0.053832672119140626, 0.05384185409545898, 0.05378396987915039, 0.05390607833862305, 0.053822559356689455, 0.05375683212280274, 0.054079521179199216, 0.05371030426025391, 0.05385782241821289, 0.05399856185913086, 0.05411635208129883, 0.05387673568725586, 0.05408134460449219, 0.05403871917724609, 0.05389644622802734, 0.05400243377685547, 0.05387468719482422, 0.053972991943359375, 0.055091358184814455, 0.0538603515625, 0.053319679260253904, 0.05336064147949219, 0.05342588806152344, 0.05346128082275391, 0.0534835205078125, 0.05346918487548828, 0.05361004638671875, 0.05365395355224609, 0.05355641555786133, 0.05358675384521484, 0.0535551986694336, 0.05348112106323242, 0.053373279571533205, 0.05346239852905273, 0.053569278717041015, 0.05376633453369141, 0.0538221435546875, 0.053792736053466794, 0.05369244766235352, 0.05380662536621094, 0.05358540725708008, 0.053682239532470706, 0.0537097282409668, 0.053733184814453126, 0.05364550399780273, 0.053732799530029296, 0.053750049591064455, 0.05370399856567383, 0.053701824188232425, 0.05364313507080078, 0.05367798233032227, 0.05377206420898437, 0.05358335876464844, 0.05376073455810547, 0.05401536178588867, 0.05391219329833984, 0.05394432067871094, 0.05384806442260742, 0.053594112396240234, 0.053792415618896486, 0.053671295166015626, 0.05372630310058594, 0.05384342575073242, 0.05381980895996094, 0.05377964782714844, 0.05381817626953125, 0.053682174682617184, 0.05384601593017578, 0.0538419189453125, 0.053755615234375, 0.053672222137451174, 0.053952129364013675, 0.05386240005493164, 0.05400950241088867, 0.053938911437988284, 0.05388224029541016, 0.05387731170654297, 0.05396207809448242, 0.05379699325561523, 0.053952224731445314, 0.05381824111938477, 0.05496422576904297, 0.05350604629516602, 0.05325423812866211, 0.05340467071533203, 0.05343734359741211, 0.05338422393798828, 0.05338211059570312, 0.0534466552734375, 0.05345235061645508, 0.05341843032836914, 0.05334220886230469, 0.05342617416381836, 0.05359795379638672, 0.05356943893432617, 0.05342448043823242, 0.05353472137451172, 0.05351955032348633, 0.053889057159423825, 0.053814048767089846, 0.053866497039794924, 0.05359001541137695, 0.05362483215332031, 0.05354848098754883, 0.053596702575683594, 0.05369244766235352, 0.05371244812011719, 0.053622848510742185, 0.05362521743774414, 0.05360835266113281, 0.05369865417480469, 0.05364940643310547, 0.05361628723144531, 0.05358601760864258, 0.05365526580810547, 0.05360591888427734, 0.053943294525146485, 0.05380300903320313, 0.05382928085327148, 0.053981311798095705, 0.05374780654907227, 0.053758079528808594, 0.05401769638061524, 0.05383980941772461, 0.05369843292236328, 0.053678398132324216, 0.053741695404052735, 0.05386399841308594, 0.0538135986328125, 0.05367417526245117, 0.053916961669921874, 0.05371567916870117, 0.053927745819091794, 0.05371718215942383, 0.053868385314941404, 0.05385555267333984, 0.0538427848815918, 0.05399484634399414, 0.053927745819091794, 0.053989761352539065, 0.054047199249267576, 0.05381907272338867, 0.053948734283447264, 0.054001247406005856, 0.054897377014160156, 0.05348947143554687, 0.05324425506591797, 0.05351174545288086, 0.053403167724609374, 0.053421825408935544, 0.05336716842651367, 0.05370479965209961, 0.05359260940551758, 0.05365305709838867, 0.0538298568725586, 0.053673919677734376, 0.0535513916015625, 0.05349692916870117, 0.05357231903076172, 0.053548641204833984, 0.05343907165527344, 0.05374771118164062, 0.053823486328125, 0.05362073516845703, 0.05345894241333008, 0.053526527404785154, 0.053495807647705076, 0.05351804733276367, 0.053467296600341795, 0.05353279876708984, 0.05353881454467774, 0.05361635208129883, 0.053698848724365235, 0.053902816772460935, 0.05378102493286133, 0.05376204681396484, 0.05370169448852539, 0.053727680206298825, 0.0536165771484375, 0.05388345718383789, 0.05390665435791016, 0.05403510284423828, 0.053685630798339844, 0.05365945434570313, 0.05373139190673828, 0.05383257675170899, 0.05373132705688476, 0.05384729766845703, 0.05365619277954101, 0.05359628677368164, 0.053690174102783206, 0.05394364929199219, 0.053742431640625, 0.05382099151611328, 0.054042945861816405, 0.05396902465820313, 0.053819393157958986, 0.05385526275634766, 0.054051361083984374, 0.05399321746826172, 0.05380940628051758, 0.0538218879699707, 0.05397452926635742, 0.054067745208740234, 0.05378249740600586, 0.05385980987548828, 0.05396089553833008]",tokens/s,18.62376998635106,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 959, in __init__ self.model = MistralModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 711, in __init__ [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 711, in [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 508, in __init__ self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 199, in __init__ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 24.12 MiB is free. Process 109144 has 14.71 GiB memory in use. Of the allocated memory 14.46 GiB is allocated by PyTorch, and 141.44 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,814.706688,806.289408,0.0,411.041792,391.374848,s,1,7.4192998046875,7.4192998046875,0.0,7.4192998046875,7.4192998046875,7.4192998046875,7.4192998046875,[7.4192998046875],,kWh,5.054497087508025e-06,5.503927119673102e-07,2.0302794020016224e-06,7.635169201476957e-06,,MB,1098.924032,879.689728,0.0,473.956352,454.832128,s,16,0.37611609649658206,0.02350725603103638,0.0003895896859630637,0.0234224796295166,0.02354478359222412,0.023951807975769044,0.024774489402770997,"[0.024980159759521486, 0.023404767990112305, 0.023301408767700194, 0.02340281677246094, 0.023271360397338868, 0.023257152557373047, 0.02345427131652832, 0.023463552474975585, 0.023609024047851562, 0.023480543136596678, 0.023447519302368165, 0.02347452735900879, 0.023395904541015623, 0.02337260818481445, 0.023360288619995118, 0.0234401912689209]",tokens/s,10890.254467046512,kWh,8.355347409166522e-07,9.214411109693993e-08,5.548179041714452e-07,1.4824967561850374e-06,tokens/kWh,172681659.45858395,MB,1120.452608,906.952704,0.0,501.219328,454.834688,s,16,9.710575134277343,0.606910945892334,0.012089048943782812,0.6111069030761719,0.6191018981933594,0.6193922882080078,0.6196740142822266,"[0.6129658203125, 0.6042952880859375, 0.5861619262695312, 0.5873612060546874, 0.59046728515625, 0.5870277709960937, 0.6189288940429688, 0.6136454467773438, 0.61927490234375, 0.6182135620117187, 0.6197444458007813, 0.610319091796875, 0.6175580444335937, 0.6102855224609375, 0.6118947143554687, 0.6024312133789063]",tokens/s,103.80435618502786,kWh,1.734154936766225e-05,1.912482562088808e-06,7.800629956652067e-06,2.7054661886403127e-05,tokens/kWh,2328619.010820532,,s,1008,9.702061608314505,0.009625061119359637,0.0002930521366950281,0.009635200023651123,0.009933778953552247,0.009996521377563477,0.010454401950836181,"[0.009595935821533202, 0.009617247581481934, 0.009658559799194336, 0.00968832015991211, 0.009486175537109376, 0.009703424453735352, 0.009759455680847169, 0.0095, 0.009595552444458007, 0.009773056030273437, 0.009921759605407714, 0.010906399726867676, 0.009795583724975587, 0.009715200424194336, 0.009690752029418945, 0.009709823608398437, 0.009646719932556152, 0.00959488010406494, 0.009988096237182617, 0.009772576332092286, 0.009902560234069824, 0.009748895645141602, 0.00976956844329834, 0.00978006362915039, 0.00966051197052002, 0.009490495681762695, 0.009498335838317872, 0.009705471992492675, 0.01026857566833496, 0.00993727970123291, 0.009926655769348144, 0.009846783638000489, 0.0104017915725708, 0.009987808227539063, 0.0098155517578125, 0.009814335823059081, 0.009681568145751954, 0.009592160224914551, 0.00963811206817627, 0.009708864212036133, 0.009450464248657227, 0.009678815841674805, 0.009659744262695313, 0.00963651180267334, 0.009541824340820312, 0.009458623886108398, 0.009355456352233886, 0.009453472137451171, 0.009627519607543945, 0.009857952117919922, 0.009644351959228515, 0.009650079727172852, 0.009551199913024902, 0.009541728019714356, 0.009773407936096191, 0.009838144302368164, 0.009813983917236329, 0.009648608207702638, 0.009670656204223632, 0.00979270362854004, 0.009621855735778808, 0.009470432281494141, 0.009422975540161133, 0.010043392181396485, 0.010067392349243164, 0.011911935806274414, 0.010933183670043945, 0.009993120193481446, 0.009969823837280274, 0.009827263832092285, 0.00975171184539795, 0.009776288032531739, 0.00984547233581543, 0.010139488220214843, 0.009764415740966797, 0.009422944068908692, 0.009446880340576173, 0.009726847648620605, 0.009952832221984863, 0.009535807609558106, 0.009451647758483887, 0.009485312461853027, 0.009582719802856444, 0.009597824096679688, 0.009531295776367188, 0.009828096389770507, 0.009483712196350098, 0.009544608116149902, 0.009797504425048828, 0.010219967842102051, 0.009595711708068848, 0.009472895622253417, 0.009584799766540527, 0.009500384330749512, 0.009672351837158203, 0.009814687728881836, 0.009842592239379883, 0.009693375587463379, 0.00961731243133545, 0.009320608139038086, 0.009229920387268066, 0.009223872184753418, 0.009292160034179688, 0.009307456016540528, 0.009231040000915527, 0.00930406379699707, 0.009259008407592773, 0.009224287986755371, 0.009274911880493165, 0.009378175735473632, 0.00924403190612793, 0.009240703582763672, 0.009250880241394043, 0.009322943687438965, 0.009514816284179687, 0.009324735641479492, 0.009257216453552247, 0.009189151763916015, 0.009220064163208008, 0.00919753646850586, 0.00925209617614746, 0.009265952110290528, 0.009208928108215332, 0.009225055694580079, 0.009318016052246093, 0.00932476806640625, 0.009152511596679687, 0.00943887996673584, 0.009678879737854003, 0.009345439910888672, 0.009829888343811035, 0.009355584144592284, 0.009468031883239745, 0.009420160293579102, 0.00928553581237793, 0.009267328262329101, 0.009265376091003417, 0.009291423797607421, 0.009310912132263184, 0.009414112091064453, 0.009246560096740722, 0.009224896430969238, 0.00928767967224121, 0.009243935585021972, 0.009230719566345216, 0.00921225643157959, 0.009205375671386719, 0.009164575576782227, 0.009260640144348145, 0.009251775741577149, 0.009193023681640626, 0.009236639976501464, 0.009228416442871094, 0.009269472122192382, 0.009305343627929688, 0.00928223991394043, 0.009220319747924805, 0.009203136444091797, 0.009217568397521973, 0.009234335899353028, 0.009264191627502442, 0.009242591857910156, 0.009243616104125977, 0.009192416191101074, 0.009349087715148925, 0.009387392044067383, 0.009248671531677246, 0.00938595199584961, 0.009239583969116212, 0.00923209571838379, 0.009193120002746582, 0.009314432144165039, 0.009232640266418457, 0.009236767768859863, 0.009205471992492676, 0.009342144012451172, 0.009321311950683593, 0.009342368125915528, 0.009325119972229004, 0.009268320083618165, 0.00927836799621582, 0.009270912170410156, 0.009334976196289063, 0.00920524787902832, 0.009288415908813477, 0.009228256225585938, 0.009314432144165039, 0.009615232467651367, 0.009349151611328125, 0.00907529640197754, 0.00935321617126465, 0.00931430435180664, 0.00943824005126953, 0.009460543632507324, 0.009474047660827637, 0.009586784362792969, 0.009400383949279785, 0.009326592445373535, 0.00935529613494873, 0.009220352172851562, 0.009365216255187988, 0.009666560173034668, 0.009269536018371582, 0.009219807624816894, 0.00932249641418457, 0.009393407821655273, 0.009364224433898926, 0.009260607719421386, 0.009214400291442871, 0.00923363208770752, 0.009272095680236816, 0.009271295547485351, 0.009254560470581055, 0.009283935546875, 0.009248767852783203, 0.00923472023010254, 0.009413536071777345, 0.009356096267700195, 0.009383328437805176, 0.009321056365966796, 0.009390080451965332, 0.00929587173461914, 0.009464960098266601, 0.009462656021118164, 0.009324543952941895, 0.009312255859375, 0.009346847534179687, 0.009400511741638183, 0.009407999992370606, 0.009204256057739257, 0.00920684814453125, 0.009233344078063964, 0.009265279769897461, 0.009559103965759277, 0.009300800323486328, 0.009259008407592773, 0.009242624282836913, 0.009342880249023437, 0.00933897590637207, 0.00926028823852539, 0.009255680084228515, 0.009183232307434081, 0.009153792381286621, 0.00925158405303955, 0.009328767776489258, 0.009185248374938965, 0.009264960289001464, 0.009277536392211913, 0.009252863883972168, 0.009274944305419922, 0.009251423835754394, 0.009246560096740722, 0.00908675193786621, 0.009285887718200684, 0.009311679840087891, 0.009428576469421386, 0.009465888023376464, 0.009413311958312989, 0.009361408233642577, 0.009326432228088379, 0.009369759559631348, 0.009272704124450684, 0.009273152351379394, 0.009345536231994628, 0.009443648338317871, 0.009682304382324218, 0.00957913589477539, 0.010866687774658204, 0.009437184333801269, 0.009347200393676758, 0.009295519828796386, 0.009285856246948242, 0.009312447547912597, 0.009291487693786621, 0.009273440361022948, 0.009254816055297852, 0.009268671989440917, 0.009275808334350585, 0.009394432067871094, 0.009377792358398437, 0.00941004753112793, 0.009274080276489257, 0.009271072387695313, 0.009348575592041015, 0.009357119560241699, 0.009322976112365723, 0.009248640060424805, 0.009269856452941894, 0.009375519752502441, 0.009332991600036622, 0.009227999687194824, 0.009578495979309083, 0.009266528129577636, 0.009265312194824219, 0.00928159999847412, 0.009498944282531738, 0.009390239715576171, 0.009215999603271484, 0.009289728164672852, 0.009399616241455078, 0.009382335662841797, 0.00927667236328125, 0.009245408058166505, 0.009297696113586426, 0.009263615608215332, 0.00931222438812256, 0.009436927795410156, 0.009330400466918945, 0.009327168464660645, 0.00943446445465088, 0.009468255996704101, 0.009410016059875488, 0.009308671951293946, 0.009249247550964356, 0.009307200431823731, 0.00907852840423584, 0.009291775703430176, 0.009310272216796875, 0.009390015602111817, 0.009408415794372559, 0.009343071937561035, 0.009314240455627442, 0.009257023811340331, 0.009233951568603516, 0.009255647659301758, 0.009381728172302246, 0.009220000267028808, 0.009281536102294922, 0.009381631851196288, 0.00947430419921875, 0.009414752006530762, 0.009379712104797364, 0.009289759635925293, 0.009265215873718261, 0.009271231651306153, 0.009453568458557129, 0.00934716796875, 0.009275296211242675, 0.009248767852783203, 0.009281215667724609, 0.009312576293945312, 0.009227392196655273, 0.009233344078063964, 0.00923641586303711, 0.009242624282836913, 0.009367168426513672, 0.009244832038879394, 0.009305855751037598, 0.009247200012207031, 0.009320575714111328, 0.009295743942260742, 0.009340928077697755, 0.009285568237304687, 0.009265215873718261, 0.009234560012817384, 0.0092542724609375, 0.009236991882324219, 0.009303487777709962, 0.009245247840881347, 0.009240575790405273, 0.009344351768493653, 0.009362015724182129, 0.009381695747375489, 0.0092674560546875, 0.009273344039916993, 0.009262432098388671, 0.009212575912475585, 0.009254912376403808, 0.009352383613586425, 0.009234880447387695, 0.009349504470825195, 0.009393407821655273, 0.009487104415893555, 0.00940771198272705, 0.00938649559020996, 0.009382143974304199, 0.00945132827758789, 0.00941267204284668, 0.009422719955444336, 0.009874688148498536, 0.00984233570098877, 0.009905055999755859, 0.010100799560546875, 0.009820159912109374, 0.009754624366760254, 0.009803808212280274, 0.009934720039367675, 0.00997590446472168, 0.009852928161621094, 0.00994099235534668, 0.009751872062683105, 0.010789567947387696, 0.00984607982635498, 0.009918656349182129, 0.00986128044128418, 0.009813952445983886, 0.00966697597503662, 0.009576671600341797, 0.009762656211853028, 0.009985343933105469, 0.00990998363494873, 0.0099334716796875, 0.009839872360229492, 0.009741120338439942, 0.009863360404968262, 0.009777152061462402, 0.009538911819458007, 0.009591456413269042, 0.009760800361633301, 0.010008543968200683, 0.009789440155029297, 0.009641119956970215, 0.009715968132019043, 0.009969728469848633, 0.009904671669006347, 0.009881407737731933, 0.009738528251647949, 0.009743616104125977, 0.009793984413146972, 0.009873439788818359, 0.00992240047454834, 0.00973964786529541, 0.009845120429992676, 0.009763423919677734, 0.009775103569030762, 0.009598591804504394, 0.009484671592712402, 0.009584799766540527, 0.009719776153564454, 0.009797504425048828, 0.009814016342163086, 0.009918463706970216, 0.010140735626220703, 0.009993151664733886, 0.009967231750488281, 0.009863264083862304, 0.009818400382995605, 0.009803744316101074, 0.009582624435424805, 0.009481760025024414, 0.009559647560119629, 0.01043827247619629, 0.010006143569946288, 0.009634559631347656, 0.009580863952636718, 0.009482943534851074, 0.009728223800659179, 0.00961616039276123, 0.009576448440551758, 0.009748576164245605, 0.009754528045654296, 0.00963321590423584, 0.009611840248107911, 0.009512639999389649, 0.009462240219116212, 0.009446368217468262, 0.009718655586242676, 0.009745951652526855, 0.009664511680603028, 0.009598464012145995, 0.009546719551086425, 0.009498016357421875, 0.009451583862304687, 0.009390368461608886, 0.009633440017700196, 0.009744768142700195, 0.009699040412902833, 0.00971622371673584, 0.009573504447937012, 0.009616448402404785, 0.009702336311340333, 0.009892736434936523, 0.009828319549560547, 0.009772928237915039, 0.009695455551147461, 0.009557791709899902, 0.009494848251342773, 0.0095283203125, 0.009503583908081054, 0.009992192268371582, 0.010205183982849121, 0.009803775787353516, 0.009901247978210449, 0.009673184394836425, 0.009715776443481445, 0.00973142433166504, 0.009672991752624512, 0.009713727951049805, 0.00971014404296875, 0.009891712188720703, 0.009902432441711425, 0.009868255615234375, 0.009923328399658203, 0.010332256317138673, 0.009916095733642579, 0.009941087722778321, 0.009920255661010742, 0.009767583847045899, 0.009804736137390137, 0.00978384017944336, 0.009766752243041993, 0.009777664184570312, 0.009646080017089843, 0.009854975700378419, 0.009486047744750977, 0.009804575920104981, 0.009672703742980958, 0.009702912330627441, 0.009640064239501953, 0.009677184104919434, 0.009594911575317383, 0.009574496269226074, 0.009545599937438965, 0.009637344360351562, 0.009893471717834473, 0.009973888397216796, 0.010060832023620606, 0.009762751579284667, 0.00976041603088379, 0.009698559761047363, 0.009523743629455567, 0.009604736328125, 0.009975584030151367, 0.00992972755432129, 0.009787391662597657, 0.009901760101318359, 0.009875776290893555, 0.009764863967895507, 0.009877504348754883, 0.00976416015625, 0.009962176322937012, 0.009623295783996582, 0.009592991828918457, 0.009551551818847656, 0.009655839920043945, 0.010060223579406738, 0.010168191909790038, 0.010455615997314453, 0.010293184280395508, 0.009933216094970703, 0.011004896163940429, 0.010186944007873535, 0.009890303611755372, 0.009822208404541016, 0.009773216247558593, 0.009983839988708497, 0.00994649600982666, 0.009958271980285644, 0.010020223617553711, 0.00994326400756836, 0.00986672019958496, 0.009668831825256347, 0.009726431846618653, 0.00963584041595459, 0.009600031852722167, 0.009851263999938966, 0.009757280349731445, 0.009805824279785156, 0.009811327934265137, 0.009731840133666993, 0.009710399627685547, 0.009834560394287109, 0.009859071731567384, 0.009672703742980958, 0.009719807624816895, 0.009620800018310546, 0.009536479949951172, 0.009924927711486816, 0.00989132785797119, 0.009902239799499512, 0.00986736011505127, 0.00986956787109375, 0.009840640068054199, 0.009651616096496582, 0.009636704444885253, 0.009799424171447755, 0.009844736099243164, 0.009897664070129394, 0.009847040176391602, 0.009802016258239746, 0.009680864334106445, 0.009557248115539551, 0.009607744216918946, 0.009569791793823243, 0.009705984115600585, 0.009799679756164551, 0.009885696411132813, 0.009969663619995118, 0.01028502368927002, 0.009883968353271485, 0.00982755184173584, 0.00987609577178955, 0.009803647994995118, 0.009815520286560058, 0.009794079780578613, 0.009692768096923828, 0.009879263877868652, 0.009917375564575195, 0.009786463737487794, 0.009730367660522462, 0.009704031944274903, 0.009760607719421386, 0.009733375549316406, 0.009673376083374024, 0.00970137596130371, 0.009671680450439453, 0.009750911712646484, 0.009882240295410157, 0.009891839981079101, 0.009926655769348144, 0.009930751800537109, 0.009780799865722656, 0.009773504257202149, 0.009940896034240723, 0.009931967735290528, 0.010032032012939453, 0.009950976371765136, 0.009988351821899414, 0.009924192428588868, 0.009750304222106933, 0.00972662353515625, 0.00976252841949463, 0.009756192207336426, 0.009783295631408692, 0.009796319961547851, 0.0097260160446167, 0.009672479629516601, 0.009625151634216308, 0.009663071632385254, 0.0096278076171875, 0.009656864166259766, 0.00974396800994873, 0.009816415786743164, 0.009833951950073243, 0.009826592445373535, 0.010085856437683106, 0.01001683235168457, 0.01003600025177002, 0.009943231582641602, 0.009804896354675293, 0.009706208229064942, 0.009964768409729003, 0.009718560218811035, 0.009781248092651367, 0.009865216255187988, 0.010059935569763184, 0.00986511993408203, 0.009869248390197753, 0.009765983581542969, 0.00969820785522461, 0.009807871818542481, 0.009645407676696777, 0.009732768058776856, 0.009911616325378418, 0.009956031799316407, 0.009838591575622559, 0.009805824279785156, 0.009906175613403321, 0.009829631805419922, 0.009919327735900879, 0.009916319847106933, 0.009902400016784668, 0.00982323169708252, 0.010006239891052246, 0.00984499168395996, 0.009917344093322754, 0.010024352073669434, 0.010055839538574219, 0.009873824119567871, 0.009860992431640625, 0.009678815841674805, 0.00971782398223877, 0.009768992424011231, 0.009739263534545899, 0.009640128135681152, 0.009645888328552246, 0.00961622428894043, 0.009850784301757813, 0.009716992378234863, 0.009522080421447754, 0.009629695892333985, 0.009953503608703613, 0.009828415870666504, 0.009950559616088867, 0.009920895576477051, 0.009965567588806153, 0.009808992385864258, 0.00967356777191162, 0.00958620834350586, 0.009799391746520995, 0.00973087978363037, 0.009928383827209473, 0.009846847534179687, 0.009527296066284179, 0.009790656089782714, 0.009670559883117675, 0.00948691177368164, 0.009461088180541992, 0.009458527565002442, 0.009591967582702636, 0.009903103828430175, 0.00997920036315918, 0.00986736011505127, 0.009792384147644042, 0.009727456092834473, 0.009768704414367675, 0.009619487762451171, 0.009566720008850099, 0.009587776184082032, 0.009583519935607911, 0.009502655982971191, 0.009680959701538086, 0.009758720397949219, 0.009752415657043456, 0.009748127937316895, 0.009568767547607422, 0.00955388832092285, 0.009469440460205078, 0.009428768157958985, 0.009650943756103515, 0.00972544002532959, 0.009794048309326172, 0.009953280448913575, 0.00999833583831787, 0.009938943862915038, 0.009938336372375489, 0.009729824066162109, 0.009919296264648438, 0.009755680084228516, 0.009671648025512696, 0.009631232261657715, 0.00961996841430664, 0.009662464141845703, 0.009583776473999023, 0.009472064018249512, 0.00951968002319336, 0.009677023887634277, 0.00996771240234375, 0.009801631927490234, 0.009822400093078613, 0.009930527687072754, 0.009678879737854003, 0.009709024429321289, 0.00978764820098877, 0.00963817596435547, 0.009778656005859376, 0.009871904373168944, 0.009703424453735352, 0.009547776222229003, 0.00951523208618164, 0.009572064399719239, 0.009545536041259765, 0.009475520133972168, 0.009401151657104492, 0.00942841625213623, 0.009470399856567382, 0.009504704475402833, 0.009680191993713378, 0.009623807907104492, 0.00953331184387207, 0.009396415710449219, 0.009484671592712402, 0.009615360260009765, 0.009778656005859376, 0.009747039794921876, 0.009885631561279296, 0.00993449592590332, 0.009886207580566407, 0.00998969554901123, 0.00991875171661377, 0.00992204761505127, 0.00982476806640625, 0.00984438419342041, 0.009713919639587402, 0.00964031982421875, 0.009664223670959473, 0.009707103729248047, 0.009703200340270996, 0.009585472106933593, 0.009570112228393554, 0.00941875171661377, 0.009395936012268066, 0.009357600212097169, 0.0097259521484375, 0.009965567588806153, 0.009844127655029298, 0.009667167663574219, 0.009570143699645995, 0.009584223747253418, 0.009840224266052246, 0.011205632209777832, 0.009805215835571288, 0.011686464309692383, 0.009758720397949219, 0.009872384071350097, 0.009802111625671387, 0.009834527969360352, 0.009747039794921876, 0.009660415649414063, 0.009620896339416504, 0.009603967666625976, 0.009686752319335938, 0.009595295906066895, 0.009614687919616699, 0.00988595199584961, 0.009885919570922852, 0.009971487998962402, 0.010090496063232422, 0.009975808143615723, 0.010016768455505372, 0.009874848365783692, 0.009917023658752442, 0.010260479927062988, 0.00986678409576416, 0.009841312408447265, 0.009613056182861329, 0.009680031776428222, 0.009558943748474122, 0.009566240310668946, 0.009944640159606933, 0.009962719917297363, 0.009788928031921386, 0.009909407615661621, 0.009777536392211914, 0.010347071647644044, 0.00962342357635498, 0.009500800132751465, 0.009459487915039063, 0.009586784362792969, 0.00988806438446045, 0.009510368347167968, 0.009646400451660157, 0.010149920463562011, 0.009768768310546875, 0.009682432174682617, 0.009644736289978027, 0.009652223587036133, 0.009596896171569825, 0.009519136428833008, 0.009637887954711915, 0.009711615562438965, 0.00940886402130127, 0.009385631561279298, 0.009439455986022948, 0.009330207824707032, 0.009674592018127441, 0.01010934352874756, 0.01005894374847412, 0.009902912139892578, 0.009905535697937012, 0.009790080070495605, 0.009715104103088379, 0.00973862361907959, 0.009885408401489259, 0.009767104148864746, 0.00968735980987549, 0.009541631698608399, 0.009695072174072266, 0.009814175605773925, 0.009621503829956055, 0.009669983863830566, 0.009956000328063964, 0.0097892484664917, 0.00976095962524414, 0.009565183639526367, 0.009593855857849122, 0.009506272315979005, 0.009421343803405762, 0.009439359664916993, 0.009432064056396485, 0.009431936264038087, 0.009459263801574707, 0.009688544273376464, 0.009898943901062012, 0.009838624000549316, 0.009644031524658203, 0.009453536033630371, 0.00957033634185791, 0.009560288429260254, 0.009435071945190429, 0.009424736022949218, 0.009457759857177735, 0.009454079627990723, 0.009742688179016114, 0.009935968399047852, 0.010724287986755371, 0.009986240386962891, 0.010014495849609374, 0.009878815650939942, 0.009883808135986329, 0.009866175651550292, 0.009821824073791504, 0.009651424407958985, 0.009535296440124512, 0.009546719551086425, 0.009489855766296386, 0.009504735946655274, 0.009435744285583495, 0.009771103858947755, 0.009936800003051758, 0.00972390365600586, 0.00961740779876709, 0.009775103569030762, 0.00970137596130371, 0.009811712265014648, 0.009906432151794434, 0.009761055946350098, 0.009721920013427735, 0.009657088279724122, 0.009710623741149902, 0.009738304138183594, 0.00953286361694336, 0.010322367668151856, 0.010501919746398925, 0.009730400085449219, 0.009576224327087402, 0.009659711837768554, 0.009697919845581054, 0.009689184188842773, 0.00962281608581543, 0.009476832389831543, 0.009308223724365234, 0.009374688148498535, 0.009348064422607423, 0.00959488010406494, 0.009645503997802734, 0.009455679893493652, 0.009574399948120118, 0.00942131233215332, 0.009461503982543945, 0.009394432067871094, 0.009488384246826171, 0.009897983551025391, 0.01001471996307373, 0.010024959564208985, 0.009777376174926758, 0.009917471885681152, 0.009753279685974121, 0.00965180778503418, 0.009503328323364257, 0.009557184219360351, 0.009501376152038575, 0.009440704345703125, 0.00946233558654785, 0.009644031524658203, 0.009865280151367187, 0.009760767936706542, 0.00949836826324463, 0.009394432067871094, 0.009359519958496093, 0.009307871818542481, 0.009514880180358887, 0.009690943717956544, 0.009639424324035644, 0.00956281566619873, 0.009689599990844726, 0.009675935745239258, 0.009586496353149414, 0.009454367637634277, 0.009360639572143555, 0.009288448333740235, 0.00930406379699707, 0.009449472427368164, 0.00929587173461914, 0.009260319709777831, 0.009263808250427247, 0.009195008277893067, 0.009209568023681641, 0.009429823875427247, 0.009452735900878906, 0.009394847869873046, 0.009441439628601073, 0.009596927642822266, 0.00962559986114502, 0.009453696250915527, 0.00934825611114502, 0.00930844783782959, 0.009316576004028321, 0.009537376403808594, 0.009916319847106933, 0.00980016040802002, 0.009843839645385741, 0.009824959754943848, 0.009953472137451172, 0.009904128074645996, 0.009957375526428223, 0.009776224136352539, 0.009560928344726563, 0.009496640205383301, 0.009430399894714355, 0.009455615997314454, 0.009442079544067382, 0.009514847755432128, 0.009721952438354492, 0.009608192443847656, 0.00938486385345459, 0.009518624305725098, 0.00965231990814209, 0.009873791694641114, 0.009743616104125977, 0.00960588836669922, 0.009569952011108399, 0.009538047790527344, 0.009674592018127441, 0.009702848434448243, 0.009605695724487304, 0.009518912315368652, 0.00969536018371582]",tokens/s,103.89544415345289,, bfloat16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,816.316416,14274.199552,0.0,13878.951936,13865.632768,s,1,7.819302734375,7.819302734375,0.0,7.819302734375,7.819302734375,7.819302734375,7.819302734375,[7.819302734375],,kWh,1.4235044483336877e-05,1.5627023503701438e-06,7.607783864008177e-06,2.3405530697715198e-05,,MB,1107.124224,14695.727104,0.0,14289.993728,14237.628416,s,10,13.329096923828125,1.3329096923828128,0.003811522174652249,1.3340584716796875,1.3368260620117187,1.336930487060547,1.3370140270996094,"[1.3257540283203124, 1.330975341796875, 1.328086669921875, 1.3329853515625, 1.3299989013671876, 1.335131591796875, 1.3368028564453125, 1.3357734375, 1.337034912109375, 1.3365538330078126]",tokens/s,192.06102368597422,kWh,3.8972799550415024e-05,4.298243802833858e-06,2.587240958680098e-05,6.914345294004986e-05,tokens/kWh,3702447.435217941,MB,1128.259584,14863.499264,0.0,14457.765888,14416.301056,s,10,39.33003002929687,3.933003002929688,0.003964859828145915,3.931811279296875,3.937063427734375,3.9396120361328126,3.9416509228515624,"[3.9292900390625, 3.932463134765625, 3.9364970703125, 3.936447265625, 3.930498779296875, 3.931708984375, 3.93191357421875, 3.928558837890625, 3.93049169921875, 3.94216064453125]",tokens/s,16.018294405844948,kWh,0.0001149224127012515,1.2676791999453186e-05,7.6365227758797e-05,0.00020396443245950175,tokens/kWh,308877.3823961145,,s,630,39.32551675796513,0.06242145517137316,0.00037507737989959206,0.06243038368225098,0.06289647064208984,0.0630232105255127,0.06322790199279785,"[0.06253164672851562, 0.06211529541015625, 0.06166787338256836, 0.06163679885864258, 0.06149305725097656, 0.06185779190063476, 0.061792255401611325, 0.062056190490722654, 0.062023937225341795, 0.062064319610595706, 0.06189433670043945, 0.06226803207397461, 0.062131263732910155, 0.06236236953735352, 0.0621278076171875, 0.06222438430786133, 0.062076545715332034, 0.06209628677368164, 0.06172243118286133, 0.062066783905029295, 0.06194182586669922, 0.06223664093017578, 0.06215663909912109, 0.06221382522583008, 0.06214912033081055, 0.06258281707763672, 0.06241686248779297, 0.062388225555419924, 0.06253567886352539, 0.062476192474365234, 0.06224700927734375, 0.06213836669921875, 0.06251113510131837, 0.06244121551513672, 0.06227347183227539, 0.06229840087890625, 0.06210332870483398, 0.06232291030883789, 0.06219728088378906, 0.06231216049194336, 0.0623480339050293, 0.06235548782348633, 0.06235337448120117, 0.06272576141357422, 0.06250739288330077, 0.06287753677368164, 0.06268739318847656, 0.0626237449645996, 0.06252339172363282, 0.06269747161865234, 0.06260121536254883, 0.06268918228149414, 0.06289212799072266, 0.06300262451171874, 0.0626954231262207, 0.06273023986816406, 0.06294118499755859, 0.06286342239379883, 0.06265350341796876, 0.06269744110107422, 0.0626956787109375, 0.06331052780151367, 0.06317254257202148, 0.0627589454650879, 0.06217107009887695, 0.06175132751464844, 0.061875743865966795, 0.06171855926513672, 0.06202188873291015, 0.06194764709472656, 0.06188899230957031, 0.062097312927246094, 0.06196620941162109, 0.061835582733154294, 0.061994976043701175, 0.06201068878173828, 0.0622086067199707, 0.06210150527954102, 0.0624005126953125, 0.06249430465698242, 0.06249123382568359, 0.062534912109375, 0.06223516845703125, 0.06198668670654297, 0.06207299041748047, 0.062096607208251955, 0.061991710662841794, 0.062134273529052736, 0.06238534545898437, 0.062284095764160156, 0.0627061767578125, 0.06261721420288086, 0.062495105743408205, 0.06240201568603516, 0.06247481536865234, 0.062342624664306644, 0.06245347213745117, 0.062323486328125, 0.06242303848266602, 0.06231654357910156, 0.06257449722290039, 0.06260131072998047, 0.06250291061401367, 0.062443424224853515, 0.06255814361572265, 0.062476062774658205, 0.06268352127075195, 0.06265568161010743, 0.06262815856933594, 0.06277785491943359, 0.06261324691772462, 0.06281027221679687, 0.06295356750488282, 0.06262924957275391, 0.06260758590698243, 0.062424766540527345, 0.06257123184204101, 0.06254163360595703, 0.062810302734375, 0.06270361709594727, 0.06291177749633789, 0.06300336074829102, 0.06306406402587891, 0.0628427848815918, 0.06287369537353515, 0.06279987335205078, 0.06265711975097656, 0.062024097442626956, 0.061591552734375, 0.06162636947631836, 0.06166883087158203, 0.06176432037353516, 0.06216819381713867, 0.06200697708129883, 0.06205542373657227, 0.062089214324951174, 0.0619716796875, 0.06223676681518555, 0.06245040130615234, 0.062324447631835936, 0.062220542907714844, 0.06241254425048828, 0.06230230331420898, 0.06220611190795899, 0.06226534271240235, 0.062268672943115236, 0.06210790252685547, 0.06226947021484375, 0.06221049499511719, 0.062283008575439454, 0.06230265426635742, 0.062427486419677734, 0.062330848693847654, 0.062443038940429685, 0.06251366424560546, 0.06286288070678711, 0.0627770881652832, 0.0626613426208496, 0.06235340881347656, 0.0629452781677246, 0.06268678283691406, 0.06251142501831054, 0.062255233764648435, 0.06233283233642578, 0.06226953506469726, 0.06270566558837891, 0.062371841430664064, 0.06268710327148437, 0.06260953521728516, 0.06267897415161133, 0.06282451248168945, 0.06287760162353516, 0.0626583366394043, 0.06265884780883789, 0.06318086242675781, 0.06301004791259765, 0.06292144012451172, 0.06283849716186524, 0.06267932891845703, 0.06270975875854493, 0.06251520156860352, 0.06253567886352539, 0.06259097671508788, 0.06289926528930664, 0.06281926345825195, 0.06308169555664063, 0.06313225555419921, 0.06302329635620117, 0.06314384078979492, 0.06244761657714844, 0.06200729751586914, 0.06171984100341797, 0.06178441619873047, 0.06207936096191406, 0.061927425384521485, 0.061908992767333984, 0.061808639526367185, 0.06221593475341797, 0.06214271926879883, 0.062203903198242184, 0.06217523193359375, 0.06214656066894531, 0.06234726333618164, 0.0621030387878418, 0.062280193328857425, 0.06217475128173828, 0.06256684875488282, 0.06223791885375977, 0.062134815216064454, 0.062144577026367186, 0.06213808059692383, 0.062292030334472656, 0.062211872100830075, 0.06230492782592773, 0.06229734420776367, 0.06241321563720703, 0.06245366287231445, 0.06277983856201172, 0.06272617721557618, 0.06254735946655274, 0.062363777160644535, 0.06255212783813477, 0.06247644805908203, 0.06233871841430664, 0.06235168075561524, 0.06225513458251953, 0.06242531204223633, 0.0626237449645996, 0.06254991912841797, 0.06274265670776367, 0.06308822250366211, 0.06275462341308594, 0.06289465713500976, 0.06258483123779297, 0.0627317771911621, 0.0626726417541504, 0.06296243286132812, 0.06285110473632813, 0.06291651153564454, 0.062476192474365234, 0.06287580871582031, 0.062574462890625, 0.06265024185180663, 0.06247862243652344, 0.06241001510620117, 0.06279238510131836, 0.06308031845092774, 0.06308236694335938, 0.06344729614257813, 0.06327267074584961, 0.06302953720092773, 0.06293830490112305, 0.06248716735839844, 0.061853919982910156, 0.061574176788330076, 0.06148342514038086, 0.061434432983398436, 0.06179008102416992, 0.06187417602539062, 0.06204428863525391, 0.06187007904052735, 0.06229811096191406, 0.0620871696472168, 0.06187417602539062, 0.06187606430053711, 0.06210323333740234, 0.062032352447509764, 0.06216198348999023, 0.062073089599609374, 0.06199363327026367, 0.06193532943725586, 0.06197484970092773, 0.06188032150268555, 0.062203903198242184, 0.062161121368408206, 0.0623733139038086, 0.06217536163330078, 0.06244169616699219, 0.062259040832519534, 0.0622573127746582, 0.06250495910644531, 0.06226067352294922, 0.0626099853515625, 0.06249062347412109, 0.0624189453125, 0.0625539207458496, 0.0624554557800293, 0.062497089385986325, 0.06244512176513672, 0.06227769470214844, 0.06232684707641602, 0.06250508880615234, 0.06261183929443359, 0.06266473770141602, 0.06286131286621094, 0.06283417510986328, 0.062687744140625, 0.06282649612426758, 0.06247423934936523, 0.06270156860351563, 0.062382080078125, 0.0626319351196289, 0.0628408317565918, 0.0626698226928711, 0.06259814453125, 0.0630231056213379, 0.06273027038574219, 0.06274003219604492, 0.06276723098754883, 0.0628834571838379, 0.06295804977416992, 0.06299423980712891, 0.06307068634033203, 0.06311312103271484, 0.0630804786682129, 0.06248534393310547, 0.06198006439208984, 0.06156681442260742, 0.06146255874633789, 0.061655040740966796, 0.06171526336669922, 0.061884414672851565, 0.06184755325317383, 0.06218547058105469, 0.06233292770385742, 0.0620052490234375, 0.06206259155273437, 0.06204620742797851, 0.061966335296630856, 0.062081024169921874, 0.06198601531982422, 0.06205721664428711, 0.06218889617919922, 0.061838016510009766, 0.06216640090942383, 0.062163551330566405, 0.06217119979858399, 0.062338943481445315, 0.06232281494140625, 0.0623185920715332, 0.06250492858886719, 0.062322689056396485, 0.06236972808837891, 0.06220751953125, 0.06234163284301758, 0.06273225784301757, 0.06248659133911133, 0.062457088470458985, 0.06250576019287109, 0.0623076171875, 0.06235420989990234, 0.06225017547607422, 0.06233065414428711, 0.062258113861083986, 0.06239849472045898, 0.062416446685791015, 0.06316057586669922, 0.06256454467773437, 0.06282032012939454, 0.06268518447875976, 0.06288179016113281, 0.06274867248535156, 0.06254147338867187, 0.06270985412597656, 0.06280755233764648, 0.06273875045776367, 0.0627388801574707, 0.06266060638427734, 0.06291024017333985, 0.06271958541870117, 0.06270012664794922, 0.06280787277221679, 0.0629065933227539, 0.06285107040405273, 0.06300467300415039, 0.06296371078491211, 0.0632463035583496, 0.06306800079345704, 0.06254748916625977, 0.061964767456054684, 0.06156902313232422, 0.0615997428894043, 0.06167552185058594, 0.06205440139770508, 0.06185574340820312, 0.06188851165771484, 0.06178201675415039, 0.06207692718505859, 0.06224281692504883, 0.06206054306030274, 0.0617696647644043, 0.06210671997070313, 0.06205952072143555, 0.06206870269775391, 0.062099071502685545, 0.06209302520751953, 0.06188304138183594, 0.06235340881347656, 0.062027488708496094, 0.062269729614257814, 0.062115009307861326, 0.06212239837646484, 0.06215107345581055, 0.06235744094848633, 0.062359615325927736, 0.06250495910644531, 0.06226313781738281, 0.06227164840698242, 0.06256435012817382, 0.06257209777832032, 0.06260940933227539, 0.06245833587646484, 0.06230422210693359, 0.06246809768676758, 0.06239187240600586, 0.06272998428344727, 0.062274368286132815, 0.06239779281616211, 0.06267734527587891, 0.06276496124267578, 0.06262607955932617, 0.06299142456054688, 0.06270425415039063, 0.06280838394165039, 0.06264422225952149, 0.06259916687011718, 0.06253158569335937, 0.06265024185180663, 0.06278566360473632, 0.06279782485961914, 0.06291251373291015, 0.06284288024902343, 0.06266831970214844, 0.06286998367309571, 0.06282444763183594, 0.06261967849731445, 0.0628996810913086, 0.06307481765747071, 0.06302931213378907, 0.06315615844726563, 0.0630374412536621, 0.06262937545776368, 0.06205283355712891, 0.06150761413574219, 0.061582847595214846, 0.061667839050292966, 0.061739009857177736, 0.06194796752929688, 0.0619150390625, 0.06198278427124024, 0.06221206283569336, 0.06199926376342774, 0.061978431701660154, 0.061830753326416014, 0.06192377471923828, 0.062089248657226564, 0.06226736068725586, 0.062279232025146486, 0.06219820785522461, 0.0620951042175293, 0.06233321762084961, 0.06200419235229492, 0.06215315246582031, 0.06205209732055664, 0.06231273651123047, 0.06213056182861328, 0.06240480041503906, 0.06223641586303711, 0.06218569564819336, 0.06225449752807617, 0.0626712303161621, 0.06251062393188477, 0.062438079833984375, 0.06248857498168945, 0.06258659362792969, 0.06239056015014648, 0.06226739120483398, 0.06217932891845703, 0.06223257446289063, 0.0621893424987793, 0.06226268768310547, 0.06253855895996094, 0.06280934524536133, 0.0626429443359375, 0.06243328094482422, 0.062814208984375, 0.06268246459960937, 0.06254659271240234, 0.0626237449645996, 0.0626297607421875, 0.06292051315307617, 0.06262406539916993, 0.06265404891967774, 0.06265488052368164, 0.06255523300170898, 0.06289289474487304, 0.06258678436279297, 0.06257676696777344, 0.06269136047363282, 0.06274867248535156, 0.06275276947021484, 0.06283468627929688, 0.06286540985107422, 0.06285830307006836, 0.0626032943725586, 0.062011360168457035, 0.06158940887451172, 0.061611198425292966, 0.06154678344726563, 0.061792896270751956, 0.06193971252441406, 0.06185776138305664, 0.06219782257080078, 0.06217315292358398, 0.062133663177490236, 0.062075328826904294, 0.06202703857421875, 0.062118335723876955, 0.062271041870117186, 0.062171520233154295, 0.062435264587402346, 0.0622023696899414, 0.06203193664550781, 0.062134273529052736, 0.062117889404296876, 0.06203801727294922, 0.06238956832885742, 0.062180030822753904, 0.06218137741088867, 0.062271488189697265, 0.06240995025634766, 0.062187999725341794, 0.062173534393310546, 0.06236569595336914, 0.06268684768676758, 0.06252169418334962, 0.06251625442504882, 0.06269846343994141, 0.06237596893310547, 0.06245782470703125, 0.062182910919189455, 0.062271617889404295, 0.06233945465087891, 0.06215388870239258, 0.06239443206787109, 0.062438175201416014, 0.06271180725097657, 0.0626954231262207, 0.06249676895141602, 0.06252134323120118, 0.06259711837768554, 0.06259097671508788, 0.06256841659545899, 0.06262377548217773, 0.06255007934570313, 0.06274809646606445, 0.06265087890625, 0.06268518447875976, 0.06278553771972656, 0.06267903900146485, 0.06273843383789063, 0.06275686264038086, 0.0629678077697754, 0.06298390579223632, 0.06294742584228516, 0.06331209564208984, 0.06311727905273437, 0.06260208129882812, 0.062222431182861325, 0.06179638290405273, 0.062175201416015624, 0.0620145263671875, 0.06187868881225586, 0.06187593460083008, 0.061975360870361325, 0.062107521057128905, 0.06224860763549805, 0.06231475067138672, 0.06227289581298828, 0.06224163055419922, 0.062320640563964844, 0.06227478408813476, 0.06262156677246093, 0.06252159881591797, 0.062466815948486326, 0.06228518295288086, 0.06224076843261719, 0.06211638259887695, 0.06216022491455078, 0.06221072006225586, 0.062348926544189456, 0.06224307250976562, 0.06250041580200195, 0.06257516860961915, 0.06287360000610352, 0.0626828498840332, 0.06289616012573242, 0.06279180908203125, 0.06262080001831055, 0.06258790588378907, 0.062438465118408205, 0.06229814529418945, 0.06256483078002929, 0.06267129516601562, 0.06263558578491212, 0.06262623977661133, 0.06263759994506836, 0.06262015914916992, 0.06260118484497071, 0.06275683212280274, 0.0628818244934082, 0.06258262252807617, 0.06284243011474609, 0.06312201690673828, 0.0629678077697754, 0.06282793426513672, 0.06294384002685546, 0.06269327926635743, 0.0626707534790039, 0.06270790481567383, 0.0627691535949707, 0.062963134765625, 0.06307020950317382, 0.06292537689208984, 0.0630231056213379, 0.06338150405883788, 0.06318284988403321, 0.0628592643737793, 0.0631009292602539, 0.06325775909423828]",tokens/s,16.020132777337203,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,816.427008,6223.233024,0.0,5827.985408,5712.718848,s,1,7.35060791015625,7.35060791015625,0.0,7.35060791015625,7.35060791015625,7.35060791015625,7.35060791015625,[7.35060791015625],,kWh,1.1335553629161647e-05,1.2427354602444235e-06,4.540559187998783e-06,1.7118848277404853e-05,,MB,1105.03936,6430.851072,0.0,6025.117696,5988.31104,s,10,5.266182556152343,0.5266182556152343,0.0033533696184772214,0.5274917602539062,0.5288304748535156,0.5293293914794922,0.5297285247802734,"[0.5171857299804687, 0.5271314697265626, 0.5255582275390625, 0.5278660278320313, 0.52785205078125, 0.5267911376953125, 0.5298283081054688, 0.5287196044921875, 0.52656787109375, 0.52868212890625]",tokens/s,486.12063343858426,kWh,1.5356614839999643e-05,1.6935863205025556e-06,1.0231910963300061e-05,2.7282112123802258e-05,tokens/kWh,9383437.72059543,MB,1126.424576,6514.737152,0.0,6109.003776,6092.423168,s,10,18.62453515625,1.8624535156250002,0.0026194074933142417,1.8625668945312501,1.8650244995117187,1.8663476379394532,1.8674061486816407,"[1.8676707763671876, 1.86459619140625, 1.859385498046875, 1.8589068603515626, 1.860238037109375, 1.8620662841796876, 1.86473046875, 1.8632889404296875, 1.8605845947265625, 1.8630675048828125]",tokens/s,33.82634759550416,kWh,5.470010627666928e-05,6.032732448828807e-06,3.625929289629987e-05,9.699213162179796e-05,tokens/kWh,649537.224789082,,s,630,18.621239629745485,0.029557523221818226,0.0002972871238932349,0.029545472145080565,0.029829120635986327,0.029975936222076418,0.03106435123443604,"[0.03123980712890625, 0.030093664169311522, 0.029759103775024415, 0.02931350326538086, 0.029312448501586916, 0.02931052780151367, 0.029238176345825196, 0.0293021125793457, 0.02966793632507324, 0.029489120483398436, 0.029528160095214844, 0.029437952041625977, 0.02928438377380371, 0.029335519790649415, 0.029214719772338867, 0.029234560012817382, 0.029180543899536133, 0.02935603141784668, 0.029238847732543944, 0.029530559539794922, 0.029437952041625977, 0.029650943756103516, 0.030299264907836913, 0.029453184127807615, 0.02954649543762207, 0.029711648941040038, 0.029430496215820313, 0.02941043281555176, 0.029365119934082032, 0.029321216583251954, 0.029754560470581056, 0.02950227165222168, 0.029672639846801758, 0.029654848098754884, 0.02979532814025879, 0.029829120635986327, 0.02959116744995117, 0.029962623596191406, 0.029722528457641603, 0.02966102409362793, 0.0296646728515625, 0.02979702377319336, 0.029825183868408205, 0.02982048034667969, 0.02979478454589844, 0.029757312774658203, 0.029504928588867187, 0.029434207916259766, 0.029677919387817383, 0.029751327514648436, 0.029405183792114258, 0.029521791458129883, 0.029572544097900392, 0.029698751449584962, 0.029912288665771485, 0.029696352005004884, 0.029651039123535155, 0.030071136474609374, 0.030113792419433592, 0.029861888885498046, 0.03012403106689453, 0.029782112121582032, 0.030015487670898438, 0.031291391372680666, 0.0302838077545166, 0.029650911331176758, 0.02939289665222168, 0.029255680084228516, 0.029275264739990235, 0.029143936157226564, 0.029147136688232423, 0.029216768264770508, 0.029492639541625978, 0.02929315185546875, 0.029251071929931642, 0.02932793617248535, 0.029304447174072264, 0.029268287658691407, 0.02928963279724121, 0.029251840591430663, 0.029573728561401367, 0.02946832084655762, 0.029384384155273436, 0.029442720413208008, 0.029511295318603515, 0.02957548713684082, 0.029345855712890626, 0.029420576095581054, 0.02939798355102539, 0.029380640029907226, 0.02952739143371582, 0.029395360946655274, 0.02963587188720703, 0.029402048110961913, 0.02954982376098633, 0.029772544860839845, 0.030074880599975585, 0.02993312072753906, 0.029774080276489256, 0.029765312194824218, 0.029778144836425782, 0.029794591903686524, 0.02962985610961914, 0.029843488693237306, 0.029688095092773436, 0.029591840744018556, 0.029642751693725586, 0.029638656616210936, 0.0297205753326416, 0.029634559631347656, 0.02953798484802246, 0.029428031921386717, 0.02968780708312988, 0.029706239700317383, 0.02970419120788574, 0.029681024551391603, 0.02964134407043457, 0.029714431762695313, 0.02998886489868164, 0.02958745574951172, 0.029742975234985352, 0.029710464477539063, 0.029814687728881836, 0.02962441635131836, 0.029609983444213867, 0.029659135818481445, 0.031364992141723634, 0.030175071716308594, 0.029565088272094725, 0.029237119674682618, 0.029116416931152345, 0.02909401512145996, 0.029038591384887694, 0.029128704071044922, 0.02931711959838867, 0.029304800033569337, 0.02952400016784668, 0.029266176223754884, 0.02921651268005371, 0.029190143585205077, 0.029216768264770508, 0.029212671279907225, 0.0291778564453125, 0.029427711486816405, 0.029310976028442383, 0.029279392242431642, 0.029344608306884765, 0.029425664901733397, 0.02947465515136719, 0.029384864807128906, 0.029349279403686524, 0.02930134391784668, 0.02930073547363281, 0.029294591903686523, 0.029398752212524415, 0.029543872833251952, 0.02957542419433594, 0.029645248413085936, 0.029735071182250977, 0.029857791900634766, 0.029857696533203124, 0.02988607978820801, 0.029718175888061523, 0.029610815048217772, 0.02951795196533203, 0.029519359588623048, 0.029373823165893556, 0.029500640869140626, 0.02950918388366699, 0.0295218563079834, 0.02955606460571289, 0.029524927139282228, 0.029665279388427734, 0.0294946231842041, 0.02952668762207031, 0.029593599319458007, 0.029605024337768553, 0.029560928344726563, 0.02965376091003418, 0.02953011131286621, 0.029550592422485353, 0.029478368759155275, 0.02959414482116699, 0.02960588836669922, 0.029568960189819336, 0.02961414337158203, 0.029752960205078127, 0.029723007202148436, 0.02967331123352051, 0.03100652885437012, 0.029876415252685546, 0.029519744873046875, 0.02930086326599121, 0.029236831665039063, 0.029284448623657228, 0.029288768768310547, 0.029230464935302736, 0.029237184524536133, 0.02929475212097168, 0.029342239379882812, 0.029247488021850586, 0.029351936340332032, 0.02918956756591797, 0.0291777286529541, 0.029239999771118165, 0.029250783920288084, 0.029338399887084962, 0.029269983291625976, 0.029337631225585938, 0.02918364715576172, 0.029255647659301758, 0.029260160446166993, 0.029254976272583007, 0.0292872314453125, 0.02935385513305664, 0.029417152404785155, 0.02935753631591797, 0.029416288375854492, 0.0294168643951416, 0.02959823989868164, 0.030027999877929687, 0.029759328842163087, 0.029698047637939453, 0.029797792434692383, 0.029878879547119142, 0.029638656616210936, 0.029663232803344725, 0.02955264091491699, 0.02958950424194336, 0.029490976333618163, 0.029546911239624024, 0.02951968002319336, 0.029634176254272462, 0.029423999786376952, 0.029462528228759766, 0.029378559112548826, 0.029365951538085938, 0.029335872650146484, 0.029408607482910156, 0.029678239822387695, 0.029817951202392577, 0.029723072052001955, 0.029770111083984373, 0.029704288482666017, 0.029566719055175782, 0.029573312759399416, 0.02957948875427246, 0.029576448440551757, 0.02954204750061035, 0.02964371109008789, 0.02959974479675293, 0.029824607849121092, 0.030799072265625, 0.02980944061279297, 0.029378400802612305, 0.02924995231628418, 0.02919808006286621, 0.029224960327148438, 0.029270015716552734, 0.0293703670501709, 0.0293253116607666, 0.029347328186035155, 0.02927462387084961, 0.029212671279907225, 0.02940835189819336, 0.029295520782470705, 0.029220767974853516, 0.029173856735229493, 0.029187999725341796, 0.02925168037414551, 0.029181951522827147, 0.02933977508544922, 0.029207904815673827, 0.029323808670043944, 0.029344768524169923, 0.029274560928344726, 0.02928611183166504, 0.029478944778442383, 0.029307104110717772, 0.02960223960876465, 0.029628576278686522, 0.029541824340820314, 0.029673120498657227, 0.02952272033691406, 0.02971558380126953, 0.029692928314208986, 0.02971238327026367, 0.029676992416381835, 0.029681440353393554, 0.029755807876586913, 0.029501823425292967, 0.029607936859130858, 0.02959062385559082, 0.029547168731689454, 0.029645055770874024, 0.029792255401611328, 0.029620223999023438, 0.029585535049438477, 0.029525888442993163, 0.029518848419189454, 0.029502464294433595, 0.029687007904052733, 0.02963462448120117, 0.029596000671386718, 0.029440383911132812, 0.029632448196411133, 0.029568544387817385, 0.029694528579711915, 0.029650911331176758, 0.02976723289489746, 0.029716447830200197, 0.029723104476928712, 0.029822975158691405, 0.02978611183166504, 0.029779136657714842, 0.03121183967590332, 0.03016694450378418, 0.029497440338134766, 0.02939388847351074, 0.02922300720214844, 0.02927299118041992, 0.02936832046508789, 0.029469919204711915, 0.029307680130004884, 0.029218368530273438, 0.02916806411743164, 0.0291409912109375, 0.029237247467041014, 0.029373472213745117, 0.02939523124694824, 0.029214719772338867, 0.02924799919128418, 0.029243167877197267, 0.029301151275634766, 0.029332735061645507, 0.029295295715332032, 0.029194303512573242, 0.029262943267822264, 0.029403968811035155, 0.029406848907470702, 0.029581632614135742, 0.029376640319824218, 0.029392927169799805, 0.029533599853515623, 0.029549152374267577, 0.029582815170288088, 0.02957776069641113, 0.029577215194702147, 0.029904064178466798, 0.02993235206604004, 0.029859071731567384, 0.02971468734741211, 0.02971820831298828, 0.02969385528564453, 0.029622623443603516, 0.029655616760253908, 0.029677536010742186, 0.029589536666870118, 0.02955673599243164, 0.029671424865722655, 0.02967046356201172, 0.029623231887817382, 0.029676959991455077, 0.029589151382446287, 0.029673759460449218, 0.02955740737915039, 0.029548479080200196, 0.029523359298706055, 0.02970419120788574, 0.02959552001953125, 0.02959974479675293, 0.029591487884521483, 0.029707103729248046, 0.029650943756103516, 0.029663232803344725, 0.029640703201293944, 0.029665279388427734, 0.02994790458679199, 0.031087968826293947, 0.03007535934448242, 0.029534591674804687, 0.02938012886047363, 0.02923356819152832, 0.029173824310302736, 0.029220224380493164, 0.02917849540710449, 0.029082944869995117, 0.029181663513183593, 0.029395744323730467, 0.029335264205932618, 0.029310976028442383, 0.029612096786499023, 0.029304479598999022, 0.029360895156860353, 0.029370431900024415, 0.029519807815551757, 0.029470720291137696, 0.02940880012512207, 0.029353696823120116, 0.02947052764892578, 0.02948601531982422, 0.029476863861083984, 0.02946227264404297, 0.02934982490539551, 0.02941276741027832, 0.029491167068481445, 0.029496063232421876, 0.029532384872436524, 0.02962784004211426, 0.02964739227294922, 0.02977984046936035, 0.029792383193969728, 0.029949951171875, 0.030045824050903322, 0.029994464874267577, 0.029977088928222657, 0.029831584930419923, 0.029569055557250975, 0.029677536010742186, 0.029697439193725587, 0.029565311431884764, 0.02966927909851074, 0.029509248733520507, 0.02956972885131836, 0.029517824172973633, 0.029587039947509764, 0.029468095779418946, 0.029522911071777343, 0.029605728149414062, 0.02965315246582031, 0.02958896064758301, 0.029678112030029298, 0.029775808334350586, 0.029788127899169924, 0.02968502426147461, 0.029637439727783203, 0.029717632293701172, 0.029637504577636718, 0.02994790458679199, 0.02997452735900879, 0.029928831100463866, 0.031112192153930664, 0.02998159980773926, 0.029485151290893553, 0.02937651252746582, 0.029343744277954102, 0.029326944351196288, 0.029262208938598634, 0.029322496414184572, 0.029220863342285155, 0.029161663055419923, 0.02926838493347168, 0.029343936920166017, 0.029327199935913085, 0.0292475528717041, 0.029377759933471678, 0.029299455642700194, 0.029251712799072266, 0.02929840087890625, 0.029220863342285155, 0.029360416412353516, 0.030070783615112305, 0.0293703670501709, 0.02963852882385254, 0.029519775390625, 0.0296080322265625, 0.02950752067565918, 0.029534400939941405, 0.029593088150024413, 0.029485504150390626, 0.029362239837646485, 0.029406368255615236, 0.02982793617248535, 0.029873695373535156, 0.02983500862121582, 0.02966912078857422, 0.029721567153930664, 0.029515104293823244, 0.02961193656921387, 0.02956159973144531, 0.02953011131286621, 0.029519872665405275, 0.029568864822387696, 0.029436063766479493, 0.029437856674194338, 0.02967955207824707, 0.029578592300415037, 0.02971321678161621, 0.029633983612060547, 0.029636703491210937, 0.029701663970947267, 0.029619136810302735, 0.029679616928100585, 0.02962403106689453, 0.029741344451904298, 0.029716480255126954, 0.029670495986938477, 0.029696800231933593, 0.029702207565307618, 0.029652223587036133, 0.029772480010986327, 0.029691520690917968, 0.029858047485351563, 0.029806848526000976, 0.031124223709106447, 0.030045759201049804, 0.02960633659362793, 0.0293621768951416, 0.029328895568847657, 0.029204992294311522, 0.029104320526123047, 0.029138751983642578, 0.029261823654174804, 0.029239295959472656, 0.02934377670288086, 0.02923491287231445, 0.029149440765380858, 0.029267967224121092, 0.029310400009155274, 0.029254207611083983, 0.02921062469482422, 0.02933964729309082, 0.029272064208984375, 0.029214208602905273, 0.02922694396972656, 0.029364479064941405, 0.02941574478149414, 0.02934988784790039, 0.0294071044921875, 0.029491327285766603, 0.02954444885253906, 0.02952351951599121, 0.029676095962524414, 0.029495168685913085, 0.02955459213256836, 0.029669471740722656, 0.029718528747558592, 0.029829120635986327, 0.029702144622802733, 0.029898719787597658, 0.02986358451843262, 0.029700128555297852, 0.02950793647766113, 0.029493247985839844, 0.029435808181762696, 0.029511775970458985, 0.029441696166992187, 0.029618528366088866, 0.029526016235351563, 0.029620031356811523, 0.029521663665771483, 0.029565376281738283, 0.029572544097900392, 0.029684127807617186, 0.02950364875793457, 0.02961750411987305, 0.029524639129638673, 0.02953763198852539, 0.029554847717285157, 0.029608448028564452, 0.029613567352294923, 0.02961609649658203, 0.029682207107543945, 0.029634559631347656, 0.029569023132324217, 0.02993561553955078, 0.02993270492553711, 0.030819936752319334, 0.02989481544494629, 0.029397247314453125, 0.029251552581787108, 0.02933660888671875, 0.02938982391357422, 0.029271263122558594, 0.029170272827148437, 0.02920822334289551, 0.02923980712890625, 0.02923936080932617, 0.029282272338867186, 0.029395040512084962, 0.029267871856689453, 0.029279935836791993, 0.02921504020690918, 0.02913443183898926, 0.029301151275634766, 0.02936835289001465, 0.029393983840942384, 0.029416351318359374, 0.029451583862304686, 0.029457088470458984, 0.029353599548339843, 0.029342079162597658, 0.029433088302612306, 0.029470624923706053, 0.029588287353515624, 0.029618207931518554, 0.029620223999023438, 0.029693151473999025, 0.02974799919128418, 0.029954048156738283, 0.030062591552734375, 0.030099456787109374, 0.029988447189331056, 0.0298721923828125, 0.029661184310913087, 0.02955094337463379, 0.029414432525634766, 0.02942460823059082, 0.029503328323364258, 0.029670751571655274, 0.029608768463134767, 0.029612031936645508, 0.029589056015014648, 0.029685983657836913, 0.029621631622314452, 0.029530975341796876, 0.029726240158081056, 0.029606367111206056, 0.02965456008911133, 0.02953878402709961, 0.02976095962524414, 0.029674047470092772, 0.02977382469177246, 0.029826271057128907, 0.02976028823852539, 0.02957107162475586, 0.029609983444213867, 0.029665279388427734, 0.029892608642578124, 0.02977382469177246]",tokens/s,33.832334072627525,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1030, in __init__ self.model = Qwen2Model(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in __init__ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 819, in [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 616, in __init__ self.mlp = Qwen2MLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 217, in __init__ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 258.12 MiB is free. Process 100883 has 14.49 GiB memory in use. Of the allocated memory 14.32 GiB is allocated by PyTorch, and 53.40 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,836.345856,1903.099904,0.0,1507.852288,1469.840384,s,1,7.574193359375,7.574193359375,0.0,7.574193359375,7.574193359375,7.574193359375,7.574193359375,[7.574193359375],,kWh,9.962895483340617e-06,1.0918203991698297e-06,4.525003619984536e-06,1.5579719502494982e-05,,MB,1136.771072,1945.042944,0.0,1539.309568,1426.272256,s,10,0.8855196151733398,0.08855196151733398,0.0016090846363628177,0.08803173065185546,0.08919951705932616,0.09123092689514159,0.09285605476379395,"[0.09326233673095703, 0.08814620971679688, 0.08739705657958985, 0.08817842864990234, 0.08787843322753906, 0.08791725158691406, 0.0877531509399414, 0.08840086364746094, 0.08874809265136718, 0.0878377914428711]",tokens/s,2890.9579823354698,kWh,2.9496639118685594e-06,3.252961394549608e-07,1.9088932218383453e-06,5.183853273161865e-06,tokens/kWh,49384113.80688136,MB,1157.967872,1953.431552,0.0,1547.698176,1426.274816,s,10,14.043275268554689,1.404327526855469,0.012428507222118449,1.4076810913085938,1.4179456909179688,1.4183011535644532,1.4185855236816407,"[1.393094970703125, 1.39147119140625, 1.38444921875, 1.4186566162109375, 1.41786669921875, 1.41556591796875, 1.408018310546875, 1.4160279541015626, 1.4073438720703124, 1.390780517578125]",tokens/s,44.86132956538127,kWh,4.052118441813273e-05,4.469144923210777e-06,2.0030318773961722e-05,6.502064811530524e-05,tokens/kWh,968922.9779481451,,s,630,14.040806724548343,0.02228699480087038,0.00039382153057359665,0.022294223785400392,0.022652210426330564,0.022793475914001465,0.023854936161041264,"[0.02276905632019043, 0.022347488403320313, 0.022135679244995116, 0.02208131217956543, 0.021897472381591798, 0.022273632049560548, 0.022090112686157227, 0.02188697624206543, 0.02225766372680664, 0.022239231109619142, 0.022173696517944336, 0.021958656311035156, 0.02175103950500488, 0.021725631713867186, 0.021708959579467772, 0.021919904708862306, 0.022388736724853517, 0.022035743713378905, 0.021906400680541994, 0.0221910400390625, 0.021979135513305666, 0.022092607498168944, 0.022089279174804688, 0.02203487968444824, 0.022585344314575196, 0.021990560531616212, 0.02237696075439453, 0.022356063842773437, 0.022300928115844727, 0.022046720504760742, 0.02191708755493164, 0.022030208587646486, 0.02173103904724121, 0.021926912307739257, 0.02194755172729492, 0.021863264083862306, 0.021915456771850587, 0.02210361671447754, 0.02218422317504883, 0.02212284851074219, 0.022164928436279298, 0.02228486442565918, 0.022417407989501953, 0.022269952774047853, 0.02232729530334473, 0.02270412826538086, 0.02224947166442871, 0.022744287490844728, 0.02202908706665039, 0.02183932876586914, 0.022123039245605467, 0.022337440490722657, 0.02191574478149414, 0.022032384872436524, 0.02206924819946289, 0.021914655685424805, 0.021926816940307618, 0.022188095092773436, 0.021849119186401367, 0.021767135620117187, 0.02208358383178711, 0.022188032150268554, 0.022099967956542968, 0.02285206413269043, 0.022132736206054687, 0.02199510383605957, 0.022054399490356445, 0.02241219139099121, 0.023459487915039063, 0.02306083106994629, 0.022795808792114257, 0.022185951232910155, 0.022089759826660157, 0.0220164794921875, 0.021870559692382812, 0.022064735412597656, 0.02198512077331543, 0.021995391845703125, 0.022073663711547852, 0.022385055541992188, 0.02206924819946289, 0.021943935394287108, 0.021918079376220704, 0.021815296173095702, 0.02389606475830078, 0.022386688232421875, 0.021947872161865233, 0.022007904052734374, 0.021940671920776367, 0.02218943977355957, 0.02193471908569336, 0.022420608520507812, 0.022192640304565428, 0.021930368423461914, 0.021805055618286134, 0.02172313690185547, 0.02189107131958008, 0.022336736679077148, 0.02225027275085449, 0.02271353530883789, 0.02220524787902832, 0.022034431457519533, 0.0221276798248291, 0.021735647201538085, 0.021674463272094727, 0.021745759963989256, 0.02195804786682129, 0.021891359329223634, 0.02196726417541504, 0.021741632461547852, 0.021600255966186522, 0.022179840087890625, 0.02168828773498535, 0.021672128677368164, 0.022060895919799806, 0.022136831283569337, 0.021991424560546875, 0.02185215950012207, 0.02182963180541992, 0.02215116882324219, 0.02192915153503418, 0.021862432479858397, 0.021592031478881835, 0.02157651138305664, 0.02167807960510254, 0.02163711929321289, 0.022790624618530275, 0.021755903244018555, 0.021681184768676757, 0.02170159912109375, 0.021684415817260744, 0.02221558380126953, 0.021738399505615236, 0.022054912567138672, 0.021784000396728516, 0.0218670711517334, 0.021940223693847655, 0.021851680755615235, 0.02163145637512207, 0.02167398452758789, 0.02165551948547363, 0.021503679275512694, 0.02154924774169922, 0.021536928176879883, 0.021546464920043945, 0.021635488510131837, 0.02168025588989258, 0.021616544723510742, 0.021865760803222656, 0.021982303619384767, 0.02193142318725586, 0.02173129653930664, 0.021635168075561522, 0.021795360565185547, 0.021614240646362304, 0.021717023849487305, 0.021874208450317383, 0.02236400032043457, 0.022362783432006837, 0.022111583709716796, 0.021967519760131837, 0.022132736206054687, 0.02184601593017578, 0.021690336227416993, 0.021731359481811523, 0.02166281509399414, 0.021746591567993166, 0.021621824264526367, 0.021638015747070312, 0.02162486457824707, 0.021712703704833983, 0.021663808822631837, 0.02174991989135742, 0.021768192291259765, 0.021819263458251952, 0.02205299186706543, 0.02209382438659668, 0.022302047729492187, 0.022604448318481445, 0.02250102424621582, 0.023230815887451173, 0.02395132827758789, 0.022502559661865235, 0.02249817657470703, 0.022576223373413085, 0.022393280029296875, 0.022394336700439454, 0.022252544403076172, 0.022376447677612304, 0.023058080673217775, 0.022436511993408202, 0.022483104705810546, 0.022625600814819336, 0.022198368072509765, 0.022518367767333985, 0.022394880294799805, 0.022455808639526367, 0.022469120025634767, 0.022617984771728515, 0.022524032592773437, 0.022269952774047853, 0.02224127960205078, 0.02234163284301758, 0.022216512680053712, 0.022230239868164064, 0.022352863311767578, 0.022339584350585938, 0.02227609634399414, 0.02229862403869629, 0.02225152015686035, 0.02217532730102539, 0.022220544815063477, 0.022163103103637696, 0.02253926467895508, 0.022458368301391602, 0.023175071716308594, 0.023226335525512697, 0.022761152267456054, 0.022294111251831054, 0.02233942413330078, 0.02265190315246582, 0.02249728012084961, 0.022640159606933594, 0.022714847564697264, 0.025616384506225585, 0.02323420715332031, 0.022290239334106444, 0.02211484718322754, 0.022394880294799805, 0.022388736724853517, 0.022412960052490234, 0.022149471282958983, 0.022260896682739256, 0.022500160217285157, 0.02245430374145508, 0.022490432739257812, 0.023119647979736327, 0.022823423385620118, 0.022329727172851564, 0.02251094436645508, 0.022325952529907225, 0.022376447677612304, 0.02256889533996582, 0.02236422348022461, 0.022237184524536133, 0.02232294464111328, 0.022538496017456056, 0.02231648063659668, 0.0224835205078125, 0.02234761619567871, 0.022263967514038085, 0.022730752944946288, 0.022818559646606444, 0.022527711868286133, 0.022376991271972655, 0.022614015579223632, 0.022361471176147462, 0.022319616317749022, 0.02242777633666992, 0.024313343048095702, 0.024013311386108398, 0.02243315124511719, 0.0225798397064209, 0.022568960189819336, 0.022339040756225587, 0.022268447875976562, 0.022709760665893555, 0.022370336532592773, 0.022385120391845703, 0.022476383209228516, 0.022256032943725586, 0.022621728897094726, 0.022294336318969727, 0.022172319412231446, 0.022203744888305663, 0.022608543395996095, 0.022318304061889647, 0.022270751953125, 0.022501375198364256, 0.022623584747314452, 0.02252457618713379, 0.022332704544067383, 0.02242972755432129, 0.02259424018859863, 0.02265497589111328, 0.022255903244018556, 0.02257891273498535, 0.02246451187133789, 0.022420896530151366, 0.022642463684082032, 0.022350175857543945, 0.022372800827026366, 0.022321056365966797, 0.02235331153869629, 0.022323776245117187, 0.022300479888916015, 0.022298976898193358, 0.022301984786987306, 0.022430431365966796, 0.02242870330810547, 0.023782367706298827, 0.022384639739990234, 0.022468608856201173, 0.022405120849609376, 0.022693727493286135, 0.02232048034667969, 0.022401599884033202, 0.022456575393676757, 0.02232953643798828, 0.022341407775878907, 0.0222761287689209, 0.022481983184814452, 0.0222379207611084, 0.022356191635131837, 0.022468128204345704, 0.02289449691772461, 0.022697216033935548, 0.022674272537231446, 0.02261724853515625, 0.022661983489990236, 0.02253824043273926, 0.022392704010009767, 0.022351200103759766, 0.022364959716796876, 0.02268569564819336, 0.022662559509277345, 0.022364160537719727, 0.022413375854492188, 0.022536447525024414, 0.022421728134155272, 0.022339136123657226, 0.022247936248779295, 0.022237184524536133, 0.022495231628417968, 0.022433792114257813, 0.022585344314575196, 0.023002111434936523, 0.022559743881225586, 0.022480863571166992, 0.022325279235839844, 0.022558719635009765, 0.022511615753173828, 0.02247270393371582, 0.02236947250366211, 0.02255135917663574, 0.022509567260742186, 0.022329696655273436, 0.0224880313873291, 0.022534847259521484, 0.022196224212646484, 0.022179840087890625, 0.0224399356842041, 0.02272051239013672, 0.022430816650390626, 0.022321279525756837, 0.022450624465942384, 0.022301023483276367, 0.022478143692016603, 0.0224385929107666, 0.02243174362182617, 0.02243174362182617, 0.022579200744628908, 0.022388256072998047, 0.022551008224487305, 0.02246784019470215, 0.022472991943359374, 0.022351551055908202, 0.022077600479125978, 0.02275596809387207, 0.022779903411865234, 0.023166015625, 0.022340543746948244, 0.022200511932373046, 0.022136640548706055, 0.022357440948486327, 0.02224799919128418, 0.022161312103271484, 0.022155359268188478, 0.023228960037231447, 0.02249772834777832, 0.02221776008605957, 0.022274208068847657, 0.022690624237060548, 0.022362112045288086, 0.02231430435180664, 0.022206207275390626, 0.02275833511352539, 0.0224682559967041, 0.0221146240234375, 0.022351743698120118, 0.02217795181274414, 0.02223209571838379, 0.022152191162109376, 0.022208480834960936, 0.022726655960083008, 0.02239481544494629, 0.022226848602294923, 0.022134944915771483, 0.022402624130249023, 0.022571456909179687, 0.022457759857177736, 0.022146656036376954, 0.0221246395111084, 0.022731327056884767, 0.022401376724243163, 0.02246985626220703, 0.02228630447387695, 0.022487871170043944, 0.02231500816345215, 0.02240246391296387, 0.022377056121826173, 0.02216534423828125, 0.022248640060424804, 0.02211859130859375, 0.021860511779785156, 0.02221939277648926, 0.022689184188842772, 0.02243235206604004, 0.022142303466796874, 0.021970720291137696, 0.022243392944335937, 0.022143808364868164, 0.02215705680847168, 0.022161376953125, 0.022280479431152345, 0.02239897537231445, 0.022326656341552734, 0.02226598358154297, 0.022306880950927734, 0.02246905517578125, 0.02248908805847168, 0.02245631980895996, 0.02255820846557617, 0.022430208206176756, 0.022372352600097657, 0.022390783309936522, 0.022220800399780274, 0.022231039047241212, 0.022228031158447265, 0.022412223815917967, 0.02248089599609375, 0.0228985595703125, 0.022280736923217772, 0.022221183776855467, 0.022495231628417968, 0.022648832321166993, 0.02262835121154785, 0.022403072357177735, 0.022374399185180666, 0.022321151733398437, 0.02251753616333008, 0.0225118408203125, 0.022304479598999023, 0.022325088500976562, 0.02233184051513672, 0.02218707275390625, 0.022277055740356447, 0.022450176239013672, 0.022352991104125978, 0.02260188865661621, 0.02215769577026367, 0.02207974433898926, 0.02229055976867676, 0.022681600570678712, 0.022431232452392577, 0.02226777648925781, 0.022497215270996095, 0.022332096099853517, 0.024602624893188478, 0.022839296340942384, 0.02269932746887207, 0.022942399978637694, 0.022514944076538087, 0.02251238441467285, 0.02243174362182617, 0.02228223991394043, 0.022262815475463868, 0.022369247436523437, 0.02216134452819824, 0.022052928924560546, 0.022062431335449217, 0.02266339111328125, 0.02261235237121582, 0.022491199493408203, 0.0221265926361084, 0.022196224212646484, 0.022079488754272462, 0.02225971221923828, 0.02238198471069336, 0.022532928466796876, 0.022451583862304687, 0.022587263107299804, 0.023884576797485353, 0.02358246421813965, 0.022570016860961915, 0.022388927459716795, 0.02206800079345703, 0.022353536605834962, 0.02200739288330078, 0.022249568939208986, 0.02269046401977539, 0.022493215560913087, 0.022248992919921873, 0.022251264572143555, 0.022806144714355468, 0.022405664443969728, 0.022208063125610352, 0.022696224212646485, 0.022165216445922852, 0.022367807388305665, 0.022266592025756836, 0.022443296432495118, 0.022090463638305663, 0.022334943771362303, 0.022641023635864257, 0.022451616287231444, 0.02231068801879883, 0.022376895904541016, 0.02237289619445801, 0.022471904754638672, 0.022299423217773437, 0.022335487365722655, 0.022421503067016603, 0.022495391845703126, 0.022363391876220703, 0.022194784164428712, 0.022278144836425783, 0.022220800399780274, 0.02221820831298828, 0.022380224227905275, 0.02215407943725586, 0.02246806335449219, 0.022080032348632813, 0.022640640258789063, 0.022515071868896484, 0.02261225509643555, 0.022210912704467775, 0.022328575134277343, 0.02219843292236328, 0.022366815567016602, 0.022392831802368163, 0.022273887634277345, 0.02215888023376465, 0.02235228729248047, 0.022188255310058594, 0.02225971221923828, 0.02200134468078613, 0.022090047836303712, 0.022314399719238282, 0.022200927734375, 0.022147071838378905, 0.022050111770629884, 0.02229097557067871, 0.022304256439208983, 0.022566688537597655, 0.02243673515319824, 0.02241472053527832, 0.022432384490966798, 0.022421375274658203, 0.02226380729675293, 0.02237225532531738, 0.022184160232543944, 0.022525056838989258, 0.02232963180541992, 0.022243040084838867, 0.0224899845123291, 0.022179840087890625, 0.02281046485900879, 0.022216512680053712, 0.02213055992126465, 0.02256697654724121, 0.022438304901123047, 0.022362112045288086, 0.022208511352539064, 0.02233263969421387, 0.022172447204589843, 0.02232048034667969, 0.02208835220336914, 0.022054399490356445, 0.022006240844726563, 0.022118431091308594, 0.02178483200073242, 0.021734495162963868, 0.022206655502319338, 0.022274431228637696, 0.02213692855834961, 0.022119775772094726, 0.02189788818359375, 0.02198080062866211, 0.022495359420776368, 0.02198758316040039, 0.022261728286743165, 0.022109472274780273, 0.02275542449951172, 0.021857152938842772, 0.02172496032714844, 0.021753408432006835, 0.022812255859375, 0.02186262321472168, 0.02197977638244629, 0.023086336135864256, 0.021996288299560546, 0.02190745544433594, 0.021820703506469728, 0.02175424003601074, 0.022784351348876953, 0.02182931137084961, 0.021760095596313478, 0.021586143493652343, 0.021700607299804688, 0.0216944637298584, 0.021934080123901366, 0.02190336036682129, 0.021998783111572266, 0.02204345512390137, 0.021993471145629884, 0.02205081558227539, 0.022046367645263673, 0.021946016311645507, 0.021914304733276366, 0.02186614418029785, 0.02183612823486328, 0.02255023956298828, 0.02195484733581543, 0.021850208282470703, 0.021946144104003907, 0.021823616027832032, 0.021792768478393554, 0.021712896347045898, 0.021914976119995117]",tokens/s,44.869216730868835,, bfloat16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,836.452352,4675.534848,0.0,4280.287232,4115.121152,s,1,7.65303857421875,7.65303857421875,0.0,7.65303857421875,7.65303857421875,7.65303857421875,7.65303857421875,[7.65303857421875],,kWh,1.0351801950006727e-05,1.1340980008129043e-06,4.7408371259966e-06,1.622673707681623e-05,,MB,1142.31296,4981.71904,0.0,4575.985664,4408.408064,s,10,3.030411315917968,0.3030411315917969,0.002580261041039593,0.3030240173339844,0.3054149444580078,0.3060226119995117,0.30650874603271483,"[0.2980228271484375, 0.29910711669921874, 0.30268963623046874, 0.30315701293945313, 0.3052799072265625, 0.3048192138671875, 0.3028910217285156, 0.30517254638671876, 0.30264175415039063, 0.3066302795410156]",tokens/s,844.7698127818426,kWh,9.061008412627508e-06,9.98694762992155e-07,5.996208500666343e-06,1.6055911676286006e-05,tokens/kWh,15944283.025553923,MB,1163.50976,4981.71904,0.0,4575.985664,4408.410624,s,10,14.811874389648438,1.4811874389648438,0.010192541895537985,1.4821577758789062,1.491000354003906,1.492011590576172,1.4928205798339844,"[1.458283935546875, 1.4831822509765624, 1.4930228271484376, 1.48113330078125, 1.489197265625, 1.478267822265625, 1.4705389404296876, 1.490775634765625, 1.4900311279296874, 1.4774412841796876]",tokens/s,42.533441982217155,kWh,4.301731266653926e-05,4.745208429294184e-06,2.843334682073334e-05,7.619586791656678e-05,tokens/kWh,826816.4891695172,,s,630,14.80945721435548,0.02350707494342138,0.0003652562417825801,0.02352883243560791,0.023837715148925784,0.024032551956176755,0.024826040382385256,"[0.024179264068603514, 0.02332838439941406, 0.02325542449951172, 0.023571935653686524, 0.023126623153686524, 0.022810495376586915, 0.02295327949523926, 0.022874719619750978, 0.02343731117248535, 0.023152799606323243, 0.023086463928222656, 0.023060895919799804, 0.022964096069335936, 0.022962528228759764, 0.022966272354125978, 0.022945535659790038, 0.02320518493652344, 0.02302867126464844, 0.02311577606201172, 0.023164735794067384, 0.02349056053161621, 0.02337606430053711, 0.02351286315917969, 0.023074464797973634, 0.023984703063964843, 0.022965503692626954, 0.0229117431640625, 0.022939104080200196, 0.022780384063720703, 0.02317888069152832, 0.022918912887573244, 0.02284547233581543, 0.022947872161865234, 0.02283955192565918, 0.022862207412719725, 0.022763519287109374, 0.022816064834594727, 0.02278223991394043, 0.023113536834716796, 0.022927967071533203, 0.02285971260070801, 0.022884416580200195, 0.024978752136230468, 0.024314559936523438, 0.023011007308959962, 0.023246335983276366, 0.02304083251953125, 0.02294169616699219, 0.02297622489929199, 0.02327516746520996, 0.02326927947998047, 0.0232138557434082, 0.023081920623779298, 0.02295199966430664, 0.023014495849609375, 0.02323747253417969, 0.023005247116088867, 0.022987775802612305, 0.02320649528503418, 0.023129600524902344, 0.023249759674072265, 0.023013376235961915, 0.022957727432250975, 0.02403536033630371, 0.023434751510620116, 0.023245279312133788, 0.0235479679107666, 0.024457151412963868, 0.02391766357421875, 0.02341731262207031, 0.023945087432861327, 0.023502399444580078, 0.02369843292236328, 0.023676288604736327, 0.02342732810974121, 0.02323289680480957, 0.023358463287353515, 0.023931327819824218, 0.02350761604309082, 0.023482271194458008, 0.02353561592102051, 0.023469823837280274, 0.023475456237792968, 0.02337436866760254, 0.023605728149414064, 0.02333286476135254, 0.023357376098632813, 0.023224384307861327, 0.02347804832458496, 0.02313852882385254, 0.023324544906616212, 0.023433055877685547, 0.02327071952819824, 0.02337276840209961, 0.023993728637695312, 0.023318656921386717, 0.023343616485595704, 0.023050111770629884, 0.0231200008392334, 0.023093183517456053, 0.023076927185058594, 0.023128320693969726, 0.02336105537414551, 0.023158496856689453, 0.024087039947509766, 0.02369740867614746, 0.02366854476928711, 0.023543231964111327, 0.023788032531738282, 0.023597055435180665, 0.023731584548950194, 0.023657344818115236, 0.023812095642089845, 0.023607295989990236, 0.023692607879638672, 0.02377801513671875, 0.023883520126342775, 0.023617759704589843, 0.023711103439331055, 0.023794303894042967, 0.02367283248901367, 0.023450944900512697, 0.023521280288696288, 0.023560895919799804, 0.023623392105102538, 0.023568672180175783, 0.02430156707763672, 0.02373222351074219, 0.023830528259277343, 0.023736320495605468, 0.023558143615722657, 0.02396272087097168, 0.023570655822753906, 0.023548608779907228, 0.02373129653930664, 0.02364009666442871, 0.02370035171508789, 0.02362892723083496, 0.02355289649963379, 0.023558143615722657, 0.023578624725341796, 0.023613439559936524, 0.02361657524108887, 0.02374732780456543, 0.02379385566711426, 0.02372812843322754, 0.023512895584106446, 0.023521472930908203, 0.023777280807495117, 0.025438207626342774, 0.023703136444091798, 0.02349507141113281, 0.02356153678894043, 0.023567039489746092, 0.023493824005126954, 0.023429759979248045, 0.023705791473388672, 0.023538976669311523, 0.02402911949157715, 0.023810527801513673, 0.023572799682617187, 0.02347417640686035, 0.02349056053161621, 0.02355948829650879, 0.02335136032104492, 0.023652416229248047, 0.0238209285736084, 0.02361529541015625, 0.02406617546081543, 0.024272159576416017, 0.024326879501342772, 0.023631872177124022, 0.023412704467773438, 0.023238687515258788, 0.023769088745117187, 0.023404544830322265, 0.02347007942199707, 0.02389401626586914, 0.023455743789672853, 0.023642112731933593, 0.02343731117248535, 0.023690591812133788, 0.02358937644958496, 0.023570816040039064, 0.023779104232788086, 0.02357596778869629, 0.024078943252563476, 0.023686336517333983, 0.023548736572265624, 0.024302879333496095, 0.0236430721282959, 0.023540767669677734, 0.023364416122436525, 0.023197696685791015, 0.023150047302246093, 0.02304368019104004, 0.023753664016723634, 0.023439359664916993, 0.02346931266784668, 0.023785280227661132, 0.02355295944213867, 0.023442880630493164, 0.023685440063476563, 0.024180992126464844, 0.02349875259399414, 0.02360425567626953, 0.023598047256469728, 0.023395999908447266, 0.02345404815673828, 0.023414783477783203, 0.023502975463867187, 0.023393728256225585, 0.02328767967224121, 0.02324127960205078, 0.02355606460571289, 0.023672447204589844, 0.023694847106933595, 0.023565216064453123, 0.023793664932250977, 0.02368694305419922, 0.023747840881347657, 0.02361356735229492, 0.023458656311035157, 0.023431167602539063, 0.023473567962646484, 0.02335804748535156, 0.023377311706542968, 0.023306848526000977, 0.023453567504882814, 0.023160959243774416, 0.023787071228027343, 0.023583168029785155, 0.023513088226318358, 0.023525375366210938, 0.023814079284667968, 0.02359225654602051, 0.023369951248168944, 0.023286304473876952, 0.023134208679199218, 0.02326323127746582, 0.023321983337402343, 0.023325311660766603, 0.02327347183227539, 0.02329395294189453, 0.023178752899169923, 0.02317568016052246, 0.023928831100463867, 0.02393907165527344, 0.023721055984497072, 0.023638015747070314, 0.02356425666809082, 0.023342016220092774, 0.025831424713134765, 0.023721887588500978, 0.0236046085357666, 0.023611839294433595, 0.023316768646240233, 0.023382015228271484, 0.023488512039184572, 0.02386124801635742, 0.023400447845458985, 0.023513088226318358, 0.023562175750732422, 0.02355558395385742, 0.023674720764160155, 0.023710399627685546, 0.02361142349243164, 0.023628992080688478, 0.023724863052368164, 0.023851007461547852, 0.02351513671875, 0.023566335678100587, 0.023569728851318358, 0.023458175659179688, 0.023562496185302734, 0.02359916877746582, 0.023357440948486328, 0.023615039825439454, 0.02359856033325195, 0.023700447082519532, 0.023582719802856447, 0.02348646354675293, 0.02349260711669922, 0.023721120834350587, 0.023495616912841796, 0.02343107223510742, 0.023459840774536132, 0.023379968643188476, 0.02353936004638672, 0.023435615539550782, 0.023619583129882812, 0.023319679260253905, 0.023900159835815428, 0.02398044776916504, 0.023576320648193358, 0.02442313575744629, 0.02351628875732422, 0.023556991577148436, 0.023638015747070314, 0.023642112731933593, 0.02405116844177246, 0.023553823471069334, 0.02335001564025879, 0.023465120315551757, 0.023391103744506835, 0.02346544075012207, 0.023545503616333008, 0.023515775680541993, 0.023990495681762695, 0.02370150375366211, 0.02369254493713379, 0.023599872589111327, 0.023695232391357422, 0.02352681541442871, 0.023613216400146485, 0.02434454345703125, 0.023666336059570314, 0.023396703720092775, 0.023341056823730468, 0.023412736892700195, 0.023330816268920897, 0.023379968643188476, 0.02332467269897461, 0.023430624008178712, 0.023685663223266602, 0.023452991485595702, 0.023552032470703126, 0.02374518394470215, 0.023538848876953126, 0.023513023376464843, 0.023753440856933594, 0.023427263259887695, 0.023392255783081056, 0.023533344268798828, 0.02328335952758789, 0.02318547248840332, 0.023097856521606445, 0.023435327529907228, 0.02374239921569824, 0.023386112213134767, 0.02349260711669922, 0.02345952033996582, 0.023737855911254883, 0.023669567108154297, 0.023530879974365235, 0.02348451232910156, 0.023444000244140624, 0.02351923179626465, 0.02361100769042969, 0.023677312850952148, 0.023586816787719726, 0.023395519256591796, 0.023919424057006835, 0.023500320434570312, 0.023755231857299806, 0.023317792892456054, 0.02369340705871582, 0.025008031845092774, 0.023364320755004882, 0.023582719802856447, 0.02351103973388672, 0.023239967346191406, 0.023140703201293945, 0.023365535736083985, 0.024134111404418946, 0.023357440948486328, 0.023257087707519532, 0.023230464935302734, 0.023150592803955077, 0.023173120498657225, 0.023085216522216796, 0.023066463470458983, 0.022986751556396484, 0.02304204750061035, 0.023078399658203123, 0.02300979232788086, 0.02308095932006836, 0.023035903930664063, 0.024086143493652342, 0.02361587142944336, 0.02334867286682129, 0.023151168823242186, 0.02297225570678711, 0.022929567337036133, 0.022986560821533202, 0.02316716766357422, 0.023166976928710937, 0.022994047164916993, 0.022838144302368163, 0.023007232666015624, 0.023027711868286133, 0.02325299263000488, 0.024681631088256835, 0.022922079086303712, 0.02310553550720215, 0.02289651107788086, 0.02310544013977051, 0.02300499153137207, 0.02368889617919922, 0.023000799179077148, 0.02292799949645996, 0.02284172821044922, 0.022769472122192384, 0.022839679718017578, 0.02281667137145996, 0.02285763168334961, 0.02290483283996582, 0.02292857551574707, 0.02302239990234375, 0.02296118354797363, 0.022874143600463866, 0.022854591369628908, 0.022844831466674806, 0.02282966423034668, 0.022916479110717772, 0.022880064010620118, 0.02298476791381836, 0.023325439453125, 0.023514528274536133, 0.023757024765014647, 0.02361382484436035, 0.02384022331237793, 0.023582752227783204, 0.023685632705688478, 0.023541759490966797, 0.02352742385864258, 0.023564287185668945, 0.025159616470336914, 0.024561376571655275, 0.02389027214050293, 0.02356617546081543, 0.02382035255432129, 0.02366454315185547, 0.023980224609375, 0.0235284481048584, 0.02371686363220215, 0.023527584075927734, 0.023736127853393553, 0.02367695999145508, 0.023696895599365234, 0.023783071517944336, 0.024363231658935548, 0.023821823120117186, 0.02373023986816406, 0.023821023941040038, 0.02371753692626953, 0.02376406478881836, 0.023622207641601563, 0.02389139175415039, 0.023638111114501953, 0.023595903396606447, 0.02348646354675293, 0.023637088775634765, 0.023548416137695313, 0.023691680908203124, 0.02383635139465332, 0.023651775360107423, 0.02378432083129883, 0.023602848052978517, 0.023853471755981445, 0.02371945571899414, 0.02358844757080078, 0.023946048736572266, 0.023836288452148437, 0.02375433540344238, 0.02369820785522461, 0.02404159927368164, 0.023909631729125976, 0.023734912872314454, 0.023791616439819335, 0.02362739181518555, 0.023517568588256835, 0.023578624725341796, 0.023517183303833008, 0.023740415573120118, 0.023608608245849608, 0.02367148780822754, 0.023701536178588868, 0.023754751205444336, 0.023582719802856447, 0.02360099220275879, 0.023549823760986327, 0.023707935333251953, 0.023563840866088866, 0.02372243118286133, 0.023609344482421874, 0.02352921676635742, 0.023581247329711914, 0.023511903762817383, 0.023356256484985353, 0.023278656005859374, 0.02328428840637207, 0.0238022403717041, 0.02360438346862793, 0.02350166320800781, 0.023476224899291992, 0.023459840774536132, 0.023385087966918947, 0.023770111083984375, 0.02351420783996582, 0.023833471298217772, 0.023539743423461913, 0.023586240768432618, 0.023394271850585936, 0.02433932876586914, 0.02374358367919922, 0.02349910354614258, 0.023532096862792968, 0.023459840774536132, 0.02337295913696289, 0.023837535858154298, 0.02351513671875, 0.023503936767578126, 0.023350208282470704, 0.023502559661865235, 0.024280416488647462, 0.024840192794799806, 0.024897823333740233, 0.023560863494873047, 0.02346700859069824, 0.023286367416381838, 0.023815967559814452, 0.023839328765869142, 0.023596832275390625, 0.02350105667114258, 0.023760255813598634, 0.02357062339782715, 0.023536064147949218, 0.023443456649780273, 0.023582719802856447, 0.023640064239501952, 0.023649503707885742, 0.02366761589050293, 0.02366041564941406, 0.02368297576904297, 0.023451648712158202, 0.023681119918823244, 0.024008319854736327, 0.02358310317993164, 0.023379648208618164, 0.023437631607055663, 0.023465375900268554, 0.023538272857666017, 0.023570432662963867, 0.023584800720214842, 0.02341036796569824, 0.023509151458740236, 0.02374790382385254, 0.023690048217773436, 0.02360051155090332, 0.0235784969329834, 0.02354979133605957, 0.023499616622924803, 0.023737951278686522, 0.023480800628662108, 0.02360121536254883, 0.02350796890258789, 0.02357734489440918, 0.023474367141723632, 0.023621631622314454, 0.023601152420043944, 0.023551616668701172, 0.02374835205078125, 0.023620223999023436, 0.02377654457092285, 0.023673599243164062, 0.023571807861328124, 0.0242587833404541, 0.02387353515625, 0.02352742385864258, 0.02353984069824219, 0.02375433540344238, 0.02374684715270996, 0.02353971290588379, 0.023556095123291015, 0.023582176208496095, 0.023566047668457032, 0.02340108871459961, 0.02341231918334961, 0.02359328079223633, 0.023549280166625976, 0.023749696731567384, 0.02352921676635742, 0.023634048461914064, 0.023614463806152345, 0.023577600479125976, 0.023496511459350587, 0.023660127639770507, 0.023634271621704103, 0.023431615829467775, 0.023521087646484376, 0.02326937675476074, 0.023581823348999022, 0.02360204887390137, 0.023846912384033202, 0.023967744827270508, 0.023348608016967774, 0.02336319923400879, 0.023318656921386717, 0.022993183135986327, 0.022948448181152343, 0.023076864242553712, 0.023250944137573244, 0.023510208129882814, 0.023992671966552734, 0.023560672760009765, 0.023645503997802735, 0.023485088348388673, 0.023425056457519532, 0.02351820755004883, 0.02350979232788086, 0.02392460823059082, 0.024791391372680664, 0.02327756881713867, 0.02331222343444824, 0.023272991180419922, 0.023020160675048827, 0.022982656478881838, 0.022880159378051757, 0.022990943908691407, 0.022978143692016603, 0.023241119384765627, 0.02336128044128418, 0.023355648040771483, 0.023216127395629883, 0.023003135681152344, 0.022994623184204102, 0.022875808715820314, 0.02285430335998535, 0.022939647674560547]",tokens/s,42.54038422078784,, bfloat16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,814.370816,569.311232,0.0,174.063616,172.57984,s,1,7.39778955078125,7.39778955078125,0.0,7.39778955078125,7.39778955078125,7.39778955078125,7.39778955078125,[7.39778955078125],,kWh,4.7222717499986785e-06,5.062745464826148e-07,2.0172238360122163e-06,7.245770132493509e-06,,MB,1102.393344,640.6144,0.0,234.881024,215.589888,s,28,0.2848372488021851,0.010172758885792324,0.00013117854918736572,0.010129647731781006,0.010273417854309084,0.010319713973999023,0.010636543121337891,"[0.010750176429748536, 0.010159199714660644, 0.010094880104064941, 0.010211104393005372, 0.010301888465881348, 0.010120927810668945, 0.010138175964355468, 0.010130271911621094, 0.010129023551940917, 0.010106335639953614, 0.010083200454711914, 0.010213151931762695, 0.01010598373413086, 0.010100319862365722, 0.010065631866455078, 0.010045984268188476, 0.01007094383239746, 0.010248096466064453, 0.010171072006225586, 0.010164031982421875, 0.010261216163635255, 0.010215295791625976, 0.010104384422302246, 0.010108320236206055, 0.010329312324523925, 0.010110719680786133, 0.010171232223510742, 0.010126367568969726]",tokens/s,25165.247979831674,kWh,3.3376456913332124e-07,3.6808116085848184e-08,2.205903352022912e-07,5.911630204214606e-07,tokens/kWh,433044678.29785556,MB,1124.192256,644.808704,0.0,239.075328,215.592448,s,28,9.718639923095703,0.3470942829677037,0.026224458851421606,0.3441082611083984,0.34980752868652343,0.35327261810302735,0.44566918975830083,"[0.35386810302734373, 0.4796230163574219, 0.34065325927734375, 0.3382584533691406, 0.34457293701171876, 0.3441163024902344, 0.34413015747070314, 0.34559478759765627, 0.340366455078125, 0.3450955505371094, 0.34164190673828126, 0.3381908264160156, 0.3309373474121094, 0.3296451416015625, 0.32842724609375, 0.33047039794921873, 0.346295166015625, 0.3521667175292969, 0.34715267944335937, 0.3487964477539062, 0.3454385986328125, 0.3441002197265625, 0.3431165466308594, 0.3409849548339844, 0.3409042663574219, 0.34522457885742186, 0.3434397583007813, 0.3454281005859375]",tokens/s,181.50687894177156,kWh,9.682858715171649e-06,1.0678501069536257e-06,4.092357559597695e-06,1.4843066381722967e-05,tokens/kWh,4244405.999394785,,s,1764,9.704967070102688,0.005501682012529869,0.0031853742987004437,0.005389279842376709,0.0056641695499420166,0.005749015855789184,0.00590723310947418,"[0.005378176212310791, 0.005633984088897705, 0.0066518402099609375, 0.0055623679161071774, 0.005505152225494385, 0.005490752220153808, 0.0054225921630859375, 0.005332320213317871, 0.00535427188873291, 0.005353663921356201, 0.005321023941040039, 0.005414271831512451, 0.005429056167602539, 0.0056276159286499025, 0.005731103897094726, 0.005851136207580566, 0.005887936115264893, 0.005803359985351563, 0.00578223991394043, 0.005713823795318603, 0.005698751926422119, 0.0057448320388793946, 0.005591968059539795, 0.006127327919006348, 0.007182432174682617, 0.007171648025512695, 0.007236159801483154, 0.006718624114990235, 0.005348320007324219, 0.0054720001220703125, 0.005443456172943115, 0.005308703899383545, 0.0053290238380432125, 0.005260447978973389, 0.005302879810333252, 0.00533296012878418, 0.005325024127960205, 0.005318496227264404, 0.005530687808990478, 0.005355519771575928, 0.005427328109741211, 0.005481215953826904, 0.005541855812072754, 0.0054354238510131835, 0.0054534077644348145, 0.005450143814086914, 0.005568511962890625, 0.0054570879936218265, 0.0053821120262146, 0.0054026880264282226, 0.005423903942108154, 0.005339136123657226, 0.0054778561592102055, 0.005446176052093506, 0.005436768054962158, 0.005599135875701904, 0.005528319835662842, 0.005575967788696289, 0.0053277120590209965, 0.005435135841369629, 0.005412992000579834, 0.005360799789428711, 0.005388224124908447, 0.00535811185836792, 0.00546230411529541, 0.005336927890777588, 0.005271071910858154, 0.005275712013244629, 0.005300543785095215, 0.005441535949707031, 0.005554080009460449, 0.0056622719764709475, 0.005759039878845215, 0.005617152214050293, 0.005502175807952881, 0.0057853121757507325, 0.0055066561698913575, 0.13898793029785156, 0.005687424182891846, 0.005420032024383545, 0.0054050559997558595, 0.005675519943237305, 0.005770559787750244, 0.0055764479637145994, 0.005662784099578857, 0.00575167989730835, 0.0056128320693969724, 0.005519999980926514, 0.005432767868041992, 0.005298175811767578, 0.005251743793487549, 0.005273791790008545, 0.005321824073791504, 0.005331679821014405, 0.005369855880737305, 0.005406720161437988, 0.005362688064575195, 0.005276735782623291, 0.005328703880310059, 0.005359744071960449, 0.005459775924682617, 0.005511360168457031, 0.005332863807678222, 0.005263423919677735, 0.005430560111999511, 0.0052623038291931155, 0.005242688179016113, 0.0053309440612792965, 0.005343232154846191, 0.005413055896759033, 0.005608575820922852, 0.005612095832824707, 0.005635551929473877, 0.0054811201095581056, 0.0055623679161071774, 0.005621024131774902, 0.005639039993286133, 0.005795072078704834, 0.005729119777679443, 0.005610527992248535, 0.005790624141693115, 0.005574463844299316, 0.005572832107543945, 0.005576191902160644, 0.005474336147308349, 0.00535920000076294, 0.005068895816802979, 0.005327104091644287, 0.005312128067016602, 0.005338848114013672, 0.005344064235687256, 0.005338624000549317, 0.005392288208007813, 0.005374239921569824, 0.005339263916015625, 0.005425087928771973, 0.005422336101531982, 0.005490975856781006, 0.005361567974090576, 0.005292543888092041, 0.005378208160400391, 0.005658207893371582, 0.005756735801696777, 0.005593855857849121, 0.005472095966339111, 0.00532480001449585, 0.0053433279991149905, 0.005289408206939697, 0.0054074878692626956, 0.005340896129608154, 0.005329055786132813, 0.005309855937957764, 0.005351071834564209, 0.005429183959960938, 0.005285920143127442, 0.005305151939392089, 0.005309919834136963, 0.005290527820587158, 0.005320576190948487, 0.005277535915374756, 0.005269792079925537, 0.0053920321464538574, 0.005368159770965576, 0.0054148478507995606, 0.005303423881530761, 0.0052973442077636716, 0.005244671821594238, 0.005277696132659912, 0.005253344058990478, 0.005240608215332032, 0.005270592212677002, 0.0052952318191528324, 0.005242688179016113, 0.005309887886047363, 0.0052271361351013184, 0.005231935977935791, 0.005292672157287598, 0.005343232154846191, 0.005462016105651855, 0.005594336032867432, 0.005765791893005371, 0.005807360172271728, 0.005733248233795166, 0.005727776050567627, 0.005752480030059815, 0.005575104236602783, 0.005610911846160888, 0.005672959804534912, 0.005542367935180664, 0.00521830415725708, 0.005402624130249023, 0.005409088134765625, 0.005375679969787598, 0.005371903896331787, 0.005281792163848877, 0.005269152164459228, 0.005302624225616455, 0.005264927864074707, 0.005231167793273926, 0.005488160133361816, 0.005222784042358398, 0.0053383359909057616, 0.005546207904815674, 0.005372032165527344, 0.005406400203704834, 0.005461984157562256, 0.005421855926513672, 0.005380064010620117, 0.0053080000877380375, 0.005230944156646728, 0.00530953598022461, 0.005556896209716797, 0.005435743808746338, 0.005816383838653565, 0.005511104106903076, 0.005392608165740967, 0.005389791965484619, 0.005269408226013184, 0.005357984066009521, 0.005326144218444824, 0.005290688037872315, 0.005296351909637451, 0.005381919860839844, 0.005318655967712403, 0.005351424217224121, 0.0055519680976867675, 0.00541212797164917, 0.005440095901489258, 0.0053619518280029295, 0.00532480001449585, 0.0053309440612792965, 0.005302271842956543, 0.005310463905334473, 0.005289472103118896, 0.005282303810119629, 0.005263199806213379, 0.005265567779541016, 0.005281599998474121, 0.005303616046905517, 0.005230815887451172, 0.0052681279182434084, 0.005255392074584961, 0.005246751785278321, 0.005390336036682129, 0.005337088108062744, 0.005269408226013184, 0.005267744064331055, 0.005246784210205078, 0.0052449598312377926, 0.005396480083465576, 0.005713888168334961, 0.005781504154205322, 0.005538527965545654, 0.005690752029418945, 0.005656288146972656, 0.005675360202789307, 0.005472832202911377, 0.005832704067230224, 0.0057588801383972165, 0.005496479988098144, 0.006107200145721436, 0.006009215831756592, 0.005462016105651855, 0.005294079780578613, 0.005320703983306885, 0.005304671764373779, 0.005467552185058594, 0.00540496015548706, 0.005365952014923096, 0.005340544223785401, 0.005360032081604004, 0.005434847831726074, 0.00538643217086792, 0.0054848318099975585, 0.005491903781890869, 0.0054908480644226074, 0.005515232086181641, 0.005409471988677979, 0.005442624092102051, 0.005352223873138428, 0.0053086400032043455, 0.005387584209442139, 0.005307040214538574, 0.0054570560455322265, 0.005337344169616699, 0.005367584228515625, 0.005270080089569092, 0.005333216190338135, 0.005369855880737305, 0.005388351917266845, 0.00551091194152832, 0.005633503913879395, 0.005518112182617187, 0.005492735862731934, 0.0053678078651428224, 0.005439616203308105, 0.005547904014587403, 0.005434912204742431, 0.005564896106719971, 0.005505023956298828, 0.005347583770751953, 0.005451519966125488, 0.005514463901519775, 0.005446303844451905, 0.005367936134338379, 0.005392608165740967, 0.005594912052154541, 0.00555344009399414, 0.005490784168243408, 0.0053909759521484375, 0.005305791854858398, 0.005332896232604981, 0.005329567909240723, 0.005256703853607178, 0.00524124813079834, 0.005526368141174316, 0.005921951770782471, 0.005810688018798828, 0.005886112213134766, 0.005806975841522217, 0.005666048049926758, 0.005688159942626953, 0.005590911865234375, 0.005550687789916992, 0.005392799854278565, 0.005404672145843506, 0.005369855880737305, 0.005322751998901368, 0.005306111812591553, 0.005367712020874023, 0.005265888214111328, 0.005279327869415283, 0.005340767860412598, 0.005349599838256836, 0.005403103828430175, 0.005331264019012451, 0.005340864181518554, 0.0053944320678710935, 0.005309887886047363, 0.0055277438163757325, 0.005498784065246582, 0.005364192008972168, 0.005250688076019287, 0.005273536205291748, 0.005276095867156982, 0.005295328140258789, 0.005274400234222412, 0.005273215770721436, 0.005263199806213379, 0.005396671772003174, 0.005368159770965576, 0.005261312007904053, 0.005273600101470947, 0.005285920143127442, 0.005311872005462646, 0.005298783779144287, 0.005586944103240967, 0.005760704040527344, 0.005683008193969726, 0.005568416118621826, 0.005773920059204102, 0.005560319900512695, 0.005451488018035889, 0.005357312202453613, 0.005304863929748535, 0.005320703983306885, 0.005483615875244141, 0.005403264045715332, 0.005568672180175782, 0.005611936092376709, 0.005553855895996094, 0.005567840099334717, 0.005594079971313477, 0.005526591777801513, 0.005443327903747559, 0.005384640216827392, 0.005511199951171875, 0.0055016641616821285, 0.005202239990234375, 0.005316160202026367, 0.005249824047088623, 0.005286911964416504, 0.005236671924591064, 0.005290719985961914, 0.0055268478393554685, 0.0057413439750671385, 0.005802976131439209, 0.005730624198913574, 0.005795519828796386, 0.005804512023925781, 0.005767648220062256, 0.005739776134490967, 0.005603295803070068, 0.005574624061584473, 0.0055642881393432615, 0.005499423980712891, 0.005550496101379395, 0.005480447769165039, 0.005539423942565918, 0.005405407905578613, 0.00534281587600708, 0.00537011194229126, 0.005443424224853516, 0.005476319789886474, 0.005423136234283447, 0.005400000095367431, 0.005296703815460205, 0.005311520099639893, 0.005340288162231446, 0.00534665584564209, 0.005382656097412109, 0.00536678409576416, 0.005385216236114502, 0.00548796796798706, 0.0054913277626037595, 0.005451807975769043, 0.005383264064788818, 0.005282688140869141, 0.005387872219085693, 0.005474751949310303, 0.005594399929046631, 0.00563705587387085, 0.005541855812072754, 0.0055001602172851565, 0.00539244794845581, 0.0053396477699279785, 0.005317728042602539, 0.005352352142333984, 0.005346496105194092, 0.005307199954986572, 0.005366943836212158, 0.005296512126922608, 0.005286399841308594, 0.005304287910461425, 0.005299583911895752, 0.005614463806152344, 0.005578656196594239, 0.005472383975982666, 0.0054633598327636715, 0.0054150080680847165, 0.005630496025085449, 0.005165440082550049, 0.005356575965881348, 0.00526639986038208, 0.0052527360916137696, 0.005282112121582031, 0.005341119766235351, 0.00539247989654541, 0.005685535907745362, 0.005811903953552246, 0.005803264141082763, 0.005734367847442627, 0.00583897590637207, 0.005826816082000732, 0.005702047824859619, 0.005752831935882568, 0.00571289587020874, 0.005614143848419189, 0.0055812478065490724, 0.005599232196807862, 0.005539455890655518, 0.005427584171295166, 0.00545798397064209, 0.005330880165100097, 0.005279232025146485, 0.005310976028442383, 0.005449567794799805, 0.0053517122268676755, 0.005365344047546386, 0.005306848049163818, 0.0053812160491943355, 0.005521471977233887, 0.0054217281341552735, 0.005291840076446533, 0.005421120166778565, 0.0054148159027099605, 0.005351647853851318, 0.005601344108581543, 0.005294015884399414, 0.005290272235870361, 0.005371615886688232, 0.005323935985565185, 0.005325407981872559, 0.005435200214385987, 0.005605823993682861, 0.005917920112609863, 0.005901088237762451, 0.0056761598587036135, 0.005596223831176758, 0.005486400127410889, 0.005455872058868408, 0.005433343887329102, 0.005492032051086426, 0.0055569281578063965, 0.005410816192626953, 0.005443776130676269, 0.005422912120819092, 0.005347583770751953, 0.005426943778991699, 0.005484543800354004, 0.00540499210357666, 0.005387968063354493, 0.005355519771575928, 0.0053350400924682614, 0.005181151866912842, 0.005290463924407959, 0.005240447998046875, 0.005209216117858887, 0.005266496181488037, 0.005335008144378662, 0.005355423927307129, 0.005326720237731933, 0.005258016109466553, 0.005236832141876221, 0.005240928173065185, 0.005281792163848877, 0.005209856033325196, 0.005236800193786621, 0.005252895832061767, 0.005208479881286621, 0.005242400169372559, 0.005273824214935303, 0.005395872116088867, 0.005614431858062744, 0.005890304088592529, 0.00583244800567627, 0.005791679859161377, 0.005686528205871582, 0.005611936092376709, 0.005642623901367188, 0.005592639923095703, 0.005513696193695068, 0.005351776123046875, 0.005400224208831787, 0.005304448127746582, 0.005351295948028564, 0.0052899842262268066, 0.005302527904510498, 0.005271615982055664, 0.005275167942047119, 0.005331103801727295, 0.005273600101470947, 0.005269504070281982, 0.005316800117492676, 0.005283648014068603, 0.005376319885253906, 0.0055047359466552735, 0.005543776035308838, 0.005496640205383301, 0.0054513921737670895, 0.005371808052062988, 0.005398719787597656, 0.005612480163574219, 0.005496479988098144, 0.005425151824951172, 0.005402624130249023, 0.005320703983306885, 0.005591040134429932, 0.005627711772918701, 0.0056274237632751465, 0.005378047943115235, 0.005319327831268311, 0.005281824111938477, 0.005272543907165527, 0.005268479824066162, 0.00543068790435791, 0.005451712131500244, 0.004999551773071289, 0.005257376194000244, 0.005280992031097412, 0.005440288066864014, 0.005332992076873779, 0.005283840179443359, 0.005238143920898437, 0.005415584087371826, 0.005429215908050537, 0.005433343887329102, 0.005259263992309571, 0.005292031764984131, 0.005340896129608154, 0.005253344058990478, 0.005330687999725342, 0.0053656001091003415, 0.005489120006561279, 0.005781311988830567, 0.0057079682350158695, 0.005606688022613525, 0.005571296215057373, 0.00565228796005249, 0.005763264179229737, 0.005723199844360352, 0.005710783958435058, 0.005598400115966797, 0.005547071933746338, 0.0056911039352416995, 0.005503007888793945, 0.005470208168029785, 0.005885216236114502, 0.005559008121490478, 0.00556166410446167, 0.005391039848327637, 0.005361663818359375, 0.0053309440612792965, 0.0052856321334838864, 0.005337344169616699, 0.005285855770111084, 0.005253151893615722, 0.005318655967712403, 0.005468255996704101, 0.005403679847717285, 0.005370304107666015, 0.00535920000076294, 0.0055409598350524905, 0.005597951889038086, 0.005573631763458252, 0.005423359870910645, 0.005391935825347901, 0.0053396477699279785, 0.0057560958862304685, 0.005466239929199219, 0.005472640037536621, 0.0055808000564575196, 0.005496096134185791, 0.005374112129211426, 0.005650752067565918, 0.006821248054504394, 0.005309247970581054, 0.0053023362159729005, 0.005296127796173096, 0.0053043198585510255, 0.005077375888824463, 0.005404319763183594, 0.005408768177032471, 0.005445600032806397, 0.005482880115509034, 0.005502655982971192, 0.005460256099700927, 0.00537824010848999, 0.0054898238182067875, 0.005333695888519287, 0.005311967849731446, 0.0054132800102233885, 0.005439743995666504, 0.005568416118621826, 0.005824480056762695, 0.005603456020355225, 0.005533408164978027, 0.005464352130889892, 0.005431392192840576, 0.005539391994476318, 0.005552351951599121, 0.00555622386932373, 0.0055582718849182125, 0.005433343887329102, 0.005575776100158691, 0.005616543769836425, 0.005609439849853516, 0.005599071979522705, 0.005853343963623047, 0.0055636482238769535, 0.0054477438926696774, 0.005331295967102051, 0.005398655891418457, 0.005279551982879638, 0.005256703853607178, 0.005305344104766845, 0.005315936088562011, 0.005304831981658936, 0.0053348479270935055, 0.005341087818145752, 0.00529856014251709, 0.005310463905334473, 0.005315616130828858, 0.005297376155853272, 0.005270400047302246, 0.005494944095611572, 0.0052453441619873045, 0.005327167987823486, 0.005253215789794922, 0.005355423927307129, 0.005453375816345215, 0.005355775833129883, 0.0052978239059448245, 0.0054198079109191895, 0.005316351890563965, 0.005314559936523438, 0.005344607830047607, 0.005275775909423828, 0.005343776226043701, 0.0054332160949707034, 0.005309855937957764, 0.005280543804168701, 0.005466047763824463, 0.00512937593460083, 0.005375616073608399, 0.005290976047515869, 0.005322080135345459, 0.005329567909240723, 0.005303775787353516, 0.005351359844207764, 0.005382688045501709, 0.005617248058319092, 0.005663424015045166, 0.005533184051513672, 0.0055418238639831545, 0.005617472171783447, 0.0055559039115905765, 0.005392352104187012, 0.005286303997039795, 0.005228576183319092, 0.00521670389175415, 0.005298431873321533, 0.0052139520645141605, 0.005230591773986816, 0.0052139520645141605, 0.005252863883972168, 0.005229023933410645, 0.005230751991271973, 0.005202112197875977, 0.005278687953948974, 0.005236544132232666, 0.005208992004394532, 0.005277696132659912, 0.005279263973236084, 0.005273888111114502, 0.0052778878211975095, 0.005283840179443359, 0.005268479824066162, 0.005398943901062012, 0.005375999927520752, 0.005277760028839111, 0.005212704181671143, 0.005308127880096435, 0.0052206401824951175, 0.005232480049133301, 0.005238944053649902, 0.005228544235229492, 0.0052408638000488285, 0.005246943950653076, 0.005304224014282226, 0.005230368137359619, 0.005599552154541015, 0.005486591815948487, 0.005773503780364991, 0.005395648002624512, 0.005311103820800781, 0.00522649621963501, 0.005406720161437988, 0.007766016006469726, 0.0053096961975097655, 0.005245728015899658, 0.00527180814743042, 0.005295839786529541, 0.005220384120941162, 0.005299903869628906, 0.005226655960083008, 0.004976640224456787, 0.0051970877647399905, 0.0052128958702087405, 0.005285888195037842, 0.005249023914337158, 0.005248000144958496, 0.0052715520858764645, 0.005233312129974365, 0.005207647800445556, 0.005250879764556885, 0.005237696170806885, 0.005224448204040527, 0.005181439876556396, 0.005240543842315674, 0.005212448120117188, 0.005224063873291016, 0.005310783863067627, 0.005218368053436279, 0.005232287883758545, 0.005248447895050049, 0.005247903823852539, 0.005236832141876221, 0.005330848217010498, 0.005312704086303711, 0.005246784210205078, 0.005274655818939209, 0.005253536224365234, 0.0052147841453552245, 0.005240384101867676, 0.00526310396194458, 0.005227200031280518, 0.005252255916595459, 0.005317599773406983, 0.005262400150299072, 0.005246880054473877, 0.005263936042785644, 0.005259488105773926, 0.005234816074371338, 0.005251071929931641, 0.005224480152130127, 0.0052326078414916995, 0.005250432014465332, 0.0052397122383117676, 0.005256703853607178, 0.0052144317626953126, 0.005251071929931641, 0.005197824001312256, 0.005221824169158936, 0.005327263832092285, 0.005251232147216797, 0.005228544235229492, 0.005254752159118652, 0.005242623805999756, 0.0052202558517456055, 0.005233151912689209, 0.0053127679824829105, 0.005238783836364746, 0.0053916797637939455, 0.005241536140441895, 0.005244607925415039, 0.005259583950042725, 0.0052796158790588375, 0.00527510404586792, 0.005088511943817139, 0.00527350378036499, 0.005271999835968017, 0.005260896205902099, 0.005222400188446045, 0.005268159866333008, 0.00525324821472168, 0.005214528083801269, 0.005248703956604004, 0.005226784229278565, 0.005215968132019043, 0.005230080127716064, 0.005251584053039551, 0.005238783836364746, 0.005220352172851562, 0.0052899842262268066, 0.005228384017944336, 0.005189792156219482, 0.005332992076873779, 0.005212160110473632, 0.005212160110473632, 0.00520911979675293, 0.005231584072113037, 0.005212160110473632, 0.005197824001312256, 0.005222400188446045, 0.005191967964172363, 0.005207776069641113, 0.005218495845794677, 0.005210080146789551, 0.005203999996185303, 0.0052260799407958984, 0.005193471908569336, 0.005199391841888428, 0.005278816223144531, 0.005220191955566406, 0.005212287902832031, 0.005203904151916504, 0.0053268160820007324, 0.0052013759613037105, 0.005208384037017822, 0.005271743774414062, 0.005228064060211182, 0.005199520111083984, 0.005235680103302002, 0.005223840236663818, 0.005200191974639893, 0.005218431949615478, 0.005210112094879151, 0.005195648193359375, 0.005214335918426513, 0.0052302079200744625, 0.005251455783843994, 0.005222623825073242, 0.0052631359100341795, 0.005242879867553711, 0.005185823917388916, 0.005249760150909424, 0.005186560153961181, 0.005183487892150879, 0.005264992237091064, 0.005220767974853516, 0.005183072090148926, 0.004925631999969483, 0.005192895889282226, 0.005238751888275147, 0.00518828821182251, 0.005187744140625, 0.0051866240501403805, 0.00522054386138916, 0.005200640201568603, 0.0052193598747253414, 0.005250016212463379, 0.0051948800086975095, 0.005206912040710449, 0.005230591773986816, 0.005180704116821289, 0.0051799359321594235, 0.005159327983856201, 0.00520579195022583, 0.005179391860961914, 0.005162720203399658, 0.005210400104522705, 0.005210112094879151, 0.005208000183105469, 0.005234752178192139, 0.005232480049133301, 0.005197984218597412, 0.005183680057525635, 0.005275455951690674, 0.005227871894836426, 0.005252863883972168, 0.005263743877410888, 0.005194399833679199, 0.005214079856872559, 0.0052408318519592285, 0.005236415863037109, 0.005179711818695068, 0.0052204480171203615, 0.005197343826293946, 0.0051849279403686525, 0.005196288108825684, 0.00520854377746582, 0.005205152034759522, 0.00517795181274414, 0.005218560218811035, 0.005205215930938721, 0.005191584110260009, 0.005239456176757812, 0.005232863903045655, 0.005223680019378662, 0.005216383934020996, 0.005259903907775879, 0.005177152156829834, 0.005197728157043457, 0.005248640060424805, 0.0052269759178161625, 0.005204031944274903, 0.0051979517936706545, 0.0051996479034423825, 0.0051833920478820805, 0.005202239990234375, 0.005214208126068115, 0.005197824001312256, 0.005217599868774414, 0.005253119945526123, 0.005162752151489257, 0.0052247681617736816, 0.005201695919036865, 0.005257472038269043, 0.0052427840232849125, 0.005235968112945556, 0.005248127937316894, 0.005237823963165284, 0.00520249605178833, 0.005218624114990234, 0.005228544235229492, 0.005193535804748535, 0.005195871829986572, 0.005207839965820312, 0.005232704162597656, 0.005203904151916504, 0.0052573118209838865, 0.005221536159515381, 0.0052269439697265625, 0.005212224006652832, 0.0052962880134582516, 0.005265471935272217, 0.0052432317733764645, 0.0052854719161987305, 0.005242208003997803, 0.0052473278045654295, 0.0052555837631225585, 0.005256383895874023, 0.005216447830200195, 0.0052271361351013184, 0.005259168148040771, 0.00520966386795044, 0.005237343788146972, 0.0052501440048217775, 0.005225279808044434, 0.005222432136535645, 0.00531660795211792, 0.005214208126068115, 0.005232639789581299, 0.005254655838012695, 0.005243199825286865, 0.005255167961120606, 0.005254816055297851, 0.005220928192138672, 0.0052399678230285645, 0.005241663932800293, 0.005252768039703369, 0.005216447830200195, 0.0052000322341918944, 0.0052408318519592285, 0.005221856117248535, 0.005253664016723633, 0.005216256141662597, 0.005240575790405273, 0.005226111888885498, 0.005245567798614502, 0.0052420802116394044, 0.005227295875549316, 0.005305535793304443, 0.005294911861419678, 0.005216256141662597, 0.005251232147216797, 0.005348896026611328, 0.005604864120483399, 0.005728767871856689, 0.005339136123657226, 0.006174719810485839, 0.005289599895477295, 0.005269599914550781, 0.005248799800872803, 0.005241343975067139, 0.005298175811767578, 0.005226624011993408, 0.005250944137573242, 0.005310719966888428, 0.005293248176574707, 0.005388031959533692, 0.0053209919929504395, 0.005282112121582031, 0.005320032119750976, 0.005798783779144287, 0.005392672061920166, 0.0054759359359741215, 0.005408063888549804, 0.0054421119689941405, 0.005431295871734619, 0.005436736106872559, 0.005401567935943603, 0.00540169620513916, 0.0054198079109191895, 0.005435488224029541, 0.00550707197189331, 0.00556387186050415, 0.005749087810516357, 0.00565993595123291, 0.0055708479881286625, 0.005675903797149658, 0.005707520008087158, 0.005700704097747803, 0.0055981121063232425, 0.005539999961853027, 0.005560383796691894, 0.005593952178955078, 0.005702591896057129, 0.005627007961273194, 0.005606272220611572, 0.005533696174621582, 0.0055380802154541015, 0.005522367954254151, 0.005548831939697266, 0.005569536209106446, 0.005645311832427978, 0.00566374397277832, 0.005610847949981689, 0.005437376022338868, 0.0053736639022827146, 0.005426591873168946, 0.005395040035247802, 0.005326848030090332, 0.00537395191192627, 0.005383840084075928, 0.005468480110168457, 0.005496863842010498, 0.005484543800354004, 0.0054906878471374515, 0.005484543800354004, 0.005518367767333984, 0.005724991798400879, 0.00569155216217041, 0.005462207794189453, 0.005486400127410889, 0.005445375919342041, 0.005543488025665283, 0.00569209623336792, 0.005556511878967285, 0.005652192115783691, 0.005482048034667969, 0.005448128223419189, 0.005453504085540771, 0.005513023853302002, 0.0056232957839965824, 0.005665760040283203, 0.0056044158935546875, 0.005661952018737793, 0.00562556791305542, 0.005561984062194824, 0.005500448226928711, 0.005627744197845459, 0.005917695999145508, 0.005674560070037842, 0.005596640110015869, 0.005516255855560303, 0.0053814082145690915, 0.005462751865386963, 0.005355584144592285, 0.0053450241088867185, 0.005416160106658936, 0.005639135837554932, 0.0057402877807617185, 0.0055567359924316405, 0.005443615913391113, 0.005477791786193848, 0.00555244779586792, 0.0056277761459350584, 0.0056423678398132325, 0.005641439914703369, 0.0056228160858154295, 0.0055577921867370605, 0.005554399967193604, 0.0057497601509094234, 0.005626880168914795, 0.005640543937683105, 0.005664351940155029, 0.005789023876190185, 0.005722911834716797, 0.0056191678047180175, 0.005606080055236816, 0.005684288024902344, 0.005619999885559082, 0.005630271911621094, 0.005586143970489502, 0.005583360195159912, 0.0055668802261352535, 0.005541888236999512, 0.005482336044311523, 0.005463488101959228, 0.005474944114685059, 0.005499008178710937, 0.005830944061279297, 0.0053056960105896, 0.005496479988098144, 0.005422080039978027, 0.005404672145843506, 0.005392064094543457, 0.005337408065795898, 0.005377439975738525, 0.005362271785736084, 0.005446720123291016, 0.005681375980377198, 0.005630688190460205, 0.00568342399597168, 0.005532608032226562, 0.005475168228149414, 0.005434976100921631, 0.005424863815307617, 0.005419936180114746, 0.0054878082275390625, 0.005521599769592285, 0.0054952001571655276, 0.005430335998535156, 0.005434304237365723, 0.005449728012084961, 0.005422880172729492, 0.005365119934082031, 0.005412000179290772, 0.005649824142456055, 0.005703328132629394, 0.0056267518997192385, 0.00551529598236084, 0.005459936141967774, 0.005442463874816895, 0.005399456024169922, 0.005410463809967041, 0.005502687931060791, 0.005513792037963867, 0.005478047847747803, 0.00540499210357666, 0.00555625581741333, 0.005732351779937744, 0.005436704158782959, 0.005614048004150391, 0.0055032958984375, 0.005623744010925293, 0.005784992218017578, 0.005710432052612305, 0.005737792015075684, 0.00557535982131958, 0.005709824085235596, 0.005525440216064453, 0.005477920055389405, 0.005519904136657715, 0.005490176200866699, 0.005538144111633301, 0.005533823966979981, 0.005490880012512207, 0.0055103998184204105, 0.005476831912994385, 0.005520927906036377, 0.005498784065246582, 0.005364511966705322, 0.0054107198715209965, 0.005371903896331787, 0.005285151958465576, 0.005688096046447754, 0.005588992118835449, 0.005592639923095703, 0.005468607902526856, 0.005525440216064453, 0.005451839923858642, 0.005455872058868408, 0.00571398401260376, 0.005529088020324707, 0.005572480201721191, 0.005821280002593994, 0.0060403838157653805, 0.00577785587310791, 0.005677536010742188, 0.005631392002105713, 0.005624127864837646, 0.005697824001312256, 0.005711775779724121, 0.005779551982879639, 0.00578547191619873, 0.005885600090026855, 0.005789152145385742, 0.005808703899383545, 0.005624256134033203, 0.005570559978485107, 0.005687295913696289, 0.005611199855804444, 0.005517632007598877, 0.0054243202209472655, 0.0053703680038452144, 0.005337247848510742, 0.005327072143554688, 0.0053861761093139645, 0.00555622386932373, 0.005566463947296142, 0.005538847923278809, 0.005415296077728272, 0.005361695766448974, 0.005362239837646485, 0.005447360038757324, 0.005349696159362793, 0.005309760093688965, 0.00531657600402832, 0.005264095783233643, 0.0052408318519592285, 0.005450816154479981, 0.005534656047821045, 0.0054941439628601076, 0.0053684477806091304, 0.005308671951293946, 0.005352640151977539, 0.005372479915618896, 0.005410367965698242, 0.005562816143035889, 0.005493792057037353, 0.005399519920349121, 0.005451807975769043, 0.005361184120178223, 0.005347775936126709, 0.005390143871307373, 0.0055809922218322755, 0.005825952053070068, 0.005263904094696045, 0.005511168003082275, 0.0054988799095153805, 0.005541888236999512, 0.005471360206604004, 0.0054767999649047855, 0.005482175827026367, 0.0055016961097717285, 0.005541888236999512, 0.005490719795227051, 0.005435008049011231, 0.005509471893310547, 0.005458943843841553, 0.005501440048217773, 0.0054563841819763184, 0.00538431978225708, 0.005452864170074463, 0.0053870720863342285, 0.0053283519744873045, 0.005314112186431885, 0.005314911842346191, 0.0052865281105041505, 0.00542080020904541, 0.005564671993255615, 0.005592576026916504, 0.00558735990524292, 0.005447711944580078, 0.005423423767089844, 0.0054204797744750975, 0.005386559963226318, 0.005389535903930664, 0.005389023780822754, 0.005519423961639404, 0.005634272098541259, 0.005537568092346191, 0.005502336025238037, 0.005610112190246582, 0.005505311965942383, 0.005487520217895508, 0.005463871955871582, 0.005438464164733887, 0.005418591976165772, 0.005404416084289551, 0.005333631992340088, 0.0053719358444213865, 0.005339136123657226, 0.00533894395828247, 0.005411007881164551, 0.005482272148132324, 0.005494368076324463, 0.005536384105682373, 0.005531775951385498, 0.005558144092559814, 0.005553567886352539, 0.0054462399482727054, 0.005535776138305664, 0.005467552185058594, 0.0054332160949707034, 0.005562719821929932, 0.005671103954315185, 0.0056934719085693355, 0.005641759872436524, 0.005732031822204589, 0.005318304061889648, 0.005591296195983887, 0.005571839809417725, 0.005614431858062744, 0.0055400958061218265, 0.005603072166442871, 0.005578752040863037, 0.005601024150848389, 0.00554531192779541, 0.005465216159820556, 0.005381919860839844, 0.005421055793762207, 0.005400415897369385, 0.005387455940246582, 0.0055075201988220215, 0.00529257583618164, 0.005347583770751953, 0.005404384136199951, 0.005566239833831787, 0.005705344200134277, 0.005734111785888672, 0.005567391872406006, 0.0053678078651428224, 0.0053137922286987304, 0.005336095809936523, 0.005276800155639649, 0.005247776031494141, 0.005303679943084717, 0.005304768085479737, 0.005286240100860596, 0.00538588809967041, 0.0053658242225646975, 0.005375264167785644, 0.005402560234069824, 0.005441472053527832, 0.005563519954681397, 0.005666463851928711, 0.00543120002746582, 0.005387968063354493, 0.0053844799995422365, 0.005400703907012939, 0.005537792205810547, 0.005482495784759522, 0.005416959762573242, 0.005445087909698486, 0.005423744201660156, 0.005482272148132324, 0.00556982421875, 0.005486688137054443, 0.005471007823944092, 0.005639135837554932, 0.005635072231292724, 0.0056113600730896, 0.005513567924499512, 0.005424960136413574, 0.005619967937469482, 0.0053942399024963375, 0.005428768157958984, 0.005386367797851562, 0.005331232070922852, 0.005334943771362305, 0.005324895858764648, 0.005301951885223389, 0.005069920063018799, 0.005314879894256592, 0.005540703773498535, 0.005608607769012451, 0.005528384208679199, 0.005474080085754394, 0.00542310380935669, 0.005393695831298828, 0.005314367771148682, 0.005271679878234863, 0.0052947840690612796, 0.0052952318191528324, 0.005307360172271729, 0.005419072151184082, 0.0055008001327514645, 0.005521471977233887, 0.005597184181213379, 0.0055328960418701174, 0.005595935821533203, 0.005476480007171631, 0.005515359878540039, 0.00556828784942627, 0.005486591815948487, 0.005426432132720947, 0.0054709758758544925, 0.005359615802764893, 0.005302239894866943, 0.005374239921569824, 0.005324543952941895, 0.0053637118339538575, 0.005394144058227539, 0.005372032165527344, 0.005407040119171143, 0.005287295818328858, 0.005272031784057617, 0.005322751998901368, 0.005285888195037842, 0.005283616065979004, 0.005280255794525146, 0.005348576068878174, 0.005296639919281006, 0.0053034558296203614, 0.00539737606048584, 0.00536572790145874, 0.0054291200637817385, 0.005400191783905029, 0.005394944190979004, 0.005560319900512695, 0.005602496147155762, 0.00560211181640625, 0.005695680141448975, 0.005558080196380615, 0.005596799850463867, 0.0056590080261230465, 0.00559497594833374, 0.005595295906066894, 0.005424352169036866, 0.005425951957702637, 0.005554175853729248, 0.0056501121520996095, 0.005589119911193848, 0.005474495887756348, 0.00555017614364624, 0.00501475191116333, 0.005307007789611817, 0.005322944164276123, 0.005328864097595215, 0.0053043198585510255, 0.005266687870025635, 0.005282432079315186, 0.00527782392501831, 0.0053203201293945315, 0.005292416095733643, 0.0053012480735778805, 0.005286911964416504, 0.005327936172485352, 0.005403327941894531, 0.005370272159576416, 0.005329792022705078, 0.00532374382019043, 0.00532480001449585, 0.0054028801918029785, 0.005366752147674561, 0.0053194561004638674, 0.005334752082824707, 0.005406847953796387, 0.0054150080680847165, 0.005520864009857178, 0.005522016048431396, 0.0053647680282592775, 0.005336351871490478, 0.0053060479164123535, 0.0053678078651428224, 0.005488639831542969, 0.005432511806488037, 0.005348512172698975, 0.005375648021697998, 0.005293375968933105, 0.005268159866333008, 0.005359936237335205, 0.00544326400756836, 0.005414912223815918, 0.005441120147705078, 0.005458335876464843, 0.005660128116607666, 0.0056977920532226565, 0.005727903842926025, 0.005786240100860596, 0.0057077760696411135, 0.005668352127075196, 0.00548038387298584, 0.005464191913604736, 0.005527999877929688, 0.005474239826202393, 0.005443583965301513, 0.005468416213989258, 0.005414720058441162, 0.005347487926483155, 0.005322207927703857, 0.0052986559867858884, 0.0053144640922546385, 0.0053678078651428224, 0.005310175895690918, 0.00537663984298706, 0.005631775856018067, 0.005568384170532226, 0.0055214080810546875, 0.005724319934844971, 0.005629792213439942, 0.005629216194152832, 0.0057494077682495115, 0.0055929598808288575, 0.005554368019104004, 0.005402624130249023, 0.005398528099060058, 0.005337088108062744, 0.0054448962211608885, 0.00552623987197876, 0.005389696121215821, 0.005328735828399658, 0.005276480197906494, 0.005248991966247558, 0.005264544010162354, 0.0053277120590209965, 0.005354976177215576, 0.005306335926055908, 0.005352000236511231, 0.005308351993560791, 0.005287487983703613, 0.005326560020446777, 0.005333087921142578, 0.005500703811645508, 0.005460256099700927, 0.0053536958694458, 0.005320223808288574, 0.005356416225433349, 0.005326496124267578, 0.0053005762100219725, 0.0053077759742736815, 0.005330624103546143, 0.005253056049346924, 0.005263904094696045, 0.005267199993133545, 0.005374752044677735, 0.005581952095031738, 0.005599552154541015, 0.005429247856140137, 0.0055157761573791505, 0.005314752101898194, 0.0052856321334838864, 0.005307839870452881, 0.0054358081817626955, 0.005390560150146485, 0.005498303890228272, 0.005425024032592774, 0.005444223880767822, 0.005435103893280029, 0.005507423877716065, 0.005478432178497314, 0.005367455959320068, 0.005327167987823486, 0.005320191860198975, 0.005449632167816162, 0.005322336196899414, 0.005485856056213379, 0.0053901119232177734, 0.005326720237731933, 0.005349696159362793, 0.005432479858398438, 0.0050178241729736325, 0.005277696132659912, 0.005289663791656494, 0.0053517441749572755, 0.00536575984954834, 0.005322815895080567, 0.005273344039916993, 0.005247168064117432, 0.0052899842262268066, 0.005337088108062744, 0.005449440002441406, 0.005685535907745362, 0.0059985918998718265, 0.005867519855499268, 0.005826560020446778, 0.00578172779083252, 0.0057710399627685545, 0.005748608112335205, 0.005746816158294678, 0.0056835198402404785, 0.0056761598587036135, 0.005699584007263184, 0.005796031951904297, 0.005676928043365478, 0.005626336097717285, 0.005672863960266113, 0.005572383880615235, 0.005527999877929688, 0.00545577621459961, 0.0055214080810546875, 0.005361663818359375, 0.005310400009155274, 0.005254816055297851, 0.005291808128356934, 0.005278048038482666, 0.0052165441513061525, 0.005492512226104736, 0.00551142406463623, 0.005343167781829834, 0.00535964822769165, 0.005297408103942871, 0.005296895980834961, 0.005325119972229004, 0.005265183925628662, 0.0052854399681091305, 0.005297535896301269, 0.005495935916900635, 0.005672575950622559, 0.005738272190093994, 0.005566336154937744, 0.005630527973175049, 0.005587135791778565, 0.005408448219299316, 0.005414559841156006, 0.005397151947021484, 0.0053860158920288085, 0.005349408149719239, 0.005315648078918457, 0.00528275203704834, 0.005418399810791016, 0.005460031986236572, 0.005444191932678223, 0.005426623821258545, 0.005340256214141846, 0.00556387186050415, 0.005488863945007324, 0.005500927925109863, 0.005345280170440674, 0.005418752193450928, 0.00542464017868042, 0.005534048080444336, 0.0057358717918396, 0.005736800193786621, 0.005816095829010009, 0.005698560237884521, 0.005691232204437256, 0.0056193599700927735, 0.00564086389541626, 0.005473983764648437, 0.005380095958709717, 0.0053268160820007324, 0.005341216087341309, 0.005326687812805176, 0.0053597760200500486, 0.005506400108337402, 0.005333663940429688, 0.0053455038070678714, 0.005314176082611084, 0.005314720153808594, 0.0053143038749694825, 0.005275904178619385, 0.005253024101257324, 0.005275296211242676, 0.005398975849151611, 0.005367008209228516, 0.005306784152984619, 0.005275296211242676, 0.005241856098175048, 0.005261023998260498, 0.005282911777496338, 0.005302207946777344, 0.0053155522346496585, 0.005453504085540771, 0.005680863857269287, 0.005891776084899903, 0.0058520641326904295, 0.005741727828979492, 0.005641056060791016, 0.005574656009674072, 0.005638144016265869, 0.005578495979309082, 0.00550870418548584, 0.005355552196502685, 0.00528659200668335, 0.005281727790832519, 0.005322751998901368, 0.005342656135559082, 0.005333568096160889, 0.005344768047332763, 0.005302432060241699, 0.005351967811584472, 0.005465919971466064, 0.005303743839263916, 0.005349760055541992, 0.005454304218292236, 0.0054802241325378415, 0.005073184013366699, 0.005455743789672851, 0.005568640232086182, 0.005574431896209717, 0.005541600227355957, 0.005525951862335205, 0.005571936130523682, 0.00550601577758789, 0.005465439796447754, 0.005462431907653808, 0.005544032096862793, 0.005397984027862549, 0.00543993616104126, 0.00539024019241333, 0.005515007972717285, 0.005378399848937988, 0.0052973442077636716, 0.005288767814636231, 0.005285888195037842, 0.0052715520858764645, 0.0052367358207702636, 0.005336927890777588, 0.005451295852661133, 0.005819136142730713, 0.005812255859375, 0.005937280178070069, 0.005826623916625977, 0.005701280117034912, 0.00569536018371582, 0.00558406400680542, 0.00560591983795166, 0.0055586881637573245, 0.00541868782043457, 0.005742623805999756, 0.005367904186248779, 0.005406911849975586, 0.005342720031738281, 0.00530847978591919, 0.005339583873748779, 0.0053136320114135745, 0.005258143901824951, 0.00525497579574585, 0.005311999797821045, 0.005245471954345703, 0.005255328178405762, 0.005348896026611328, 0.0052731199264526366, 0.005337791919708252, 0.005435328006744385, 0.005411136150360108, 0.005629119873046875, 0.005626688003540039, 0.005475999832153321, 0.0054926080703735355, 0.0054635519981384275, 0.005616511821746826, 0.0058635520935058595, 0.00572822380065918, 0.00564415979385376, 0.005487071990966797, 0.005461664199829102, 0.005510496139526367, 0.005443935871124268]",tokens/s,181.76259509774255,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,937.55392,6533.61152,0.0,6138.363904,6060.931072,s,1,7.04798779296875,7.04798779296875,0.0,7.04798779296875,7.04798779296875,7.04798779296875,7.04798779296875,[7.04798779296875],,kWh,5.2098881333222375e-06,5.626032814737453e-07,2.771391105993448e-06,8.543882520789431e-06,,MB,1266.315264,6556.680192,0.0,6150.946816,5419.87328,s,10,4.7371629638671875,0.47371629638671875,0.004476699079665267,0.4723685760498047,0.47963414916992186,0.4801933258056641,0.48064066711425785,"[0.478864501953125, 0.472303955078125, 0.47571908569335936, 0.4724331970214844, 0.4686256408691406, 0.47137091064453124, 0.4675152893066406, 0.4700679931640625, 0.4795098876953125, 0.48075250244140627]",tokens/s,540.4078389378739,kWh,1.3981853269446116e-05,1.5419492338972889e-06,9.305999508285457e-06,2.482980201162886e-05,tokens/kWh,10310190.950379074,MB,1314.455552,6556.680192,0.0,6150.946816,5419.87584,s,10,15.723749145507812,1.5723749145507813,0.005431990629563022,1.5700950317382811,1.578046875,1.5826051025390624,1.5862516845703125,"[1.5701103515625, 1.5695615234375, 1.5698424072265624, 1.5700797119140626, 1.587163330078125, 1.570642333984375, 1.5691669921875, 1.5683338623046874, 1.571814697265625, 1.577033935546875]",tokens/s,40.06678014066305,kWh,4.585031890888735e-05,5.0572313042450124e-06,3.0434060061514248e-05,8.13416102746466e-05,tokens/kWh,774511.3452669929,,s,630,15.721630178451525,0.02495496853722466,0.0005131725795462734,0.024830032348632812,0.025127049827575684,0.025381708717346192,0.02711325262069703,"[0.026511871337890625, 0.025247104644775392, 0.024973535537719728, 0.02480988883972168, 0.024764415740966796, 0.024729600906372072, 0.02481510353088379, 0.02480588722229004, 0.02476851272583008, 0.024821760177612305, 0.02490313529968262, 0.024819488525390624, 0.0248035831451416, 0.024856096267700196, 0.024773088455200196, 0.024805919647216797, 0.024835296630859375, 0.02483635139465332, 0.024773120880126953, 0.024930303573608398, 0.02491801643371582, 0.024852479934692383, 0.02475212860107422, 0.024674016952514647, 0.0247237434387207, 0.024739328384399413, 0.024746496200561522, 0.024885248184204102, 0.024731647491455077, 0.025380863189697265, 0.02478489685058594, 0.02510211181640625, 0.026751039505004882, 0.024944448471069337, 0.02479952049255371, 0.024698944091796876, 0.024936447143554686, 0.024993471145629883, 0.02494905662536621, 0.02490572738647461, 0.024930303573608398, 0.025268224716186522, 0.024894784927368165, 0.02480384063720703, 0.02477280044555664, 0.02490598487854004, 0.02489727973937988, 0.02484223937988281, 0.02477027130126953, 0.024883487701416015, 0.02485862350463867, 0.024841632843017578, 0.024773216247558592, 0.02512076759338379, 0.024887296676635744, 0.024786304473876954, 0.024807680130004884, 0.02481376075744629, 0.024899776458740235, 0.024860671997070313, 0.02483795166015625, 0.02478713607788086, 0.024811519622802734, 0.026420736312866212, 0.02518627166748047, 0.024943136215209962, 0.025980928421020507, 0.02473084831237793, 0.02465430450439453, 0.024874303817749025, 0.02502134323120117, 0.024809568405151368, 0.02507980728149414, 0.024715263366699217, 0.02511440086364746, 0.024717056274414062, 0.024793567657470702, 0.024771808624267578, 0.02476688003540039, 0.02479142379760742, 0.024803327560424804, 0.024653823852539062, 0.024774368286132813, 0.024833663940429688, 0.02474777603149414, 0.024738719940185547, 0.024805376052856445, 0.024799232482910157, 0.02480963134765625, 0.02488876724243164, 0.025104000091552735, 0.024797407150268555, 0.02473353576660156, 0.02482863998413086, 0.024741216659545897, 0.024762592315673827, 0.02534979248046875, 0.024746240615844725, 0.024817216873168946, 0.02505958366394043, 0.025047775268554687, 0.025038848876953124, 0.024999935150146483, 0.02518134307861328, 0.025051456451416015, 0.02494921684265137, 0.024891456604003905, 0.024960447311401367, 0.02489401626586914, 0.02480668830871582, 0.02482044792175293, 0.024786720275878905, 0.024817695617675783, 0.024772960662841795, 0.024715103149414063, 0.024765600204467775, 0.024867679595947264, 0.02487500762939453, 0.025149440765380858, 0.024788991928100586, 0.025161727905273438, 0.024827903747558593, 0.024750080108642578, 0.024723455429077147, 0.02471481513977051, 0.024836544036865235, 0.026320831298828125, 0.025217599868774414, 0.024973119735717773, 0.024823551177978517, 0.024680992126464844, 0.024773632049560547, 0.024742496490478515, 0.024780960083007814, 0.024723360061645508, 0.024755935668945312, 0.024758367538452147, 0.02473423957824707, 0.0247126407623291, 0.02512544059753418, 0.024872575759887695, 0.025110015869140623, 0.024699039459228515, 0.02473846435546875, 0.024847488403320312, 0.024779712677001953, 0.024749536514282227, 0.024756767272949218, 0.02486188888549805, 0.024802047729492186, 0.02471743965148926, 0.02478463935852051, 0.025382400512695313, 0.024787647247314453, 0.024759552001953126, 0.02478976058959961, 0.0247825927734375, 0.026972320556640624, 0.024827072143554688, 0.02478326416015625, 0.02475833511352539, 0.02491334342956543, 0.025279199600219727, 0.02505958366394043, 0.025096000671386717, 0.02517628860473633, 0.02507081604003906, 0.024971967697143556, 0.02488534355163574, 0.024922111511230468, 0.024920352935791014, 0.024870111465454103, 0.024807167053222657, 0.024735679626464845, 0.024741920471191406, 0.024772960662841795, 0.024772287368774414, 0.024762943267822267, 0.02483340835571289, 0.024795488357543947, 0.024812000274658203, 0.024816768646240234, 0.0247869758605957, 0.025086816787719728, 0.024774528503417968, 0.024797311782836916, 0.02480121612548828, 0.024856288909912108, 0.024807775497436523, 0.02648678398132324, 0.025312288284301758, 0.024957920074462892, 0.024856576919555663, 0.024792320251464845, 0.02478761672973633, 0.024711231231689453, 0.024697055816650392, 0.024694591522216796, 0.02477670478820801, 0.02471116828918457, 0.024754175186157225, 0.024721408843994142, 0.024846336364746095, 0.02490719985961914, 0.02485702323913574, 0.025407615661621093, 0.025269472122192382, 0.02475254440307617, 0.02475257682800293, 0.024698816299438476, 0.024849599838256835, 0.02482851219177246, 0.024840415954589842, 0.025183456420898438, 0.024984352111816405, 0.024938432693481446, 0.024846399307250976, 0.024762367248535155, 0.024788223266601562, 0.024834463119506836, 0.024843807220458983, 0.024883935928344727, 0.024803199768066407, 0.024883424758911133, 0.02489753532409668, 0.02492755126953125, 0.024953535079956055, 0.025007295608520507, 0.02508678436279297, 0.02504640007019043, 0.024998176574707032, 0.024865119934082032, 0.024933887481689454, 0.024904191970825194, 0.02489334487915039, 0.02483737564086914, 0.024918880462646485, 0.0249036808013916, 0.02513920021057129, 0.024915712356567383, 0.024928512573242186, 0.024936447143554686, 0.024899072647094726, 0.024871456146240235, 0.02484003257751465, 0.024935808181762695, 0.024906496047973632, 0.02488115119934082, 0.024886688232421874, 0.024799840927124023, 0.02483404731750488, 0.02489068794250488, 0.026496864318847655, 0.025480768203735352, 0.02512886428833008, 0.024951263427734374, 0.02487055969238281, 0.025016544342041015, 0.02478316879272461, 0.02481990432739258, 0.024792896270751954, 0.02489958381652832, 0.024879104614257814, 0.02476470375061035, 0.025194208145141603, 0.02476201629638672, 0.0247459831237793, 0.024940160751342772, 0.024969343185424805, 0.024922719955444338, 0.02488115119934082, 0.02487295913696289, 0.0248026237487793, 0.024867584228515625, 0.024837568283081056, 0.02483456039428711, 0.02476851272583008, 0.02468659210205078, 0.024766464233398438, 0.02478489685058594, 0.024782432556152343, 0.02476278305053711, 0.02485043144226074, 0.02483184051513672, 0.024778911590576172, 0.024731647491455077, 0.02477670478820801, 0.02482585525512695, 0.02490572738647461, 0.024965152740478516, 0.024997791290283202, 0.025106496810913086, 0.025067520141601563, 0.025051136016845704, 0.025087711334228515, 0.025051424026489258, 0.024963071823120117, 0.024921119689941405, 0.02487295913696289, 0.024930879592895507, 0.024928159713745117, 0.026630399703979492, 0.02582143974304199, 0.02493440055847168, 0.02533171272277832, 0.02492620849609375, 0.027625471115112304, 0.024797183990478516, 0.024819711685180663, 0.02500383949279785, 0.02479532814025879, 0.024860671997070313, 0.028368896484375, 0.03222073745727539, 0.02508336067199707, 0.026275840759277344, 0.025219072341918947, 0.02495078468322754, 0.024815616607666017, 0.024719295501708986, 0.024713279724121094, 0.024823808670043947, 0.025126848220825195, 0.024694847106933593, 0.024758399963378905, 0.024850240707397463, 0.024857824325561523, 0.024728063583374024, 0.024815967559814453, 0.024819711685180663, 0.02481705665588379, 0.024819999694824218, 0.024831647872924804, 0.024820383071899415, 0.024788991928100586, 0.024846336364746095, 0.024736831665039063, 0.02536134338378906, 0.02717081642150879, 0.024759328842163086, 0.02474492835998535, 0.02477670478820801, 0.025792255401611328, 0.024741920471191406, 0.024688831329345705, 0.024790592193603515, 0.02477507209777832, 0.024792448043823242, 0.024770303726196288, 0.02468550491333008, 0.02479017639160156, 0.024879968643188477, 0.024977407455444335, 0.02501593589782715, 0.025045120239257812, 0.025045120239257812, 0.024995967864990233, 0.024911359786987306, 0.024955392837524414, 0.024921472549438477, 0.024881023406982422, 0.024840959548950194, 0.024806400299072266, 0.02476255989074707, 0.024750911712646484, 0.024782848358154298, 0.024766368865966795, 0.024858720779418947, 0.024829376220703126, 0.02480508804321289, 0.02505561637878418, 0.024927776336669923, 0.024905887603759766, 0.024859424591064452, 0.024827711105346678, 0.024832191467285155, 0.02488118362426758, 0.024833375930786133, 0.02630463981628418, 0.025261152267456056, 0.02492860794067383, 0.024837888717651368, 0.024789663314819337, 0.024817440032958986, 0.024738016128540038, 0.024694400787353514, 0.024697216033935546, 0.024790687561035155, 0.024772960662841795, 0.024764415740966796, 0.02472915267944336, 0.024670656204223634, 0.02474563217163086, 0.02473119926452637, 0.024746431350708007, 0.0260380802154541, 0.025131263732910157, 0.024922399520874022, 0.024792255401611327, 0.025768415451049805, 0.02473206329345703, 0.02482912063598633, 0.024756767272949218, 0.02474732780456543, 0.02487388801574707, 0.024848543167114257, 0.024854272842407227, 0.025032800674438478, 0.02477791976928711, 0.024765247344970702, 0.024778751373291014, 0.024786943435668944, 0.024698879241943358, 0.024866783142089843, 0.024972543716430665, 0.025036735534667967, 0.025026655197143553, 0.025066240310668945, 0.02509004783630371, 0.02508732795715332, 0.024960800170898436, 0.024953664779663084, 0.02497952079772949, 0.024917280197143555, 0.0248306884765625, 0.0248789119720459, 0.024879199981689453, 0.024801599502563478, 0.024759967803955077, 0.024694911956787108, 0.02482585525512695, 0.024823007583618165, 0.024838943481445313, 0.024848384857177733, 0.024761375427246095, 0.02486739158630371, 0.02480169677734375, 0.024832000732421877, 0.024782848358154298, 0.024778751373291014, 0.02484592056274414, 0.02619171142578125, 0.025360736846923828, 0.02499564743041992, 0.02483308792114258, 0.024732608795166016, 0.024838048934936522, 0.024775936126708985, 0.024733983993530273, 0.024640064239501953, 0.024778751373291014, 0.02479033660888672, 0.024814271926879884, 0.024795135498046874, 0.024666112899780275, 0.024729280471801757, 0.024700511932373048, 0.024709856033325196, 0.024989696502685548, 0.024726943969726564, 0.02481622314453125, 0.02482784080505371, 0.024762432098388673, 0.024758272171020508, 0.02476054382324219, 0.024796031951904298, 0.024757152557373048, 0.025095487594604494, 0.024799936294555663, 0.024764415740966796, 0.024756223678588866, 0.024778751373291014, 0.024868864059448242, 0.024854528427124024, 0.025179967880249024, 0.024794815063476562, 0.024991327285766602, 0.02511350440979004, 0.025002080917358397, 0.024975263595581054, 0.02505891227722168, 0.025076128005981444, 0.024971263885498047, 0.02487612724304199, 0.024816287994384765, 0.024996095657348633, 0.024836095809936523, 0.02480476760864258, 0.024783456802368164, 0.02489139175415039, 0.02490163230895996, 0.02483171272277832, 0.02479158401489258, 0.024880895614624022, 0.024782848358154298, 0.024754400253295897, 0.024763551712036133, 0.02476915168762207, 0.025782272338867186, 0.02481942367553711, 0.024799167633056642, 0.02504243278503418, 0.02499260711669922, 0.024854528427124024, 0.0265031681060791, 0.02537433624267578, 0.024932607650756836, 0.024808736801147462, 0.025052000045776367, 0.02517967987060547, 0.02468502426147461, 0.024758272171020508, 0.02478816032409668, 0.024732479095458983, 0.024763519287109376, 0.02472435188293457, 0.024728927612304687, 0.02474665641784668, 0.024649471282958985, 0.024735391616821287, 0.024775264739990234, 0.02479705619812012, 0.025040639877319335, 0.02826278305053711, 0.02463871955871582, 0.024678176879882812, 0.024706016540527342, 0.024684576034545897, 0.02475619125366211, 0.02478489685058594, 0.024780799865722656, 0.024795135498046874, 0.024762048721313476, 0.024717248916625977, 0.024737951278686523, 0.0247743034362793, 0.024793439865112305, 0.02493462371826172, 0.024845792770385743, 0.024818208694458006, 0.024901248931884765, 0.02504105567932129, 0.025058591842651367, 0.025009088516235352, 0.02509619140625, 0.024913183212280275, 0.02492201614379883, 0.02492089653015137, 0.024799232482910157, 0.02483404731750488, 0.02493235206604004, 0.024871999740600587, 0.02482067108154297, 0.024770624160766603, 0.02481123161315918, 0.024815391540527344, 0.02476812744140625, 0.024998687744140626, 0.024737823486328126, 0.024907167434692384, 0.024803936004638674, 0.024814687728881835, 0.024715200424194336, 0.024844415664672853, 0.026590047836303712, 0.02488319969177246, 0.024778751373291014, 0.02622502326965332, 0.025255039215087892, 0.02494963264465332, 0.024844287872314453, 0.024718719482421873, 0.02480191993713379, 0.024805376052856445, 0.024754079818725586, 0.024707168579101563, 0.024690303802490234, 0.024712799072265625, 0.024783584594726564, 0.02471903991699219, 0.02483238410949707, 0.02470911979675293, 0.024726688385009767, 0.024740703582763673, 0.024786943435668944, 0.027172864913940428, 0.026746879577636717, 0.024756223678588866, 0.02530713653564453, 0.024762367248535155, 0.02467635154724121, 0.02469478416442871, 0.024791040420532227, 0.02495033645629883, 0.02492460823059082, 0.024848447799682618, 0.02481862449645996, 0.024826047897338867, 0.0248384952545166, 0.024784671783447267, 0.024803264617919922, 0.02479520034790039, 0.02523103904724121, 0.02497817611694336, 0.024965375900268556, 0.024946464538574218, 0.025161951065063477, 0.02512227249145508, 0.025318975448608397, 0.0249149112701416, 0.02495078468322754, 0.0248209285736084, 0.024819999694824218, 0.024832191467285155, 0.02489788818359375, 0.02485641670227051, 0.02481782341003418, 0.024765535354614256, 0.02472809600830078, 0.024803712844848634, 0.028482656478881836, 0.024695552825927735, 0.02481939125061035, 0.02480748748779297, 0.024835744857788087, 0.02481158447265625, 0.024740543365478516, 0.024983552932739257, 0.026660064697265624, 0.024795679092407225]",tokens/s,40.07218035592097,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,falcon,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 1001, in __init__ self.model = GemmaModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 780, in __init__ [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 780, in [GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 571, in __init__ self.mlp = GemmaMLP(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gemma/modeling_gemma.py"", line 167, in __init__ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 144.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 34.12 MiB is free. Process 141562 has 14.71 GiB memory in use. Of the allocated memory 14.59 GiB is allocated by PyTorch, and 1.69 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,dbrx,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1234, in __init__ self.transformer = DbrxModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1007, in __init__ self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 1007, in self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 787, in __init__ self.ffn = DbrxFFN(config=config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 764, in __init__ self.experts = DbrxExperts( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 703, in __init__ self.mlp = DbrxExpertGLU( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/dbrx/modeling_dbrx.py"", line 681, in __init__ self.w1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.97 GiB. GPU 0 has a total capacity of 14.74 GiB of which 1.17 GiB is free. Process 112099 has 13.57 GiB memory in use. Of the allocated memory 13.45 GiB is allocated by PyTorch, and 1.36 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stablelm,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3832, in from_pretrained model = cls(config, *model_args, **model_kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 920, in __init__ self.gpt_neox = GPTNeoXModel(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in __init__ self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 747, in self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 634, in __init__ self.attention = GPT_NEOX_ATTENTION_CLASSES[config._attn_implementation](config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 402, in __init__ super().__init__(config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 102, in __init__ self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.attention_bias) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py"", line 99, in __init__ self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_device.py"", line 79, in __torch_function__ return func(*args, **kwargs) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 150.00 MiB. GPU 0 has a total capacity of 14.74 GiB of which 132.12 MiB is free. Process 41914 has 14.61 GiB memory in use. Of the allocated memory 14.47 GiB is allocated by PyTorch, and 21.89 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt2,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.751424,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/common/benchmark_runner.py"", line 106, in execute_and_log_benchmark benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 104, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 182, in run_model_loading_tracking backend.load() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 71, in load self.load_transformers_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 151, in load_transformers_model self.load_transformers_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 126, in load_transformers_model_with_no_weights self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3826, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1565, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1731, in _check_and_enable_sdpa raise ValueError( ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, bfloat16-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,,bfloat16,True,False,,sdpa,,False,,False,forward,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,815.054848,1326.383104,0.0,931.135488,917.648384,s,1,7.24853369140625,7.24853369140625,0.0,7.24853369140625,7.24853369140625,7.24853369140625,7.24853369140625,[7.24853369140625],,kWh,9.548473929161597e-06,1.0427212493425665e-06,4.293058989995879e-06,1.4884254168500042e-05,,MB,1105.32608,1456.406528,0.0,1050.673152,1018.330112,s,10,0.6607934722900392,0.06607934722900391,0.001316728408823133,0.06577188873291015,0.06745689849853516,0.06821476974487305,0.06882106674194335,"[0.06897264099121093, 0.0657655029296875, 0.06409379577636719, 0.06572882843017579, 0.06587734222412109, 0.06715283203125, 0.06728848266601563, 0.064994140625, 0.06514163208007813, 0.06577827453613282]",tokens/s,3874.1302802645587,kWh,2.2091043958334123e-06,2.4347515192221887e-07,1.460139012721776e-06,3.912718560477407e-06,tokens/kWh,65427654.97776165,MB,1127.124992,1473.183744,0.0,1067.450368,1033.282048,s,10,11.373588623046876,1.1373588623046875,0.018928872592497294,1.143686767578125,1.158686865234375,1.1600309326171876,1.1611061865234376,"[1.161375, 1.15838818359375, 1.14709521484375, 1.1516285400390625, 1.153206298828125, 1.1402783203125, 1.10854150390625, 1.1196385498046875, 1.11889013671875, 1.114546875]",tokens/s,55.391488199546735,kWh,3.215545112375109e-05,3.5464884643910856e-06,1.5936513793477674e-05,5.163845338161984e-05,tokens/kWh,1220021.0477725924,,s,630,11.3675133228302,0.01804367194100032,0.0004886498748275712,0.018087935447692872,0.018502759170532224,0.01859877986907959,0.01939240159988404,"[0.018602048873901367, 0.01836595153808594, 0.018436063766479494, 0.018344032287597657, 0.018258527755737306, 0.01824291229248047, 0.01822313690185547, 0.01821571159362793, 0.018474176406860353, 0.01845030403137207, 0.018693023681640625, 0.018503679275512695, 0.01834156799316406, 0.018278112411499025, 0.018426464080810546, 0.018339136123657226, 0.018713279724121092, 0.018345951080322265, 0.018307167053222655, 0.01839052772521973, 0.01839689636230469, 0.018373600006103517, 0.01833679962158203, 0.01827299118041992, 0.01840127944946289, 0.018490720748901367, 0.018332319259643556, 0.018313472747802734, 0.01859584045410156, 0.018231039047241212, 0.018224512100219727, 0.018334335327148437, 0.018231296539306642, 0.018925695419311522, 0.018544511795043947, 0.01851571273803711, 0.01840563201904297, 0.018528127670288087, 0.01841574478149414, 0.01842585563659668, 0.018329599380493163, 0.018364416122436524, 0.019517696380615235, 0.01843120002746582, 0.018443967819213865, 0.0187544002532959, 0.018328960418701173, 0.018360960006713868, 0.018145280838012694, 0.018983104705810546, 0.018695775985717773, 0.018256095886230467, 0.018345983505249023, 0.018284543991088868, 0.01828659248352051, 0.018501632690429686, 0.0181711368560791, 0.018123519897460937, 0.018309120178222657, 0.018300928115844727, 0.018783584594726562, 0.018365087509155272, 0.018380416870117187, 0.018537567138671874, 0.018504159927368164, 0.018549280166625978, 0.018623712539672852, 0.01839583969116211, 0.019228128433227538, 0.020404767990112305, 0.018491392135620118, 0.018616031646728516, 0.018491680145263673, 0.018509952545166016, 0.01833888053894043, 0.018274112701416014, 0.01834623908996582, 0.01821891212463379, 0.01858236885070801, 0.01846681594848633, 0.01826201629638672, 0.018351776123046875, 0.018395456314086914, 0.018472991943359374, 0.018345504760742187, 0.018198335647583008, 0.018132768630981445, 0.017873056411743166, 0.018178335189819338, 0.01828316879272461, 0.018507551193237305, 0.018448640823364258, 0.01831500816345215, 0.0190928955078125, 0.018149215698242186, 0.018524448394775392, 0.018030656814575195, 0.018165151596069337, 0.018405567169189452, 0.018248512268066407, 0.018253311157226563, 0.018196672439575196, 0.01806982421875, 0.01813043212890625, 0.017992191314697266, 0.0184237117767334, 0.018450527191162108, 0.01842492866516113, 0.01839606475830078, 0.018404832839965822, 0.018065471649169922, 0.018008544921875, 0.018055200576782227, 0.01806035232543945, 0.01815750312805176, 0.018205280303955077, 0.01822774314880371, 0.01811622428894043, 0.01825404739379883, 0.018325504302978517, 0.018348031997680665, 0.018665184020996095, 0.018236928939819336, 0.01837148857116699, 0.018499456405639648, 0.018391040802001952, 0.01832476806640625, 0.018405664443969728, 0.018299232482910155, 0.01825391960144043, 0.01830611228942871, 0.018119232177734375, 0.017961536407470703, 0.01797715187072754, 0.01803264045715332, 0.01816761589050293, 0.018270399093627928, 0.01835811233520508, 0.01821126365661621, 0.018275360107421874, 0.01820128059387207, 0.018135040283203126, 0.018426048278808595, 0.0184237117767334, 0.019324832916259766, 0.018457599639892578, 0.018535423278808593, 0.018289920806884765, 0.017920896530151366, 0.018113920211791992, 0.01800595283508301, 0.0184102725982666, 0.018552608489990234, 0.018280448913574218, 0.01841971206665039, 0.018200128555297852, 0.018384992599487306, 0.018127199172973632, 0.01810371208190918, 0.017928319931030272, 0.018102975845336915, 0.018106271743774414, 0.017757728576660158, 0.017502080917358397, 0.018143711090087892, 0.01843731117248535, 0.018502656936645507, 0.018238271713256836, 0.018144287109375, 0.018056991577148438, 0.01793667221069336, 0.018529535293579102, 0.017931135177612304, 0.017847808837890625, 0.018087711334228516, 0.017950687408447265, 0.018184736251831056, 0.01821286392211914, 0.01818828773498535, 0.018397184371948243, 0.018085887908935547, 0.0179814395904541, 0.01852822494506836, 0.018233375549316408, 0.018313215255737304, 0.017970848083496093, 0.018266815185546875, 0.0178449592590332, 0.017841184616088867, 0.018251775741577148, 0.018103647232055663, 0.018148000717163087, 0.017978944778442384, 0.018205120086669923, 0.018142847061157225, 0.0183855037689209, 0.019420000076293947, 0.01832441520690918, 0.018442176818847657, 0.018222463607788085, 0.018020832061767578, 0.018223072052001955, 0.018020511627197266, 0.018534496307373048, 0.018228607177734377, 0.01834409523010254, 0.018298847198486328, 0.018164319992065428, 0.018437536239624023, 0.01828096008300781, 0.018295936584472657, 0.01809702491760254, 0.018120447158813478, 0.018286144256591797, 0.018243839263916015, 0.018163839340209962, 0.01805958366394043, 0.01799734306335449, 0.01784009552001953, 0.018194944381713866, 0.01821392059326172, 0.018659872055053713, 0.018347904205322264, 0.018702911376953124, 0.018316640853881835, 0.01809270477294922, 0.018299104690551758, 0.018269983291625977, 0.018524160385131837, 0.018271392822265625, 0.018383808135986328, 0.018132896423339845, 0.017944639205932617, 0.01784419250488281, 0.018128543853759765, 0.018186208724975585, 0.01803228759765625, 0.018426080703735352, 0.01831164741516113, 0.018203935623168944, 0.018208511352539064, 0.018209184646606445, 0.018217536926269533, 0.017903615951538086, 0.01846428871154785, 0.01873673629760742, 0.018449407577514648, 0.018370431900024416, 0.018280031204223633, 0.018104736328125, 0.018309120178222657, 0.018927104949951173, 0.0182457275390625, 0.018450464248657227, 0.018698400497436523, 0.018311071395874023, 0.01810188865661621, 0.017799360275268555, 0.017690303802490235, 0.018329919815063475, 0.018507680892944335, 0.01839321517944336, 0.018307039260864258, 0.018308448791503906, 0.018172576904296876, 0.018300384521484376, 0.018313760757446288, 0.018118656158447266, 0.018096128463745118, 0.018062976837158202, 0.018320991516113282, 0.018471616744995117, 0.018317407608032226, 0.018436031341552736, 0.018286048889160158, 0.01812950325012207, 0.018257919311523436, 0.018544544219970704, 0.018512256622314455, 0.018417375564575195, 0.018251136779785158, 0.018045215606689452, 0.018035295486450196, 0.01819241523742676, 0.018130176544189452, 0.01831545639038086, 0.018499872207641602, 0.018318912506103516, 0.018329599380493163, 0.018298431396484374, 0.01827315139770508, 0.018126848220825196, 0.018591360092163087, 0.018057760238647462, 0.017848031997680664, 0.018159263610839842, 0.01857174491882324, 0.018435903549194336, 0.018415456771850587, 0.01839344024658203, 0.018255168914794923, 0.01822585678100586, 0.01922649574279785, 0.018708608627319337, 0.018305023193359374, 0.018187711715698242, 0.01836031913757324, 0.018277952194213867, 0.018109439849853515, 0.018284799575805664, 0.018140224456787108, 0.01817865562438965, 0.018294591903686524, 0.01814556884765625, 0.018601184844970704, 0.01856492805480957, 0.018177824020385744, 0.018069856643676756, 0.01821273612976074, 0.018489343643188477, 0.018249631881713867, 0.01846895980834961, 0.018286720275878906, 0.018195743560791015, 0.018244192123413085, 0.01839923286437988, 0.018274303436279296, 0.018341888427734376, 0.018507360458374023, 0.018532960891723634, 0.01878611183166504, 0.02018284797668457, 0.018112703323364256, 0.01820057678222656, 0.01817190361022949, 0.018309343338012696, 0.01808380889892578, 0.018263872146606446, 0.01829043197631836, 0.01812879943847656, 0.018049375534057617, 0.018296831130981444, 0.018077695846557617, 0.017874399185180665, 0.018088159561157228, 0.018441984176635742, 0.01851375961303711, 0.023320735931396483, 0.01804319953918457, 0.01761859130859375, 0.017739616394042968, 0.017676544189453126, 0.01774608039855957, 0.018483072280883788, 0.017612800598144532, 0.017564352035522462, 0.01760220718383789, 0.017729663848876955, 0.017915903091430666, 0.018087167739868164, 0.017988351821899413, 0.01759436798095703, 0.01763759994506836, 0.017624927520751954, 0.01747551918029785, 0.017548799514770508, 0.01741423988342285, 0.017392032623291014, 0.01751795196533203, 0.017545087814331055, 0.017449728012084963, 0.01739072036743164, 0.01744985580444336, 0.017315200805664063, 0.0174881591796875, 0.017439071655273437, 0.01792745590209961, 0.017510143280029297, 0.018091936111450196, 0.017770015716552734, 0.01772172737121582, 0.01758969688415527, 0.017731679916381835, 0.01771404838562012, 0.01783488082885742, 0.017795711517333983, 0.017840415954589843, 0.018069759368896484, 0.017423744201660155, 0.017448448181152345, 0.01730191993713379, 0.017428064346313478, 0.017398591995239257, 0.01769683265686035, 0.017327871322631836, 0.017377536773681642, 0.017440479278564455, 0.01744540786743164, 0.017411840438842772, 0.017630912780761718, 0.017655136108398438, 0.017818592071533204, 0.017680383682250975, 0.017537023544311522, 0.01749545669555664, 0.017599071502685547, 0.018300832748413084, 0.017415456771850586, 0.01753152084350586, 0.017335903167724608, 0.017446624755859376, 0.0174553279876709, 0.01749260711669922, 0.01756777572631836, 0.018521663665771484, 0.017494112014770507, 0.01761110305786133, 0.017811456680297853, 0.01792201614379883, 0.01772265625, 0.017702816009521484, 0.017543327331542968, 0.017402559280395507, 0.01736000061035156, 0.01736342430114746, 0.017349023818969727, 0.017287168502807617, 0.017297407150268555, 0.017494016647338868, 0.01728339195251465, 0.017450815200805665, 0.017456480026245117, 0.01728156852722168, 0.01740595245361328, 0.017708959579467772, 0.017415584564208983, 0.01854879951477051, 0.017461824417114257, 0.01737481689453125, 0.017507904052734374, 0.017447872161865233, 0.017247871398925783, 0.01726268768310547, 0.017420576095581054, 0.01731279945373535, 0.017401056289672853, 0.017981184005737304, 0.0175710391998291, 0.017330976486206056, 0.017487871170043946, 0.017476640701293945, 0.017689119338989256, 0.01747603225708008, 0.017484960556030275, 0.01746614456176758, 0.017461280822753906, 0.017868831634521486, 0.017969120025634767, 0.02079350471496582, 0.018648895263671875, 0.017985599517822266, 0.017680383682250975, 0.017411775588989258, 0.017582399368286133, 0.01802239990234375, 0.017630495071411133, 0.017949344635009766, 0.017629247665405273, 0.017514432907104492, 0.017762208938598634, 0.01782707214355469, 0.017906591415405272, 0.017696767807006835, 0.017616287231445312, 0.017547168731689454, 0.018108383178710937, 0.01999331283569336, 0.01765376091003418, 0.017557504653930665, 0.01755945587158203, 0.017801023483276366, 0.017637088775634767, 0.017638015747070312, 0.01749100875854492, 0.017578367233276368, 0.017654144287109375, 0.017601728439331055, 0.017603519439697266, 0.017477344512939454, 0.017469728469848633, 0.01746086311340332, 0.017596960067749023, 0.01790755271911621, 0.01789743995666504, 0.01787718391418457, 0.017915903091430666, 0.017829727172851563, 0.017753503799438478, 0.017830751419067384, 0.017673471450805663, 0.017689088821411132, 0.017702911376953127, 0.017903167724609374, 0.018074047088623046, 0.017911104202270507, 0.017998559951782227, 0.017673696517944336, 0.017389184951782228, 0.017359552383422853, 0.01735055923461914, 0.01751219177246094, 0.017731456756591796, 0.018528959274291993, 0.01789673614501953, 0.017691360473632813, 0.01770086479187012, 0.01821468734741211, 0.017905439376831055, 0.017641183853149413, 0.01768726348876953, 0.017543167114257813, 0.017561279296875, 0.017733407974243165, 0.017960704803466798, 0.017903743743896486, 0.017914079666137697, 0.017827648162841797, 0.01804147148132324, 0.01772115135192871, 0.017637727737426757, 0.01756991958618164, 0.017615840911865233, 0.01762326431274414, 0.017822240829467772, 0.017873184204101562, 0.01782086372375488, 0.017714879989624024, 0.017674495697021484, 0.01761075210571289, 0.018047584533691406, 0.01782508850097656, 0.01776710319519043, 0.017827520370483397, 0.01782406425476074, 0.01798684883117676, 0.017783424377441407, 0.017854560852050783, 0.017834047317504882, 0.0176661434173584, 0.01764726448059082, 0.017645055770874024, 0.017521631240844725, 0.01752444839477539, 0.01758950424194336, 0.017572608947753907, 0.017613983154296874, 0.01789014434814453, 0.01771660804748535, 0.017483488082885742, 0.017656736373901367, 0.017628543853759764, 0.017766496658325196, 0.017629728317260743, 0.017671455383300783, 0.017918399810791016, 0.017917535781860353, 0.01805564880371094, 0.018364864349365233, 0.018130943298339842, 0.01801625633239746, 0.017974592208862303, 0.017605056762695314, 0.017854719161987304, 0.01759846305847168, 0.017757728576660158, 0.01793276786804199, 0.01787254333496094, 0.017768064498901368, 0.0176790714263916, 0.017541120529174805, 0.01760870361328125, 0.01790732765197754, 0.017666528701782227, 0.01757379150390625, 0.017600223541259764, 0.017612991333007814, 0.017760351181030275, 0.017522079467773437, 0.017424991607666016, 0.01745305633544922, 0.017502208709716797, 0.01778483200073242, 0.01775619125366211, 0.017782272338867186, 0.01877244758605957, 0.018358272552490236, 0.017922048568725587, 0.017746143341064453, 0.017565216064453125, 0.01750383949279785, 0.017511072158813475, 0.01744076728820801, 0.017622432708740234, 0.017857280731201172, 0.017608543395996094, 0.01753001594543457, 0.01749206352233887, 0.017695487976074217, 0.017648704528808595, 0.017670719146728516, 0.017641183853149413, 0.017678112030029298, 0.01777324867248535, 0.017604799270629884, 0.017543167114257813, 0.01736832046508789, 0.017274784088134765, 0.01750511932373047, 0.017573888778686524, 0.017704959869384765, 0.017737728118896484, 0.018524160385131837, 0.01763737678527832, 0.017358175277709963, 0.017361568450927733, 0.01739731216430664, 0.017336736679077147, 0.017293312072753905, 0.01738140869140625, 0.017378623962402345]",tokens/s,55.42109185258005,,