diff --git "a/perf-df-awq-1xT4.csv" "b/perf-df-awq-1xT4.csv" --- "a/perf-df-awq-1xT4.csv" +++ "b/perf-df-awq-1xT4.csv" @@ -1342,7 +1342,7 @@ ChildProcessError: Traceback (most recent call last): ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,"Traceback (most recent call last): +4bit-awq-gemv-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -1358,45 +1358,45 @@ ChildProcessError: Traceback (most recent call last): self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 426, in prefill + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1989, in generate + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2932, in _sample + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1141, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1189, in forward outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 944, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1001, in forward layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 677, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 734, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 500, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 556, in forward attn_output = _flash_attention_forward( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 214, in _flash_attention_forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( - File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 598, in apply + File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( @@ -1943,7 +1943,7 @@ ImportError: This modeling file requires the following packages that were not fo ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,4242.948096,5784.928256,0.0,5389.68064,5000.446464,s,1,11.290736328125,11.290736328125,0.0,11.290736328125,11.290736328125,11.290736328125,11.290736328125,[11.290736328125],,kWh,0.000129021958274969,1.4224751504962389e-05,5.5991711460007254e-05,0.00019923842123993865,,MB,1386.84416,5801.705472,0.0,5393.874944,4706.596864,s,10,29.3511875,2.93511875,0.0039120314747161915,2.9365336914062503,2.9385712646484374,2.938667834472656,2.938745090332031,"[2.9254248046875, 2.931824951171875, 2.933055419921875, 2.9367763671875, 2.93485791015625, 2.936291015625, 2.938044189453125, 2.9375986328125, 2.938764404296875, 2.9385498046875]",tokens/s,87.21963975052117,kWh,8.559857491208428e-05,9.441424095514069e-06,5.6893462181398234e-05,0.0001519334611889966,tokens/kWh,1684948.1213460315,MB,1390.985216,5801.705472,0.0,5393.874944,4876.091904,s,10,18.76966467285156,1.8769664672851563,0.0130080446991286,1.8743575439453126,1.8922148071289062,1.8949106872558594,1.8970673913574219,"[1.876090087890625, 1.8976065673828124, 1.872625, 1.886764404296875, 1.8672735595703125, 1.864760009765625, 1.8615469970703125, 1.89161572265625, 1.8606595458984374, 1.8907227783203124]",tokens/s,33.56479782567622,kWh,5.547119228875015e-05,6.118897369139303e-06,3.672366826780183e-05,9.831375792569128e-05,tokens/kWh,640805.5325035733,,s,630,18.766633272171003,0.029788306781223843,0.0004898927835957104,0.029722991943359374,0.030298616790771483,0.030615639686584473,0.03148992485046387,"[0.03096950340270996, 0.03009971237182617, 0.029877632141113282, 0.02973155212402344, 0.02972640037536621, 0.029688127517700197, 0.029478912353515626, 0.029432863235473634, 0.029373311996459962, 0.029357471466064454, 0.02940764808654785, 0.02943132781982422, 0.02942848014831543, 0.02953411293029785, 0.029824447631835938, 0.02971023941040039, 0.02960051155090332, 0.02959769630432129, 0.02936627197265625, 0.029566303253173828, 0.029614271163940428, 0.02994428825378418, 0.029580959320068358, 0.029720672607421873, 0.030179391860961913, 0.029755584716796873, 0.029554655075073242, 0.02964892768859863, 0.02953388786315918, 0.029495328903198243, 0.029458719253540037, 0.029462528228759766, 0.029461727142333985, 0.029479711532592774, 0.029829120635986327, 0.029886463165283202, 0.029970432281494142, 0.029914432525634766, 0.029776063919067383, 0.029704704284667968, 0.029783424377441407, 0.030356096267700194, 0.02977340888977051, 0.029850015640258788, 0.030011392593383788, 0.030130176544189452, 0.029877376556396485, 0.029818784713745116, 0.030100032806396483, 0.029915168762207033, 0.02983359909057617, 0.029857215881347657, 0.029904575347900392, 0.02983616065979004, 0.029847551345825195, 0.02993961524963379, 0.029698144912719725, 0.02967296028137207, 0.029788448333740235, 0.030008991241455077, 0.030212671279907226, 0.030191328048706053, 0.030187231063842773, 0.03135897636413574, 0.030502912521362304, 0.030570240020751954, 0.030398719787597655, 0.030327999114990234, 0.03054470443725586, 0.030469696044921876, 0.03066268730163574, 0.030642463684082032, 0.030802047729492188, 0.03066166305541992, 0.030614496231079102, 0.030616575241088868, 0.030299135208129883, 0.032126976013183595, 0.031229951858520507, 0.030052352905273437, 0.030100704193115235, 0.029686559677124025, 0.030021631240844726, 0.029566976547241212, 0.029665279388427734, 0.029405183792114258, 0.02957926368713379, 0.031498239517211916, 0.03035308837890625, 0.029557056427001953, 0.029846944808959962, 0.02959971237182617, 0.032943904876708986, 0.030569311141967773, 0.029965568542480468, 0.029805311203002928, 0.029853696823120116, 0.029566303253173828, 0.029633119583129884, 0.030142528533935547, 0.029800447463989257, 0.029472639083862304, 0.02965894317626953, 0.02961235237121582, 0.029681663513183593, 0.029406944274902345, 0.02962460708618164, 0.02956287956237793, 0.029652639389038084, 0.02941129684448242, 0.029808223724365233, 0.02966966438293457, 0.029827583312988282, 0.029548320770263672, 0.02968160057067871, 0.029566719055175782, 0.02982761573791504, 0.030015487670898438, 0.029894655227661132, 0.02970195198059082, 0.02978220748901367, 0.02991923141479492, 0.030111743927001954, 0.030238719940185548, 0.03034316825866699, 0.030159872055053712, 0.030890207290649414, 0.029956832885742187, 0.029879295349121093, 0.029702943801879884, 0.029702367782592772, 0.029800447463989257, 0.029861888885498046, 0.02952396774291992, 0.029296319961547853, 0.029714752197265625, 0.02963206481933594, 0.029530559539794922, 0.029636608123779298, 0.02962784004211426, 0.029520448684692384, 0.029980287551879883, 0.029688192367553712, 0.029493215560913087, 0.029382688522338867, 0.02958336067199707, 0.02956598472595215, 0.029539295196533203, 0.029499391555786132, 0.02962985610961914, 0.02927881622314453, 0.029560352325439455, 0.029409759521484374, 0.029534048080444335, 0.02934377670288086, 0.029237056732177736, 0.029284223556518555, 0.029366720199584962, 0.02939904022216797, 0.030125375747680663, 0.029455039978027345, 0.02959769630432129, 0.029564544677734374, 0.02948748779296875, 0.02968272018432617, 0.029496288299560545, 0.029392608642578123, 0.029499679565429687, 0.029429759979248047, 0.029572736740112304, 0.029713855743408204, 0.03208287811279297, 0.02960383987426758, 0.029594688415527343, 0.030145471572875976, 0.02990880012512207, 0.029892799377441406, 0.029881856918334962, 0.029942272186279296, 0.03026095962524414, 0.029951360702514647, 0.029805471420288086, 0.029875648498535155, 0.029905471801757812, 0.029892608642578124, 0.02984502410888672, 0.029669855117797853, 0.03002899169921875, 0.029940351486206055, 0.031337087631225585, 0.029970176696777345, 0.029931840896606447, 0.0302838077545166, 0.029593599319458007, 0.029812736511230467, 0.029747200012207032, 0.029900800704956054, 0.03031449508666992, 0.03041823959350586, 0.030325439453125, 0.030324735641479493, 0.030227807998657225, 0.030114463806152344, 0.030212095260620117, 0.030208000183105467, 0.030402559280395508, 0.030283008575439453, 0.03036851119995117, 0.030445568084716795, 0.030334047317504883, 0.03019254493713379, 0.030552064895629883, 0.03001747131347656, 0.02990246391296387, 0.02982956886291504, 0.0299233283996582, 0.03062579154968262, 0.029724672317504884, 0.029708127975463867, 0.029423776626586913, 0.02969375991821289, 0.029675264358520508, 0.030298559188842774, 0.02972876739501953, 0.029772863388061524, 0.02967033576965332, 0.0295731201171875, 0.0332861442565918, 0.029284351348876952, 0.029362112045288085, 0.030754144668579102, 0.02983919906616211, 0.029365119934082032, 0.02982707214355469, 0.029826879501342773, 0.029724159240722657, 0.029651647567749025, 0.029482656478881836, 0.02964240074157715, 0.02953696060180664, 0.029739007949829102, 0.02975849533081055, 0.02961712074279785, 0.02933964729309082, 0.029646848678588866, 0.029652992248535157, 0.029431264877319337, 0.02939753532409668, 0.029394336700439453, 0.029358688354492186, 0.02939289665222168, 0.029315071105957033, 0.03098467254638672, 0.029911327362060546, 0.029859840393066408, 0.029912927627563476, 0.029708063125610352, 0.029405120849609376, 0.02958585548400879, 0.02982707214355469, 0.029876224517822264, 0.02968288040161133, 0.02955961608886719, 0.029583200454711914, 0.029237407684326172, 0.029198335647583007, 0.029222911834716796, 0.029158687591552733, 0.02956723213195801, 0.029333984375, 0.029612031936645508, 0.02979840087890625, 0.02978201675415039, 0.02973695945739746, 0.030238719940185548, 0.029808639526367187, 0.02974070358276367, 0.02972003173828125, 0.02973731231689453, 0.029632896423339845, 0.029879680633544924, 0.029749343872070313, 0.0297192325592041, 0.030117887496948242, 0.029822975158691405, 0.029652639389038084, 0.029783456802368165, 0.029766592025756836, 0.029707263946533204, 0.029674495697021484, 0.02964409637451172, 0.029340351104736328, 0.02939084815979004, 0.029286399841308593, 0.02944000053405762, 0.029400127410888672, 0.02967238426208496, 0.029773344039916994, 0.029415903091430665, 0.029419519424438476, 0.029698047637939453, 0.029405183792114258, 0.029310976028442383, 0.029258783340454102, 0.02959459114074707, 0.02954854393005371, 0.029460479736328125, 0.02966691207885742, 0.029484735488891602, 0.029403871536254882, 0.029607936859130858, 0.029716480255126954, 0.029501440048217774, 0.0295280647277832, 0.029726303100585938, 0.030853151321411133, 0.029883615493774413, 0.029442655563354493, 0.029151424407958985, 0.029171712875366212, 0.029057024002075195, 0.029255327224731446, 0.02918844795227051, 0.0293621768951416, 0.029247488021850586, 0.02918796730041504, 0.02985487937927246, 0.02961302375793457, 0.02942060852050781, 0.029385663986206054, 0.029255327224731446, 0.029624671936035157, 0.029284351348876952, 0.02939289665222168, 0.029136159896850585, 0.0291232967376709, 0.029159423828125, 0.02931219291687012, 0.029299520492553712, 0.029270015716552734, 0.02919161605834961, 0.02924323272705078, 0.02916012763977051, 0.02932329559326172, 0.029521472930908205, 0.02920697593688965, 0.029454336166381836, 0.02927804756164551, 0.029296607971191407, 0.02933884811401367, 0.029554655075073242, 0.029312000274658204, 0.029400447845458984, 0.02935366439819336, 0.0294532470703125, 0.03081625556945801, 0.030511104583740234, 0.029421472549438478, 0.029513824462890626, 0.029353183746337892, 0.029487903594970704, 0.029321216583251954, 0.02960383987426758, 0.03000115203857422, 0.029868032455444334, 0.029829120635986327, 0.029673471450805664, 0.03219660949707031, 0.0295031681060791, 0.02977619171142578, 0.03146956825256347, 0.02997987174987793, 0.02957801628112793, 0.029691520690917968, 0.02970252799987793, 0.02981888008117676, 0.029999103546142578, 0.03035136032104492, 0.030580543518066407, 0.029860063552856444, 0.02958847999572754, 0.029158336639404297, 0.029320480346679688, 0.029205280303955077, 0.029267936706542968, 0.02910825538635254, 0.02918764877319336, 0.029170112609863283, 0.0293353271484375, 0.029296863555908204, 0.029435903549194335, 0.029288448333740235, 0.029367616653442383, 0.029307199478149415, 0.029347232818603516, 0.029346784591674804, 0.029419519424438476, 0.02940015983581543, 0.02955548858642578, 0.02935737609863281, 0.029406015396118163, 0.029179231643676758, 0.029278879165649415, 0.029410528182983398, 0.029233951568603516, 0.029152544021606445, 0.02926665687561035, 0.02934169578552246, 0.029290496826171877, 0.0294072322845459, 0.02935603141784668, 0.029582656860351563, 0.02929270362854004, 0.0306376953125, 0.02951875114440918, 0.029343360900878905, 0.029548095703125, 0.029406015396118163, 0.0295546875, 0.029812511444091798, 0.02999932861328125, 0.02982268714904785, 0.029860031127929686, 0.029743200302124025, 0.029814783096313476, 0.029812736511230467, 0.02979840087890625, 0.02980454444885254, 0.029782112121582032, 0.02979827117919922, 0.029855712890625, 0.030183488845825196, 0.030074880599975585, 0.029681663513183593, 0.029722623825073242, 0.02933884811401367, 0.02958620834350586, 0.029915136337280275, 0.029693952560424806, 0.0295133113861084, 0.029555103302001954, 0.031035104751586915, 0.029963808059692384, 0.029759328842163087, 0.029594112396240234, 0.029593088150024413, 0.030112672805786132, 0.030044160842895507, 0.029569023132324217, 0.02976563262939453, 0.029896703720092774, 0.029949888229370118, 0.029511743545532227, 0.029607648849487304, 0.02967296028137207, 0.029884992599487306, 0.029917407989501953, 0.029898752212524415, 0.029906784057617188, 0.029979808807373047, 0.030766080856323243, 0.02988627243041992, 0.029914688110351563, 0.02981747245788574, 0.029792255401611328, 0.030043872833251953, 0.02980892753601074, 0.02976972770690918, 0.03005606460571289, 0.029867935180664062, 0.029706592559814452, 0.02960358428955078, 0.029552928924560545, 0.03001968002319336, 0.030195711135864257, 0.029841407775878907, 0.0301527042388916, 0.029746431350708008, 0.029757183074951173, 0.03013734436035156, 0.029998815536499024, 0.02984783935546875, 0.029906944274902345, 0.02980601692199707, 0.02983788871765137, 0.02983907127380371, 0.029829248428344727, 0.029763744354248046, 0.029837312698364257, 0.030271488189697264, 0.029894655227661132, 0.029924352645874022, 0.030122047424316407, 0.031144800186157225, 0.03132953643798828, 0.030155616760253905, 0.030158016204833986, 0.030061344146728515, 0.030371871948242188, 0.032761856079101564, 0.030304256439208983, 0.03014441680908203, 0.02999510383605957, 0.0299233283996582, 0.030814207077026368, 0.03004185676574707, 0.02946668815612793, 0.029333696365356446, 0.029273216247558593, 0.029151647567749024, 0.029328927993774415, 0.029170591354370116, 0.029194271087646485, 0.02926710319519043, 0.029227872848510743, 0.02922822380065918, 0.029299135208129882, 0.029328927993774415, 0.029682527542114256, 0.02919628715515137, 0.02918400001525879, 0.029478143692016602, 0.029324031829833983, 0.029237056732177736, 0.029236480712890624, 0.02968057632446289, 0.02923520088195801, 0.02940889549255371, 0.029622623443603516, 0.0294932804107666, 0.029313024520874024, 0.029310976028442383, 0.02947068786621094, 0.029284032821655273, 0.029828672409057618, 0.02934864044189453, 0.029205503463745116, 0.029459455490112304, 0.029442047119140623, 0.02960588836669922, 0.029437952041625977, 0.02920243263244629, 0.029207775115966797, 0.029480991363525392, 0.029569311141967772, 0.029862079620361328, 0.029773536682128905, 0.029733440399169923, 0.02974515151977539, 0.029550592422485353, 0.029392192840576172, 0.029863744735717773, 0.030069631576538088, 0.029356000900268554, 0.029468704223632812, 0.029388799667358398, 0.029429279327392577, 0.030171615600585937, 0.0297574405670166, 0.029880319595336914, 0.029863935470581054, 0.030064640045166017, 0.029814783096313476, 0.029758655548095703, 0.02961827278137207, 0.02972336006164551, 0.02996019172668457, 0.03140940856933594, 0.03031260871887207, 0.03015875244140625, 0.030266048431396485, 0.030004480361938476, 0.02998944091796875, 0.029997247695922852, 0.029894655227661132, 0.029885824203491212, 0.02979193687438965, 0.030939680099487304, 0.02976358413696289, 0.02983772850036621, 0.02976083183288574, 0.029662912368774413, 0.029417695999145507, 0.029713184356689452, 0.029378559112548826, 0.02956185531616211, 0.029631488800048827, 0.031044736862182617, 0.029725536346435547, 0.02989468765258789, 0.030007295608520508, 0.029863935470581054, 0.029911039352416992, 0.030007295608520508, 0.03006780815124512, 0.03013929557800293, 0.029943231582641602, 0.02993414306640625, 0.030069791793823242, 0.030095935821533203, 0.0300097599029541, 0.029962240219116212, 0.029648895263671874, 0.030195711135864257, 0.029863199234008788, 0.030173023223876952, 0.030091968536376953, 0.03042729568481445, 0.029728031158447264, 0.030200351715087892, 0.030167167663574218, 0.029611200332641602, 0.029680543899536133, 0.02972876739501953, 0.029847423553466798, 0.029644927978515624, 0.03016499137878418, 0.0305930233001709, 0.030357503890991212, 0.029937440872192383, 0.03039254379272461, 0.030044160842895507, 0.030039968490600585, 0.030125343322753906, 0.02991391944885254, 0.030023679733276368, 0.030064640045166017, 0.030089216232299806, 0.02976959991455078, 0.029855871200561525]",tokens/s,33.57021959470082,,,1,64,1 -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,"Traceback (most recent call last): +4bit-awq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -1969,26 +1969,26 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 4000, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 4034, in from_pretrained dispatch_model(model, **device_map_kwargs) File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 494, in dispatch_model model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2871, in to + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2905, in to return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1174, in to return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 780, in _apply module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 780, in _apply module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 780, in _apply module._apply(fn) [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 854, in _apply self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1160, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 70.00 MiB. GPU +torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 70.00 MiB. GPU 0 has a total capacity of 14.75 GiB of which 29.06 MiB is free. Process 22856 has 14.72 GiB memory in use. Of the allocated memory 14.43 GiB is allocated by PyTorch, and 193.89 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,1516.470272,1531.904,0.0,1136.656384,1111.384576,s,1,8.6451328125,8.6451328125,0.0,8.6451328125,8.6451328125,8.6451328125,8.6451328125,[8.6451328125],,kWh,4.834146508333864e-05,5.307537180176209e-06,1.72866804960016e-05,7.093568275951646e-05,,MB,1583.77984,1601.110016,0.0,1193.279488,1029.126656,s,10,5.371971313476563,0.5371971313476562,0.0013318217229636975,0.53732275390625,0.5388457336425782,0.5390548858642578,0.5392222076416016,"[0.5392640380859375, 0.5355089721679688, 0.5380020751953125, 0.536339111328125, 0.537271240234375, 0.5346407470703125, 0.5373074951171875, 0.5387992553710937, 0.5373380126953125, 0.5375003662109376]",tokens/s,476.5475931671073,kWh,1.5963014583771957e-05,1.7604251500054838e-06,1.0564204357789467e-05,2.8287644091566905e-05,tokens/kWh,9049887.617764484,MB,1591.15264,1603.207168,0.0,1195.37664,1083.4944,s,10,10.96520068359375,1.096520068359375,0.007217433858219241,1.0955146484374998,1.1040343994140625,1.1077592041015625,1.1107390478515624,"[1.0915089111328125, 1.095031982421875, 1.084250244140625, 1.089641845703125, 1.1032066650390624, 1.0956351318359374, 1.1114840087890625, 1.10139501953125, 1.0976527099609374, 1.0953941650390624]",tokens/s,57.45448881228528,kWh,3.385353185497731e-05,3.7339509309515524e-06,1.7515929217410514e-05,5.510341200333938e-05,tokens/kWh,1143304.882757207,,s,630,10.962743856430054,0.01740118072449215,0.000302951764663302,0.017318960189819335,0.017811832809448244,0.01798636655807495,0.01838773988723755,"[0.018071903228759765, 0.017671455383300783, 0.018241312026977537, 0.01757689666748047, 0.017505407333374023, 0.01761087989807129, 0.01747020721435547, 0.01762486457824707, 0.017348672866821287, 0.017549375534057617, 0.017196640014648438, 0.017168479919433592, 0.017242528915405272, 0.0171144962310791, 0.017166015625, 0.017195648193359375, 0.017215232849121093, 0.017097280502319335, 0.017111040115356444, 0.017111040115356444, 0.017113088607788086, 0.01704140853881836, 0.017137664794921875, 0.017032768249511717, 0.017078720092773437, 0.01704140853881836, 0.017061567306518553, 0.01700486373901367, 0.017098367691040037, 0.01711552047729492, 0.017121280670166016, 0.01708790397644043, 0.017341024398803712, 0.0172728328704834, 0.017345792770385744, 0.017300224304199217, 0.017283071517944337, 0.017254400253295898, 0.017540895462036132, 0.01738947105407715, 0.017535263061523438, 0.01775209617614746, 0.01752239990234375, 0.017352800369262695, 0.01743276786804199, 0.01740540885925293, 0.01747420883178711, 0.01742425537109375, 0.017526784896850587, 0.01743257522583008, 0.017456287384033202, 0.017256736755371094, 0.01719353675842285, 0.01718230438232422, 0.017170848846435546, 0.017463424682617187, 0.01725632095336914, 0.017216991424560547, 0.01733603286743164, 0.01722800064086914, 0.017287776947021483, 0.017223039627075196, 0.017173120498657227, 0.01806537628173828, 0.017682432174682617, 0.017311744689941407, 0.017268735885620116, 0.017188800811767577, 0.017184831619262694, 0.017229824066162108, 0.01715590476989746, 0.017205408096313476, 0.017282751083374022, 0.01734223937988281, 0.017289567947387695, 0.017222944259643554, 0.017140256881713868, 0.017209760665893553, 0.017108991622924806, 0.01716419219970703, 0.017154144287109374, 0.017145856857299805, 0.017084415435791016, 0.017225439071655274, 0.017127712249755858, 0.017137664794921875, 0.01752992057800293, 0.01814409637451172, 0.018397279739379883, 0.017494016647338868, 0.017416128158569334, 0.0175350399017334, 0.017328128814697266, 0.017313440322875975, 0.017422399520874023, 0.017344736099243165, 0.017336383819580078, 0.017397184371948243, 0.017340383529663085, 0.01752943992614746, 0.017333984375, 0.01751273536682129, 0.017473535537719728, 0.017442815780639647, 0.01745715141296387, 0.01742233657836914, 0.017349632263183593, 0.01734668731689453, 0.0174703369140625, 0.01723948860168457, 0.01721196746826172, 0.017338367462158204, 0.01764892768859863, 0.018029279708862304, 0.01740924835205078, 0.017453855514526367, 0.017481727600097655, 0.01726249694824219, 0.01723196792602539, 0.017315839767456053, 0.0172476806640625, 0.017279552459716796, 0.017367040634155274, 0.01719705581665039, 0.01721139144897461, 0.017612800598144532, 0.018023584365844728, 0.017535839080810547, 0.01742624092102051, 0.017234111785888673, 0.017168479919433592, 0.017219488143920898, 0.01724006462097168, 0.017196672439575195, 0.01747609519958496, 0.01711280059814453, 0.01715203285217285, 0.017141632080078125, 0.017112319946289062, 0.017085439682006837, 0.017113088607788086, 0.01720729637145996, 0.01722287940979004, 0.01717737579345703, 0.017200767517089845, 0.017031551361083985, 0.017203168869018556, 0.017102367401123048, 0.01715177536010742, 0.017150688171386718, 0.0172806396484375, 0.017283456802368164, 0.01739548873901367, 0.01726076889038086, 0.01719705581665039, 0.017194080352783202, 0.01718771171569824, 0.017100831985473634, 0.017124671936035157, 0.01710736083984375, 0.017185056686401367, 0.017176544189453125, 0.017127712249755858, 0.017153535842895508, 0.01714201545715332, 0.017059648513793945, 0.017204864501953125, 0.01722764778137207, 0.017811487197875977, 0.017113759994506837, 0.01715974426269531, 0.01704185676574707, 0.017118623733520508, 0.017220191955566407, 0.017146879196166993, 0.017081344604492187, 0.017160192489624023, 0.017152000427246093, 0.017246208190917968, 0.017243295669555663, 0.01728803253173828, 0.01709174346923828, 0.017159008026123048, 0.017141759872436522, 0.01722777557373047, 0.017176576614379883, 0.017125375747680666, 0.01707827186584473, 0.01713968086242676, 0.018052223205566407, 0.01759228706359863, 0.01737615966796875, 0.017348031997680664, 0.01732268714904785, 0.01728499221801758, 0.01715545654296875, 0.01712745666503906, 0.01708435249328613, 0.017124000549316405, 0.017188863754272463, 0.017119232177734374, 0.017115135192871094, 0.017115135192871094, 0.01720729637145996, 0.017127424240112304, 0.017270368576049806, 0.017136032104492188, 0.01761484718322754, 0.017102495193481445, 0.017850719451904296, 0.017221120834350585, 0.017433088302612306, 0.01742438316345215, 0.01725984001159668, 0.017287103652954102, 0.01736163139343262, 0.0174366397857666, 0.01745033645629883, 0.01754390335083008, 0.017434623718261717, 0.017391616821289063, 0.017480928421020506, 0.017554208755493163, 0.01746112060546875, 0.01743827247619629, 0.017272640228271484, 0.01727769660949707, 0.01732419204711914, 0.017424224853515625, 0.01721343994140625, 0.017516544342041016, 0.017121280670166016, 0.017049280166625977, 0.01732793617248535, 0.017252864837646483, 0.01728499221801758, 0.0173384952545166, 0.01733987236022949, 0.017168928146362304, 0.017136959075927733, 0.017213600158691406, 0.017098623275756834, 0.01705027198791504, 0.0170949764251709, 0.017094335556030273, 0.017106943130493164, 0.017293312072753905, 0.017291263580322267, 0.0172227840423584, 0.017136512756347658, 0.017118976593017577, 0.017126815795898438, 0.018485248565673826, 0.01760665512084961, 0.01720319938659668, 0.01723756790161133, 0.01717673683166504, 0.017258783340454102, 0.017141727447509764, 0.01711836814880371, 0.017154016494750977, 0.01709542465209961, 0.01834614372253418, 0.017579296112060546, 0.017231712341308592, 0.01708121681213379, 0.017123327255249024, 0.017321184158325197, 0.017526784896850587, 0.01748227119445801, 0.017410655975341797, 0.01719606399536133, 0.017246847152709962, 0.01769267272949219, 0.01728335952758789, 0.017227487564086916, 0.01722572708129883, 0.017085504531860352, 0.017158432006835936, 0.017150623321533203, 0.01715193557739258, 0.017129535675048827, 0.017152000427246093, 0.01708201599121094, 0.01717692756652832, 0.017321983337402345, 0.017643007278442382, 0.017719999313354492, 0.017778495788574218, 0.017709056854248048, 0.01785379219055176, 0.017732255935668944, 0.01781760025024414, 0.017804479598999022, 0.017805408477783204, 0.01772755241394043, 0.01779574394226074, 0.01780531120300293, 0.017745439529418944, 0.017732063293457032, 0.017733631134033204, 0.017747167587280274, 0.017785152435302733, 0.017957088470458984, 0.017867263793945314, 0.01783782386779785, 0.017901216506958008, 0.017737888336181642, 0.017637567520141603, 0.017559551239013673, 0.01758415985107422, 0.01750217628479004, 0.01754854393005371, 0.01750502395629883, 0.017503583908081054, 0.01791801643371582, 0.017827327728271485, 0.01740451240539551, 0.017173759460449217, 0.017134239196777343, 0.017139711380004884, 0.01707827186584473, 0.017354751586914064, 0.017328479766845702, 0.017307296752929687, 0.017337568283081056, 0.01726748847961426, 0.01735443115234375, 0.0174466552734375, 0.017684255599975586, 0.01736390495300293, 0.01753487968444824, 0.017388959884643555, 0.01741423988342285, 0.017457599639892577, 0.01742438316345215, 0.017421344757080078, 0.0174748477935791, 0.017464096069335938, 0.017484703063964845, 0.017473440170288086, 0.01726473617553711, 0.017164287567138673, 0.01721548843383789, 0.017129472732543945, 0.017096864700317384, 0.018331071853637696, 0.017461664199829103, 0.017239839553833007, 0.01722390365600586, 0.017100799560546876, 0.017147775650024413, 0.017107072830200194, 0.017121280670166016, 0.017055744171142577, 0.01715782356262207, 0.017140031814575196, 0.017177824020385743, 0.017113887786865234, 0.01725619125366211, 0.017162303924560546, 0.017219072341918946, 0.017855167388916016, 0.0188272647857666, 0.01728102493286133, 0.017315839767456053, 0.017310911178588868, 0.017401952743530274, 0.01735875129699707, 0.017427263259887697, 0.017350656509399414, 0.01741823959350586, 0.017520639419555666, 0.017360895156860352, 0.017854463577270507, 0.017620384216308595, 0.017469919204711915, 0.017447040557861327, 0.01835385513305664, 0.017809791564941405, 0.017452032089233398, 0.017320032119750976, 0.01722051239013672, 0.017180192947387696, 0.017320415496826173, 0.017111040115356444, 0.017141759872436522, 0.017266687393188478, 0.017202880859375, 0.01722956848144531, 0.017360639572143555, 0.01715283203125, 0.01718681526184082, 0.017292287826538084, 0.017317888259887695, 0.01764614486694336, 0.017899967193603514, 0.017588224411010742, 0.017573888778686524, 0.017321119308471678, 0.017285984039306642, 0.017485567092895508, 0.017311296463012694, 0.01727964782714844, 0.017205535888671877, 0.01712892723083496, 0.017213312149047852, 0.017210912704467774, 0.017212127685546873, 0.017492128372192384, 0.017703168869018553, 0.017780479431152345, 0.017881088256835938, 0.01794867134094238, 0.018126848220825196, 0.01790140724182129, 0.01797318458557129, 0.017914079666137697, 0.017975296020507812, 0.018013248443603514, 0.0180982723236084, 0.01791472053527832, 0.018052959442138673, 0.01795907211303711, 0.017946624755859376, 0.017995424270629883, 0.017968832015991212, 0.01804876708984375, 0.018364383697509767, 0.018135583877563477, 0.018501535415649414, 0.018157567977905274, 0.017862752914428712, 0.017656543731689452, 0.017690303802490235, 0.01801398468017578, 0.01779475212097168, 0.017834367752075194, 0.017626527786254884, 0.01734137535095215, 0.017297216415405273, 0.018059072494506837, 0.01771254348754883, 0.01744361686706543, 0.017299455642700197, 0.017164287567138673, 0.01714995193481445, 0.017156095504760743, 0.017211519241333007, 0.017474559783935546, 0.01742323112487793, 0.01744691276550293, 0.017354272842407228, 0.017275360107421874, 0.017133567810058595, 0.017396928787231446, 0.01717740821838379, 0.01726233673095703, 0.017133279800415038, 0.017121824264526367, 0.017182048797607423, 0.017261215209960937, 0.01722777557373047, 0.017296512603759764, 0.017326976776123045, 0.017253568649291992, 0.01723846435546875, 0.017242303848266603, 0.017282560348510743, 0.017650367736816407, 0.01762713623046875, 0.017618207931518554, 0.01752751922607422, 0.017505632400512696, 0.017426816940307618, 0.018227487564086913, 0.018348031997680665, 0.018647039413452148, 0.017680383682250975, 0.018019744873046875, 0.01774620819091797, 0.017766719818115236, 0.01755340766906738, 0.017438528060913085, 0.01785843276977539, 0.017565599441528322, 0.01748543930053711, 0.01745590400695801, 0.017495264053344728, 0.017227680206298827, 0.0171539192199707, 0.017162975311279298, 0.017139999389648438, 0.01715171241760254, 0.017313888549804687, 0.01728531265258789, 0.01742367935180664, 0.017254816055297852, 0.01729676818847656, 0.017177440643310546, 0.01710905647277832, 0.017880191802978517, 0.01988083267211914, 0.017346879959106446, 0.01783184051513672, 0.017525184631347657, 0.017344512939453126, 0.01738515281677246, 0.017242431640625, 0.018280288696289063, 0.01773923110961914, 0.01762348747253418, 0.017535232543945314, 0.01759436798095703, 0.017837312698364256, 0.017338720321655274, 0.017437088012695313, 0.017469440460205078, 0.01718272018432617, 0.017327680587768554, 0.017777088165283204, 0.01745715141296387, 0.017827840805053712, 0.017487360000610352, 0.017259008407592775, 0.017072128295898437, 0.017136640548706054, 0.017177183151245116, 0.017160608291625978, 0.017164287567138673, 0.017118816375732423, 0.01711555290222168, 0.017301055908203126, 0.01716473579406738, 0.017256799697875976, 0.017256128311157228, 0.017405920028686524, 0.017127424240112304, 0.017217504501342774, 0.017242143630981446, 0.017357919692993166, 0.017632160186767578, 0.01756979179382324, 0.01738956832885742, 0.017454751968383787, 0.01741606330871582, 0.017473760604858397, 0.01743017578125, 0.017472095489501953, 0.017467391967773437, 0.01741619110107422, 0.01740595245361328, 0.017516544342041016, 0.017373184204101562, 0.017434623718261717, 0.01743257522583008, 0.017462848663330078, 0.017842559814453124, 0.017413440704345702, 0.01725926399230957, 0.017292448043823242, 0.017383871078491212, 0.01725257682800293, 0.017368511199951173, 0.01747430419921875, 0.017438720703125, 0.017546911239624024, 0.018438207626342774, 0.017780672073364256, 0.017487871170043946, 0.01743052864074707, 0.017295360565185547, 0.017293312072753905, 0.01725644874572754, 0.017231647491455077, 0.017193183898925782, 0.017575935363769533, 0.017473535537719728, 0.017373184204101562, 0.01721139144897461, 0.01719705581665039, 0.01722083282470703, 0.017181472778320314, 0.017340063095092773, 0.017256736755371094, 0.017203264236450196, 0.017094655990600584, 0.017310783386230467, 0.01718092727661133, 0.017407743453979493, 0.017252416610717775, 0.017240959167480467, 0.017309696197509765, 0.01753651237487793, 0.017418752670288085, 0.017814943313598633, 0.017590879440307617, 0.017547264099121093, 0.01724844741821289, 0.017250112533569336, 0.01718272018432617, 0.017252351760864256, 0.01720524787902832, 0.017315839767456053, 0.017207359313964842, 0.017289152145385744, 0.017252256393432617, 0.01744086456298828, 0.017215103149414063, 0.017277311325073243, 0.017108991622924806, 0.01718284797668457, 0.017245792388916017, 0.017448480606079102, 0.01757651138305664, 0.017518335342407227, 0.017438976287841797, 0.017479871749877928, 0.017518592834472657, 0.01747990417480469, 0.01756070327758789, 0.01747420883178711, 0.01745894432067871, 0.01742464065551758, 0.01766579246520996, 0.017550592422485353, 0.017503231048583985, 0.01744076728820801, 0.01750956726074219, 0.017289344787597655]",tokens/s,57.467364762926735,,,1,64,1 @@ -3423,7 +3423,7 @@ ChildProcessError: Traceback (most recent call last): ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,"Traceback (most recent call last): +4bit-awq-gemm-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -3439,45 +3439,45 @@ ChildProcessError: Traceback (most recent call last): self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 426, in prefill + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1989, in generate + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2932, in _sample + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1141, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1189, in forward outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 944, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1001, in forward layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 677, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 734, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 500, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 556, in forward attn_output = _flash_attention_forward( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 214, in _flash_attention_forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( - File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 598, in apply + File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( @@ -3635,7 +3635,7 @@ ImportError: This modeling file requires the following packages that were not fo ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,4244.074496,4725.866496,0.0,4347.396096,4328.833024,s,1,10.40515625,10.40515625,0.0,10.40515625,10.40515625,10.40515625,10.40515625,[10.40515625],,kWh,9.143228809164157e-05,1.0074670626374124e-05,2.9218912263984098e-05,0.00013072587098199979,,MB,1385.684992,5220.794368,0.0,4812.96384,4756.928512,s,10,3.9759581909179684,0.39759581909179686,0.004339503763737649,0.39798226928710934,0.40114043884277345,0.4012296890258789,0.4013010891723633,"[0.3852103271484375, 0.39959088134765625, 0.3977213439941406, 0.3977471923828125, 0.39811508178710936, 0.3976213684082031, 0.3996629943847656, 0.39784945678710937, 0.40112060546875, 0.40131893920898437]",tokens/s,643.869949600488,kWh,1.1604514901762577e-05,1.2797745318105492e-06,7.739621576307716e-06,2.0623911009880844e-05,tokens/kWh,12412776.60077913,MB,1390.194688,5325.651968,0.0,4917.82144,4876.091904,s,10,24.099277099609377,2.4099277099609377,0.016611488617423925,2.406385498046875,2.435732788085937,2.436072814941406,2.436344836425781,"[2.4356572265625, 2.4194453125, 2.400362548828125, 2.38584423828125, 2.391546875, 2.4111103515625, 2.419173828125, 2.40166064453125, 2.398063232421875, 2.436412841796875]",tokens/s,26.141862986015113,kWh,7.10939256199046e-05,7.841736990095445e-06,4.7047033364089756e-05,0.0001259826959740898,tokens/kWh,500068.67620103067,,s,630,24.096367031097394,0.038248201636662565,0.0005840847493881605,0.03814447975158691,0.03880594062805176,0.03910825805664063,0.04053592147827149,"[0.03988630294799805, 0.03840668869018555, 0.03834470367431641, 0.038246654510498045, 0.03829939270019531, 0.038160385131835936, 0.03832012939453125, 0.038454814910888674, 0.038746593475341796, 0.03876444625854492, 0.038707168579101565, 0.03896742248535156, 0.03877478408813476, 0.0388087043762207, 0.03926105499267578, 0.03917532730102539, 0.0384048957824707, 0.0386519660949707, 0.038948863983154294, 0.0385546875, 0.03867292785644531, 0.03873628616333008, 0.03865804672241211, 0.038645759582519534, 0.038594558715820314, 0.03981052780151367, 0.03885939025878906, 0.038725440979003906, 0.038705249786376954, 0.03861503982543945, 0.0384634895324707, 0.03856700897216797, 0.038832511901855465, 0.03856643295288086, 0.038632705688476564, 0.03870934295654297, 0.03874374389648438, 0.0384950065612793, 0.03887635040283203, 0.03868707275390625, 0.03877750396728516, 0.03865190505981445, 0.03861913681030273, 0.03878297424316406, 0.038648033142089845, 0.03893430328369141, 0.038563838958740236, 0.03856588745117188, 0.03850649642944336, 0.0385904655456543, 0.03837673568725586, 0.03853385543823242, 0.03856304168701172, 0.0385208969116211, 0.038505184173583985, 0.038292545318603516, 0.0384439697265625, 0.03852627182006836, 0.03840480041503906, 0.03856588745117188, 0.038313312530517576, 0.03844339370727539, 0.03874425506591797, 0.04010860824584961, 0.0384571533203125, 0.038365345001220706, 0.038363166809082035, 0.038400001525878906, 0.038043071746826175, 0.03810569763183594, 0.03804313659667969, 0.03813833618164063, 0.03805539321899414, 0.03809302520751953, 0.038185279846191404, 0.03826224136352539, 0.0385497932434082, 0.03872998428344727, 0.0388403205871582, 0.03875632095336914, 0.03999081420898438, 0.03880563354492188, 0.038694782257080076, 0.03879100799560547, 0.03895158386230469, 0.038798721313476565, 0.038906494140625, 0.0387665901184082, 0.03841740798950195, 0.03860329437255859, 0.0385192642211914, 0.03833184051513672, 0.03807289505004883, 0.038085697174072265, 0.03816255950927734, 0.037921600341796875, 0.03835903930664063, 0.038258689880371094, 0.0384901123046875, 0.03983564758300781, 0.03822182464599609, 0.03834265518188477, 0.03842031860351563, 0.03839619064331055, 0.0386712646484375, 0.03830172729492187, 0.03850131225585938, 0.03855513763427734, 0.0381671028137207, 0.03808777618408203, 0.03811568069458008, 0.03807897567749023, 0.038282527923583984, 0.038144577026367185, 0.03824025726318359, 0.037840991973876956, 0.038113601684570314, 0.037668609619140626, 0.03790028762817383, 0.03850569534301758, 0.038466335296630856, 0.03792086410522461, 0.037881343841552735, 0.03870105743408203, 0.03762422561645508, 0.03777667236328125, 0.03981721496582031, 0.038437950134277345, 0.03827727890014648, 0.038071071624755856, 0.03789020919799805, 0.03792844772338867, 0.03787139129638672, 0.03806675338745117, 0.038136863708496095, 0.038061119079589846, 0.037924766540527344, 0.03784198379516602, 0.037829566955566406, 0.03788576126098633, 0.037676288604736326, 0.03774105453491211, 0.0376583023071289, 0.037730175018310545, 0.04069055938720703, 0.03803750228881836, 0.03792822265625, 0.03773430252075195, 0.03785766220092773, 0.03785551834106445, 0.0376668815612793, 0.03769747161865234, 0.03771171188354492, 0.03800428771972656, 0.03832406234741211, 0.03832310485839844, 0.03865766525268555, 0.03998963165283203, 0.0388485107421875, 0.03868822479248047, 0.03837996673583984, 0.038370880126953125, 0.03806057739257813, 0.03812694549560547, 0.0381300163269043, 0.03788627243041992, 0.03785113525390625, 0.037756671905517576, 0.039511489868164065, 0.03910031890869141, 0.03817155075073242, 0.03819456100463867, 0.03834044647216797, 0.037929759979248044, 0.0385986557006836, 0.03774700927734375, 0.03783545684814453, 0.03778867340087891, 0.03760323333740234, 0.03770582580566406, 0.037506462097167965, 0.037450336456298826, 0.03768230438232422, 0.037553024291992185, 0.03746723175048828, 0.03767520141601562, 0.03746480178833008, 0.03764835357666016, 0.037700927734375, 0.03943695831298828, 0.03844927978515625, 0.03794521713256836, 0.03787926483154297, 0.037873985290527344, 0.03775929641723633, 0.03782236862182617, 0.037574142456054685, 0.03777177429199219, 0.037570110321044924, 0.03757686233520508, 0.037717952728271484, 0.03769507217407227, 0.03777817535400391, 0.03784479904174805, 0.037689342498779296, 0.037816513061523435, 0.03791462326049805, 0.0380682258605957, 0.03775692749023438, 0.037760128021240236, 0.03775084686279297, 0.03784377670288086, 0.03768025588989258, 0.03773952102661133, 0.03770259094238281, 0.03772649765014648, 0.03822444915771484, 0.03783292770385742, 0.037830528259277345, 0.037705726623535156, 0.03797196960449219, 0.03779379272460937, 0.0378853759765625, 0.037494495391845704, 0.03773436737060547, 0.03770457458496094, 0.03772825622558594, 0.037654655456542965, 0.03780799865722656, 0.03799039840698242, 0.037820415496826174, 0.03802259063720703, 0.03791452789306641, 0.03785897445678711, 0.03775129699707031, 0.03765913772583008, 0.03763529586791992, 0.038010913848876955, 0.03769184112548828, 0.03780588912963867, 0.03779372787475586, 0.0377960319519043, 0.038187713623046876, 0.03863062286376953, 0.03785776138305664, 0.037992095947265624, 0.03793340682983398, 0.03781964874267578, 0.037904735565185546, 0.03770937728881836, 0.03805987167358398, 0.03819996643066406, 0.04021148681640625, 0.03832924652099609, 0.038699073791503905, 0.03825836944580078, 0.03815667343139648, 0.03794326400756836, 0.03829555130004883, 0.038362430572509765, 0.03782457733154297, 0.03789507293701172, 0.03777097702026367, 0.03764223861694336, 0.03788822555541992, 0.037700927734375, 0.037638622283935545, 0.03766796875, 0.03770185470581055, 0.037595294952392576, 0.03768534469604492, 0.03786383819580078, 0.03818905639648437, 0.03787081527709961, 0.03784991836547852, 0.03778713607788086, 0.03807484817504883, 0.03786956787109375, 0.03766681671142578, 0.03788800048828125, 0.037743614196777346, 0.03772927856445313, 0.03771596908569336, 0.03785881423950195, 0.0384640007019043, 0.038537216186523435, 0.038020896911621097, 0.03811555099487305, 0.03781836700439453, 0.03777347183227539, 0.038047584533691406, 0.03799792098999023, 0.037843616485595706, 0.03809894561767578, 0.03787161636352539, 0.03801200103759766, 0.03791584014892578, 0.03806588745117188, 0.03821529769897461, 0.03797772979736328, 0.037817089080810544, 0.037797889709472655, 0.03780198287963867, 0.03774259185791016, 0.037617664337158206, 0.037566463470458986, 0.03775660705566406, 0.037746593475341796, 0.037681537628173827, 0.03757206344604492, 0.03765919876098633, 0.038626495361328124, 0.03801948928833008, 0.037843456268310545, 0.03787926483154297, 0.039798465728759766, 0.038054206848144534, 0.037996543884277346, 0.03787571334838867, 0.03911475372314453, 0.04053753662109375, 0.03810396957397461, 0.03764188766479492, 0.037623329162597655, 0.03759939193725586, 0.03758931350708008, 0.03749884796142578, 0.03788803100585938, 0.03773974227905273, 0.03757136154174805, 0.03773807907104492, 0.03775539016723633, 0.03795452880859375, 0.038351806640625, 0.03828940963745117, 0.03853107070922852, 0.03836108779907227, 0.0383631362915039, 0.03847782516479492, 0.038090431213378906, 0.03827948760986328, 0.03820451354980469, 0.03813849639892578, 0.03820982360839844, 0.038966815948486326, 0.03832835388183594, 0.03845084762573242, 0.03829993438720703, 0.03825644683837891, 0.03824828720092773, 0.03837628936767578, 0.03817798233032227, 0.03817158508300781, 0.03898518371582031, 0.03894723129272461, 0.038508544921875, 0.03822963333129883, 0.03832617568969727, 0.038614879608154296, 0.038594497680664065, 0.038267936706542965, 0.038340255737304686, 0.03799385452270508, 0.03803798294067383, 0.03807043075561523, 0.03779971313476563, 0.03841215896606445, 0.03844745635986328, 0.038219745635986326, 0.038139232635498045, 0.0380382080078125, 0.037929183959960935, 0.03762969589233398, 0.037812255859375, 0.03777526473999023, 0.0375048942565918, 0.041302433013916014, 0.03823193740844726, 0.04130393600463867, 0.03825017547607422, 0.038338623046875, 0.03788838577270508, 0.03812934494018555, 0.037859649658203126, 0.037795841217041014, 0.03792835235595703, 0.037845600128173826, 0.03811875152587891, 0.03835318374633789, 0.04014899063110351, 0.038982017517089844, 0.03846553421020508, 0.03836435317993164, 0.03831276702880859, 0.03852447891235351, 0.039739585876464846, 0.03888102340698242, 0.042092479705810544, 0.03893731307983399, 0.038783840179443356, 0.0387217903137207, 0.038727455139160157, 0.03894704055786133, 0.03883491134643555, 0.03866812896728516, 0.03850259017944336, 0.038526657104492185, 0.038314048767089846, 0.03835315322875977, 0.03828867340087891, 0.037996543884277346, 0.03847446441650391, 0.03823622512817383, 0.03853113555908203, 0.03848537445068359, 0.038362945556640625, 0.03821779251098633, 0.03850454330444336, 0.03844723129272461, 0.03806864166259766, 0.038118465423583985, 0.03853952026367188, 0.03877503967285156, 0.03843100738525391, 0.037851200103759766, 0.03785481643676758, 0.03780454254150391, 0.037840511322021486, 0.03774006271362305, 0.03775174331665039, 0.03763596725463867, 0.037621055603027344, 0.0377371826171875, 0.03761356735229492, 0.03811894226074219, 0.03829782485961914, 0.03799020767211914, 0.03773894500732422, 0.03769452667236328, 0.03765055847167969, 0.0378171501159668, 0.04027865600585938, 0.03822796630859375, 0.038106590270996096, 0.03833091354370117, 0.03809689712524414, 0.03810508728027344, 0.03808857727050781, 0.03826451110839844, 0.03812524795532227, 0.03823795318603516, 0.03814438247680664, 0.03816716766357422, 0.038061790466308594, 0.03793948745727539, 0.03801497650146484, 0.03798387145996094, 0.03818534469604492, 0.03800038528442383, 0.038000415802001954, 0.037927391052246094, 0.03798339080810547, 0.03793596649169922, 0.03781612777709961, 0.03841046524047852, 0.03817878341674805, 0.03800678253173828, 0.03772787094116211, 0.03782905578613281, 0.03805996704101562, 0.03775078582763672, 0.03801497650146484, 0.037869823455810546, 0.037827903747558594, 0.0376693115234375, 0.03751935958862305, 0.03756851196289063, 0.03771603012084961, 0.03783878326416015, 0.03796131134033203, 0.038262462615966795, 0.0380681266784668, 0.037955902099609376, 0.03813836669921875, 0.03823740768432617, 0.03843939208984375, 0.03843932723999023, 0.038466590881347656, 0.03827382278442383, 0.038983776092529294, 0.03838521575927734, 0.038814144134521486, 0.038449153900146485, 0.038178398132324216, 0.03815190505981445, 0.03814595031738281, 0.038195999145507815, 0.038144001007080076, 0.038202880859375, 0.03798681640625, 0.0378616943359375, 0.037957054138183594, 0.037918785095214846, 0.03773574447631836, 0.04011990356445312, 0.0381192626953125, 0.03823878479003906, 0.03851468658447266, 0.038152065277099606, 0.0378966064453125, 0.038001888275146486, 0.03797804641723633, 0.037839424133300784, 0.03799859237670898, 0.037607425689697264, 0.03766204833984375, 0.03761996841430664, 0.037714305877685546, 0.03780521774291992, 0.03830435180664062, 0.0377305908203125, 0.037806079864501956, 0.03760947036743164, 0.037713920593261716, 0.037736480712890624, 0.037966976165771486, 0.037808544158935545, 0.0377592658996582, 0.03776528167724609, 0.037774463653564454, 0.0377127685546875, 0.03815411376953125, 0.03797846221923828, 0.03833343887329101, 0.038305728912353516, 0.03793094253540039, 0.03780857467651367, 0.037781505584716796, 0.037738239288330075, 0.03768726348876953, 0.037722625732421876, 0.03758720016479492, 0.03773235321044922, 0.03796899032592774, 0.03801603317260742, 0.03845312118530273, 0.03800892639160156, 0.037981182098388674, 0.03815526580810547, 0.03800259017944336, 0.03988838577270508, 0.03797452926635742, 0.038051136016845705, 0.03795833587646484, 0.038109184265136715, 0.03817609786987305, 0.03806684875488281, 0.03793100738525391, 0.03782355117797852, 0.03766982269287109, 0.03876979064941406, 0.03907843017578125, 0.03795929718017578, 0.038951488494873045, 0.03811529541015625, 0.03792300796508789, 0.03901203155517578, 0.03984979248046875, 0.038410430908203126, 0.03827916717529297, 0.03800678253173828, 0.03833651351928711, 0.038473567962646484, 0.03889705657958984, 0.03856870269775391, 0.038585697174072266, 0.03876931381225586, 0.03855081558227539, 0.038214111328125, 0.038356639862060546, 0.038476192474365234, 0.03833875274658203, 0.03835087966918945, 0.03806560134887695, 0.038263294219970705, 0.03831609725952148, 0.03829961776733398, 0.039018497467041016, 0.038407585144042966, 0.03843913650512695, 0.03872943878173828, 0.03829520034790039, 0.03838431930541992, 0.038502464294433596, 0.03838518524169922, 0.03849084854125977, 0.04077363204956055, 0.039215103149414066, 0.03843100738525391, 0.03852873611450195, 0.03837952041625976, 0.03852848052978516, 0.03890230560302734, 0.0385846061706543, 0.03908512115478516, 0.03842838287353516, 0.0384071044921875, 0.03875430297851563, 0.040531967163085936, 0.038850208282470704, 0.038349151611328125, 0.03836723327636719, 0.038381568908691405, 0.038242305755615234, 0.039354366302490236, 0.03835324859619141, 0.03831772613525391, 0.038274368286132815, 0.03828547286987305, 0.04205145645141602, 0.03860137557983399, 0.03838304138183594, 0.03832883071899414, 0.038240478515625, 0.03950732803344727, 0.038975967407226565, 0.03836044692993164, 0.038675071716308594, 0.0391162223815918, 0.03843948745727539]",tokens/s,26.145020084851687,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,"Traceback (most recent call last): +4bit-awq-gemm-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -3661,26 +3661,26 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 4000, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 4034, in from_pretrained dispatch_model(model, **device_map_kwargs) File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 494, in dispatch_model model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2871, in to + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2905, in to return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1174, in to return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 780, in _apply module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 780, in _apply module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 780, in _apply module._apply(fn) [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 854, in _apply self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1160, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 70.00 MiB. GPU +torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 70.00 MiB. GPU 0 has a total capacity of 14.75 GiB of which 29.06 MiB is free. Process 21801 has 14.72 GiB memory in use. Of the allocated memory 14.43 GiB is allocated by PyTorch, and 193.89 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,1479.483392,1324.285952,0.0,945.815552,943.480832,s,1,8.6265927734375,8.6265927734375,0.0,8.6265927734375,8.6265927734375,8.6265927734375,8.6265927734375,[8.6265927734375],,kWh,3.7683497074990176e-05,4.149340682252034e-06,1.2175009740003628e-05,5.4007847497245837e-05,,MB,1564.012544,1487.863808,0.0,1080.03328,1046.51776,s,10,0.8680324630737304,0.08680324630737304,0.0006278083832273644,0.08660831832885743,0.08742984313964844,0.0878890167236328,0.08825635559082032,"[0.08834819030761719, 0.08587276458740234, 0.08732780456542968, 0.08653225708007813, 0.08689542388916016, 0.08658422088623047, 0.08647846221923829, 0.08643663787841797, 0.08663241577148438, 0.08692428588867188]",tokens/s,2949.1984561671334,kWh,2.7090827212576394e-06,2.987616894364072e-07,1.794060077222214e-06,4.801904487916261e-06,tokens/kWh,53312180.749161184,MB,1567.834112,1573.84704,0.0,1166.016512,1082.822656,s,10,15.914975585937501,1.5914975585937499,0.01135133220021555,1.58663525390625,1.6098780395507812,1.611726983642578,1.6132061389160157,"[1.5799921875, 1.613575927734375, 1.58172900390625, 1.5866124267578126, 1.59975390625, 1.6094671630859374, 1.5866580810546875, 1.582243408203125, 1.5903753662109374, 1.584568115234375]",tokens/s,39.58535761479076,kWh,4.6502290346242e-05,5.128885789732272e-06,2.1754403205977757e-05,7.338557934195202e-05,tokens/kWh,858479.2893225149,,s,630,15.912596687316864,0.025258089979868087,0.00046688073172256815,0.02511844730377197,0.025812412071228027,0.02593710994720459,0.02718702049255372,"[0.025034719467163086, 0.024907808303833007, 0.024838144302368165, 0.025008127212524413, 0.02488035202026367, 0.0248306884765625, 0.02478291130065918, 0.025324607849121095, 0.025113536834716798, 0.024991743087768553, 0.02496905517578125, 0.025039007186889648, 0.025044767379760743, 0.025059551239013673, 0.025648128509521483, 0.025131776809692384, 0.02503638458251953, 0.024948543548583984, 0.02489036750793457, 0.02489139175415039, 0.025034400939941408, 0.02510812759399414, 0.025182367324829102, 0.025321855545043945, 0.025200639724731445, 0.025067359924316406, 0.024954944610595702, 0.025072895050048827, 0.02503971290588379, 0.025040895462036132, 0.024928255081176756, 0.024930240631103516, 0.025098304748535156, 0.024954879760742187, 0.024938495635986328, 0.02514364814758301, 0.025018016815185548, 0.02494259262084961, 0.024954879760742187, 0.024958240509033204, 0.024918752670288084, 0.025057279586791992, 0.024899423599243162, 0.025041023254394532, 0.0249866886138916, 0.025082048416137696, 0.024988319396972655, 0.02512499237060547, 0.025110080718994142, 0.027017120361328126, 0.02555926322937012, 0.02500377655029297, 0.024928352355957032, 0.02496928024291992, 0.025163679122924804, 0.025143808364868164, 0.025118719100952147, 0.025092096328735353, 0.024989280700683594, 0.025563552856445314, 0.02497331237792969, 0.024944799423217773, 0.024831071853637695, 0.02504515266418457, 0.02492985534667969, 0.02506604766845703, 0.02511359977722168, 0.024988447189331055, 0.025075807571411132, 0.024991424560546874, 0.02512928009033203, 0.025149440765380858, 0.025065599441528322, 0.025064863204956055, 0.025038368225097658, 0.02518111991882324, 0.025296672821044922, 0.025329023361206054, 0.025458560943603516, 0.02570953559875488, 0.025644319534301758, 0.02564579200744629, 0.025659391403198242, 0.025868064880371095, 0.025870559692382812, 0.02560646438598633, 0.025517087936401367, 0.025543327331542968, 0.02554265594482422, 0.025857791900634766, 0.02614076805114746, 0.025762176513671874, 0.025982240676879882, 0.026845312118530272, 0.025885055541992188, 0.025980928421020507, 0.025977855682373048, 0.026009952545166016, 0.02598979187011719, 0.02595840072631836, 0.026200063705444337, 0.025925792694091798, 0.025945375442504883, 0.025894720077514647, 0.025886463165283202, 0.02568294334411621, 0.025758016586303712, 0.025810176849365235, 0.02565190315246582, 0.025452287673950195, 0.0257126407623291, 0.029024255752563476, 0.025606143951416017, 0.025350112915039063, 0.02531059265136719, 0.025352863311767577, 0.025362432479858397, 0.025382495880126952, 0.025399711608886717, 0.02550579261779785, 0.02539241600036621, 0.02544476890563965, 0.025430303573608398, 0.025444095611572265, 0.025325855255126952, 0.025179647445678712, 0.02539084815979004, 0.025233087539672853, 0.02516169548034668, 0.025106752395629883, 0.02521072006225586, 0.025090240478515626, 0.024993791580200195, 0.024963071823120117, 0.024869056701660158, 0.024831520080566407, 0.0249715518951416, 0.02495065689086914, 0.025054336547851563, 0.025242528915405273, 0.025345535278320314, 0.024920223236083984, 0.025040895462036132, 0.024726015090942383, 0.02497488021850586, 0.02477712059020996, 0.02488319969177246, 0.024841567993164063, 0.025072288513183594, 0.024809471130371095, 0.02491596794128418, 0.024825344085693358, 0.024951295852661134, 0.02479292869567871, 0.02481577682495117, 0.024796735763549804, 0.024842079162597657, 0.02481939125061035, 0.024941471099853514, 0.025402463912963868, 0.025666463851928712, 0.02488684844970703, 0.025008352279663085, 0.02474367904663086, 0.02497177505493164, 0.024999519348144532, 0.02503718376159668, 0.02476995277404785, 0.025167871475219726, 0.025025119781494142, 0.025328927993774415, 0.025344991683959962, 0.025577215194702147, 0.025436159133911132, 0.02553446388244629, 0.025482240676879882, 0.025600608825683595, 0.02544476890563965, 0.02550783920288086, 0.025241600036621094, 0.02554252815246582, 0.02533788871765137, 0.02530518341064453, 0.025028608322143556, 0.025152896881103514, 0.024932992935180663, 0.025255935668945313, 0.02512073516845703, 0.025476640701293945, 0.025128608703613282, 0.025056991577148437, 0.0250118408203125, 0.024964384078979492, 0.024946367263793946, 0.02500521659851074, 0.02510220718383789, 0.025455615997314454, 0.02520377540588379, 0.02523027229309082, 0.02487500762939453, 0.02509823989868164, 0.024999359130859374, 0.02502876853942871, 0.02515190315246582, 0.02488319969177246, 0.024844608306884765, 0.024989248275756836, 0.025072799682617188, 0.026908992767333984, 0.025842336654663085, 0.025084928512573244, 0.024902111053466798, 0.024891839981079102, 0.024878623962402344, 0.024973888397216797, 0.024964832305908204, 0.02484662437438965, 0.024862016677856445, 0.024950815200805665, 0.024883392333984376, 0.024816095352172853, 0.02498150444030762, 0.024954879760742187, 0.024877056121826172, 0.025038848876953124, 0.02485215950012207, 0.02921504020690918, 0.025169919967651368, 0.025318559646606446, 0.025064287185668947, 0.025574623107910158, 0.02497817611694336, 0.02527440071105957, 0.02488319969177246, 0.025444351196289062, 0.025257823944091796, 0.02506675148010254, 0.025123136520385742, 0.025166400909423826, 0.025045024871826173, 0.024977407455444335, 0.025083904266357423, 0.025174016952514647, 0.02500320053100586, 0.024950944900512695, 0.024939168930053712, 0.02521513557434082, 0.025284671783447267, 0.025455615997314454, 0.02527027130126953, 0.025545503616333006, 0.02532681655883789, 0.025987071990966795, 0.027271167755126953, 0.025520128250122072, 0.02533580780029297, 0.02533580780029297, 0.025298688888549806, 0.025176319122314453, 0.02519196891784668, 0.025247871398925783, 0.02591155242919922, 0.025763999938964843, 0.025853023529052735, 0.02573766326904297, 0.02585775947570801, 0.025801824569702148, 0.02584307289123535, 0.025835615158081054, 0.02587455940246582, 0.025843679428100588, 0.025784351348876952, 0.025806367874145506, 0.02584828758239746, 0.025843584060668945, 0.025843839645385742, 0.02559916877746582, 0.025612447738647463, 0.02540595245361328, 0.025315488815307617, 0.025293983459472657, 0.02538582420349121, 0.025254240036010744, 0.025355199813842773, 0.025237375259399415, 0.02511296081542969, 0.024868448257446288, 0.02510732841491699, 0.02513100814819336, 0.025051136016845704, 0.025049087524414062, 0.024958976745605467, 0.02503628730773926, 0.024993791580200195, 0.024918527603149415, 0.024922111511230468, 0.024900928497314453, 0.024953535079956055, 0.024901216506958007, 0.02500783920288086, 0.024883712768554687, 0.024952255249023437, 0.024791744232177733, 0.024956256866455077, 0.024902368545532228, 0.025132095336914063, 0.025125215530395508, 0.025335615158081054, 0.025115392684936524, 0.025878559112548827, 0.02568191909790039, 0.025593856811523437, 0.025266176223754884, 0.025395200729370116, 0.025288896560668947, 0.025277952194213867, 0.025433984756469727, 0.025473535537719725, 0.025283967971801758, 0.02520537567138672, 0.025049087524414062, 0.02510233688354492, 0.024973119735717773, 0.024968608856201172, 0.024916383743286134, 0.02497983932495117, 0.024987167358398437, 0.025274208068847656, 0.02499612808227539, 0.02508220863342285, 0.025595903396606445, 0.025273408889770508, 0.02525279998779297, 0.025016319274902343, 0.025122207641601564, 0.02485103988647461, 0.024952096939086912, 0.02486502456665039, 0.024994239807128907, 0.025068767547607423, 0.025146240234375, 0.025216896057128905, 0.025699392318725586, 0.025668607711791993, 0.025471071243286132, 0.025800607681274415, 0.025632768630981444, 0.02570035171508789, 0.025544704437255858, 0.02552217674255371, 0.025413856506347657, 0.02531011199951172, 0.025415775299072265, 0.026667808532714842, 0.025905311584472655, 0.028718847274780274, 0.026013792037963866, 0.025927007675170897, 0.026058496475219725, 0.025862367630004882, 0.025950624465942384, 0.02586038398742676, 0.025952255249023438, 0.025790239334106447, 0.025864416122436524, 0.025897151947021486, 0.025986112594604493, 0.025973440170288086, 0.0259748477935791, 0.025820735931396485, 0.02582271957397461, 0.025811487197875977, 0.02584003257751465, 0.025825279235839844, 0.025705663681030274, 0.025468896865844727, 0.025496416091918946, 0.025460960388183594, 0.025593568801879883, 0.025286943435668945, 0.02511257553100586, 0.02510438346862793, 0.025519807815551757, 0.025184095382690428, 0.025186784744262697, 0.025030399322509767, 0.024968992233276366, 0.024956512451171874, 0.024942943572998047, 0.025133600234985353, 0.02489753532409668, 0.02493235206604004, 0.024889055252075194, 0.02497532844543457, 0.024912448883056642, 0.025267967224121092, 0.025432064056396485, 0.02546892738342285, 0.025269823074340822, 0.025422271728515626, 0.025399007797241212, 0.025540895462036133, 0.025484928131103514, 0.025510271072387694, 0.025446399688720703, 0.02547235107421875, 0.025473279953002928, 0.02543657684326172, 0.025413631439208984, 0.02534726333618164, 0.025170751571655273, 0.024986656188964843, 0.025094432830810545, 0.025237279891967772, 0.025238079071044923, 0.025215328216552733, 0.024983552932739257, 0.025252960205078126, 0.025133983612060547, 0.025067520141601563, 0.024956384658813478, 0.025049631118774413, 0.024913919448852538, 0.025012224197387696, 0.024966495513916016, 0.025251935958862305, 0.025432640075683594, 0.025341951370239257, 0.02555904006958008, 0.0252192325592041, 0.025057024002075195, 0.025023679733276367, 0.024959903717041015, 0.024975360870361327, 0.02502364730834961, 0.025166688919067384, 0.024993791580200195, 0.024978752136230468, 0.025032928466796875, 0.025118175506591796, 0.025002143859863282, 0.025002464294433594, 0.02494803237915039, 0.025016191482543946, 0.02490665626525879, 0.02505904006958008, 0.025028736114501952, 0.0248240966796875, 0.024945632934570312, 0.02497737693786621, 0.024879903793334962, 0.025087871551513673, 0.025245824813842774, 0.025284608840942382, 0.024879007339477538, 0.025077407836914062, 0.02486534309387207, 0.025294527053833008, 0.025136480331420897, 0.02502454376220703, 0.02484876823425293, 0.024973760604858397, 0.02485862350463867, 0.024930303573608398, 0.024904767990112306, 0.02552707290649414, 0.024989280700683594, 0.024999807357788086, 0.026184640884399413, 0.02498739242553711, 0.0249007682800293, 0.025129215240478515, 0.02500003242492676, 0.025012319564819335, 0.02501696014404297, 0.025196319580078126, 0.02490777587890625, 0.025202688217163087, 0.024927295684814454, 0.025918239593505858, 0.024882720947265624, 0.02519126319885254, 0.024849216461181642, 0.02496406364440918, 0.02489753532409668, 0.02513715171813965, 0.027610271453857423, 0.025205120086669922, 0.025077407836914062, 0.025137983322143554, 0.024983104705810548, 0.02550239944458008, 0.02491916847229004, 0.025215103149414064, 0.02491993522644043, 0.025080448150634767, 0.024995840072631836, 0.025292448043823242, 0.02506515121459961, 0.02504361534118652, 0.024991743087768553, 0.025200895309448242, 0.024874752044677734, 0.02507776069641113, 0.02506435203552246, 0.025008127212524413, 0.024863935470581053, 0.024953664779663084, 0.025200639724731445, 0.02560153579711914, 0.024908287048339844, 0.025113983154296873, 0.02520083236694336, 0.02570230484008789, 0.02519094467163086, 0.025116895675659178, 0.02490083122253418, 0.025108863830566406, 0.02497926330566406, 0.025082239151000975, 0.024936704635620116, 0.025229055404663085, 0.025057024002075195, 0.02509644889831543, 0.024872671127319335, 0.025034624099731444, 0.024891807556152345, 0.024989696502685548, 0.025092063903808595, 0.02535958480834961, 0.025359167098999023, 0.025411584854125976, 0.025417472839355467, 0.025909503936767577, 0.02604412841796875, 0.02563039970397949, 0.02549177551269531, 0.02575103950500488, 0.025547552108764648, 0.025618080139160157, 0.025317216873168947, 0.02571683120727539, 0.025082271575927736, 0.0255729923248291, 0.02520307159423828, 0.025501407623291016, 0.02523311996459961, 0.025352640151977537, 0.025105600357055665, 0.025228096008300782, 0.025045120239257812, 0.025218496322631834, 0.025078399658203125, 0.02546886444091797, 0.025231327056884766, 0.02531724739074707, 0.025186752319335936, 0.025519840240478514, 0.025464832305908205, 0.025769983291625977, 0.025044544219970703, 0.025201087951660157, 0.024848384857177733, 0.024971263885498047, 0.02481295967102051, 0.02505379295349121, 0.0248668155670166, 0.025025535583496093, 0.025011167526245118, 0.024815616607666017, 0.024932319641113282, 0.024842336654663087, 0.024940479278564454, 0.024895488739013674, 0.024915552139282225, 0.024816032409667968, 0.02481705665588379, 0.02507632064819336, 0.024964927673339844, 0.024950944900512695, 0.024994911193847655, 0.024959936141967773, 0.025161727905273438, 0.02789990425109863, 0.025964544296264647, 0.02520579147338867, 0.02514633560180664, 0.025165824890136718, 0.024997888565063478, 0.025156639099121095, 0.025123807907104494, 0.02503014373779297, 0.025022111892700195, 0.0248919677734375, 0.02502176094055176, 0.024839136123657228, 0.025034751892089844, 0.02495052719116211, 0.025131263732910157, 0.024845951080322264, 0.025371007919311524, 0.026218496322631835, 0.025219072341918947, 0.025310880661010744, 0.024999935150146483, 0.02489904022216797, 0.025031391143798827, 0.024898015975952148, 0.024921791076660156, 0.025159679412841796, 0.02530873680114746, 0.02725641632080078, 0.025234272003173828, 0.024887584686279298, 0.025093215942382813, 0.024875648498535158, 0.025057279586791992, 0.02513043212890625, 0.024945215225219728, 0.024856512069702148, 0.02499180793762207, 0.024862592697143554, 0.025022592544555664, 0.025220191955566407, 0.02549852752685547, 0.02510643196105957, 0.025133056640625, 0.02519478416442871, 0.0249946231842041, 0.02509212875366211]",tokens/s,39.59127553972007,,,,, @@ -5531,7 +5531,7 @@ ValueError: The repository for Qwen/Qwen-7B contains custom code which must be e Please pass the argument `trust_remote_code=True` to allow custom code to be run. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,"Traceback (most recent call last): +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5547,45 +5547,45 @@ ChildProcessError: Traceback (most recent call last): self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 426, in prefill + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1989, in generate + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2932, in _sample + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1141, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1189, in forward outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 944, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1001, in forward layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 677, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 734, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 500, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 556, in forward attn_output = _flash_attention_forward( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 214, in _flash_attention_forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( - File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 598, in apply + File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( @@ -7393,7 +7393,7 @@ ChildProcessError: Traceback (most recent call last): ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,"Traceback (most recent call last): +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -7409,45 +7409,45 @@ ChildProcessError: Traceback (most recent call last): self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 426, in prefill + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1989, in generate + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2932, in _sample + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1141, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1189, in forward outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 944, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1001, in forward layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 677, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 734, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 500, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 556, in forward attn_output = _flash_attention_forward( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 214, in _flash_attention_forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( - File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 598, in apply + File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( @@ -7663,7 +7663,7 @@ ImportError: This modeling file requires the following packages that were not fo ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,4260.343808,4725.866496,0.0,4347.396096,4328.833024,s,1,10.356025390625,10.356025390625,0.0,10.356025390625,10.356025390625,10.356025390625,10.356025390625,[10.356025390625],,kWh,9.157256575830767e-05,1.0093641610077022e-05,3.0194468599975544e-05,0.00013186067596836025,,MB,1385.377792,5220.794368,0.0,4812.96384,4756.928512,s,10,3.487279876708985,0.3487279876708984,0.0018193859702139725,0.3491572570800781,0.3502679779052734,0.3507423263549805,0.3511218051147461,"[0.3448252868652344, 0.348823486328125, 0.34959466552734375, 0.34949102783203123, 0.3461040649414063, 0.3501625671386719, 0.3486292724609375, 0.3485438537597656, 0.34988897705078126, 0.3512166748046875]",tokens/s,734.0965137607261,kWh,1.0162405058045626e-05,1.1207336724002644e-06,6.739708456896455e-06,1.8022847187342344e-05,tokens/kWh,14204193.007850157,MB,1385.377792,5325.651968,0.0,4917.82144,4876.091904,s,10,20.489777587890625,2.0489777587890625,0.008619845570690534,2.0503623046875,2.05667080078125,2.0608374755859376,2.0641708154296876,"[2.03930029296875, 2.045240234375, 2.053543212890625, 2.049490478515625, 2.0404039306640627, 2.055744873046875, 2.05490625, 2.051234130859375, 2.065004150390625, 2.0349100341796875]",tokens/s,30.74703945895086,kWh,5.958664198445075e-05,6.572193137807543e-06,3.9495856309304044e-05,0.00010565469143156238,tokens/kWh,596282.0878693127,,s,630,20.486324972152726,0.03251797614627414,0.0007612176222767933,0.03237366485595703,0.03315205459594727,0.03342379589080811,0.03613603931427002,"[0.035639007568359374, 0.03324729537963867, 0.03235619354248047, 0.0322116813659668, 0.031927967071533205, 0.03177846336364746, 0.03207443237304688, 0.038157535552978517, 0.03178780746459961, 0.032153472900390626, 0.03230047988891602, 0.03191263961791992, 0.031971168518066403, 0.03236470413208008, 0.032218753814697264, 0.032127361297607425, 0.03240140914916992, 0.03218227386474609, 0.03200579071044922, 0.03203855895996094, 0.03194540786743164, 0.032053249359130856, 0.032290241241455075, 0.03203129577636719, 0.031835487365722656, 0.03188751983642578, 0.03196678352355957, 0.031987808227539063, 0.03245142364501953, 0.032950271606445314, 0.032727039337158204, 0.03289907073974609, 0.032745216369628904, 0.032471294403076174, 0.03255839920043945, 0.03265811157226563, 0.03229062271118164, 0.03224588775634766, 0.031983680725097656, 0.031940160751342775, 0.03215385437011719, 0.03196323204040527, 0.0320096321105957, 0.03179737663269043, 0.03211443328857422, 0.03211663818359375, 0.03205974578857422, 0.0320181770324707, 0.031938655853271485, 0.031979936599731446, 0.031891008377075196, 0.0320103988647461, 0.03204092788696289, 0.032134944915771485, 0.032299488067626954, 0.03216569519042969, 0.03223961639404297, 0.032168510437011716, 0.03228579330444336, 0.03259894561767578, 0.03264681625366211, 0.03253692626953125, 0.033017856597900394, 0.035425792694091796, 0.03315126419067383, 0.032007518768310546, 0.031842527389526365, 0.03201500701904297, 0.031959039688110355, 0.0318791675567627, 0.03249894332885742, 0.03259878540039062, 0.03222732925415039, 0.03187302398681641, 0.03175820732116699, 0.03207385635375976, 0.03207916641235352, 0.03220755386352539, 0.031894559860229495, 0.03235939025878906, 0.03206134414672852, 0.03217622375488281, 0.03223952102661133, 0.03214140701293945, 0.03227347183227539, 0.03219488143920898, 0.03218691253662109, 0.03237836837768555, 0.03206310272216797, 0.032183040618896486, 0.03219068908691406, 0.03306905746459961, 0.03334348678588867, 0.03278643035888672, 0.03265945434570312, 0.032716384887695314, 0.03251446533203125, 0.03231692886352539, 0.032395713806152346, 0.032114273071289064, 0.032653568267822265, 0.0324876480102539, 0.032493057250976565, 0.03252191925048828, 0.032672542572021485, 0.03240127944946289, 0.032382495880126955, 0.03235084915161133, 0.03223484802246094, 0.03234064102172852, 0.03281919860839844, 0.03272268676757813, 0.03274361419677734, 0.03265478515625, 0.03228860855102539, 0.03286505508422852, 0.03277113723754883, 0.03234624099731445, 0.032176959991455076, 0.03237459182739258, 0.03283779144287109, 0.03331689453125, 0.03285385513305664, 0.032729248046875, 0.03273519897460937, 0.03229699325561523, 0.036216320037841795, 0.03335014343261719, 0.032449569702148434, 0.03188607978820801, 0.03203299331665039, 0.03206553649902344, 0.0321638412475586, 0.03231462478637695, 0.0322790412902832, 0.032076030731201174, 0.032081504821777344, 0.03213059234619141, 0.034144382476806644, 0.03181849670410156, 0.03162521553039551, 0.031813503265380856, 0.03175436782836914, 0.03195199966430664, 0.032059391021728514, 0.03244940948486328, 0.032314910888671874, 0.03220323181152344, 0.032518207550048826, 0.032355422973632815, 0.03227267074584961, 0.03243040084838867, 0.0326003189086914, 0.03226947021484375, 0.03257987213134766, 0.03322118377685547, 0.033147998809814457, 0.033108318328857425, 0.03282796859741211, 0.032640033721923825, 0.032588768005371097, 0.032571392059326174, 0.03272000122070313, 0.032647998809814456, 0.032760929107666016, 0.03252691268920899, 0.032745376586914066, 0.03246950531005859, 0.032217086791992186, 0.032408737182617185, 0.03241363143920899, 0.03241257476806641, 0.03234521484375, 0.03267264175415039, 0.032806495666503906, 0.032814849853515626, 0.032473758697509764, 0.03246633529663086, 0.032422496795654294, 0.03221651077270508, 0.03238355255126953, 0.033067008972167966, 0.03248537445068359, 0.03236422348022461, 0.032701759338378905, 0.032608543395996094, 0.0327154541015625, 0.03258780670166016, 0.03640019226074219, 0.03617670440673828, 0.03307014465332031, 0.032084926605224606, 0.031891359329223636, 0.03199337577819824, 0.03230352020263672, 0.032064865112304684, 0.032035648345947264, 0.032059200286865236, 0.03207187271118164, 0.03202252960205078, 0.032086017608642575, 0.032378814697265626, 0.03218406295776367, 0.03213036727905273, 0.03215631866455078, 0.03211043167114258, 0.03228313446044922, 0.03362748718261719, 0.03225872039794922, 0.031915456771850585, 0.03183059120178223, 0.03186892890930176, 0.03211801528930664, 0.032494335174560546, 0.03249478530883789, 0.032358623504638674, 0.03208195114135742, 0.03270265579223633, 0.033196414947509766, 0.033159168243408206, 0.032916576385498046, 0.03274844741821289, 0.032651329040527345, 0.03278841781616211, 0.032356128692626954, 0.03229718399047852, 0.03240755081176758, 0.03256057739257812, 0.032459327697753906, 0.03224496078491211, 0.03219475173950195, 0.032292865753173826, 0.03252694320678711, 0.032286113739013675, 0.03212758255004883, 0.03240719985961914, 0.03268262481689453, 0.03280831909179688, 0.032513729095458986, 0.03250038528442383, 0.03233116912841797, 0.03254742431640625, 0.03260009765625, 0.03280892944335938, 0.03297894287109375, 0.03275161743164062, 0.03304009628295899, 0.032790817260742185, 0.03301990509033203, 0.03304652786254883, 0.03303628921508789, 0.03317929458618164, 0.036000831604003906, 0.03352876663208008, 0.032307201385498044, 0.031748096466064454, 0.031510528564453126, 0.03144655990600586, 0.03179772758483887, 0.03117465591430664, 0.03122790336608887, 0.032984447479248044, 0.03163587188720703, 0.03195721626281738, 0.03164329528808594, 0.031582143783569334, 0.03153686332702637, 0.032276798248291015, 0.03213750457763672, 0.03157923126220703, 0.03129644775390625, 0.031760448455810546, 0.031336448669433595, 0.031862367630004884, 0.03181814384460449, 0.031987712860107424, 0.03219971084594726, 0.03261539077758789, 0.03251609420776367, 0.03260822296142578, 0.03261648178100586, 0.032952320098876955, 0.03275980758666992, 0.032702049255371096, 0.033231231689453126, 0.03488771057128906, 0.03258163070678711, 0.03257753753662109, 0.03253609466552734, 0.032317920684814455, 0.03211209487915039, 0.032112255096435546, 0.03261942291259766, 0.032712703704833986, 0.0324956169128418, 0.03257872009277344, 0.03242448043823242, 0.03235667037963867, 0.03214745712280274, 0.03205734252929687, 0.03197664070129395, 0.03206979370117188, 0.03225462341308594, 0.032086017608642575, 0.03261644744873047, 0.032546817779541014, 0.033538047790527346, 0.03271254348754883, 0.0328287353515625, 0.03276476669311523, 0.03270041656494141, 0.03247228622436524, 0.03309648132324219, 0.03280691146850586, 0.03278643035888672, 0.03558729553222656, 0.03322959899902344, 0.032276481628417966, 0.032389118194580076, 0.03228057479858398, 0.032091392517089846, 0.031989952087402344, 0.03200467300415039, 0.032389118194580076, 0.03226217651367187, 0.03208182525634766, 0.03210655975341797, 0.03250790405273438, 0.03230515289306641, 0.03210627365112305, 0.03242825698852539, 0.032421886444091795, 0.03213840103149414, 0.032282623291015625, 0.03243708801269531, 0.0331960334777832, 0.0320654411315918, 0.03222127914428711, 0.03213721466064453, 0.03237273788452148, 0.03253247833251953, 0.032847713470458985, 0.032379039764404295, 0.03313449478149414, 0.033359329223632814, 0.03326828765869141, 0.03303430557250977, 0.03283955383300781, 0.032718177795410155, 0.03332995223999023, 0.03215145492553711, 0.03215574264526367, 0.03267776107788086, 0.03277987289428711, 0.032562942504882814, 0.032344863891601565, 0.03238092803955078, 0.03248892974853516, 0.03265337753295899, 0.032647647857666016, 0.03263078308105469, 0.03280441665649414, 0.032544670104980467, 0.03239369583129883, 0.03253868865966797, 0.032689407348632814, 0.03297267150878906, 0.03238307189941406, 0.03244521713256836, 0.0322979850769043, 0.032484352111816404, 0.03284377670288086, 0.03269126510620117, 0.032938270568847655, 0.03301161575317383, 0.033407390594482424, 0.033417247772216795, 0.03325164794921875, 0.03603647994995117, 0.033675392150878905, 0.03233078384399414, 0.0320296630859375, 0.03201827239990234, 0.03215980911254883, 0.0320533447265625, 0.032003265380859375, 0.032578369140625, 0.03212492752075195, 0.03206470489501953, 0.03218719863891602, 0.03214950561523437, 0.03206553649902344, 0.032196094512939456, 0.032133632659912106, 0.0318831672668457, 0.032153182983398435, 0.03222169494628906, 0.03230825424194336, 0.03218940734863281, 0.03252019119262695, 0.032108062744140624, 0.03200048065185547, 0.03249094390869141, 0.03220912170410156, 0.03221286392211914, 0.03247296142578125, 0.033043006896972656, 0.03310163116455078, 0.03328841781616211, 0.034219551086425784, 0.03278211212158203, 0.03285676956176758, 0.03281100845336914, 0.03689471817016601, 0.03159859275817871, 0.03201836776733399, 0.032237632751464844, 0.032538623809814454, 0.03201958465576172, 0.03214134216308594, 0.03227939224243164, 0.03226828765869141, 0.03219660949707031, 0.032464897155761716, 0.03248332977294922, 0.032470497131347656, 0.0324101448059082, 0.03241104125976563, 0.03248393630981445, 0.032158912658691405, 0.0325715217590332, 0.03323875045776367, 0.032532543182373044, 0.032838558197021486, 0.0329543685913086, 0.03269222259521484, 0.03298476791381836, 0.033280223846435544, 0.03324518585205078, 0.033285343170166015, 0.03314499282836914, 0.03595043182373047, 0.033975105285644534, 0.03211673736572265, 0.03188121604919433, 0.031885120391845705, 0.03181366348266602, 0.031919872283935544, 0.03194083213806152, 0.03191007995605469, 0.03197068786621094, 0.032258689880371096, 0.03245619201660156, 0.032136959075927736, 0.032025344848632814, 0.032008190155029294, 0.03201638412475586, 0.03205734252929687, 0.032056671142578125, 0.03242598342895508, 0.032258655548095705, 0.033429153442382814, 0.03236495971679688, 0.03224166488647461, 0.03215359878540039, 0.03224099349975586, 0.032199329376220706, 0.03246457672119141, 0.032385345458984374, 0.0332410888671875, 0.03327721786499024, 0.034013919830322266, 0.03264716720581055, 0.032620449066162106, 0.03257676696777344, 0.03237974548339844, 0.03216588973999023, 0.03238489532470703, 0.03193187141418457, 0.03222390365600586, 0.03212895965576172, 0.03298720169067383, 0.03287859344482422, 0.03230681610107422, 0.032319774627685545, 0.03237827301025391, 0.03240620803833008, 0.03277004623413086, 0.032868350982666016, 0.03258752059936523, 0.03271500778198242, 0.03221820831298828, 0.032310176849365234, 0.032806495666503906, 0.032717216491699216, 0.03235977554321289, 0.03237542343139648, 0.032653343200683596, 0.03313663864135742, 0.032927745819091796, 0.03323904037475586, 0.033529857635498046, 0.03327164840698242, 0.03298073577880859, 0.03645027160644531, 0.0337955207824707, 0.032489601135253905, 0.03205286407470703, 0.03594118499755859, 0.037631999969482424, 0.03216793441772461, 0.033726463317871096, 0.033009536743164064, 0.03182985687255859, 0.031929664611816407, 0.03188412857055664, 0.03199193572998047, 0.03199180793762207, 0.03234739303588867, 0.0321984977722168, 0.032046142578125, 0.03237257766723633, 0.032304161071777346, 0.03211363220214844, 0.03212076950073242, 0.03345187377929688, 0.03211862564086914, 0.032371070861816405, 0.03244646453857422, 0.03209817504882812, 0.03226022338867188, 0.03344384002685547, 0.03246694564819336, 0.03518463897705078, 0.03279443359375, 0.032869792938232424, 0.03311286544799805, 0.03338649749755859, 0.032950271606445314, 0.03263033676147461, 0.03286675262451172, 0.03241984176635742, 0.032339744567871094, 0.032400638580322265, 0.03249151992797852, 0.03252080154418945, 0.03222566223144531, 0.03215151977539062, 0.03223759841918945, 0.03264716720581055, 0.03210841751098633, 0.03207539367675781, 0.0325923843383789, 0.032307201385498044, 0.032059391021728514, 0.03211673736572265, 0.03227033615112305, 0.0324073600769043, 0.03273747253417969, 0.032580894470214845, 0.03304726409912109, 0.03306480026245117, 0.03275788879394531, 0.03262262344360352, 0.0329273910522461, 0.03348515319824219, 0.03319919967651367, 0.035547359466552735, 0.03317132949829102, 0.032169952392578124, 0.0315221118927002, 0.0316376953125, 0.03196345520019531, 0.031922527313232425, 0.0319069766998291, 0.0316711368560791, 0.03173990440368652, 0.031639520645141604, 0.0315248966217041, 0.032161792755126956, 0.031906911849975586, 0.031734687805175785, 0.03183350372314453, 0.031590688705444334, 0.031833728790283206, 0.031697343826293946, 0.03163158416748047, 0.031862815856933596, 0.031882400512695315, 0.031881664276123045, 0.03183568000793457, 0.032314239501953126, 0.03250358581542969, 0.03237887954711914, 0.03252374267578125, 0.032979713439941404, 0.03331043243408203, 0.03328028869628906, 0.03300556945800781, 0.03278438568115234, 0.03269830322265625, 0.03214956665039063, 0.03203420639038086, 0.032610912322998044, 0.0324128303527832, 0.03209833526611328, 0.03172435188293457, 0.03209577560424805, 0.0321929931640625, 0.032221023559570315, 0.03263283157348633, 0.032438209533691406, 0.03223984146118164, 0.032282623291015625, 0.03219180679321289, 0.03225017547607422, 0.032180160522460935, 0.032311744689941406, 0.032200702667236326, 0.03219993591308594, 0.03231615829467773, 0.03236044692993164, 0.03227558517456055, 0.0324754867553711, 0.03280131149291992, 0.03289424133300781, 0.032798561096191406, 0.032682880401611325, 0.032785472869873045, 0.03274233627319336]",tokens/s,30.75222134064387,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,"Traceback (most recent call last): +4bit-awq-gemv-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -7689,26 +7689,26 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_loader.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 4000, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 4034, in from_pretrained dispatch_model(model, **device_map_kwargs) File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 494, in dispatch_model model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2871, in to + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2905, in to return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1174, in to return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 780, in _apply module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 780, in _apply module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 780, in _apply module._apply(fn) [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 854, in _apply self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1160, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 70.00 MiB. GPU +torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 70.00 MiB. GPU 0 has a total capacity of 14.75 GiB of which 29.06 MiB is free. Process 22318 has 14.72 GiB memory in use. Of the allocated memory 14.43 GiB is allocated by PyTorch, and 193.89 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,1501.093888,1324.285952,0.0,945.815552,943.480832,s,1,8.4035087890625,8.4035087890625,0.0,8.4035087890625,8.4035087890625,8.4035087890625,8.4035087890625,[8.4035087890625],,kWh,4.1327311754164e-05,4.550933413764803e-06,1.3277510622005523e-05,5.9155755789934325e-05,,MB,1589.542912,1487.863808,0.0,1080.03328,1046.51776,s,10,0.8268167724609374,0.08268167724609374,0.0004368021488074932,0.08262483215332031,0.08331148834228516,0.08346441802978516,0.08358676177978516,"[0.08361734771728516, 0.08257561492919922, 0.0824674530029297, 0.08216486358642579, 0.08275836944580078, 0.08218051147460938, 0.08327750396728516, 0.08237484741210938, 0.08272621154785156, 0.08267404937744141]",tokens/s,3096.211984646146,kWh,2.5114694163461434e-06,2.768441387566843e-07,1.6708014316068285e-06,4.459114986709656e-06,tokens/kWh,57410495.30299291,MB,1593.438208,1573.84704,0.0,1166.016512,1082.822656,s,10,11.529435424804689,1.1529435424804686,0.002247484354686342,1.1528699340820312,1.155279248046875,1.1558662475585937,1.1563358471679688,"[1.152810791015625, 1.15289111328125, 1.1527913818359374, 1.1551488037109374, 1.1535712890625, 1.1528487548828126, 1.1502054443359375, 1.1481671142578125, 1.1545474853515625, 1.1564532470703126]",tokens/s,54.64274500767001,kWh,3.383504718865373e-05,3.731713839729946e-06,1.7744325211593323e-05,5.531108623997701e-05,tokens/kWh,1139012.16343254,,s,630,11.527169504165656,0.018297094451056584,0.0003323471075669016,0.018204559326171876,0.01853084735870361,0.018927657604217527,0.01959991451263428,"[0.018458911895751953, 0.018184671401977538, 0.01805721664428711, 0.018102272033691406, 0.01833776092529297, 0.01850774383544922, 0.01816172790527344, 0.018067455291748045, 0.01827014350891113, 0.01813100814819336, 0.018089984893798827, 0.01811359977722168, 0.018141984939575195, 0.018163007736206056, 0.01816643142700195, 0.018217151641845702, 0.01816582489013672, 0.01832748794555664, 0.018210111618041994, 0.018090368270874024, 0.018047103881835936, 0.01814134407043457, 0.018185375213623046, 0.018227615356445313, 0.018135520935058595, 0.018077695846557617, 0.018153663635253905, 0.0181463680267334, 0.01811327934265137, 0.018124479293823242, 0.018143552780151367, 0.018131231307983397, 0.018112224578857423, 0.019215391159057616, 0.018207712173461912, 0.018198528289794923, 0.01816783905029297, 0.01830499267578125, 0.018237760543823242, 0.018340736389160155, 0.01835647964477539, 0.018370784759521485, 0.018574975967407228, 0.018284351348876952, 0.018283424377441407, 0.018289920806884765, 0.018270879745483398, 0.018410751342773438, 0.018221023559570313, 0.01821526336669922, 0.02178102493286133, 0.01844428825378418, 0.01826188850402832, 0.018288768768310548, 0.018212480545043944, 0.018347391128540037, 0.018267135620117187, 0.01818601608276367, 0.01817545509338379, 0.018150144577026368, 0.01830694389343262, 0.018187936782836915, 0.018325023651123047, 0.018329919815063475, 0.018243263244628907, 0.018178400039672853, 0.018134016036987305, 0.018115360260009764, 0.018322784423828124, 0.01823593521118164, 0.018228832244873046, 0.01825846481323242, 0.018108415603637695, 0.01819196891784668, 0.018594207763671874, 0.018593791961669923, 0.018307071685791015, 0.01830473518371582, 0.01831760025024414, 0.01831248092651367, 0.018244352340698242, 0.018257919311523436, 0.01826812744140625, 0.019224576950073242, 0.018817024230957033, 0.018292383193969728, 0.01817795181274414, 0.01817612838745117, 0.01817964744567871, 0.018199296951293947, 0.01824563217163086, 0.018126848220825196, 0.02006380844116211, 0.018229183197021485, 0.018243392944335936, 0.018264768600463867, 0.01822105598449707, 0.01829033660888672, 0.018224672317504884, 0.018184959411621095, 0.01829449653625488, 0.018214975357055664, 0.018216928482055663, 0.018229440689086916, 0.01820419120788574, 0.018227807998657225, 0.01825984001159668, 0.018193727493286134, 0.018231840133666993, 0.018173280715942382, 0.018167871475219727, 0.018250207901000976, 0.01849734306335449, 0.018170175552368165, 0.018157855987548828, 0.018214176177978516, 0.01827840042114258, 0.01819926452636719, 0.01826201629638672, 0.018142784118652344, 0.018322879791259766, 0.018147520065307617, 0.01825027275085449, 0.01816316795349121, 0.018301759719848633, 0.018184255599975586, 0.018536447525024414, 0.020339744567871094, 0.018977760314941406, 0.018364639282226564, 0.01815456008911133, 0.018121152877807616, 0.018124191284179688, 0.019116928100585937, 0.018251775741577148, 0.018329599380493163, 0.01815283203125, 0.01810291290283203, 0.01816329574584961, 0.0181231689453125, 0.01819366455078125, 0.018489599227905273, 0.018395647048950196, 0.018157888412475585, 0.018266048431396485, 0.018083583831787108, 0.018453727722167967, 0.01830108833312988, 0.018354816436767576, 0.018195711135864257, 0.01816204833984375, 0.01823196792602539, 0.018122463226318358, 0.018199552536010744, 0.01808896064758301, 0.018122047424316407, 0.01813164710998535, 0.018241439819335938, 0.01849558448791504, 0.01815894317626953, 0.018057504653930665, 0.018123136520385743, 0.018269664764404298, 0.018210336685180663, 0.01810527992248535, 0.018109760284423827, 0.01804569625854492, 0.018170080184936523, 0.018112287521362305, 0.018077695846557617, 0.018218751907348632, 0.018163839340209962, 0.018945600509643553, 0.01824211120605469, 0.018207935333251952, 0.01816156768798828, 0.018216096878051757, 0.01815936088562012, 0.01819443130493164, 0.01834320068359375, 0.018526815414428712, 0.018234752655029298, 0.018184831619262695, 0.01828611183166504, 0.018092639923095705, 0.018224544525146484, 0.018080352783203125, 0.018097280502319336, 0.01900364875793457, 0.019517183303833008, 0.01814121627807617, 0.01832364845275879, 0.018444608688354493, 0.018110944747924806, 0.018131967544555663, 0.01816268730163574, 0.018298879623413086, 0.018296735763549805, 0.019089120864868164, 0.018239519119262696, 0.01820707130432129, 0.018239488601684572, 0.01840127944946289, 0.018167327880859375, 0.018141664505004883, 0.01804035186767578, 0.018601791381835937, 0.018159456253051758, 0.018228031158447264, 0.018255872726440428, 0.018140832901000978, 0.01810047912597656, 0.01815510368347168, 0.018727424621582032, 0.019129440307617186, 0.01823187255859375, 0.01822550392150879, 0.01834614372253418, 0.018201696395874024, 0.01804569625854492, 0.018069503784179687, 0.018096128463745118, 0.018128896713256838, 0.018136735916137695, 0.01819683265686035, 0.018108415603637695, 0.018143232345581056, 0.018130367279052734, 0.018119232177734375, 0.018134016036987305, 0.018107391357421874, 0.018136415481567383, 0.018121376037597656, 0.018134271621704102, 0.018194944381713866, 0.01815577507019043, 0.018099903106689453, 0.0180513916015625, 0.018144895553588867, 0.019227008819580078, 0.018339935302734374, 0.018433055877685546, 0.018467008590698244, 0.01865388870239258, 0.019785375595092775, 0.018686304092407225, 0.018758655548095703, 0.018766847610473633, 0.018288639068603514, 0.01821286392211914, 0.01822550392150879, 0.018158464431762694, 0.018840576171875, 0.01864838409423828, 0.01853068733215332, 0.018528575897216796, 0.01886115264892578, 0.018275232315063478, 0.018259967803955078, 0.01819443130493164, 0.01827833557128906, 0.018384960174560545, 0.01844380760192871, 0.018581535339355467, 0.018335391998291015, 0.018287391662597657, 0.018315168380737306, 0.01824127960205078, 0.018141408920288087, 0.01818796730041504, 0.01819411277770996, 0.018368799209594725, 0.018131423950195312, 0.01817190361022949, 0.018080896377563476, 0.018100576400756838, 0.01813763236999512, 0.018239488601684572, 0.018214912414550782, 0.018884607315063476, 0.019231935501098633, 0.01859231948852539, 0.01823468780517578, 0.018214879989624025, 0.01808403205871582, 0.018115360260009764, 0.018100223541259765, 0.01804697608947754, 0.018155519485473632, 0.019152576446533204, 0.018188831329345703, 0.018183967590332032, 0.01823289680480957, 0.018118751525878905, 0.018186368942260743, 0.01818047904968262, 0.01818828773498535, 0.018452320098876953, 0.01818137550354004, 0.018196672439575196, 0.01815545654296875, 0.018137727737426758, 0.01817964744567871, 0.01826246452331543, 0.018233343124389647, 0.018192384719848635, 0.018446176528930665, 0.01822934341430664, 0.018151487350463867, 0.018255807876586913, 0.018133056640625, 0.018435903549194336, 0.018211008071899414, 0.01813484764099121, 0.018280832290649415, 0.018132640838623048, 0.01813360023498535, 0.018048799514770508, 0.018155744552612305, 0.018067455291748045, 0.018102144241333006, 0.018178176879882813, 0.01812623977661133, 0.018176607131958008, 0.018135072708129883, 0.018182111740112306, 0.018146623611450197, 0.01815622329711914, 0.018094079971313477, 0.018259904861450196, 0.018199712753295898, 0.01820150375366211, 0.018167808532714845, 0.018089984893798827, 0.01809436798095703, 0.018036447525024413, 0.018067455291748045, 0.018010271072387694, 0.018120672225952147, 0.019124095916748046, 0.01838447952270508, 0.018578880310058592, 0.018086431503295898, 0.01808633613586426, 0.01815465545654297, 0.018120735168457032, 0.0181092472076416, 0.018100223541259765, 0.019085119247436524, 0.018468416213989258, 0.01957142448425293, 0.018171808242797852, 0.01821273612976074, 0.018339712142944335, 0.018204927444458008, 0.018092031478881835, 0.018184192657470705, 0.01828156852722168, 0.018115583419799804, 0.018116512298583985, 0.018198751449584962, 0.01919977569580078, 0.01832364845275879, 0.01815737533569336, 0.018137088775634767, 0.01808950424194336, 0.01817558479309082, 0.01807244873046875, 0.018186176300048828, 0.018296895980834962, 0.01815670394897461, 0.018111328125, 0.01943142318725586, 0.020368671417236327, 0.01828118324279785, 0.018219104766845705, 0.01828223991394043, 0.018253984451293944, 0.018263551712036134, 0.01809049606323242, 0.018333696365356447, 0.01807910346984863, 0.01809062385559082, 0.01818623924255371, 0.019267839431762697, 0.018130687713623046, 0.018045087814331055, 0.018081632614135743, 0.018044927597045898, 0.01912556838989258, 0.01822358322143555, 0.018090208053588866, 0.01803500747680664, 0.01812233543395996, 0.018038240432739258, 0.018216991424560548, 0.01812441635131836, 0.018094303131103516, 0.0180948486328125, 0.01819443130493164, 0.018335744857788085, 0.018184192657470705, 0.018101343154907225, 0.018055999755859375, 0.018136159896850586, 0.018117631912231445, 0.01807360076904297, 0.018276639938354492, 0.0182554874420166, 0.019285472869873047, 0.01890572738647461, 0.01878201675415039, 0.018249120712280274, 0.018245439529418945, 0.01823632049560547, 0.01809324836730957, 0.01811974334716797, 0.01807459259033203, 0.01840640068054199, 0.018245695114135742, 0.018132511138916015, 0.018178207397460937, 0.018110559463500975, 0.018280448913574218, 0.018081792831420897, 0.018083423614501954, 0.018102399826049803, 0.018208608627319336, 0.01841606330871582, 0.018617631912231446, 0.018381471633911132, 0.018239551544189454, 0.018135135650634765, 0.01818943977355957, 0.018121503829956056, 0.018358591079711915, 0.018089567184448242, 0.01803856086730957, 0.018123071670532228, 0.018040416717529296, 0.018899360656738282, 0.01822163200378418, 0.018304832458496095, 0.018153919219970702, 0.018112159729003905, 0.018280799865722657, 0.018151552200317382, 0.018143104553222655, 0.01839308738708496, 0.01856060791015625, 0.018280864715576172, 0.018225151062011717, 0.018229248046875, 0.01821900749206543, 0.0181628475189209, 0.018346111297607423, 0.0181624641418457, 0.01832748794555664, 0.018137216567993164, 0.018130815505981446, 0.018118656158447266, 0.01817804718017578, 0.018167808532714845, 0.01818556785583496, 0.018120672225952147, 0.01816441535949707, 0.018224672317504884, 0.018209247589111327, 0.01828160095214844, 0.018090879440307617, 0.018147327423095702, 0.01822719955444336, 0.01818780708312988, 0.0181560001373291, 0.018135232925415037, 0.018153280258178712, 0.018140607833862305, 0.01806015968322754, 0.018144927978515624, 0.018175296783447266, 0.018117055892944336, 0.018047264099121094, 0.018100223541259765, 0.01809110450744629, 0.018254751205444335, 0.01873459243774414, 0.018355743408203125, 0.018221183776855467, 0.018170175552368165, 0.01812944030761719, 0.018137088775634767, 0.018170015335083008, 0.018192256927490234, 0.01827734375, 0.018215072631835937, 0.01917411231994629, 0.01824985694885254, 0.018208671569824218, 0.018268255233764647, 0.018097824096679687, 0.01819100761413574, 0.018132671356201172, 0.018138816833496094, 0.018460800170898437, 0.018995071411132814, 0.018319168090820313, 0.01818864059448242, 0.018505727767944336, 0.018464767456054687, 0.01840447998046875, 0.018367359161376953, 0.018149215698242186, 0.018110496520996094, 0.018118783950805663, 0.01814691162109375, 0.018225568771362305, 0.018134559631347656, 0.01815395164489746, 0.01825382423400879, 0.018159616470336915, 0.018128896713256838, 0.01814240074157715, 0.01810256004333496, 0.018141727447509765, 0.01818979263305664, 0.018147296905517578, 0.018289087295532226, 0.01817344093322754, 0.018137727737426758, 0.01816985511779785, 0.0184965763092041, 0.018289600372314453, 0.01828985595703125, 0.01826464080810547, 0.018267488479614256, 0.018408191680908202, 0.01818003273010254, 0.018272192001342773, 0.018140512466430662, 0.01811520004272461, 0.018172224044799803, 0.01818320083618164, 0.01808483123779297, 0.01821696090698242, 0.018051071166992186, 0.019091455459594727, 0.018181535720825197, 0.018107135772705077, 0.018171743392944337, 0.018146400451660157, 0.01813596725463867, 0.01840742492675781, 0.01837494468688965, 0.018650848388671874, 0.018485023498535157, 0.018392416000366212, 0.018357152938842772, 0.018194400787353515, 0.018093984603881837, 0.018399391174316406, 0.018079776763916016, 0.018304607391357423, 0.020652351379394532, 0.01961155128479004, 0.018309215545654296, 0.018264064788818358, 0.01815331268310547, 0.018258848190307618, 0.01819443130493164, 0.01843177604675293, 0.018120927810668944, 0.018182144165039063, 0.018152448654174806, 0.01815449523925781, 0.01806780815124512, 0.01811814308166504, 0.01858531188964844, 0.01825584030151367, 0.018252191543579103, 0.018177536010742186, 0.018208480834960936, 0.018352991104125978, 0.01829478454589844, 0.01830297660827637, 0.018431999206542968, 0.01918156814575195, 0.01852544021606445, 0.018491264343261718, 0.018478111267089845, 0.01845631980895996, 0.018456640243530272, 0.018409503936767577, 0.018526208877563476, 0.01858905601501465, 0.01851158332824707, 0.019485631942749024, 0.01853228759765625, 0.01837264060974121, 0.018249408721923828, 0.018217632293701172, 0.018124448776245118, 0.01826959991455078, 0.01834377670288086, 0.018706687927246092, 0.01859382438659668, 0.018280576705932618, 0.01829859161376953, 0.018192127227783204, 0.01827724838256836, 0.018171743392944337, 0.018148704528808592, 0.018279232025146485, 0.018366111755371093, 0.018315616607666015, 0.018210464477539063, 0.018288991928100587, 0.018193599700927734, 0.018225120544433593, 0.018207584381103516, 0.01837648010253906, 0.018501792907714844, 0.018472991943359374, 0.018415647506713866, 0.018571264266967775, 0.018308576583862306, 0.018246431350708008, 0.01821980857849121, 0.01815648078918457, 0.018156608581542968, 0.018278656005859376]",tokens/s,54.653486250231055,,,,,