albertvillanova HF staff commited on
Commit
73ca4fe
·
verified ·
1 Parent(s): 3aebd00

Delete loading script

Browse files
Files changed (1) hide show
  1. librispeech_asr.py +0 -279
librispeech_asr.py DELETED
@@ -1,279 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """Librispeech automatic speech recognition dataset."""
18
-
19
-
20
- import os
21
-
22
- import datasets
23
- from datasets.tasks import AutomaticSpeechRecognition
24
-
25
-
26
- _CITATION = """\
27
- @inproceedings{panayotov2015librispeech,
28
- title={Librispeech: an ASR corpus based on public domain audio books},
29
- author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
30
- booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
31
- pages={5206--5210},
32
- year={2015},
33
- organization={IEEE}
34
- }
35
- """
36
-
37
- _DESCRIPTION = """\
38
- LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,
39
- prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read
40
- audiobooks from the LibriVox project, and has been carefully segmented and aligned.87
41
- """
42
-
43
- _URL = "http://www.openslr.org/12"
44
- _DL_URL = "http://www.openslr.org/resources/12/"
45
-
46
-
47
- _DL_URLS = {
48
- "clean": {
49
- "dev": _DL_URL + "dev-clean.tar.gz",
50
- "test": _DL_URL + "test-clean.tar.gz",
51
- "train.100": _DL_URL + "train-clean-100.tar.gz",
52
- "train.360": _DL_URL + "train-clean-360.tar.gz",
53
- },
54
- "other": {
55
- "test": _DL_URL + "test-other.tar.gz",
56
- "dev": _DL_URL + "dev-other.tar.gz",
57
- "train.500": _DL_URL + "train-other-500.tar.gz",
58
- },
59
- "all": {
60
- "dev.clean": _DL_URL + "dev-clean.tar.gz",
61
- "dev.other": _DL_URL + "dev-other.tar.gz",
62
- "test.clean": _DL_URL + "test-clean.tar.gz",
63
- "test.other": _DL_URL + "test-other.tar.gz",
64
- "train.clean.100": _DL_URL + "train-clean-100.tar.gz",
65
- "train.clean.360": _DL_URL + "train-clean-360.tar.gz",
66
- "train.other.500": _DL_URL + "train-other-500.tar.gz",
67
- },
68
- }
69
-
70
-
71
- class LibrispeechASRConfig(datasets.BuilderConfig):
72
- """BuilderConfig for LibriSpeechASR."""
73
-
74
- def __init__(self, **kwargs):
75
- """
76
- Args:
77
- data_dir: `string`, the path to the folder containing the files in the
78
- downloaded .tar
79
- citation: `string`, citation for the data set
80
- url: `string`, url for information about the data set
81
- **kwargs: keyword arguments forwarded to super.
82
- """
83
- super(LibrispeechASRConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs)
84
-
85
-
86
- class LibrispeechASR(datasets.GeneratorBasedBuilder):
87
- """Librispeech dataset."""
88
-
89
- DEFAULT_WRITER_BATCH_SIZE = 256
90
- DEFAULT_CONFIG_NAME = "all"
91
- BUILDER_CONFIGS = [
92
- LibrispeechASRConfig(name="clean", description="'Clean' speech."),
93
- LibrispeechASRConfig(name="other", description="'Other', more challenging, speech."),
94
- LibrispeechASRConfig(name="all", description="Combined clean and other dataset."),
95
- ]
96
-
97
- def _info(self):
98
- return datasets.DatasetInfo(
99
- description=_DESCRIPTION,
100
- features=datasets.Features(
101
- {
102
- "file": datasets.Value("string"),
103
- "audio": datasets.Audio(sampling_rate=16_000),
104
- "text": datasets.Value("string"),
105
- "speaker_id": datasets.Value("int64"),
106
- "chapter_id": datasets.Value("int64"),
107
- "id": datasets.Value("string"),
108
- }
109
- ),
110
- supervised_keys=("file", "text"),
111
- homepage=_URL,
112
- citation=_CITATION,
113
- task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
114
- )
115
-
116
- def _split_generators(self, dl_manager):
117
- archive_path = dl_manager.download(_DL_URLS[self.config.name])
118
- # (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
119
- local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
120
-
121
- if self.config.name == "clean":
122
- train_splits = [
123
- datasets.SplitGenerator(
124
- name="train.100",
125
- gen_kwargs={
126
- "local_extracted_archive": local_extracted_archive.get("train.100"),
127
- "files": dl_manager.iter_archive(archive_path["train.100"]),
128
- },
129
- ),
130
- datasets.SplitGenerator(
131
- name="train.360",
132
- gen_kwargs={
133
- "local_extracted_archive": local_extracted_archive.get("train.360"),
134
- "files": dl_manager.iter_archive(archive_path["train.360"]),
135
- },
136
- ),
137
- ]
138
- dev_splits = [
139
- datasets.SplitGenerator(
140
- name=datasets.Split.VALIDATION,
141
- gen_kwargs={
142
- "local_extracted_archive": local_extracted_archive.get("dev"),
143
- "files": dl_manager.iter_archive(archive_path["dev"]),
144
- },
145
- )
146
- ]
147
- test_splits = [
148
- datasets.SplitGenerator(
149
- name=datasets.Split.TEST,
150
- gen_kwargs={
151
- "local_extracted_archive": local_extracted_archive.get("test"),
152
- "files": dl_manager.iter_archive(archive_path["test"]),
153
- },
154
- )
155
- ]
156
- elif self.config.name == "other":
157
- train_splits = [
158
- datasets.SplitGenerator(
159
- name="train.500",
160
- gen_kwargs={
161
- "local_extracted_archive": local_extracted_archive.get("train.500"),
162
- "files": dl_manager.iter_archive(archive_path["train.500"]),
163
- },
164
- )
165
- ]
166
- dev_splits = [
167
- datasets.SplitGenerator(
168
- name=datasets.Split.VALIDATION,
169
- gen_kwargs={
170
- "local_extracted_archive": local_extracted_archive.get("dev"),
171
- "files": dl_manager.iter_archive(archive_path["dev"]),
172
- },
173
- )
174
- ]
175
- test_splits = [
176
- datasets.SplitGenerator(
177
- name=datasets.Split.TEST,
178
- gen_kwargs={
179
- "local_extracted_archive": local_extracted_archive.get("test"),
180
- "files": dl_manager.iter_archive(archive_path["test"]),
181
- },
182
- )
183
- ]
184
- elif self.config.name == "all":
185
- train_splits = [
186
- datasets.SplitGenerator(
187
- name="train.clean.100",
188
- gen_kwargs={
189
- "local_extracted_archive": local_extracted_archive.get("train.clean.100"),
190
- "files": dl_manager.iter_archive(archive_path["train.clean.100"]),
191
- },
192
- ),
193
- datasets.SplitGenerator(
194
- name="train.clean.360",
195
- gen_kwargs={
196
- "local_extracted_archive": local_extracted_archive.get("train.clean.360"),
197
- "files": dl_manager.iter_archive(archive_path["train.clean.360"]),
198
- },
199
- ),
200
- datasets.SplitGenerator(
201
- name="train.other.500",
202
- gen_kwargs={
203
- "local_extracted_archive": local_extracted_archive.get("train.other.500"),
204
- "files": dl_manager.iter_archive(archive_path["train.other.500"]),
205
- },
206
- ),
207
- ]
208
- dev_splits = [
209
- datasets.SplitGenerator(
210
- name="validation.clean",
211
- gen_kwargs={
212
- "local_extracted_archive": local_extracted_archive.get("dev.clean"),
213
- "files": dl_manager.iter_archive(archive_path["dev.clean"]),
214
- },
215
- ),
216
- datasets.SplitGenerator(
217
- name="validation.other",
218
- gen_kwargs={
219
- "local_extracted_archive": local_extracted_archive.get("dev.other"),
220
- "files": dl_manager.iter_archive(archive_path["dev.other"]),
221
- },
222
- ),
223
- ]
224
- test_splits = [
225
- datasets.SplitGenerator(
226
- name="test.clean",
227
- gen_kwargs={
228
- "local_extracted_archive": local_extracted_archive.get("test.clean"),
229
- "files": dl_manager.iter_archive(archive_path["test.clean"]),
230
- },
231
- ),
232
- datasets.SplitGenerator(
233
- name="test.other",
234
- gen_kwargs={
235
- "local_extracted_archive": local_extracted_archive.get("test.other"),
236
- "files": dl_manager.iter_archive(archive_path["test.other"]),
237
- },
238
- ),
239
- ]
240
-
241
- return train_splits + dev_splits + test_splits
242
-
243
- def _generate_examples(self, files, local_extracted_archive):
244
- """Generate examples from a LibriSpeech archive_path."""
245
- key = 0
246
- audio_data = {}
247
- transcripts = []
248
- for path, f in files:
249
- if path.endswith(".flac"):
250
- id_ = path.split("/")[-1][: -len(".flac")]
251
- audio_data[id_] = f.read()
252
- elif path.endswith(".trans.txt"):
253
- for line in f:
254
- if line:
255
- line = line.decode("utf-8").strip()
256
- id_, transcript = line.split(" ", 1)
257
- audio_file = f"{id_}.flac"
258
- speaker_id, chapter_id = [int(el) for el in id_.split("-")[:2]]
259
- audio_file = (
260
- os.path.join(local_extracted_archive, audio_file)
261
- if local_extracted_archive
262
- else audio_file
263
- )
264
- transcripts.append(
265
- {
266
- "id": id_,
267
- "speaker_id": speaker_id,
268
- "chapter_id": chapter_id,
269
- "file": audio_file,
270
- "text": transcript,
271
- }
272
- )
273
- if audio_data and len(audio_data) == len(transcripts):
274
- for transcript in transcripts:
275
- audio = {"path": transcript["file"], "bytes": audio_data[transcript["id"]]}
276
- yield key, {"audio": audio, **transcript}
277
- key += 1
278
- audio_data = {}
279
- transcripts = []