--- license: cc-by-sa-4.0 dataset_info: features: - name: video_id dtype: string - name: chunk_idx dtype: int64 - name: chunk_text dtype: string - name: video_metadata dtype: string - name: video_language dtype: string - name: chunk_media dtype: string splits: - name: shard_0 num_bytes: 2152532 num_examples: 694 - name: shard_1 num_bytes: 2039321 num_examples: 628 - name: shard_10 num_bytes: 1711625 num_examples: 502 - name: shard_100 num_bytes: 1879092 num_examples: 608 - name: shard_1000 num_bytes: 2554377 num_examples: 631 - name: shard_10000 num_bytes: 1436826 num_examples: 409 - name: shard_10001 num_bytes: 2566374 num_examples: 919 - name: shard_10002 num_bytes: 1441850 num_examples: 416 - name: shard_10003 num_bytes: 1479331 num_examples: 453 - name: shard_10004 num_bytes: 2304946 num_examples: 665 - name: shard_10005 num_bytes: 2326767 num_examples: 765 - name: shard_10011 num_bytes: 2031992 num_examples: 572 - name: shard_10013 num_bytes: 2377377 num_examples: 691 - name: shard_10012 num_bytes: 2046815 num_examples: 626 - name: shard_10008 num_bytes: 2405272 num_examples: 769 - name: shard_10006 num_bytes: 2272052 num_examples: 667 - name: shard_10007 num_bytes: 2369366 num_examples: 632 - name: shard_10009 num_bytes: 2081310 num_examples: 626 - name: shard_1001 num_bytes: 2383462 num_examples: 664 - name: shard_10010 num_bytes: 4633710 num_examples: 1011 download_size: 15925504 dataset_size: 44494397 configs: - config_name: default data_files: - split: shard_0 path: data/shard_0-* - split: shard_1 path: data/shard_1-* - split: shard_10 path: data/shard_10-* - split: shard_100 path: data/shard_100-* - split: shard_1000 path: data/shard_1000-* - split: shard_10000 path: data/shard_10000-* - split: shard_10001 path: data/shard_10001-* - split: shard_10002 path: data/shard_10002-* - split: shard_10003 path: data/shard_10003-* - split: shard_10004 path: data/shard_10004-* - split: shard_10005 path: data/shard_10005-* - split: shard_10011 path: data/shard_10011-* - split: shard_10008 path: data/shard_10008-* - split: shard_10010 path: data/shard_10010-* - split: shard_10013 path: data/shard_10013-* - split: shard_10006 path: data/shard_10006-* - split: shard_10012 path: data/shard_10012-* - split: shard_10007 path: data/shard_10007-* - split: shard_10009 path: data/shard_10009-* - split: shard_1001 path: data/shard_1001-* --- ![VALID Dataset](https://huggingface.co/datasets/ontocord/VALID/resolve/main/banner1-1.webp) # VALID (Video-Audio Large Interleaved Dataset) ## Overview The **VALID (Video-Audio Large Interleaved Dataset)** is a multimodal dataset comprising approximately 720,000 [Creative Commons licensed](https://creativecommons.org/share-your-work/cclicenses/) videos crawled from YouTube, and processed into audio-video-text data records for machine learning research. The dataset provides a unique opportunity for training models to understand relationships between modalities such as video frames, audio clips, and multilingual textual data, making it suitable for applications like multimodal representation learning. ## Features - Audio-Video-Text Format: A combination of: ``` English text ``` - The non-text multimodal portion begins the data item and can include multiple media. Some snippets may have more than one audio, and more than one video. Others may have only images/videos or only audio paired with English text. Each video contains multiple frames stored as images, and text captions for each image. There can also be standalone images interleaved as well. Even though each audio video snippets are no more than 10 seconds (e.g., if a data item has two 10 second videos, then the corresponding English corresponds roughly to 20 seconds of video). The intention for this format is to teach a model to associate multiple modalities with each other, and understand multiple audio-video elements in an interleaved fashion. - Data Components: - **Images**: PNG format, phashed to ensure variability, with 0–10 images per audio snippet. Each image includes a caption created with Florence-2. - **Audio**: OGG format, multilingual, ~10 seconds per snippet, with shorter sound or music snippets (1–3 seconds) to minimize copyright issues. Each audio snippet is transcribed either with Whisper for non-English, or with the original Youtube ASR for English. - **Text**: Not including the captions and transcripts, the “text” portion is a concatenation of Youtube’s original English transcripts associated with the above media of around 1–40 words per data record. - Dataset Size: - **About 15,000,000 images.** - **About 30,000,000 audio snippets.** ## File Organization - Each data entry follows the `