---
license: cc-by-sa-4.0
dataset_info:
features:
- name: video_id
dtype: string
- name: chunk_idx
dtype: int64
- name: chunk_text
dtype: string
- name: video_metadata
dtype: string
- name: video_language
dtype: string
- name: chunk_media
dtype: string
splits:
- name: shard_0
num_bytes: 2152532
num_examples: 694
- name: shard_1
num_bytes: 2039321
num_examples: 628
- name: shard_10
num_bytes: 1711625
num_examples: 502
- name: shard_100
num_bytes: 1879092
num_examples: 608
- name: shard_1000
num_bytes: 2554377
num_examples: 631
- name: shard_10000
num_bytes: 1436826
num_examples: 409
- name: shard_10001
num_bytes: 2566374
num_examples: 919
- name: shard_10002
num_bytes: 1441850
num_examples: 416
- name: shard_10003
num_bytes: 1479331
num_examples: 453
- name: shard_10004
num_bytes: 2304946
num_examples: 665
- name: shard_10005
num_bytes: 2326767
num_examples: 765
- name: shard_10011
num_bytes: 2031992
num_examples: 572
- name: shard_10013
num_bytes: 2377377
num_examples: 691
- name: shard_10012
num_bytes: 2046815
num_examples: 626
- name: shard_10008
num_bytes: 2405272
num_examples: 769
- name: shard_10006
num_bytes: 2272052
num_examples: 667
- name: shard_10007
num_bytes: 2369366
num_examples: 632
- name: shard_10009
num_bytes: 2081310
num_examples: 626
- name: shard_1001
num_bytes: 2383462
num_examples: 664
- name: shard_10010
num_bytes: 4633710
num_examples: 1011
download_size: 15925504
dataset_size: 44494397
configs:
- config_name: default
data_files:
- split: shard_0
path: data/shard_0-*
- split: shard_1
path: data/shard_1-*
- split: shard_10
path: data/shard_10-*
- split: shard_100
path: data/shard_100-*
- split: shard_1000
path: data/shard_1000-*
- split: shard_10000
path: data/shard_10000-*
- split: shard_10001
path: data/shard_10001-*
- split: shard_10002
path: data/shard_10002-*
- split: shard_10003
path: data/shard_10003-*
- split: shard_10004
path: data/shard_10004-*
- split: shard_10005
path: data/shard_10005-*
- split: shard_10011
path: data/shard_10011-*
- split: shard_10008
path: data/shard_10008-*
- split: shard_10010
path: data/shard_10010-*
- split: shard_10013
path: data/shard_10013-*
- split: shard_10006
path: data/shard_10006-*
- split: shard_10012
path: data/shard_10012-*
- split: shard_10007
path: data/shard_10007-*
- split: shard_10009
path: data/shard_10009-*
- split: shard_1001
path: data/shard_1001-*
---
![VALID Dataset](https://huggingface.co/datasets/ontocord/VALID/resolve/main/banner1-1.webp)
# VALID (Video-Audio Large Interleaved Dataset)
## Overview
The **VALID (Video-Audio Large Interleaved Dataset)** is a multimodal dataset comprising approximately 720,000 [Creative Commons licensed](https://creativecommons.org/share-your-work/cclicenses/) videos crawled from YouTube, and processed into audio-video-text data records for machine learning research. The dataset provides a unique opportunity for training models to understand relationships between modalities such as video frames, audio clips, and multilingual textual data, making it suitable for applications like multimodal representation learning.
## Features
- Audio-Video-Text Format:
A combination of:
```
English text
```
- The non-text multimodal portion begins the data item and can include multiple media. Some snippets may have more than one audio, and more than one video. Others may have only images/videos or only audio paired with English text. Each video contains multiple frames stored as images, and text captions for each image. There can also be standalone images interleaved as well.
Even though each audio video snippets are no more than 10 seconds (e.g., if a data item has two 10 second videos, then the corresponding English corresponds roughly to 20 seconds of video).
The intention for this format is to teach a model to associate multiple modalities with each other, and understand multiple audio-video elements in an interleaved fashion.
- Data Components:
- **Images**: PNG format, phashed to ensure variability, with 0–10 images per audio snippet. Each image includes a caption created with Florence-2.
- **Audio**: OGG format, multilingual, ~10 seconds per snippet, with shorter sound or music snippets (1–3 seconds) to minimize copyright issues. Each audio snippet is transcribed either with Whisper for non-English, or with the original Youtube ASR for English.
- **Text**: Not including the captions and transcripts, the “text” portion is a concatenation of Youtube’s original English transcripts associated with the above media of around 1–40 words per data record.
- Dataset Size:
- **About 15,000,000 images.**
- **About 30,000,000 audio snippets.**
## File Organization
- Each data entry follows the `